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I, INTRODUCTION

This report summarizes the work performed by the Ordnance Department of the Gen-
eral Electric Company for the George C. Marshall Space Flight Center under contract NAS-
8-21273. This work was performed over the period from January 8, 1968 to July 8, 1968.

The basic objective of this study was to investigate digital methods for recovery of
the initial misalignment of a strapdown inertial navigation system from vibration- and
sway=corrupted data on the launch pad. The methods investigated under this contract are
all based on the criterion of a minimum mean square error and differ mainly in the mech-
anization technique and the amount of a priori knowledge of the statistics which is assumed.
Methods considered included an optimal filter of the Kalman type, a simplified Kalman
filter, a Maximum Likelihood approach, and a Least Squares Curve Fit technique with and
without preconditioning of the data.

Section |l of this report contains a summary of the results of this study, the conclu-
sions reached regarding recommended filtering techniques, and information to allow trade-
offs between the two recommended techniques to be performed as more information is ob-
tained about the noise characteristics and operational restrictions (time, computer capacity
available, etc.)

Section Il of this report contains a description of the analysis performed for the
various filtering methods considered.

Section IV contains a description of the erection and alignment simulation program
which was provided to the Marshall Space Flight Center to allow further evaluation of
the two recommended techniques.

Section V summarizes the results of the work done in determining the computer re-
quirements for solution of the filter and azimuth alignment equation: for the two recom-
mended filters.

Appendix A contains a discussion of the form of a strapped down accelerometer out-
put in a swaying missile and the terms which must be filtered out of this output in order to
determine the accelerometer orientation.

Appendix B contains a discussion of the optical alignment equations.

Appendix C contains a derivation of the closed form solution of the least squares
curve fit filter equations.
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[I. RESULTS AND CONCLUSIONS

A. CONCLUSIONS

There are several filtering techniques which provide 1 oaccuracies better than
20 seconds of arc with a data~gathering period less than 100 seconds of time.

The recommended filtering technique is the optimal 4=state filter (simplified Kalman).
This recommendation is based mainly on a consideration of performance. The performance
of this filter is equivalent to that of the maximum likelihood filter and has less computational
complexity. This filter also provides better accuracy in a given time than the least squares
curve fit approach. If the effects of earth's rate coupling are removed by either updating
the transformation matrix and releveling, or by using the correction matrix derived in
Section |lI-F, the performance approaches that of the optimal 12-state filter with a signifi-
cant decrease in computational complexity required.

The main disadvantages of the optimal 4=state filter relative to the least squares
curve fit filter are the launch pad computer capacity and the amount of precomputation
required. If pad computer capacity becomes a limiting item, the least squares filter
provides a back-up technique which can be used to alleviate the problem. The linear
least squares filter using non-integrated data is the recommended approach in this case.

Gyro drift causes an error which is equal to one half the drift angle accumulated
over the filtering time in both the 4-state optimal filter and the least squares filter.
The Marshall Space Flight Center has indicated that gyro drift will be small enough so
that this error will not be significant.

Bias errors due to earth's rate crosscoupling exist in both the 4-state optimal and
least squares filters, These errors can be removed by either updating the transformation
matrix and releveling or by using the correction matrix derived in Section IlI-F. It is
recommended that the correction matrix approach be taken to eliminate the need for
additional iterations.

The maximum likelihood and least squares curve fit filter using integrated data are
not recommended for further consideration - the former because it is extremely complex
to mechanize and the later because it is extremely sensitive to sway velocity noise
correlation time. '
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B, RESULTS SUMMARY

Figures 1 through 10 show the results of the analysis of the Kalman filter. Figure |
is the 1 oerection error for the optimal 12-state filter, This filter is described by equa-
tions 3 - 72 to 3 = 76. The conditions used for this baseline case are given by

Initial erection uncertainty % = 1/2 degree
Gyro drift uncertainty gy = .1 mery
RMS sway velocity o, = .5m/s
Center frequency of sway velocity power spectrum f = .25 cps
Correlation time (reciprocal of bandwidth)

of sway velocity power spectrum T = 200 sec
Sampling rate 1 sample/sec

It is seen that the performance of this filter is well within the required accuracy.
The 1 o”error after 60 seconds of time is less than 6 arc seconds.

Figure 2 shows the performance of the suboptimal 4-state filter for various initial
erection angles. This filter is described by equations 3-94 to 3-100, The main simplifi-
cation employed in reducing the 12-state optimal filter to two identical 4-state filters was
the neglect of earth's rate crosscoupling terms in the system dynamics. In addition, gyro
drifts were neglected in the simplified dynamics. The difference in errors for various initial
angles is attributable to the earth's rate coupling. For initial angles less than 0.5 degrees
the increase in error over the optimal filter is less than 1 second of arc at 60 seconds time.
If the initial angle uncertainty is large, the 12 state optimal filter performance can be ap-
proached by updating the computer coordinate system after about 20 seconds to reduce the
crosscoupling effects. Another approach to removing the crosscoupling terms is to use the
correction matrix derived in Section I11-F,

Figure 3 shows the degradation in performance due to the neglect of gyro drift. It
is seen that the drift uncertainty must be quite large (20 meru = 0.3 deg/hr) before the
filter performance is degraded appreciably.

Figure 4 shows the erection error vs time for various sampling times. A sampling
time of 1 sec seems to provide a good trade-off between computational requirements and
erection accuracy. The worst case occurs when the sampling time is 4 sec.  This is be-
cause the center frequency of the sway velocity power spectrum is .25 cps. Since the
power spectrum is very narrow, the sway velocity is almost sinusoidal with a period of
4 sec, The sampling is thus at the same part of the sine wave and it becomes quite diffi-
cult to filter out the noise.

The correlation time (reciprocal of the bandwidth) of the narrow band noise has a
significant effect on the estimation accuracy. This is demonstrated in Figure 5. It was




Figure 1. THE 1 o ERECTION ERROR FOR THE OPTIMAL FILTER
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Figure 2, 4-STATE FILTER ERECTION ERROR FOR VARIOUS INITIAL
ERECTION AND ALIGNMENT ERRORS
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Figure 3. 4-STATE FILTER ERECTION ERROR FOR VARIOUS GYRO DRIFTS
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Figure 4. ERECTION ERROR FOR VARIOUS SAMPLING TIMES
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Figure 5. ERECTION ERROR FOR VARIOUS S*WAY VELOCITY
CORRELATION TIMES
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found that the filter was insensitive to errors in the assumed correlation time. When the
assumed correlation time was 20 sec. rather than the true correlation time of 200 sec, the
degradation in filter performance was negligible. The important parameter is the actual
noise correlation time and not the correlation t'me assumed for the filter calculations.

