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EXPERIMENTAL VIBRATION CHARACTERISTICS OF 

A 1/40-SCALE DYNAMIC MODEL OF THE 

SATURN V-LAUNCH- UMBILICAL-TOWER CONFIGURATION 

By John J. Catherines 
Langley Research Center 

SUMMARY 

The results of bending vibration tests on 1/40-scale dynamic models of the Saturn V 
launch vehicle and its umbilical tower are presented herein. The lateral  vibratory 
response characteristics of these structures, considered separately and as an integral 
configuration mounted on the launch platform, are presented. Mode shapes, resonant 
frequencies, and damping values were determined over a frequency range of 10 to  
300 hertz (0.25 to 7.5 hertz, full-scale equivalent). The results include data for two 
simulated mass conditions corresponding to a fueled and an unfueled launch vehicle. A 
description of the models is presented and the scaling concepts employed in their design 
are discussed. 

The f i rs t  four cantilever modes and frequencies of the 1/40-scale models of the 
vehicle and tower are presented. At its first resonance, the tower responds in planes 
which are not coincident with i t s  planes of symmetry. The test results for the complete 
configuration indicate considerable coupling between the launch vehicle and the tower at 
the higher frequencies, but little coupling at the lower frequencies (below 60 hertz) even 
though the f i r s t  cantilever modes of the vehicle and tower were included in this low-
frequency range. 

INTRODUCTION 

The Langley Research Center has undertaken programs to determine the ability of 
dynamically scaled models of launch vehicles to duplicate full- scale-vehicle structural 
dynamic properties. These investigations have established the feasibility of using models 
t o  obtain vibration data at much less expense than required to  obtain the same data from 
full-scale vehicles and also have provided useful information for  the evaluation of ana­
lytical studies performed on these structures. For example, reference l shows good 
agreement between experimental vibration characterist ics obtained from a full- scale 
Saturn SA-1 launch vehicle and a 1/5-scale replica model. Similarly, reference 2 uses  
vibration data obtained on a scaled model of an operational vehicle to illustrate the use of 
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model data to validate dynamic analysis procedures. The full benefit derived from the 
use of dynamically scaled models of flight vehicles (for some other examples, see ref. 3) 
is immeasurable when one considers the relative cost and effort required for  a full-scale 
ground vibration survey. 

The mobile launcher concept f o r  the Apollo Saturn V launch vehicle is a new 
approach in the preparation of a space vehicle for  flight. The basic concept is to erect  
the launch vehicle in a sheltered environment on a launch platform with umbilical tower. 
Here, in a sheltered environment, integrated tests of the completed space vehicle a r e  
performed, followed by a mission simulation test  of an actual countdown. The Saturn V 
launch vehicle, joined with the launch umbilical tower, is then transported 3 miles 
(5  kilometers) to the launch pad in a near-launch-ready state, with all umbilical connec­
tions intact. The sizes of these structures are enormous; the entire configuration weighs 
6000 tons (5  443 200 kg), and the launch vehicle and its umbilical tower stand 361 feet 
(110 meters) and 381 feet (116 meters), respectively, on the launch platform. These 
unique features of the Saturn V-launch-umbilical-tower (Saturn V-LUT) configuration, 
namely, (1) its tremendous s ize  and (2) the requirement for mobility, lead to the possibil­
ity of severe static and dynamic problems which require investigating. Dynamic coupling 
between the launch vehicle and its umbilical tower is one such area  of interest. Because 
of the sizes of the structures involved, it is only natural to consider the use of a reduced-
scale model to predict the vibration characteristics of this configuration. 

The purpose of this report is to present the results of an experimental investigation 
of the bending vibration characteristics of a 1/40-scale dynamic model of the Apollo 
Saturn V- LUT configuration. This investigation is a continuation of the Langley Research 
Center work on the evaluation of dynamic modeling technology for adequately defining 
vibration characteristics of full-scale structures. The configuration is comprised of 
models that simulate the mass and stiffness distributions of the full-scale hardware. 
However, scale factors were modified from those which would have been obtained by s t r ic t  
geometric scaling in order to satisfy the fabrication requirements; thus, equivalent values 
of mass  and stiffness were established. The results reported herein were employed to 
facilitate an analytical investigation of the same configuration, and a comparison of the 
analytical studies with the test results is given in reference 4. 

SYMBOLS 

E Young's modulus, pounds force/inch2 (newtons/centimeterZ) 

f frequency, hertz 

G acceleration of gravity, 32.2 feet/second2 (9.8 meters/second2) 
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damping factor, & loge( 5)
Xn 

I area moment of inertia, inches4 (centimeter&) 

I characteristic length, inches (centimeters) 

m mass, pounds force-second2/inch (kilograms) 

n number of cycles used in determining damping factor g 

t skin thickness, inches (centimeters) 

x,y reference axes 

X,Y directions of excitation 

XO initial vibration amplitude, inches (centimeters) 

Xn vibration amplitude after n cycles, inches (centimeters) 

P mass density, pounds mass/inch3 (kilograms/centimeter3) 

Subscripts: 

F T  full-scale tower 

F V  full-scale launch vehicle 

MT model of tower 

MV model of launch vehicle 

1/40-SCALE SATURN V- LUT CONFIGURATION 

Scaling 

The 1/40-scale models of the Saturn V launch vehicle and its launch umbilical tower 
(LUT) were constructed to investigate vibration characteristics of the prototype struc­
tures  and to advance the technology of dynamic modeling. The theory of models and 
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dimensional analysis is presented in reference 5. Important parameters simulated in 
scaling were mass and stiffness magnitudes and distributions. 

