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ANALYTIC APPROXIMATIONS FOR APPLICATION TO SPACECRAFT
OPTICAL NAVIGATION ON SHORT DATA ARCS

By Alton P. Mayo and William M. Adams, Jr.
Langley Research Center

SUMMARY

" The standard least-squares orbit determination procedures are simplified for
application to a navigation system where position fixes are taken over a short trajectory
arc. Basic assumptions used are as follows: (1) for small perturbations in spacecraft
state, velocity deviations remain constant and position deviations increase linearly with
time and (2) the sensitivity of the measurements to small spacecraft-position changes
remains constant over the trajectory arc. Simple analytic expressions are then derived
for estimating the accuracy of the spacecraft position and velocity as a function of the
number of fixes and the time span over which the fixes are made, or inversely the num-
ber of fixes and the time span over which they must be made for a prescribed position
and velocity accuracy. For a large number of measurements the standard deviation of
the position error was shown to vary inversely as the square root of the number of
measurements, as expected, and the standard deviation of the velocity error was shown
to vary inversely as the product of the square root of the number of measurements and
the time span over which the measurements are made. Simplified equations are also
derived for determining the orbit (state) of the spacecraft.

INTRODUCTION

Spacecraft navigation is concerned with both the problem of the single fix, effec-
tively taking three simultaneous measurements to determine the spacecraft position, and
with the problem of determining the orbit from numerous measurements taken along the
trajectory. The use of a single position fix in spacecraft navigation has been the subject
of several papers (for example, refs. 1 and 2). The development of navigational proce-
dures for combining multiple fixes or measurements to obtain an estimate of the orbit
has also been the subject of many papers (for example, refs. 3, 4, and 5). These latter
procedures are essentially based on modified least-squares techniques and are appli-
cable to combining measurements made over a trajectory arc of arbitrary length, If the
trajectory arc is short as in orbit verification calculations or rapid orbit estimation
techniques, simplifying assumptions may be made in the usual least-squares procedures,



In the present paper, onboard navigation procedures are developed for measure-
ments made on a short trajectory arc. The following two simplifying assumptions are
made in the least-squares procedures: (1) the gravity field is a constant in a small
region around any point on the nominal trajectory and (2) the magnitude and direction of
the gradient of the measurement remain constant over a short arc of the trajectory.
Using these assumptions, equations are established for predicting the number of fixes
as well as the time span, over which they are to be made, for a prescribed position and
velocity accuracy. Simplified least-squares equations are also derived for determining
the orbit and estimating its accuracy.

The procedures presented are useful for the design of onboard orbit determination
systems using multiple position fixes. The simplified equations presented for determi-
nation of the orbit from short data arcs are adaptable for either manual or machine
computation. The equations are illustrated by an example and the results compare
favorably to those obtained from the complete least-squares solution of reference 6.

SYMBOLS
[G] matrix relating measurement deviations to perturbations in spacecraft
position vector
N2 a2 2|12
h magnitude of measurement gradient ) (32X} (&
X 9y oz
I3 unit matrix of rank 3
[m] matrix relating measurement deviations to perturbations in the space-
craft state vector
N number of time points when measurements are made, that is, number of
fixes
04 null matrix of 3 X 3 dimensions
[P] local position information matrix; inverse of position covariance matrix
t time from epoch
T length of data arc
[W] measurement weighting matrix, a diagonal of 1 omz
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Subscripts:

X,¥,2

x’y ’z

perturbations in spacecraft geocentric equatorial coordinates
deviation in optical measurement

vector of coefficients in least-squares normal equations

random error in optical measurement

standard deviation

standard deviation of optical measurement

square root of trace of position covariance matrix, (crx +0," +a0
square root of trace of velocity covariance matrix, (0'-2 + 0'-2 + 0'2-2)
transition matrix

column matrix of the state vector

column matrix of observations

summation index

at epoch

position

time from epoch

at time of the epoch

derivative with respect to x,y,z, respectively

derivative with respect to Xx,y,z, respectively



Matrix notations:

{ } column matrix

] square or rectangular matrix

[cov] covariance matrix

[Info] information matrix (inverse of covariance matrix)
[ ]T transpose of matrix [ |

Optical measurement symbols:

)> subtended angle of Moon

*O observation of an angle from a star to Earth horizon

*x ]_) observation of an angle from a star to a Moon landmark

* ) observation of an angle from a star to Moon horizon

* @ observation of an angle from a star to an Earth landmark
@ observation of Earth azimuth

@ observation of Earth elevation
O> angular diameter of Earth

N ,-* 2,21: 3 observation to star 1, star 2, and star 3, respectively
Dots over symbols denote derivatives with respect to time,

WEIGHTED LEAST-SQUARES PROCEDURES

The weighted least-squares procedures for spacecraft navigation are based on the
assumption that small trajectory perturbations are transitioned linearly along the tra-
jectory. This concept may be expressed mathematically as
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where the column matrices {xt} and {xto} are the trajectory perturbations at

time t and t,, respectively.