Since the frequency of the missile sway may not be known exactly, it is of interest
to determine the sensitivity of the filter to that parameter. This is shown in Figure 6.
In this case, the actual frequency is .25 cps while the number used in the filter calcula-
tions is .2 cps. It is seen that the accuracy of the estimate is somewhat poorer, but
still acceptable. The performance for an assumed frequency of .3 cps is almost identical
to the curve shown in Figure 6 and, therefore, has not been presented.

An alternative method of erecting the analytic coordinate system is to use a least
squares filter, The computational requirements of this method are much less than those
of the optimal filtering technique. The estimate, of course, takes longer to converge
to within acceptable limits. Figure 7 compares the performance of the least squares and the
optimal 4-state filters of the case when T = 200 sec. The optimal filter is significantly
better than the least squares filter for this case. Figures 8 and 9 show the same comparison
for T =20 sec and 5 sec respectively. It is seen that as T decreases, the least squares
filter performance approaches that of the optimal filter. This is to be expected since,
for white noise (1 = 0), the least squares filter is optimal.

It is possible to further reduce the number of states in the filter from 4 to 3 by
sampling at exactly 1/2 the period of the sway velocity. This happens because some of
the terms in the filtering equations are multiplied by sin wt which is always zero at
w=1/2. Figure 10 shows the 3-state filter performance. The sensitivity to using the
wrong f in the filter equations is also shown. While the filter performance is accept-
able, it is felt that constraining the sampling time to 1/2 the period of the sway velocity
is too restrictive. A more flexible filter seems desirable.

The preceding curves were calculated by determining the covariance matrices for
the estimation errors using the results of Section I11-C-2. Figure 11 shows the results
of a sample run from the Erection and Alignment Simulation Program described in
Section IV. In Figure 11 the sway velocity noise is assumed to be in a narrow band
around a center frequency. Figure 12 shows the results of a run in which the sway velo-
city noise is assumed to consist of 3 narrow band noises at different center frequencies.
The center frequencies for the bands are 1.82 rad/sec, 2.14 rad/sec and 2.32 rad/sec
with a correlation time of 200 seconds for each band. The total rms sway velocity is
0.5 m/sec. This run was made to provide assurance that the filter would operate properly
with a more realistic noise input.
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Figure 7. A COMPARISON OF THE 4-STATE AND LEAST SQUARES FILTERS
10000 -~ FOR A SWAY VELOCITY CORRELATION TIME OF 200 SEC.
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;i 10000 1 Figure 10, PERFORMANCE OF THE 3-STATE FILTER
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Figure 13 shows the results of the analysis of a least squares curve fit filter. This
analysis was performed by a Monte Carlo computer simulation as described in Section 111-D.
The curve labelled non integrated data is derived by fitting the velocity data from the ac-
celerometers to a constant plus a linear time term. The curve labelled integrated data is
derived by fitting the integral of the velocity data to a quadratic function. The asymptotes
on Figure 13 are the errors when the noise is considered to be a sine wave of a single
fraquency (T = ).

The results of the maximum likelihood filter analysis are contained in Section |1-E,
These results in general confirm the results of the Kalman filter analysis and are not re-
peated here.

Computer storage requirements are 636 locations if the optimal 4-state filter is used
and 342 locations of the least squares filter is used. These numbers include provision for
the azimuth and correction matrix calculations. Execution times are tabulated in Section V.
Fixed point calculations with the 23 bit word length of the RCA-110A computer are
acceptable.

Certain "rules of thumb" which have been developed. to allow extrapolation of the
results given in this report to different noise characteristics and filtering times are given
below. '

a)  The rms filtering error is proportional to the rms value of the sway velocity roise.
b)  If earth's rate crosscouplings are removed by updating or by using the correction
matrix, the filtering error is not a strong function of the initial angle error

(See table 2, Section (1-D),

c)  The filtering error is approximately inversely proportional to the noise center
frequency (See Section |l1~E and Equation 3-135, Section 111-D).

d) For short correlation times, the filtering error for both the optimal 4-state
and least squares filter is approximately inversely proportional to the three

halves power of the filtering time (Error = _K_). This is shown by plotting
13/2

the results of Figure 8 on log-log paper in Figure 14, For longer correlation
times, the least squares filter has a filtering error which is more nearly inver-
sely proportional to the square of the filtering time while the 4-state optimal
remains inversely proportional to the three halves power of the filtering time.
This is shown by plotting the results of Figure 7 on log-log paper in Figure 15.
It must be remembered, however, that the curves for the two filters can never
intersect so that the least squares filter error must approach being inversely
proportional to the three halves power of filtering time as the time increases.

17
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The filtering error for the optimal 4-state filter is approximately inversely
proportional to the square root of the sway velocity correlation time (Error

= '———:—(/—é- ). The least squares filter error only approaches being inversely
T

proportional to the square root of the correlation time at low correlation times,
however. For higher correlation time the improvement in performance with
increasing correlation time is much less than that of the optimal 4-state filter.
This is shown by plotting the results of Figures 7, 8, and 9 at 60 seconds time
on log-log paper in Figure 16. This rule obviously cannot be used as 1
approaches z -~ 2 but it does hold at least down to T = 1 second.

21
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IIT. FILTER ANALYSIS

A, SYSTEM DYNAMICS
Introduction

The equations describing the strapdown erection process are derived in this section,
These include the differential equations governing (1) the euler angles describing the mis-
alignment between the earth-fixed launch-site coordinate system (CS) and the strapdown
inertial reference CS, (2) the transformed accelerometer outputs, and (3) the missile sway
velocity. The differential equations are then converted to a set of first order difference
equations since this is the form appropriate for the application of the discrete=time Kalman
filter equations. Certain assumptions are made in this analysis. These are:

1. The initial miserection angles are small enough so that the small angle approxi-
mations (sin =0, cos 8= 1) are valid.

2. The gyro drift rates are constant.
3. The sway velocity is adequately represented by a narrow-band noise pfocess.
The Differential Equations Governing the Euler Angles Describing the

Misalignment Between the Earth-Fixed Launch Site Coordinate System
and the Strapdown Inertial Reference Coordinate System

The differential equation describing the direction cosine matrix between two rotating
coordinate systems is given by:

i¢i =i - & Ici 3-1

Where: [ is the direction cosine matrix which transforms a vector from CS(i) to CS(j)
Qj is the skew symmetric matrix of the angular rates of CS(i).

AX

The angular rate matrix is given by

0 “wyp Wy W}w
Q; = |wy O ~Wyi

~Wyi Wxi

Figure 17 shows the convention for angular rates.

X

. o
Figure 17, & et
CONVENTION FOR ANGULAR RATES w,

Wy

N
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The three coordinate systems of interest in this analysis are the earth-fixed launch-site CS,
the strapdown inertial reference CS, and the strapdown inertial instrument CS. These are

designated as CS(0), CS(1), and CS(2) respectively.