All linear dimensions of the vehicle could not be geometrically scaled because of 
limitations in fabricating very thin materials; thus, the scaled values of skin thickness 
were increased by a factor of 4. Because the Saturn V model was constructed of magne­
sium instead of aluminum primarily used in the full-scale vehicle, its skin thickness was 
increased by an additional factor of 1.54 to compensate for  the difference in the modulus 
of elasticity. In order for  the bending frequencies to scale directly with the scale factor 
(1/40), the scaled values of the nonshell mass properties of the model also were increased 
by a factor of 4. 

In addition, complicated structural parts of the vehicle, such as composite or  
stringer elements, were simulated by simplified structural elements having equivalent 
stiffness and mass properties. For  example, the honeycomb structure of the lunar-
module adapter was simulated with a sheet of magnesium supported with a layer of balsa 
wood; also, the number of stringers and the stringer thickness were varied from full-
scale details to obtain the desired scale value of stiffness. 

Steel was used in both the full-scale and the 1/40-scale LUT. Thus, the modulus­
of-elasticity ratio for the LUT was unity. 

From these considerations, the following scale factors were defined: 

Length: 

Modulus of elasticity: 

Density: 

Skin thickness: 

tMV-= 4(1.54) = 4(1.54)(L); t= 4(?)= 
FT 

4(&) 
tFV FV 40 FT 
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Mass: 

Cross-section moment of inertia: 

Bending frequency: 
r 

Model Description 

A photograph of the 1/40-scale dynamic model of the Saturn V-launch-umbilical­
tower (Saturn V-LUT) configuration is shown in figure 1 and a sketch of the configuration 
showing pertinent dimensions and nomenclature used herein is presented in figure 2. The 
configuration is made up of the following parts: (1) a 1/40-scale dynamic model of the 
Saturn V vehicle and (2) a 1/40-scale dynamic model of the launch umbilical tower (LUT) 
consisting of the tower and platform. 

Saturn _ ~ .. . V launch vehicle.- The 1/40-scale model of the Saturn V vehicle consists of 
components representing the three booster stages and of a payload section that includes 
models of the lunar module (LM), service and command modules, and the launch escape 
system. The 1/40-scale dynamic model of the Saturn V launch vehicle is 109.8 inches 
(278.9 cm) in length, measured f rom the model tip to the bottom of the first-stage engines, 
and has a maximum diameter of 9.9 inches (25.15 cm). The model has a mass  of 
326.54 pounds (148.12 kg) when fully ballasted; however, the f i r s t  stage is only 85 percent 
full because it was equipped with mechanical slosh simulators. The space required for  
the proper operation of these slosh simulators limited the amount of propellant in the 
first stage to 85  percent of the full condition. A cross-sectional sketch of the 1/40-scale 
Saturn V model is shown in figure 3. Measured mass  and'calculated bending stiffness 
distributions of the Saturn V model are presented in figures 4 and 5, respectively. The 
stiffness distribution of the full-scale Saturn V vehicle shown in figure 5 was  obtained 
from unpublished results of a vibration analysis of the full-scale Saturn V vehicle per­
formed at the George C. Marshall Space Flight Center. Basically, the present model con­
sists of a stack of flanged, cylindrical shells bolted to  one another; within this shell the 
various thrust structures, simulated bulkheads, and propellant loads are located at the 
appropriate stations along the length of the model. Details of a typical flanged joint are 
shown in figure 6(a). 
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The engines incorporated on the model were designed to simulate only the center­
of-gravity location, total mass, and rigid-body moment of inertia about the gimbal point 
of the full-scale engines. No provision was made for the engines to move with respect 
to the gimbal point, but actuator bending stiffness was simulated. Figure 6(b) shows a 
typical engine mount and simulated engine. 

Measured values of model mass  (with and without propellant) for  each stage and 
for the complete model are given in table I. A photograph of the Saturn V model com­
pletely disassembled and with all major components identified is shown in figure 7.  The 
first- stage propellants were simulated with solid metal (eutectic alloy); two lox-
simulated and two fuel-simulated propellant tanks (nos. 15 and 14, respectively, in fig. ?), 
contained the metal. The amount of metal contained in the tanks could be varied so as to 
simulate the various flight times of the full-scale vehicle. Also included in the first 
stage were fuel and lox mechanical slosh simulators (no. 10 in fig. 7) whose design was 
based on a fuel-slosh mathematical analogy consisting of a spring-mass system which 
simulated the full-scale sloshing frequency. In the S-I1 and S-IVB stages of the model, 
the mass of the lox propellant was also simulated with eutectic alloy (see nos. 20 and 19, 
respectively, in fig. 7); however, the mass of the liquid hydrogen (LH2) propellant was 
simulated with water (see nos. 13 and 16 in fig. 7). It should be noted that the volume of 
the propellants was not scaled, but their mass  and relative center- of -gravity locations 
were simulated. 

~ - _ _ _tower (LUT).- The 1/40-scale model of the LUT consists of twoLaunch umbilical _ _ ~ ~ -

principal structures, namely, (1) the umbilical tower and (2) the launch platform. The 
umbilical tower stands approximately 130 inches (330 cm) above the ground and 
114 inches (289.6 cm) above the launch platform. The tower is approximately 12 inches 
(30.5 cm) square above its flared-out base. The rectangular platform measures 
48.5 inches (123.2 cm) by 40.5 inches (102.9 cm) by 6.63 inches (16.84 cm). These 
dimensions were scaled from early architectural drawings of the full-scale structure. 