The elements of the so-called transition matrix [¢] are partial derivatives
which relate perturbations in spacecraft state at time t due to perturbations in state
at time t,- The perturbations in the observations made on the trajectory are also
assumed to be linearly related to the trajectory perturbations; this leads to the
expression

G =[] + (2 @

The column matrix {y} is the difference between the measurement and the
values calculated for the estimated trajectory. The state vector {xt} represents the
deviation of the actual trajectory from the estimated trajectory.

Combining equations (1) and (2) gives equations of condition, which in matrix form

(37 = [M][6]¢xoy + (e} 3)

It is the usual procedure to multiply each observation equation by the reciprocal
of the measuring accuracy; this gives large multiplying or weighting numbers to those
equations associated with high measuring accuracy and small weighting numbers to those
equations with low measuring accuracy. Thus, the observation equations become

o} - o | P B + 10 @

m

These are a set of linear equations expressing the deviations in the observations
at time t due to perturbations in the spacecraft state at time t, and the random error
introduced when the observations were made. Given a set of observational data and
estimated values of the observations, the weighted least-squares technique may be used
to determine the trajectory perturbation {xto} This involves the fitting of equation (4)

minus the error term to the data. Multiplying the modified equation (4) by
T
[gb]T [m]T I:a—l-—] and solving the resulting equation by matrix inversion yield the
m

weighted least-squares solution as
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For normally distributed, uncorrelated measurement errors, the matrix

[ L] WG] ©

is the covariance matrix of the estimated {:&0} and expresses the accuracy of this
estimate from the knowledge of the measurement accuracy as expressed by the
matrix [W] and by using the linear relation expressed by [m] and [¢].

In subsequent sections of this paper, it is shown that the matrix [m] can be
assumed to be constant over a short trajectory arc and that the matrix [¢] can be
simply approximated by assuming linear perturbative motion. This, in addition to sim-
plifying the equations, yields insight into the behavior of onboard navigation procedures.

APPROXIMATION TO THE TRANSITION MATRIX
For the weak gravitational field in most of translunar and mterplanetary space, the

approximation can be made that x :gj = x = y = yz = zy =0 ina small
region about any point on the nommal tra]ectory. Then the equations, for the perturbative

motion, reduce to

ift = 3}0 > (7)

From which it follows that

X =X+ 5cot
Vi =Yg + Vot
Zy =24+ éot
and the perturbative motions are linear, In this case, the transition matrix |:¢>:| can

then be expressed as:
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The transition matrices obtained from integration of the complete equations of
motion, that is, with x_ and ¥ and so forth not equal to zero, are shown in table I for
a translunar trajectory. Selected elements of the transition matrices obtained from inte-
grating the complete equations of motion are also plotted in figure 1. By examining equa-
tion (8), figure 1, and table I, it can be seen that the approximation of linear perturbative
motion is good except in the near-earth region (flight time = 0). When comparing the
various curves of figure 1, note that the linear position variation, for 10, 20, and 52 hours
of flight time, is masked by the highly sensitive vertical scale, In any near-body region
a more complete transition matrix could be employed such as the expressions for the
transition matrix given in reference 7. The diagonal elements of the transition matrix
for values of t up to 8 days on a Mars approach trajectory are shown in figure 2.

APPROXIMATION TO THE GRADIENTS OF THE MEASUREMENTS

The relation between the local measurements and the spacecraft local position is
given by

<§2?=[G]<Y?+<€2F (9)

Py



where

. A |

ox oy oz

[a]-= 5 2 %2
8x ay oz

ox oy oz

For optical measurements, the 3 X 3 matrix [G] expresses the gradients of the
measurements with spacecraft position. For short data arcs, say, 4 hours of a trans-
lunar orbit, the direction and magnitude of the gradient vector should not change con-
siderably, except in the regions where the spacecraft is near the body on which the meas-
urements are being made. A plot of the magnitude of the gradient of the measurements
over a 4-hour interval for flight in various portions of translunar space is shown in fig-
ure 3 which indicates that the magnitudes are fairly constant except for a measurement
made near the earth at 10 hours and measurements made near the moon at 52 hours.
Thus, if one avoids the near-body regions, the gradients should remain approximately
constant over a 4-hour translunar flight time or, in order to maintain approximately con-
stant gradient over the arc, the length of the data arc has to be shortened in the near-

body region.
The results for the Mars mission are shown in figure 4, The plot shows that the

magnitudes of the gradients are fairly constant over 1-day segments in the near-body
regions of the Mars trajectory. The magnitude of gradients would be expected to be

more nearly constant in the far-body region.
DETERMINATION OF THE STATISTICS OF THE ORBIT