The codrdinate system CS(1) is the CS to which the outputs of the body~-fixed ac=-
celerometers are transformed. This CS is defined by the equation which the CTMC solves,

namely:
'€y = 'Cr) - Q'Co

Where: § is the matrix of angular rates measured by the gyros
 is the matrix of earth's rates in CS (0).

I

The equation for ® €, 2C, Q - 3¢,

The gyro measured rates are in error by the gyro drift. Thus:
Jj = @+ D

Where: @ s the matrix of true angular rates
D. is the matrix of gyro drift rates

Substituting equation 3-4 into 3-3 gives:
2¢, =2¢, 0=@® *¢, -D,2¢C
The direction cosine matrix © C; is given by:
Oéa = °C, @ -0 °C
One can write the direction cosine matrix °C, as:
°C, + G, 2C,
Differentiating equation 3-7 yields:

Upon substituting equations 3~4, 3-5, and 3-7 into 3-8 one obtains:

°C, Q-Q°C, -°C,D,%C,

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)

(3-6)

(3-7)

(3-8)

(3-9)

A

24




The last term in equation 3=9 is rewritten as:

YC, D, ¥C, =°C, *C, D, *C, =°C, D, (3-10)
Thus equation 3-9 becomes

°C, =°C, @-Q°C, -°C D, (3-11)

The transformation between CS(0) and CS(1) is defined by the three euler angles
o, B, and v, These are shown below in Figure 18.

A0

20

Figure 18. THE EULER ANGLES DEFINING
Y1 THE TRANSFORMATION BETWEEN CS(0)
AND CS(1)

Yo

When the small angle approximations are employed the matrix °C, can be written as

1 -y B
°C, = v 1 -0 (3-12)
—B o ]
Substituting equation 3-12 into equation 3~11 yields:
\
0 - B Vo 8 [0 e ey ]
y 0 -a = y 1 -0 wz O -y
4 a0 RO N
—_ -
0 Wy Wy 1 -y B
- Wz 0 -Wy Y 1 -0 > (3-13)
L_,-wy U)X 0 .‘ _-B o ] .
1 -y B T 0 -d; dy
- v 1 -0 dz 0 "'dX
H-B o ‘ s L"'dy dx 0 o J

25




From equation 3-13 one easily obtains the following three simultaneous differential
equations:

o 0 ~w, wy |{e dx
Bl ==|w. 0 S lls| -4y (3-14)
Y 'wy LoX 0 Y dZ

In matrix-vector notation, this is written as:

0= -00 -d (3-15)
Where:
o dx
0 = B d = d
Y dﬁ

The Differential Equations Governing the Transformed
Accelerometer Outputs

The CTMC output gives the integral of acceleration along the coordinates of
CS(1). In particular, the outputs along the y and z axes are given by: '

pr (1) = _ft EQ ;3(7-)'*'\'/1 (T)] dr (3-16)
to
t
po ) = § [-gy (1) +%(r)] dr (3-17)
to
Where:

p; () is the output along z, at time t
pz (1) is the output along y, at time t
v, (1) is the sway acceleration along z,
Vg (t) is the sway acceleration along y,
g is the value of gravity (m/sec®)

Differentiating equations 3-16 and 3~17 yields the desired differential equations:

pp =98tV (3-18)

Pp = 97 t Vg (3-19)
Or

p = B O+ v (3-20)

26




Where:

0
p=[g;-:\ B = [_8 0 ~9]

The Differential Equations Governing the
Missile Sway Velocity

It is assumed that the power spectrum of the sway velocities along the y, and z,
axes is adequately described by:

Sy, (@) = Sy, (&) = o7 [ — PSR V., ] (3-21)

w-wo)®+ (/72 (wrw ) +(1/7)

Where ¢, is the rms sway velocity.
This power spectrum is shown in figure 3-3.

It can be shown also that if n, (t) and n (t) are independent random variables with
power spectra

20v° /1

S =S 1) = 3-23
Then the random variable

vi(t) = ny (1) cos wot + ng () sin wo't (3-24)
will have the power spectrum shown in Figure 19.

Noise with the power spectrum shown in equation 3-23 has the corresponding
autocorrelation function:

-1t

Rny () = R () = o2 e 7' /T (3-25)

Noise with this autocorrelation function can be considered as being the
solution to the stochastic differential equation:

Ay (1) = (=1/7)ny () + wa (1) (3-26)

2 (1) = (-1/7)ns () + wo (1) (3-27)
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= T

Where wy (1) and w, () are white noise random variables with autocorrelation

E [:w1 (ty) wy ( tgj = E[_wg 1) Wz ( fg)j __2_C1v_ 6 (t, -t5)

6(t, - t,) is the dirac delta function,

vy (1) is the sway velocity along the z axis. For the sway velocity along the y,

axis, vy (1), we have similar equations:
va () = ng (t) cos wot + ng(t) sin wot

= =1/7ng (t) + ws ()

CO:‘

—

-

R
[

“1/7 g () + wy (1)

Se
-~
—~~
<
i

Where:

E Cwe () wo ( (o)) = E [wa (b)) wa (1)) = 2?8 6 Ity ~t5)

In vector notation, then, we have

vit) = Ct) n(t)
) = An(t) + w(t)
Where:
v(t) = [;;g; C(t) = [cosOth o S)Ot costzuof
E[wity) w')]) = ‘°-°v I A =G0l

Conversion of the Differential Equations to

Difference Equations

The differential equation
x(t) = Fx@) + wi(t)
has the solution

f.
X = B, o) x () f B G0) w () da

F—

sin Wo

]

(3-28)

(3-29)

(3-30)

+ (3-31)

(3-32)

(3-33)

(3-34)

(3-35)

(3-36)
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Where § (t;, t;_,) is the matrix exponential
gl tio) = exp [ =) F)
Equation 3-36 can be rewritten
x () = Bt tiey) x (en) + 0 ()
Where:

4
ult) = f B, n ) w(x) da

tieq

Equation 3-38 is thus the difference equation which is equivalent the
differential equation 3-35.

Using this technique, the solution to equation 3~15 is given by:
0() = B4y () tioy) 0 (Ho)
h
-1 A a) dap d
tima
Where
By () b)) = eXPE (t - =) Oj
Equation 3~40 can be rewritten
) = Fhy (i 1) O () + B () timy ) dlE)
Where d(f;) is constant vector and thus satisfies the difference equation
dlt) = diie)
The matrix f,, (t;, ti-, ) is given by:
[ by )= - fn Biq (5, 2) d >‘

iH =1

A solution for £, , (tl, 1=y ) is obtained by using the Ccnyley-—Hamllton
method for calculating matrix exponentlals. The solution is given by

;du(fi, fi_l) =71 - [sm wlti~t Ti~y )] o)
w
+ [:l - cos Wit - tj-, )] e
w?®

(3-37)

(3-38)

(3-39)

(3-40)

(3-41)

(3-42)

(3-43)

(3-44)

(3-45)
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Where w is the earth's rotation rate.