The 1/40-scale model of the LUT is dynamically similar to the full-scale struc­
ture. The scaling laws established for  the vehicle were used in the design of the LUT 
model; however, the LUT was constructed of steel and the modulus-of-elasticity ratio was 
therefore unity. Figure 8 shows the model of the launch platform during its construction 
phase; all joints were welded. Figure 9 shows the partially completed launch platform 
and a section of the tower. The tower is also an all-welded structure; however, it is 
bolted to the surface of the launch platform. The four vehicle holddown points and asso­
ciated column structures, shown in figure 9, were scaled so as to represent the estimated 
longitudinal and lateral  spring restraint. 

The mass distribution, the center of gravity, and the rigid-body mass moments of 
inertia of the LUT structure were obtained by positioning steel ballast weights in the 
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forms of cylinders and plates on the launch platform and tower, respectively, as shown 
in figures 10 and 11. These weights simulated the nonstructural mass of the platform 
and tower. The cylinders were bolted to the platform and the square plates were bolted 
to the tower structure at the four corners. When completely ballasted, the tower has a 
mass  of 222 pounds (100.7kg) and the platform has a mass of 382 pounds (173.2kg). 
Both longitudinal and lateral spring restraints were simulated in the platform-to-ground 
support posts shown in figure 10. 

Static-load-deflection curves for the tower are presented in figure 12. Tests 
were conducted with the force applied in two directions, normal to the perpendicular 
vertical sides of the tower. The results show that the tower deflected more when the 
load was applied in the plane of the widest base, or y-direction (see fig. 2); this fact 
indicates that the tower behaved as a truss-type structure, not as .a beam. 

TEST APPARATUS AND PROCEDURE 

Shaker System and Test Configurations 

One electromagnetic shaker having a force capability of 10 pounds (44.48newtons) 
was used for all tests. The test  results reported herein a r e  presented for two directions 
of excitation, the x- and y-directions. The X-axis is defined as a horizontal line passing 
through the center lines of both the Saturn V model and the umbilical-tower model; the 
Y-axis is defined as a horizontal line perpendicular to the X-axis that bisects the longest 
side of the launch platform. Figures 10 and 11 show the shaker suspended by two cables 
and positioned so  as to apply the force in the x- and y-directions, respectively. 

A number of configurations were investigated. A summary of these configurations 
and the directions of excitation a r e  presented in the following table: 

.~ 

Configuration Shaker location Direction 
of excitation 

Saturn V model Saturn V model station X 

(cantilevered) 41.9 in. (106.4 cm) 
Tower model Tower model station x and y 

(canti1evered) 67 in. (170.2cm) 
Tower model on Launch platf o rm x and y 

launch platform 
Saturn V-LUT model Launch platform x and y 
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indicates that the tower behaved as a truss-type structure, not as a beam. 

TEST APPARATUS AND PROCEDURE 

Shaker System and Test Configurations 

One electromagnetic shaker having a force capability of 10 pounds (44.48 newtons) 

was used for all tests. The test results reported herein are presented for two directions 
of excitation, the x- and y-directions. The X-axis is defined as a horizontal line passing 
through the center lines of both the Saturn V model and the umbilical-tower model; the 
Y-axis is defined as a horizontal line perpendicular to the X-axis that bisects the longest 

side of the launch platform. Figures 10 and 11 show the shaker suspended by two cables 
and positioned so as to apply the force in the x- and y-directions, respectively. 

A number of configurations were investigated. A summary of these configurations 

and the directions of excitation are presented in the following table: 

Configuration Shaker location Direction 
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Saturn V model Saturn V model station x 
(cantilevered) 41.9 in. (106.4 em) 

Tower model Tower model station x and y 

(cantilevered) 67 in. (170.2 em) 

Tower model on Launch platform x and y 

launch platform 

Saturn V - LUT model Launch platform x and y 
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Two mass conditions of the Saturn V model were investigated: (1) unfueled - with 
all stages empty but with the LM and the fueled service module included and (2) fueled -
with the first stage of the model 85 percent full and all upper stages full. 

Instrumentation, Testing, and Data Reduction 

Vibration response, frequencies, and damping of the 1/40-scale Saturn V model 
were obtained from the output signal of lightweight, crystal  accelerometers. The accel­
erometers were located on flanged joints where potential effects from local responses 
were minimized. (See fig. 3.) The LM and engine motions were also monitored with 
fixed accelerometers in the excitation plane. 

The response of the 1/40-scale umbilical tower was measured by using heavier, 
servo-type accelerometers. These transducers were placed on the plate ballast weights 
located at the various levels along the tower height, as shown in figure 1. The launch 
platform was instrumented at the tower base, with an accelerometer on the platform sur­
face and another on a cylindrical ballast weight located under the tower. 

The testing procedure involved a frequency sweep at a rate of 0.145 octave per 
minute with a constant force input over a frequency range of 10 to 300 hertz for each 
configuration tested. The principal bending- mode frequencies were determined by moni­
toring the acceleration level measured at both the vehicle and tower tips. Each reso­
nance was then tuned to its maximum response, where resonant frequencies, mode shapes, 
and damping of the structures were determined. The data were recorded on analog tape 
and were digitized by means of a 24-point-per-cycle conversion. The digitized data were 
then reduced by means of a harmonic analysis to determine the normalized mode shapes. 

Damping data were obtained from the decay of oscillation recorded on an oscillo­
graph when the force input was instantaneously terminated. Damping decrements were 
obtained for both the vehicle and the tower of the Saturn V-LUT configuration. The 
damping factor g was obtained from the relation 

where xo is the initial vibration amplitude, xn is the vibration amplitude after n 
cycles, and n is the number of cycles. 