Accuracy estimates of the spacecraft state are a necessary part of navigational
computations. These estimates are usually in the form of a covariance matrix whose
diagonal elements are the square of the 1-sigma uncertainty of the spacecraft state
vector. A simplified expression for the covariance matrix is derived by using the pre-
viously mentioned assumptions of a short data arc, linear propagation of small trajectory
perturbations, and constant sensitivities of the optical measurements with respect to
small deviations in spacecraft position.

The equation relating the spacecraft position to the measurements is given by equa-
tion (9) and in referring to the reasoning in equations (4) to (6) the associated covariance
matrix of position is

8




E',ov xp:l = E}TW(}]-I (10)

where W is the measurement weighting matrix. The local state information matrix
due to the local measurement is thus given by

[info], = [--=----=- [ =|-~-1--- (11)

where GTWG is the upper 3 X 3 of a 6 X 6 matrix and is designated as P. The infor-
mation matrix of the state at time to due to the local fix (three simultaneous observa-
tions) is given by

[nto], = ] "[into},[¢]

which, by using equation (8), becomes
[II'IfC] to =] ======l|=--~=-=°= (12)

and the information matrix at time t0 due to all fixes over the data interval is given by
the summation process

- - o -
NI, :Z wiy || ¥ 16
| e 1
[mtolye = | - - |- - o (13)
N ' N ) '
Z t113: Z ti I3 03 : P
S T |
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where, as in equation (13), P is assumed constant for all data points and N, E ti, and
i=1

$ ti2 are scalar coefficients of 3 X 3 identity matrices. This expression may be

-

i=1

written in closed form as

i - Mo
' NT '
] 1)
L TR ERl | B -ee
NT 1 N(2N - 1T !
—1 I P
2 3 : 6(N-1) 3 Us :
| o I o

where the assumptions have been made that the first data point is obtained at t = t0 = 0.0
and the spacing between data points is constant.

The covariance matrix associated with the estimate of Xio is given by

2(2N - 1 . -B(N -1 -1
1 Ié(N b 1)) I3 N(IET + 1)'} 13 By B
[cov xg] =[Infd] | = |- -------- 2 wiE s we ) | o - === (8
-6(N - 1) vo12(N - 1) 0, ' pl
NN + 1)T 3 | NN + 1)T2 3 | 3 !
o - —

A comparison of the results of this equation and the results of reference 6 for a
navigation system utilizing 4 hours of data beginning at 20 hours of flight time is shown
in table II. It is seen that the results from the approximate solution compare favorably

to those obtained from the complete least-squares solution.

Examination of equation (15) shows that the relation between the position and veloc-

ity uncertainty at any time t is given by

o

r 2N-1) T

_:T’—-———z—— for large N (16
Oy 6(N -1) |3 = :

The comparison of this equation with the complete least-squares results of reference 6
is given in figure 5. In this figure the data span is varied from 0 to 4 hours in various
translunar regions. As can be seen, the agreement is good from 10 to 40 hours of flight
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time. It should be stated here that the ratio of the position to the velocity uncertainty is
not a function of the type of measurements being made.

This same position-to-velocity uncertainty relation is shown in figure 6 for a
4 -hour data span at various distances from earth for numerous navigation systems,

VARIATION OF POSITION AND VELOCITY ACCURACY WITH
NUMBER OF FIXES

From equation (15), it is seen that

0 2=2@N-1)  prace [_P]'l

r TON(N +1)

From which it follows that

20
_ ’2(2N - 1) _“r,o
0y = NN 1) % o = for large N (1mn

Also from equation (15)

02 120 -1) . qp,ee I:P:l =%

VNN + DT

or

N-1 %02 \l 3
o, =2 \,3 i o for large N 18
¥ N(N + 1) T "NT A & ( )