The matrix @5 (t;, ti-y) is obtained by integrating equation 3-45. The solution is

Bro (s tim) = =1 (= tjy) + [_] L )]9

wB

RNCE™) _ sinw(t =, )] Q2
" u

Difference equations describing the noise will be derived next. The solution to
equation 3~34 is given by:

(3-46)

n(ti) = /644 (fil 1'i—-:[) n (f;_l) + ¢44 (tu >\) d A (3"'47)
i U=
Where:
?“ Gos b, t:.,)= exp E(f ) A:] f|-1 )/T
" 44 \'lr Y1 { _'1 ) (3-48)
; Equation 3~47 can be rewritten as
n(t) = Bag (tr Hoy ) nltyoy) + u(t) (3-49)
4
L Where :
t
g .
} : u(t;) is a vector random variable. Its covariance matrix is given by
i Q(i‘ = [u (f '(f J
| oY - =2y )T -t =~ A )7
[ =7 4 e 24 E[w(n,) wi(ra) e = 2el/ da,dr, (3-51)
! LTSI
Since
2
CE[w(a) W] = "" 5 (A, =1y) (3-52)

P ey
O

equation 3-51 reduces to a single integral

Q(ti) = 20'V3 fi e "2(ti - >\‘ )/T d A \
T / :
t

o i=1 3l




' The solution to this integral is given by
Q) = oy [ -e 20t =i )/7] (3-54)

Finally, a recursive expression for the accelerometer outputs must be obtained.
Equation 3-20 can be integrated to give:

t.

plii) = B £ 0(1) dA + () - vito) (3-55)
fo

This equation can be rewritten as:
1-.

o) = B [ 0 (h) dA + pltjy) ¥ vlty) - vlt) (3-56)

fi—l

Substituting equation 3-42 into equation 3-56 gives

t; 7 4
5 pt) = B S My (G, 2) dX 8 ()
‘. fiwa
+ B falyA) db dla) \ (3-57)
ron i—l
1
| pltiy) + vl - Vi)
y
3 This equation can be rewritten as
’ olt) = Fay (s toy) 8 (o) + Mo (1 tio) dltis)
. + p(t;_l) + v(i'i) —v(fi_l) (3-58)
Where:
h
oy (i tjw) = B PR A) dA
fi-
o = =B o (tis tima) (3-59)

32




PR

LRz

[
&

1l

te
Bfl ’5~(fi,k)dk
t.

{ -tieq )° r(f; -ti-,) _sin wit - _Ji\n
i B w?
-

.gsg (fil fi-1)

il

(3-60)
Ay -f,_1 _ 1-cos wlty - 1)} RE
2 w w4

Equations 3-33 and 3-49 are substituted into equation 3-58 to give
P(fi) = g31 (fil 1bi.'l) e (fi-l) + /632 (fip fi-l) d (ti-'_\_) )

+ oplting) + By (s tioa) 0 (F-) (3-61)

+ C(’ri) u (t)

Where:

ﬁ34 (fil fi_'_[) =C (ti) ¢44 (fir fi-—l) -C (f;_1) - (3"62)
Combining equations 3~42, 3-43, 3-49 and 3-61 gives
e(fi) gu (i'il ti—l‘) ¢12 (fil fi-1) 0 0 9(";_1)
d(t;) | ¥ 1 0 0 d(ti-,)
P(fi) 1631 (fir 1'i-1) gae (til fi—l) I ¢34 (fll |..1) P(fi-1)
n(t;) 0 0 0 B (b, ) n(ti-,)

0
vl (?i) E, (fi')] (3-63)
|

This equation is written:

x(t;) = B, toq) x (o) + G(t) u(ty) (3-64)
Where:
o(t;) Biy (y, tisy) Bia i) 0000
<) = ﬁi; AUTRIEVE <f.0, ¢32<r,1,f fo1) ? !63(: (tti-a).
n(t;) 0 0 0 fay(titi-)
(3-65)
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The measurement consists of the two transormed accelerometer outputs. There is
noise on the measurement due to quantization of the accelerometer outputs. The measure-
ment equation is given by:

y(t) = H{t) = (1) + r(t;) (3-66)
Where:
(0000001 00000
Hit) = [0000000|oooc] (3-67)

r(fi) is the noise due to quantization. lts covariance matrix is given by

) = €[ r]) - & [g) ?]

12

Where A is the quantization level.

When a theodolite measurement is taken and processed, the resulting quantity
is the azimuth misalignment plus an error which is equal to the levelling error about the
projection of the LOS in the horizontal plane multiplied by the tangent of the elevation
angle. Thus when a theodolite measurement is taken, the H(ti) matrix is given

Ht) = [1tan 7 sin€ tan¥ o cost 00 0 0 00 0 0 0] (3-69)

Where £ is the angle between the projection of the LOS in the horizontal plane
and the z; axis.

In this section, a description of the system dynamics has been derived. The
desciiption is in the form of simultaneous first order difference equations. These are
presented in matrix form by equation 3-64. The measurements on the system are
described by equation 3-66. In addition expressions for the various covariance matrices
needed for the filter equations have been obtained.

B. OPTIMAL FILTER EQUATIONS

In part A of section lll, the system equations were derived. They are repeated
here for convenience.

x(t;) = B, to0) x () + Gl) o) (3-70)

y(t) = H () x () + r (%) (3-71)
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The well known Kalman Filter equations can be applied to systems with this
description. These equations give an estimate of the state vector x(t;), based on the

measurements { y(ty) == y(t;) } , which is optimal in the mean square sense. The filter

is described by the following difference equations:

Q (til ti—l) = ﬂ("ir fi_1) Q(fi-—l)

() = Rt fo) *+ K@) [vy) - H ) R, 1)

x>

The optimal filter gains K(t;) are calculated from the following set of
difference equations:

P(t;, t_1) = B, t;2,) PG L)) B, t00) + G Q) G'(1)
K(t) = P(ty, =) H'(5;) [ H(R) PR HU(E) + R(E) ] ™
P(t;) =[I- K@) HE) ) Py, 1)

Where: |

Q(’ri) is the optimal estimate of x(t;)
given the meas:irements {y(fls, y(fg), -- y(t;)}
Q(fi, t;.1) is the optima! estimate of x(t;)
given the measurements { y(t,), y(t;), -- Y(fi-l)}

P(t;) is the covariance matrix of the error in the estimate Q(ti)

P(t;, ti—l) is the covariance matrix of the error in the estimate Q(i'i, ti_y)

The above equations describe the optimal filter, A direct application of these
equations could be done. It is desirable, however, to simplify and decouple the
equations to reduce the computational requirements. The performance of the optimal
filter is described in section . It is also demonstrated that the degredation caused
by certain simplifications is negligible.