RESULTS AND DISCUSSION 

The primary objective of the test program was to determine the lateral vibration 
characteristics of a 1/40-scale dynamic model of the Saturn V-LUT configuration. The 
investigation w a s  conducted on separated configurations and on an integral configuration. 
For the separated-configuration tests, the models of both the Saturn V vehicle and the 
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tower were cantilevered. The integral configuration was studied with the vehicle and 
tower models mounted on the platform which was bolted to a rigid foundation - that is, 
with holddown boundary conditions simulated. The results are presented for two direc­
tions of excitation and for two simulated mass conditions of the vehicle. A summary of 
the frequencies and damping is presented in tables I1 to V and the frequency responses 
and mode shapes are shown in figures 13 to 29. In these figures the Saturn V model 
length is normalized to the tip longitudinal station 107 inches (272 cm). It should be 
noted that the mode shapes of the vehicle a r e  normalized to the deflection at station 
104 inches (264 cm) and not to the deflection at the tip station. 

Cantilevered 1/40- Scale Saturn V Model 

A summary of the cantilever resonant frequencies and associated damping of the 
1/40-scale model of Saturn V obtained fo r  two simulated mass conditions is presented in 
table 11. Tests were conducted in only one direction since the model was assumed sym­
metric. The results a r e  presented for the unfueled and fueled conditions and the corre­
sponding mode shapes a r e  presented in figures 13 and 14, respectively. Four cantilever 
modes a re  presented for  the unfueled condition and five cantilever modes a r e  presented 
for the fueled condition. The identity for the cantilevered modes was based on the char­
acteristic mode shapes of a cantilever beam. 

Cantilevered 1/40-Scale Umbilical Tower 

Measured cantilever resonant frequencies and associated damping of the 1/40-scale 
tower mounted on a rigid foundation a r e  summarized in table 111. The data a r e  presented 
for the x- and y-directions, and the corresponding mode shapes a r e  shown in figures 15  
and 16, respectively. With the exception of the f i rs t  mode in the x-direction, the mode 
shapes of the tower exhibit rotation at the tower base rather than a Oo slope character­
istic of a cantilever beam, This behavior w a s  verified with a movable-accelerometer 
survey and can probably be explained by the fact that the tower is essentially a t russ  
structure and that, in such structures, bending s t resses  in individual members a r e  
usually small  compared with s t resses  due to axial forces (ref. 6). Thus, the joints of 
the tower behaved as if they were pinned, and classical analyses have shown that such an 
assumption is realistic for t russ  structures. 

The first cantilever mode of the tower was unique in that it responded out of the 
plane of the exciting force. The two mode shapes presented as the first mode in the x­
and y-directions, figures 15(a) and 16(a), respectively, represent components of the out­
of-plane resonances measured in these directions; no out-of -plane deflection was 
observed in the static test (see fig. 12). Figure 17 shows how the frequency response of 
the fundamental mode as measured at the tower tip varied with the plane of excitation; 
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of-plane resonances measured in these directions; no out-of-plane deflection was 
observed in the static test (see fig. 12). Figure 17 shows how the frequency response of 

the fundamental mode as measured at the tower tip varied with the plane of excitation; 
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the shaker force remained constant and the response was measured in the plane of excita­
tion. The frequency and response differentials shown in figures 17(b) and 17(c) indicate 
that the tower is not dynamically symmetric about its axes of symmetry; rather the 
principal response axes of the tower are oriented approximately 45’ from these axes, 
This anomaly may be attributed to asymmetries of construction. In addition, the funda­
mental mode in the y-direction (see fig. lS(a)) shows a negative rotation about the base. 
A manual survey of the tower response indicated that the tower appeared to pivot just 
above the flared-out area which tended to impart similar rotational motion below this 
point. All the remaining modes obtained were planar modes - that is, the tower did not 
respond out of the excitation plane. 

Model of Tower on Launch Platform Without Saturn V 

The modes reported hereinafter a r e  identified by numbers corresponding to the 
consecutive number of resonant peaks as they appeared on the frequency sweeps for each 
configuration tested, and no attempt was made to relate the modal identity to character­
istic shapes as was done for the previously discussed results from the tests of the models 
having cantilevered-end conditions. The frequency responses of the tower on the launch 
platform a r e  normalized to the maximum response, since the intent is to show the rela­
tive shapes of the response curves and the distribution of peaks. 

Results for  the tower mounted on the launch platform a r e  given for  force applied in 
the x- and y-directions. For  this and all the remaining test  configurations involving the 
launch platform, a constant excitation force was applied at the launch platform. The 
frequency response measured at the tower tip when the force is being applied in the 
x-direction and the associated mode shapes a r e  shown in figures 18 and 19, respectively; 
similarly, the results obtained in the y-direction a r e  shown in figures 20 and 21. In addi­
tion, the frequency responses measured during the cantilevered-tower tests (normalized 
to the maximum cantilever response) a r e  superimposed in figures 18 and 20. A com­
parison shows that when the tower is mounted on the launch platform instead of on a rigid 
foundation, the resonant frequencies of the tower tended to decrease but the number of 
resonant peaks increased. The decrease of resonant frequencies is caused by the effec­
tive spring of the platform-to-ground support posts. This effect is represented by the 
launch-platform displacement in figure 19(b) and by a reduction of 12.5 percent in the 
second resonant frequency when the tower is mounted on the launch platform instead of 
on a rigid foundation. Furthermore, an investigation of the platform motion indicated 
that the base did not respond out of the plane of excitation; similar platform-motion 
results were observed for the model of the complete Saturn V-LUT configuration. The 
launch platform was  ballasted with solid steel cylinders of various sizes (see figs. 10 
and 11);each was connected to the platform by means of a single bolt. The ballast 
weights responded strongly as cantilevered beams in the higher frequency range (above 
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90 hertz) and coupled with the launch platform and tower to produce some of the new 
resonances which were obtained for this particular configuration. 