Plots showing a comparison of results from equations (17) and (18) with the complete
least-squares results of reference 6 are given in figures 7 to 10. The values used for
Gr,o in figures 7, 8, and 9 are shown in figure 10. This figure shows a comparison of
the values of a single position fix uncertainty o, obtained from equation (17) and

those obtained from diagonal elements of the equétion

[cov x;] = I:[G]T[“ﬂ [G]:l-l (19)
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DETERMINATION OF NUMBER OF FIXES AND TIME SPAN TO OBTAIN
A PRESCRIBED POSITION AND VELOCITY ACCURACY

The number of measurements to obtain a prescribed 0, by using a navigation

system with accuracy %o for a single fix, is given from equation (17) as
H

. \2 o \Z 2 A2
g r,o) o g L 4( rzo) _ 8( rzo)
O'r U'r O'r

N = (20)

For large values of N, equation (17) reduces to

2

oro) N

2
%r.o
N=4 e for large N

r

Thus

The time span over which the measurements must be made to obtain a specified

velocity uncertainty oy along with this @i is given from equation (16) as

6(N - 1) Op %
= piotl. ndh RRRE o [ Wil [ el 1
T \‘ N -1 \J3 for large N (21)

USE OF LESS THAN THREE OBSERVATIONS PER TIME POINT

From equation (13), the information matrix is approximated by the equation

r ] N -F 1
1 1
NIg : Ztils P : 0g
i=1
Info], =|----- R I B R (22)
S :
Zt113: Zti Iy 05 ' P
L...i=1 ] l:l JL 1 N

This equation does not require that three measurements (one fix) be made per time
point, The G matrix could have the second or second and third row zeros. This

12



would correspond to making one or two measurements per time point. However, in this
case, the information matrix would not have an inverse since the P matrix of the above
product has no inverse. Thus the simplified expressions relating op and oy, interms
of or,o’ N, and T developed in this paper are only applicable when three or more
measurements are made per time point. Nevertheless, if a priori information is avail-
able, it is possible to obtain an improved estimate of the orbit with less than three obser-
vations per time point while retaining the simplifying assumptions about the gradients of
the measurements and the time variation of the transition matrices. A comparison of
some results from reference 6 shows that in the unrestricted orbit determination pro-
cess, the three observations per time point cases give considerably better results than
the two observations per time point cases; however, the orbit was determined in both
cases. These comparisons are shown in figure 11.

DETERMINATION OF THE SPACECRAFT STATE USING
THE APPROXIMATE TRANSITION MATRIX

The weighted least-squares normal equations (eq. (5)) for the spacecraft state are
of the form

{Zto) = Eov xcﬂ'l{Y} (23)

where the column {Y} is given by

s ~
N s
o 3
ox 2
i=1 9 9

=
|H=3:’
I::

2
i=1 Do %
iayl Vi
1-1% o
- [T m]TWKE) = (N s ) (24)
- LT BT 0D K, 5,
£y 0%, g2
iayi Vi
i ay; ¥
i=1 %%, ‘3’12
\_ /
13
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From equations (8) and (9), # is assumed constant over the data interval and

5 0]
Vi . .
—— is assumed given by
ox
[0}
i W

—_—=t, — (25)
axo 18x0

thus, the expression for {Y} can be written from equations (24), (25), and (9) as
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Combining this equation with equation (15) yields the solution for spacecraft state as

2@N-1), ! _ B(N-1) ; 1. o
X N(N+1) 8 .+ NN+1T 3 .3
} = [ oom = = i i e | ----({yr @
X BN -1) o o _12(N -1) | o-1

NN+ DT 3 ' gy 4 172 I3 O3 : P

A comparison of approximate navigational results obtained from equation (27) with those
from the complete least-squares solution of reference 6 is shown in table III. The data
in table III represent 40 fixes made from 20 to 24 hours of flight time.
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CONCLUDING REMARKS

Optical navigational techniques applicable to position fixing on short trajectory arcs
were developed. The gradients of the optical measurements over a short arc were
assumed to be constant in magnitude and direction. Also, it was shown that the gradient
of the gravity field in a limited region about the nominal trajectory could be assumed to
be zero. By combining these two assumptions, simplified least-squares normal equations
for the determination of the orbit and its accuracy were developed. These equations show
that the standard deviation of the position error determined from a large number of mea-
surements varies inversely as the square root of the number of measurements, as
expected, and the standard deviation of the velocity error varies inversely as the product
of the square root of the number of measurements and the time span over which the
measurements are made, From these relations, the time span of the measurements and
the number of measurements which must be made for a prescribed spacecraft position
and velocity accuracy was readily established. The approximate least-squares equations
for determining the orbit were applied to an example and the results compared favorably
to those obtained from the complete least-squares solutions.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 11, 1968,
125-17-05-09-23.
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TABLE I.- TRANSITION MATRICES AT 20 AND 52 HOURS OF FLIGHT TIME
IN A TRANSLUNAR TRAJECTORY