These simplifications will be investigated in the following section.

C., SUBOPTIMAL FILTER EQUATIONS

Introduction

(3-72)

(3-73)

(3-74)
(3-75)

(3-76)

The filter equations presented in the previous section are rather complex. They
involve the solution of 12 simultaneous difference equations and hence multiplication of
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12 x 12 matrices. |t would be desirable, then, to investigate the possibility of simpli-
fying these equations. In order to determine if the simplifications are acceptable, one
must calculate the degradation in filter performance caused by them. In addition, the
sensitivity of the filter to errors in the noise model should be investigated. The equa-
tions required to evaluate the suboptimal filter performance are derived in this section.
The approximations to the system dynamics which are used in the suboptimal filter are
also presented. A computer program has been written which solves these equations.
Results from this program are given in section il.

Evaluation of Suboptimal Filter Performance

The equations describing the system dynamics (equations 3-64 and 3-65) are
repeated here for convenience.

x(fi)

y(t;)

I

Bt;, tio0) x () + Gl v (1) (3-77)

H

H {t;) x (1) + r(t;)

A fairly general model for the suboptimal filter equations is given by:

Qs(ti’ f;_1) = ﬁs (f;r t _1) Qs (f;_1) o (3-79)
Rtn) =R (s i) + K () [yl = B () &y, 1 0) ) (3-80)

Where K(t;) is obtained from:

P(tir t0) = B (i, 1 _2) Ps(tioy) B (0 tiey) + Gilhy) Qslty) Gl (h) (3-81)
Ko(h) = Poltys t0) HY () [H () P (1) HYR) + RG] (3-82)
P) = [T - K@) H ()] Py, i) | (3-83)

The following covariance matrices are defined:

Py () = E x(t) x'(5)]

Py () ti0) = E BKlhy, ti-1))

o (& = E [&(H) x' ()]

Ps (fir 'fi-l) = E [.Qs(fil ti-—l, )‘(S'(til ti--l):)
Ps () = E () &' ()]

The covariance matrix of estimate errors is given by

M) = 6 [xin) - % )] i) - &3 (3-84)
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Equation 3-84 can be written in terms of the covariance matrices defined above.
D) = Py ) = Pa () = P (5) + Py (1) (3-85)

By multiplying equation 3-77 by its transpose and taking expected values of
both sides one immediately obtains:

Pl (fi) = g (fir ti-l) P1 (fi-q) gl(fil ti..',[) +~G(ti) Q(fi) G'(ti) (3"86)

Multiplying equation 3-79 by the transpose of equation 3-77 and taking
expected values yields:

P <|l -1) ﬁs ir t l) Pa _1)¢. (f', l-l | (3-87)

The equation for P, (t;) is obtained by multiplying equation 3-80 by
X'(fi). It is given by:

Palt) = (1= K HIT) Palhy, b)) + K HE) PG (3-88)
Multiplying equation 3-79 by its transpose and taking expected values gives:
P3 ( ir |_1 g (fu '_1) Ps (t -1 g (tu ts ..1 (3'89)

The equation for Ps (t;) is obtained by multiplying equation 3-80 by its
transpose and taking expected values. After some algeb aic manipulation one obtains:

P (1) = Pa(f',f_1)+n<(f)Hf)[P'(H (tr ta))

+ [Palty) - P,y t J]HMKG)
+ Huo[%mnhn-mmﬂrme;m)
K Rt Ks () (3-90)

This completes the derivation of the equations necessary to compute the
covariance matrix of estimation errors. The computer program solves equations
3-85 through 3-90 in addition to computing the suboptimal filter gains.

Approximations to System Dynamics

If earth's rotation rate is neglected (= 0), the system dynamics are considerably
simplified.
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The state transition matrix becomes

I "(fi - "i—1)I 0 0
oy 0 I 0 0 -
ﬁ(fi' tl‘_‘I) B(fi _ ti-l -B (t, - fi_l) 1 ﬂ34 (fi, ti—l) @ 9])
0 b 0 Fualty i)

The result of this simplification is that the equations for «, 8, and ¥ become
coupled. If the drifts are neglected, a further simplification results. The equations
describing B are given by

ﬁ(fi) 1 0 0 0 ﬁ(fi—l) 0 0
Py () = g(ti-fi-l) 1 B Dos p(t_y) + Gy Gz
n, (t:) 0 0 &0 | Infh)| {1 0
nz (t;) 0 0 07 f, | |nalty) 0 1
'X. (VAR (fi)
v 2 (%) (3-92)
Where:

Boo = Bau = oxp- -4 )r

23 = az COS Wo t; = cos wp Fjay

24 = gas sin Wo fi - sin Wo fi-1
Gz, = cos W, t
Coz = sin wy 1

The equations describing ¥ (t;) are of almost the identical form with a sign
difference. This sign difference can be eliminated by defining p, (t;) as minus the
accelerometer output along the y, axis.

The equation for ¢ is simply

alt) = alt_,) (3-93)

The filter corresponding to these uncoupled dynamics is also uncoupled.

This greatly reduces the computational requirements. The filter equations
corresponding to these simplifications are given by:
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Xy <ti/ i'i-;\) =¢*(fil fi"l) X1(fi_1)

Xz (731 1"i—1) :ﬁ*(fir fi_l) Xz (fi-l)

8,00 = Ry o) + K5 [, () - ) Rty 1) ]

R () = %5 (8, 1)+ KE() [ope (1) = Ho() Ry 1))

PH(H, ti_y) = B, tiy) PH(Hoy) B, toy) + GX(E) Q¥ () G*'()
K*(h) = P, tioy) HR () [H* () PH(ty, o) B () + R*(ti)]—l

Pr(t;) = [T - K*(5) HE ()] A, o))

Where:
0
g, o) = | o 6*3—1)
0
o 0
sy - | &
L_.O 1
mg(fi)
A
A P ()
X (fi) = A
n, (t’i)
L'r\\a (t;)

)= [0 1 0 0]

X2 (fi) =

0 0
B fay
sa O
0 [/

OO —-O

Q*(t) =0V’ E-e -2(t; - ti-1)/{}1

9(%)
-’F\’a (ti)

Ra (1)

ﬁ‘: (ti)_

R*(t;) = &° /12

(3-94)
(3-95)

(3-96)

(3-97)

(3-98)
(3-99)