Some of the tower resonances during the cantilever condition appear to be atten­
uated on the frequency response curves (for example, see  the fourth cantilevered-tower 
response in figure 18 and the third and fourth cantilevered-tower responses in fig. 20). 
This result was due to the fact that the tower was excited at station 67 inches (170.2 cm) 
which is near a nodal point of these modes. 

Model of Integral Saturn V-LUT Configuration 

The remaining results cover the tests performed on the model of the complete 
Saturn V-LUT configuration with simulated holddown conditions. These data were 
obtained with approximately 3.94 pounds (17.5 newtons) of excitation force applied to the 
launch platform at locations shown in figures 10 and 11. The frequency responses (mea­
sured at the vehicle and tower tips) shown for this configuration a r e  normalized to the 
maximum response of the Saturn V model tip. Table IV summarizes the resonant f re­
quencies of the Saturn V and tower models with the shaker applying force in the 
x-direction; the associated frequency response curves and mode shapes a r e  shown in 
figures 22 and 23 and figures 24 and 25 for  model unfueled and fueled mass conditions, 
respectively. Resonant frequencies and damping values obtained in the y-direction are 
summarized in table V, and the corresponding frequency response curves and mode 
shapes a r e  presented in figures 26 and 27 and figures 28 and 29 for model unfueled and 
fueled conditions, respectively. 

The results indicate considerable interaction between the vehicle and launch umbili­
cal tower. However, little coupling w a s  observed below 60 hertz (1.5 hertz, full-scale 
equivalent), even though the first cantilever modes of the vehicle and tower occur below 
this frequency. In fact, the f i rs t  cantilever mode of the vehicle could not be excited in 
either the unfueled o r  fueled condition without reorientation of the shaker to apply the 
force at  the second-stage model thrust structure, station 41.9 inches (106.4 cm). The 
results are shown in figures 23(a) and 25(a). Figure 25(b) shows a mechanical-slosh 
mode shape measured at 12.9 hertz; this mode of response results from the use of a 
particular spring-mass system to simulate sloshing. These modes were obtained in the 
x-direction; however, because of the symmetry of the vehicle, it is assumed that they 
would have also appeared in the y-direction if the force had been applied to the vehicle in 
the y-direction. 

In tables IV and V, values of the damping factor g measured at the vehicle and 
tower a r e  given for  many of the modes of the configuration. Low values of damping were 
observed, particularly for  the first tower mode where values on 0.0017 and 0.0013 were 
obtained with the shaker applying force in the x- and y-directions, respectively. 
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It was observed that the tower response generally exhibited a greater coupling 
influence than did the Saturn V response at the higher frequencies. The frequency 
response curves in figures 22, 24, 26, and 28 show that at nearly all the resonances where 
the tower responded, the Saturn V also responded, but that, conversely, the Saturn V 
responded in many resonances where the tower did not respond. No coupled response 
between the Saturn V model and tower model was observed below 60 hertz. 

Many of the mode shapes show that the escape tower of the Saturn V model exper­
ienced relatively large deflections. Thus, the vehicle response appears greater than that 
of the umbilical tower. 

CONCLUDING REMARKS 

An experimental investigation has been conducted to determine the bending vibra­
tion characteristics of the Saturn V-LUT configuration with the use of 1/40-scale dynamic 
models. The results and description of the models of the Saturn V vehicle and its launch 
umbilical tower a r e  presented. The results consist of resonant frequencies, mode shapes, 
and damping values of the Saturn V model and its umbilical tower, considered separately 
and as an integral configuration mounted on the launch platform. The results a r e  given 
for  two directions of excitation and for fueled and unfueled conditions of the vehicle over 
afrequency range of 10 to 300 hertz (0.25 to 7.5 hertz, full-scale equivalent). 

The response of the tower in its first mode was out of the excitation plane; the 
principal response axes were oriented diagonally across  the square c ross  section of the 
tower. All the remaining resonances of the tower occurred in the planes of geometric 
symmetry. The results for the 1/40-scale Saturn V-LUT configuration indicate strong 
coupled response between the vehicle and the tower at the higher frequencies but little 
coupling at the lower frequencies (below 60 hertz or 1.5 hertz, full-scale equivalent). 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 21, 1968, 
124-08-0 5- 18-23. 
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TABLE I.- SUMMARY OF PHYSICAL CHARACTERISTICS FOR 1/40-SCALE MODEL OF SATURN V 


Length 1 without propellant 
Center- of -gravity

longitudinal station 
(without propellant) 

in. 

11.83 

Mass Mass 
with propellant 

lb 
~ 

239.81 

Component 

First stage S-IC 
(includes engines) 

i Second stage S-I1 
~ 	 (includes engines and 

S-IC/S-11 interstage) 
' Third stage S-rVB 

(includes engine, aft skirt, 
and S-II/S-IVB interstage) 

LM adapter (includes LM) 
i Command and service modules 

and launch escape system 
Total model 

in. 

41.4 

24.4 

18.4 

9.4 

16.2 

109.8 

105.2 

62.0 

7.51 

2.40 

.91 

.91 

1.96 

108.78 

29.16 

7.31 

30.05 

120.34 

~ 

177.8 5 

64.30 

16.12 

47.38 

70.02 

I 

46.7 

23.9 

41.1 

2.00 

2.00 

4.31 
2.00 .91 

4.31 I 1.96 

83.83 212.93 

93.55 ' 237.62 

278.9 1 30.17 
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TABLE 1.- SUMMARY OF PHYSICAL CHARACTERISTICS FOR 1/ 40-SCALE MODEL OF SATURN V 

Mass Mass Center-oi-gravity 
Length without propellant with propellant longitudinal station 

Component (without propellant) 

in. em Ib kg Ib kg in . em 

First stage S-IC 41.4 105.2 16 .56 7.51 239.81 108.78 11.83 30.05 

(includes engines) , 

I ! Second stage S- II 24.4 62.0 5.30 2.40 64.30 29.16 47.38 120.34 I , 
(includes engines and I I , , 
S-IC/ S-II interstage) ! 