LT

Transition matrix I:qb] from 20 to 23.9 hours of flight time:

0.9945 0.29 x 10-3 0.19 x 10-3 1.1 0.58
.98 x 10-3 1.0078 .68 X 10-2 1.0 14070 31
0 .63 x 10-2 .9980 .52 31 14032

-.14 x 106 .37 x 107 .20 x 10-7 .9950 .18 X 10-3 .93 x 104
.37x10-7 .98 x 10-6 .96 x 10-6 .18 x 10-3 1.0064 .63 x 10-2
.19 x 10-7 .95 x 10-6 .22 x10-6 .92 x 10-4 .63 x 10-2 .9985

Transition matrix E;b] from 52 to 55.9 hours of flight time:

0.9997 0.15 x 10-2 0.24 x 10-3 7.1 3.2
.0 .9999 .39 X 1072 6.2 14045 9.3
.97 x 1073 .20 x 10-2 .9990 3.6 9.8 14033
.75 x 10-8 .22 x 10-6 .10 x 10-6 1.0002 17 % 1072 .83 x 103
.22 x 10-6 .19 x 10-6 .29 x 10-6 17 x 10-2 1.0013 .21 x 10-2
.10 x 10-6 .29 x 10-6 -.20 x 106 .83 x 10-3 .21 x 10-2 .9984
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TABLE II.- COMPARISON OF COMPUTED COVARIANCE MATRIX WITH

ANALYTIC APPROXIMATION TO COVARIANCE MATRIX

ESimiIar to flight time of 20 hours of ref. 6; 100 fixes at 1 per
0.04 hour; star to earth horizon, two stars to moon horizon]

Computed least-squares values:

corso - [ T BIGT]

5.28176 5.8115 4.0730 -0.5675 x 10-3
5.8115 22.1179 12.2335 -.6077 x 103
4.0730 12.2335 10.0330 -.4232 x 10-3
-.5675 x 10-3 -.6031 x 10-3 -.4211 x 10-3 .8088 x 107
-.6077 x 10-3 -2.2777 % 10-3 -1.2596 x 10-3 .8379 x 10~7
-.4232 x 10-3 -1.2573 x 103 -1.0323 x 10-3 5792 x 10~7
Analytic approximate values:
l" ' e

22N - 1)I3 1+ -6(N - 1)Ig po-1

NN+1) , NN+DT 0

-6(N - 1)I3 | 12(N - 1)I3 .

NN+ DT ! NN+ 1)T2 3
5.3431 6.0529 4.2825 -0.5565 x 10-3
6.0529 24.0818 13.3539 -.6305 x 10-3
4.2825 13.3539 10.8570 -.4461 x 1073
-.5565 x 10-3 -.6305 % 10-3 -.4461 x 10-3 7703 % 10-7
-.6305 x 10-3 -2.5085 x 10-3 -1.3910 x 10-3 8757 x 10-7
-.4461 x 1073 -1.3910 x 103 -1.1309 x 10-3 6195 x 10-7

-0.6031 x 10-3
-2.2777 x 1073
-1.2573 x 10-3
.8379 x 10-7
3063 x 10-6
1.6888 x 107

-0.6305 x 10-3
-2.5085 x 10-3
-1.3910 x 10-3
8757 x 1077
.3484 x 10-6
1.9319 x 10-7

-0.4211 x 10-3
-1.2597 x 10-3
-1.0323 x 10-3
5792 x 10-7
1.6888 x 10-7
1.3913 x 10~7

-0.4461 x 1073
-1.3910 x 10-3
-1.1309 x 10-3
6195 x 10-7
1.9319 x 10-7
1.5707 x 10-7




TABLE IIl.- EXAMPLE OF APPROXIMATE AND COMPLETE
LEAST-SQUARES SOLUTION FOR SPACECRAFT STATE
ON A TRANSLUNAR TRAJECTORY

Parameter

%, km/sec . . . . .

%, km/sec . . ...

True deviation

of state from

nominal value
9.656
9.656
9.6566
0.0061
0.0061
0.0061

Least-squares
solution of
reference 6

11.4
9.6
15.4
0.0062
0.0062
0.0055

Approximate solution
of this paper

8.5
5.5
10.8
0.0066
0.0072
0.006%7
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Figure 1.- Trajectory displacements from nominal due to unit position and velocity perturbations on a translunar trajectory.
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Figure 4.- Magnitude of star to body center measurement gradient on a Mars trajectory.
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