‘ (3-100)
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BIAS ERRORS IN THE SUBOPTIMAL FILTER

The three Euler angles describing the misalignment of the inertial reference CS vary
with time. This is caused by the earth's rate crosscoupling effect. This effect is neglected
when the simplifying approximations are made and thereby causes a bias to occur in the
estimates made by the si. slified filter.,

The quantities one wishes to estimate are the Euler angles at the final time, tg,
since this is when the CTMC will be "torqued" tb drive these angles to zero. The relation
between the Euler angles at time  and those at time t¢ is given by:

0@) = 1 (t, tr) 0 (tp) (3-101)
The accelerometer measurements p(t;) are thus related to 8(ts) by:

ts .
o) = 1 B Ot da ety . (3-102)

fo

+ V() - Vito)
It is assumed in the simplified dynamics that:
By, tp) =1 (3-103)

The assumed measurement is that given by:

fi
p*(t:) = B 5 Ida6(t)+ V() - Vit,) (3-104)

i.()

Thus, the actual measurement differs from the assumed measurement by:

it
b(t) = p(t) - p*t) = B 1 [#; (A, tp) -17] dx e (tp) (3-105)
t

o

This measurement bias causss a bias in the estimates of 8 (tg) and ¥ ().
A correction for this bias can be made. At time tg, there are three quantities
available from which we can estimate o, B and y. The first quantity is the theodelite

measurement . This is given by

my = o () + Cy B () + Co v (tf) (3-106)
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The other two quantities are the biased estimates of @ (t¢) and ¥ (tf). They are
given by: '

1

mo B (1‘;) (3-107)

m3 = y(t) (3-108)

Using these three "measurements" we can obtain a minimum variance estimate
of © (tg) which will be unbiased. This estimate is related to the measurements by

A
0(t) = Am (3-109)
Where:
m)
m =img
m3
L

To calculate A, one employs the principal of orthogonality which states that
if @ (if) is to be a minimum variance estimate of @ (t7), then

E (Bt -0t ] m =0 (3-110)
Substituting 3~109 into 3-110 and solving for A gives

A = Pgy P (3-111)
Where

Pom = E [ O(tom' ] (3-112)

Prom = E _mm' ] (3-113)

The covariance matrix of the crosscoupling estimate is given by
PG = Pgg - AP (3-114)

The correction matrix given by equation 3-111 provides the optimum correc-
tion in a least squares sense, However, a simpler correction matrix that produces ade~
quate accuracy is derived in Section Il1~=F, Since this correction matrix is relatively
easy to calculate, it has been used for both types of filters.
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D, LEAST SQUARES CURVE FIT FILTER
Infroducﬁqg

This section presents the results of an investigation of the use of a least squares
curve fit filter for levelling a strap=down system in a swaying missile. The objective of
this investigation was to determine the simplest filter which would produce acceptable
accuracy with a final data gathering period of less than 100 seconds. The simplest filter,
of course, would be one in which the accelerometer pulses were merely counted and
divided by time. However, a simple calculation shows that the error using this technique
at the end of 100 seconds of time is much too large. The next simplest candidate filter
is one in which the accelerometer output is assumed to be a power series in time. The
accelerometer output data can then be fit to this power series in a manner which mini-
mizes the square of the error, No a-priori knowledge of the form of any noise which
corrupts the accelerometer output is assumed in deriving the estimated coefficients of the
power series, However, it can be shown that the coefficients are the same as would be
derived using a maximum likelihood approach with a white noise input.

Least Squares Curve Fit Equations

The sum of the accelerometer outputs at time t is given by
V=a, tatta +2 + eoeeaa = mA
where
m=01,t 12, co0i 1]
A= [a,

o
a1

a2
a3

<
.

a
n
_—

Now if K data points are taken at times, t;, the error in the ith data point is

A

= Ve = m

e i

i i
A 3 (3
where A is the estimate of A

Then the sum of the square of the errors, which is the function to be minimized is

&M xR

el = (Vi - mi/'f\\)2

T
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Differentiating with respect to A ond setting equal to zero yields

K

3 e2 , T -

?Z-—- = -2 Pl ms (V" - miA) = 0
|:

K A

T oml(V; - mA) = 0

i

Equation 3-115 represents a set of n + 1 equations of the form

K
T (Vi-mA) =0
i=1
3 s
Lt (Vi -miA) = 0
i=1 .

¢
K IN
P f|n (Vi“miA) = 0
i=1

K A K

b2 m,T mA = % m'T vi

i=1 i=1

A K -1 K

A=lX miT m z m,TV.

=1 i=1

- . 2 -1

o oi X R X v,
Y zt; 2 ; TH2V,
/Q\n Etin e & & 4 & 0 8 s 8 o : - EtinVi

(3-115)

(3-116)

Equation 3-116 is the basic least squares curve fit equation used in this technique.
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Physical Model

The acceleration sensed by an accelerometer at a small angle 8 from the horizontal

and with zero sway velocity is
a = 6g

Consider the coordinate system of Figure 20. In general

6 = 0 + [Od h
o
0 = 8y + €Wy, = bWe,
e = €.+ 7 € dt
. . > (3-117)
e = €4+t 6We] - QWe2
5§ = 6o +16dt '
5 = 5d+9We] —eWe2 y

Here € , 6, © are the angular misalignments, the sub O quantities are initial
misalignments, and the sub d quantities are due to gyro drift.

For simplicity in determining the form of the accelerometer output, assume that
the 3 axis is North, then We, = 0 and

6 = 6; -6 We;
Ignoring second order effects
6 = 6o * O Wt
and
6 = 8 - 5oWey - W2, t
6= 0, + (84 - BoWey) t-1/28, W2 +2

The sum of the pulses is the integral of a and is given by

V=g [6,t+ 1/2(83 - 5 Welt? - 1/6 6 We2y 13]

(3-118)
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Now if sway velocity is considered including the fact that the velocity output of
the accelerometer has an average value, 3-118 can be written

V=V, +g e+ 1/2 By - bWe 2 = 1/6 8 We,213] (3-119)

If Vis fit to a curve of the form V=a_+ajt + 02'r2 + ...., the initial misalign-
ment angle, 8, and rate of change angle, g, can be determined as

6, = f’_l (3-120)
g

9 = 2a7 (3-121)
g

Effect of Sinusoidal Noise at a Single Frequency

If the noise is assumed to be a sinusoid at a single frequency and data is taken at
fixed time increments, a simple paper analysis can be performed to determine the errors
as a function of noise magnitude, noise frequency, time of filtering and order of fit.