I 
. 

Third stage S- IVB 18.4 46.7 2.00 .91 16.12 7.31 i 70.02 177 .85 

(includes engine, aft skirt, i I I , 
I and S-II/S-IVB interstage) I , 

I , 
1 I LM adapter (includes LM) 9.4 23.9 , 2.00 .91 I 2.00 .91 , 83.83 ; 212.93 

I 16.2 
I I 

I Command and service modules 41.1 . 4.31 1.96 4.31 1.96 93.55 
, 

237.62 , 
I I 

and launch escape system 
, 

1 109.8 
I ! 

Total model 278.9 30.17 13.69 326 .54 148.12 I ---- -----, 
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TABLE 11.- SUMMARY OF CANTILEVER RESONANT FREQUENCIES AND 

ASSOCIATED DAMPING FOR 1/40-SCALE SATURN V MODEL 
__ 

Unfueled condition Fueled condition
Cantilever 

mode Frequency, Damping factor Frequency, Damping factor 
H z  g Hz g 

1st 18.0 0.007 0.0163 

2nd 71.8 .0094 .0086 

3rd 118.6 .010 

4th 188.9 .0139 95.7 .0082 

5th 127.0 


TABLE ID.- SUMMARY OF CANTILEVER RESONANT FREQUENCIES AND 

ASSOCIATED DAMPING FOR 1/40-SCALE TOWER 

x-direction 
Cantilever 

mode Frequency, Damping factor 
Hz g 

1st 28.2 28.2 0.0069 
29.8 0.0035 29.8 

2nd 77.1 .0040 95.0 .0066 
3rd 139.1 .0021 173.8 
4th 214.0 227.1 . 
5th 269.0 273.3 
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TABLE 11.- SUMMARY OF CANTILEVER RESONANT FREQUENCIES AND 

ASSOCIATED DAMPING FOR I! 40- SCALE SATURN V MODEL 

ranUle~er UnIuele 

mode Frequency, 
Hz 

d condition Fueled condition 

Damping factor Freque ncy, Damping factor 
g Hz g 

.. 
1st 18.0 0.007 10.9 0.0163 
2nd 71.8 .0094 34.7 .0086 
3rd 118.6 .010 63.2 -----

4th 188 .9 .0139 95.7 .0082 
5th - ---- 127 .0 --- --

TABLE ill. - SUMMARY OF CANTILEVER RESONANT FREQUENCIES AND 

ASSOCIATED DAMPING FOR 1/40- SCALE TOWER 

y- direction 

Frequency. Damping factor 
Hz g 

28.2 0.0069 
29.8 ---- -
95.0 .0066 

173.8 ---- -
227.1 . -- - - -

273.3 - - -- -

•• 11 __ ••• II. • •• - ...•• __ II • I . -
15 
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TABLE IV.- SUMMARY O F  RESONANT FREQUENCIES AND DAMPING FOR SATURN V-LUT MODEL 

WITH SHAKER APPLYING FORCE AT LAUNCH PLATFORM I N  X-DIRECTION 

-
Fueled condition 

Mode 
number Frequency,

Hz 
Predominant 

response1 Frequency,
Hz 

Damping factor 
g 

Predominant 
response 

_ _  _ _  
17.3 Saturn V 9.5 0.0137 Saturn V 
27.3 Tower 12.9 .008 Saturn V 
66.1 Coup1ed 28.4 .0017 Tower 
70.7 Saturn V 34.9 .0058 Saturn V 

109.3 Coupled 61.9 a.0073 Coupled 
115.5 Coupled 68.1 a and b.0033 Coupled 
140.1 Coupled 98.1 a.0088 Coupled 

c167.0 Saturn V 111.9 a a d b . 0 0 5 5  Coupled 
189.8 Saturn V 127.7 _ - _ _ _ - _ _ _ _ _  Saturn V 
213.7 Coupled 140.5 b.0052 Coupled 

c267.5 Coupled 215.1 __----_---- Tower 
~-~~. - ~ -. 

aDamping value for Saturn V model. 
bDamping value for tower model (when two values a r e  given for  tower model, the f i rs t  value is that obtained 

f o r  a large decaying amplitude and the second is that obtained for a small decaying amplitude) 
CFrequencyvalue taken from sweep data (no corresponding mode shapes are given in the report). 

TABLE V.- SUMMARY OF RESONANT FREQUENCIES AND DAMPING FOR SATURN V-LUT MODEL 

WITH SHAKER APPLYING FORCE AT LAUNCH PLATFORM IN y-DIRECTION 

Unfueled condition Fueled condition 
Mode 

number Frequency,
Hz 

28.2 
72.1 
85.3 

113.3 
124.0 

C163.0 
175.1 

C186.0 
c189.0 
c210.0 
c264.0 

~ ~ 

Damping factor 
g 

0.0013 
.0092 

b.0087 

~-

Predominant Frequency, Predomjnant 
response Hz response 
. ~ . - .  