Assuming the data is taken at times 6, 26t, ....K5t the various terms in equation

3-1 1_6 become

i =K
K (K+1)
Tt = 6t[1+2+3+...] = 6t 3

Etzi = ot2[1+4+9+...] = 6t K(K+1l (2K + 1)

etc.
Now if K >>1 (many data points are taken) at time T = K§t
D= e T

6t
2
Tt = 6t K2/2 = 'LT@T/?’

3
o2 = 1 _T%/3
5t

etc.
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or

5= '
X
o
T
2
o
Similarly
_ 1
ZVi T 5y

T
i) dt
0

T

St dt
0

T

) 2
0 t° dt
I Vidt

_
DHV; = = f tV.dr

etc.

And 3-116 becomes

KAl
a, |

4

o
L N _J

K

T 2/2 ..

1272 13/3 ..

7 -t (1 ]
I Vidt
0
.

. [ tVidt
0
F 12 v;dr
0

N — -

(3-122)

Now suppose the data is given by ZV; = aj +at + 02f2 + v..a " + Noise (3-123)

If the data is now fit to

TV, =8

(o]

8+ By t2% L6 ™ (m < n)

47



Equation 3-123 can be written
‘Z,Vi = Z;Vi] + om+]tm“ + ...anfn + Noise (3-124)

If ZV; consisted only of EVi] the estimates of the coefficients, 30, G‘] seres Sm

would be correct. Errors in the coefficients are caused by the other terms in 3-124 ,
Letting 8V; = a,.qt™ ! + ... a "+ Noise .

The errors in the coefficients are given by

— - — —1"‘1 B T
bag T 12 [ 6V dr
0
T
oy | | T2 T3 L.l [t 8Vydt
= 0 (3-125)
. T,
602 . . ft 5Vi df
. ) ) o .
B Om_‘ _ . J L o

First consider fitting the data to a quadratic function (a°+o]f+021'2) with noise given by

8V; = C[sin (WtH2)-sin &

[ 8V, dt = g [cosff - cos (WT +@)] - CTsin g (3-126)
0

! C 1 1 2

J V.t == [ sin(WT+@ -~ sinff-Tcos(Wt+g) ] -(CT4/2)sinf

0 i W W W

s f\/idfm—\’% [T cos (WT+8) 7 - (CT2/2) sin ff for WT >>1 (3-127)

2 = C |21 4 2 _ 2
S AV At ¥ .Wsm(WTHJ) +W2 cos (WT + @) -V—v-zcosﬂ

"TZCOS (WT'*'ﬁ)—]"%i sinﬁ

3
I 2Vdt —\% [-T2 cos (WT + @) ] - %— sin @ for WT >>1 (3-128)
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For a quadratic fit equation 3-125 becomes

— ~ 4 ‘T B T ——}
sag | or4 3613 3072 S8V, dr
0
, T
ba; [z | -6T3 19212 -180T I8V dr
1° 0
T2
| 60 L_30T2 -180T 180 | ItV dt
| i
Using 3126, 3-127, and 3-128
6ay = 1€ [2 cos (Wt + @) -3 cos ]
w2

The rms value over all #and WT is

Sa = :_3.9.'.5__C_
]rms WT2
Using 3-120
30.5C

69 I e—
0 rms gWT2

6a = 30C [cos @ = cos (WT +8) ]
2w

The rms value over all @ and WT is
_30C
6ams = -3
WT
Using 3~121
6 = 60C
ms oWT3

If the angle is estimated at time T, the error in the estimate is given by

507 = 6ay +26aT  _ _ 12C  [2cos @ -3 cos (WT+) ]
9 gWT2
30.5C

60 =
Trms gWT2

(3-129)

| (3-130)

(3-131)

(3-132)

(3-133)
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Using 3-132, 3~133, and 3-134 with C - 1/2 meterand T = 100 seconds,

the following errors can be calculated W

600rms = 30 arc seconds

5érms ~ 0.6 degrees/hour (3-134)

608 Trms = 30 arc seconds

If an accuracy of 20 arc-seconds is desired, it is obvious that a quadratic curve
fit is not acceptable. It is also obvious that no benefit is gained by attempting to
estimate the drift rate and using this to update the angle estimate. Therefore, it was
decided to try a linear curve fit.

For a linear fit, equation 3-125 becomes

Sag 412 6T S8V dt

]

5a 6T 12 46V dt

L.O .

Using 3-126, 3-127, and 3-128

Say =_\%C_1,:_2 [cos (WT+0) -cos @]

8alms = é'g-z
WT
For C/W = 1/2 meter T = 100 seconds

680rms = C_ - 6 seconds of arc

gWT2
This error due to sinusoidal noise is perfectly acceptable. However, from equation
3-119 it is known that there are quadratic, cubic and higher powered second order terms
in the data. The effects of these terms must be investigated.
Let 6V; = 1/29 (04 -89 Wel) t2
Then using 3-135

9
dap =7 8y - SgW T

il
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it should be noted that the error at time T in the estimate of the initial angle is
one-half the actual change in the angle from time zero to time T due to drift rate and
earth's rate coupling. Since the desired answer is the angle at time T and not the
initial angle, the net result is an error in the angle at time, T, which is equal to 1/2 the
change in the angle due to @ over the time interval T. This error can be significant if
there are large drift rates or initial angle errors.

Now consider the error due to a cubic term in the data.
Let 8V; = 1/6 g8y W23
Then using 3-135

0.9

= D7 2 .2
bay = 2= gQ W1 T

- 2 12
66y = 0.15 oW % T

Assuming 8y = .01

it

'We] = full earth's rate

T 100 seconds

1l

66y ~ 0.02 seconds of arc

This error is negligible and higher powered terms in the data will have even less effect.
From the results of this paper analysis, several conclusions can be drawn.
First, a quadratic fit does not produce acceptable accuracy.

Second, if a linear fit is used, there may be a problem with drift rate or earth's rate
coupling. For example, if there is an initial angle error of .02 radians, an earth's rate
coupling error of 0.3 seconds/second can exist. At the end of 100 seconds, the change in
angle is 30 seconds of arc and only one half the change in angle is compensated for by the
error in the estimate of the initial angle. This problem can be eliminated in several ways
that are discussed as follows: '

a) Two iterations can be used, the first iteration would last for 25-30 seconds and
reduce angle errors to about 0.5 milliradians by updating the direction cosine
matrix in the CTMC. This procedure essentially eliminates the earth's rate
coupling. If gyro drift is truly negligible, a second iteration of 100 seconds will
yield an angle estimate with a 1 g accuracy of about 6 seconds of arc.
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b) The data could be corrected for the initial misalignment by using equations
similar to 3-117 and then refit. This procedure is more complex than the two
iteration with updating procedure.

c) The simplest, most straightforward approach is to use the technique described in
the Crosscoupling Corrections Section of this report. This is the recommended

approach.