Tower 28.4 Tower 
Saturn V 35.0 Saturn V 
Coupled 62.9 Saturn V 
Coupled 85.8 Coupled 
Coupled 97.1 Coupled 
Coupled 122.3 Coupled 
Coupled 128.0 Coupled 
Saturn V c146.0 Saturn V 
Saturn V c182.0 Tower 

Tower c210.0 Tower 
Tower ‘254.0 Tower 

c263.5 Tower 

aDamping value for Saturn V model. 
bDamping value for tower model. 
‘Frequency value taken from sweep data (no corresponding mode shapes are given in the report). 

5 
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TABLE IV. - SUMMARY OF RESONANT FREQUENCIES AND DAMPING FOR SAT URN V-LUT MODEL 

WITH SHAKER APPLYmG FORCE AT LAUNCH P LATFORM IN x - DIRECTION 

Unfueled condition Fueled condition 
Mode 

number Frequency, Damping factor Predominant Frequency, Damping factor Predominant 
Hz • response Hz • response 

- - - -
17.3 0.0083 Saturn V 9.5 0.0137 Saturn V 

2 27 .3 .0017 Tower 12.9 .00' Saturn V 

3 66.1 a.0046; b .0091 to .003 Coupled 28.4 .0017 Tower 

4 70.7 ------------------- Saturn V 34.9 .0058 Saturn V 

5 109.3 b. 0087 to .0058 Coupled 6 1.9 a.0073 Coupled 

6 115.5 ------------------- Coupled 68.1 a and b.0033 Coupled 

7 140. 1 b .0 12 to .003 Coupled 98. 1 a.0088 Coupled 

• ct67.0 ------------------- Saturn V 111.9 a and b.0055 Coupled 

9 189.8 ------------------- Saturn V 127.7 ------- ---- Saturn V 

10 213.7 b.0147 Coupled 140 .5 b.OO 52 Coupled 

11 c267.5 ------------------- Coupled 215. 1 ----------- Tower 
.- - -- -

aDamping value for Saturn V model. 

bOamping value for tower model (when two values are given for tower model, the first value Is that obtained 

for a large decaying amplitudc and the second ts that obtained for a small decaying amplitude). 

16 

CFrequency value taken from sweep data (no corresponding mode shapes are given in the report). 

TAB LE V.- SUMMARY OF RESONANT FREQUENCIES AND DAMPING FOR SATURN V-LUT MODEL 

WITH SHAKER APPLYING FORCE AT LAUNCH PLATFORM IN y-DIRECTION 

Unfueled condition 
Mod, 

number Frequency, Damping factor 
H, g 

1 28.2 0 .0013 

2 72. 1 .0092 

3 85.3 b .0087 

4 113 .3 ------------
5 124.0 a.0047; b.0058 

6 c163 .0 ------------
7 175.1 a and b.OOll 

• c 186.0 ------------
9 c189.0 ---------- --

10 c2 10 .0 ------------
It c264.0 .-----------
12 

- --
aDamping value for Saturn V mode\. 

bDamplng value for tower model. 

Fueled condition 

Predominant Frequency, Damping factor Predominant 
response H, • response 

Towel' 28.4 0.0013 Tower 

Saturn V 35.0 ------- ---- Saturn V 

Coupled 62.9 .0065 Saturn V 

Coupled 85.8 a and b.OO37 Coupled 

Coupled 97. 1 a.0045 Couplcd 

Coupled 122 .3 ----------- Coupled 

Coupled 128 .0 ----------- Coupled 

Saturn V c146.0 ----------- Saturn V 

Saturn V cJ82 .0 ----------- Tower 

Tower c210.0 -- --------- Tower 
Tower c254.0 --------.-- Tower 

c263.5 ----- ------ Tower 

CFr equency value taken from sweep data (no corresponding mode shapes are g ivell ill the report). 

• 
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Figure l.- A l/40-scale dynamic model of Saturn V-LUT configuration with simulated holddown conditions. L-64-8910.l 
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Figure 6.- Typical assembly details of 1/40-scale Saturn V model. 
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Figure 7.- Components of 1/ 40-scale model of Saturn V. L -68-897 

1 5-IC/ 5-11 interstage 
2 Launch escape system, command and service modules, and LM adapter 
3 5-11 stage, LH2 tank, and forward skirt 
4 5-IC thrust structure with cantilever test stand (simulated F-l engine not shown) 
5 5- IC stage, lox tank, and forward skirt 
6 5-IC stage, fuel tank, and intertank 
7 5-IVB stage, LH2 bulkhead, LH2 tank, and forward skirt 
8 Non structu ra I bu I kheads 
9 5-11 si m u lated J -2 engi nes and thr ust cone 

10 5-IC mechanical slosh simulators for lox and fuel (one in background is inverted) 
11 Longitudinal simulated propellant (not used for these tests) 
12 5-IVB stage, 5-11 / 5-IVB interstage, and aft skirt 
13 5- 11 LH2-simulated-propellant tanks 
14 5- 1 C fuel - simu lated-propellant tanks 
15 5-IC lox-simulated-propellant tanks 
16 5-IVB LH2-simulated-propellant tanks 
17 5-IVB simulated J-2 engine, thrust structure, and lox lower bulkhead 
18 5 imulated LM 
19 5-IVB lox-simulated-propellant tank 
20 5-11 lox-simulated-propellant tank with heater 
21 Suspension cradle (not used for these tests) 
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Figure 8.- Subassembly of l/ 40-scale launch platform. L-68-898 Figure 8.- Subassembly of l/ 40-scale launch platform. L-68-898 



--,-- --- - -~.--, 

Figure 9.- 1/ 40-scale launch platform with portion of umbilical tower bolted to surface. L - 68-899 
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Figure 9.- 1/ 40-scale launch platform with portion of umbilical tower bolted to surface. L - 68-899 
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Figure 10.- 1/ 40-scale dynamic model of the LUT with shaker oriented to apply the force in x-direction. 
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Figure 10.- 1/ 40-scale dynamic model of the LUT with shaker oriented to apply the force in x-direction. L -65-7297.1 
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Figure 11.- l/40-scale dynamic model of the LUT with shaker oriented to apply the force in y- direction. L-65-7298.l 
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Figure 11.- l/40-scale dynamic model of the LUT with shaker oriented to apply the force in y- direction. L-65-7298.l 
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Figure 13.- Normalized cantilever mode shapes of the 1/40-scale Saturn V model i n  the unfueled condition. 
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Figure 14.- Normalized cantilever mode shapes of the 1/40-scale Saturn V model in the fueled condition. 

W 
CL 

I 

1.0-

.8 - I 

" .6 -, , . ~ 

" 
~ 
" o 
Z .4- _ Shaker 

.2 

o - 1.0 

Frequency: 10.9 Hz 
Damping: .0163 
Force: .541b (2.4N) 
Acceleration 01 tip; .33 G 

o 

- .5 o 

(a) First mode. 

.5 1.0 - 1.0 - .5 

Normali zed deflec t ion 

Frequency: 34.7 Hz 
Damping: .0086 
Force: .495 1b (2 .2N) 
Acce lera ti on at t i p: 1.97 G 

o .5 

(b) Second mode. 

Figure 14.- Normalized cantilever mode 51lape5 fi the l/40-scale Saturn V model In the fue led condition. 

-

1.0 



Frequency: 63.2 Hz 
Damping: -
Force: .495 Ib ( 2 . 2  N) 

Frequency: 95.7 Hz 
Damping: .0082 
Force: .495 Ib (2.2 N) 

Acceleration at t ip: .25G Acceleration at t ip: 3 .02 G 

Normalized deflect ion 

(c) Thi rd  mode. (d) Fourth mode. 

Figure 14.- Continued. 

1.0 

.8 

.6 -

_ Shaker 

Frequency : 63.2 Hz 
Damping: --
Force: .4951b (2.2N) 
Acceleration at t i p: .2SG 

Frequency: 95.7 Hz 
Damping: .0082 
Force: .4951b (2.2Nl 
Acceleration at tip : 3.02 G 

,';.;--------' ~' k--t >--------7' '.'-,c------' ~' !~'>--------7' -1.0 - .5 0 .5 1.0 - 1.0 -.5 0 .5 1.0 

Normali zed deflection 

Ie) Third mode. (dl Fourth mode. 

Figure 14.- Continued. 



Frequency: 127.0 Hz 
Damping: -
Force: .451b ( 2 . O N )  

I Accelera'tion at t ip:  1.75 G 
I.o 

.8 


% .6. c 

a,
-
0 

a,

N.-­

.4. ker  
L 

0
z 


.2.  

0­
- .5 0 -.5 I.o 

Normalized def lect ion . 
(e) Fifth mode. 

Figure 14.- Concluded. 

33 


1.0 

.8 

£ - .6 .,. 
c 

" 
"C 

" N .--
0 

.4 E 
~ 

0 z 

.2 

o 

Frequency : 127.0 Hz 
Damping: 
Force : .451b (2 .0Nl 
Acce lero'tion at t ip : 1.75 G 

_ Shaker 

I 
- 1.0 .5 o 

Normalized def lection 

Ie) Fifth mode. 

Figure 14." Coo.; luded. 

.5 1.0 

33 



Frequency: 28.2 Hz 
Damping: -
Force: .8I I b (3.6N) 
Shaker direction: x 
Acceleration at  t ip :  -36G 

Frequency: 29.8 Hz 
Damping: .0035 
Force: .72 Ib  (3.2 N)
Shaker direction:x 
Acceleration at  t ip: 1.4 G 

.8­

.6­

.*­0-k I I I I I I I I 
- 1.0 0 1.0 -1.0 0 I .o 

Normalized deflection Normalized deflection 

(a) F i rs t  mode. 

Figure 15.- Normalized cantilever mode shapes of the 1/40-scale tower model in the  x-direction. 
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Figure 19.- Normalized mode shapes of l/4O-scale tower mounted on launch platform without Saturn V model and with shaker oriented to apply force i n  x-direction. 
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Figure 21.- Normalized mode shapes of 1/40-scale tower mounted on launch platform without Saturn V model and with shaker oriented to apply force,in y-direction. 
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(c) Th i rd  mode. f = 85.3 Hz; gMT = 0.0087. (d) Four th mode. f = 111.3 Hz. 

Figure 27.- Continued. 
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(e) Fifth mode. f = 124.0 Hz; gMv = 0.0047, gMT = 0.0058. ( f )  Seventh mode. f = 175.1 Hz; gMv = gMT = 0.0011. 

Figure 27.- Concluded. 
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Figure 28.- Normalized frequency responses measured at tip of the fueled Saturn V model and at t ip of the tower with the shaker oriented to apply force in y-direction. 
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(a) F i rs t  mode. f = 28.4 Hz; gMT = 0.0013. (b) Second mode. f = 35.0 Hz. 

Figure 29.- Normalized mode shapes of 1/40-scale Saturn  V-LUT conf igurat ion measured in y-direction w i th  Saturn V model fueled. 
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(c) Third mode. f = 62.9 Hz; gMv = 0.0065. (d) Fourth mode. f = 85.8 Hz; gMv = gMT = 0.0037. 

Figure 29.- Continued. 
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(e) Fifth mode. f = 97.1 Hz; gMv = 0.0045. (f) Sixth mode. f = 122.3 Hz. 

Figure 29.- Continued. 
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(g) Seventh mode. f = 128.0 Hz. 

Figure 29.- Concluded. 
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