Computer. Analysis

To confirm the results of the paper analysis with more representative noise models,
a computer analysis was undertaken. Figure 21 shows the computer program in block diagram
form. A polynominal in time is generated anc! added to noise to provide the accelerometer
output. The noise may be gzenerated in two ways. Either narrow band random noise with an
autocorrelation function o, e “@T cos Wor can be used or the noise can be represented as
the sum of sinusoidal terms, The accelerometer output is quantized and fed into a least
squares curve fit program to provide estimdtes of the polynominal coefficients.

Figures 22-27 show the results of several runs made with random noise inputs. All
runs assume a quantization level of 0.02 m/second, a noise center frequency of 1.57 radians/
second and sampling time of 1 second.

These curves show the envelope of points obtained with the individual prints marked
except for those on the envelope. All the curves show the beating effect in the error which
has been evident in the maximum likelihood and Kalman Filters with imperfect noise models
and in general confirm the results of the paper analysis.

Figure 22 shows the results of a quadratic fit after about 100 seconds time with 20 meru
drift. Rather large errors in the estimate of the initial angle are evident. Since the change
inangle over 100 seconds time is +30 seconds of arc, the errors in the actual angle estimate
are even larger.

Figure 23 shows the results of a linear fit after about 100 seconds time with 20 meru
drift. The change in astual angle over 100 seconds time is again +30 seconds of arc. It is
seen that the error made in the estimate of the initial angle compensates for about one half
of this change as predicted by the paper analysis.

Figures 24 and 25 show the errors existing around 25 seconds with a linear fit for
two different correlation times. These results confirm that an initial iteration will reduce
angle errors to about 100 seconds of arc.

Figures 26 and 27 show the errors existing after 100 seconds with a linear fit and an
initial condition of 0,0005 radians for two different correlation times. This initial condition
would be typical for a second iteration if an iterative technique were used. However, it
should be pointed out that the error is not a strong function of initial condition (see Table 2).
Therefore the results are valid even if only one iteration is used. The rms angle error '
determined from these runs are shown in Table 1. The errors are determined at each sampling
time from 98 to 102 seconds and over the whole time interval from 98 to 102 seconds. The
earth's rate coupling error at this time is equivalent to 0.7 seconds of arc. The error due fo
gyro drift is given by 50 84, 6y must be small enough to make this error acceptable for this
technique to work.
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Time
(seconds)

98

99
100
101
102
98-102

Table 1

ANGULAR ERRORS AROUND 100 SECONDS

OF TIME

RMS Angular Error
(seconds of arc)

r = 200 seconds | T = 20 seconds
4.7 8.0
4.5 10.4
8.0 7.9
6.1 6.6
4.7 6.8
5.7 8.1

Table 2 indicates the errors obtained using noise that is the sum of sinusoids at four
different frequencies. The noise is approximately equal to that used in NASA's CTMC Run
S0O4400060 shown in Table 2 also. Answers were obtained for two different initial conditions and
indicate that the error is not a strong function of the initial condition. The errors are
slightly less than those obtained using random noise.

Table 2

A. ERRORS USING SINUSOIDAL NOISE

Time
(seconds)

22
23
24
25
26

98
99
100
101
102

Angular Error (seconds of arc)

0.01 radian initial angle

0.0005 radian initial angle

75
0
108
81
11

83
4
118
85
16

-5

1
-7.5
-6

0
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Table 2 (Continued)
B. NOISE INPUT COMPARED TO CMTC RUN 54400060

Time Vy (m/s)
(Seconds) 504400060 OD

OB WN —~0O
O =00 —00
s e e @
NNO—= N O
NN O 0 — OO

Preconditioning of Data

An analysis of the effects of preconditioning the data by integrating before curve
fitting has been performed assuming sinusoidal noise at a single frequency. Noise is
assumed to be

Vi = C [sin (Wt + @) -sin @]

The analysis follows that used in the effect of sinusoidal noise at a single frequency,
covered earlier in this section. The integrated data is fit to a quadratic and the quadratic
coefficient is the one of interest. Results show that

e
w2713

8a2rms

60C
50 = 9V~
Orms gW2T3

Using %—V =1/2 meter W = 1,5 radians/second and T = 100 seconds yields

8O0ims ~ 0.4 seconds of arc

This error is significantly smaller than that obtained when the data is not integrated
before curve fitting. The validity of this result with more representative noise was tested
by modifying the computer simulation shown in Figure 21 so that the generated data plus
noise is integrated being quantized and curve fit. The integration is performed by the
simple summing procedure shown below.

t=Kat K=-1
S Vdt= g V; + Vg
0 i=0

61



{ A quadratic fit is used and the quadratic coefficient is the one of interest,

The results using random noise with an autocorrelation function of the form

{ g@)= 0\2, e~dT cos T are shown in Figure 13 of the results section as a function of the
v correlation time, T, of the noise. The error plotted is the rms error over the time period
from 98 to 102 seconds from the start of the second iteration. Figure 13 also shows a
comparison of the results obtained using non-integrated and integrated data. The non-
integrated data is fit to a linear curve as described previously. For noise correla-
tion times greater than about 20 seconds, the use of integrated data produces better
')' results. For shorter correlation times, the use of integrated data produces worse results.
: The asymptotes on the figure are the errors when the noise is assumed to be a sine of wave

of a single frequency (1=00).

ooy

‘ The results using a noise input approximately equal to that used in NASA's CTMC
run 504400060 are tabulated in Table 3 for a 0.01 radian initial angle.

i Table 3

| Time (Seconds Angular Error (Seconds of arc)
Integrated Data | Non-Integrated Data
{: 22 -7 75
. 23 . +25 0
24 +1 108

} i 25 -5 81

L. 26 +11 1
[ 98 -0.3 -5.5
. 99 0.2 1

~ 100 -0.2 8

; 101 -0.4 -7.5
102 +0.1 0

The noise in this case consists of a sum of sine waves and the results indicate a sig-
nificant improvement in accuracy when the data is integrated.

Ry

However, it must be recognized that the noise will at least contain a random
component with a correlation time which is unknown at this time. Since short correlation
times can result in a severe degradation of performance when using integrated data, the
preconditioned duta approach was not pursued further.
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Conclusions

1) A least squares curve fit technique can be used to produce accuracies better
than 10 seconds of arc, 1g. There are two alternate ways in which it can be
mechanized. The first of these uses the technique described in section  of this report
to eliminate earth's rate couplings ond requires o data gathering period of 100 seconds.
This is the recommended approach. An alternate method requires two iterations with data
gathering periods of 25 and 100 seconds respectively. This method requires that the
CTMC be updated at the end of the first iteration to remove the earth's rate couplings.

2)  An error equal to one half the angle change due to gyro drift over a 100 second
data gathering interval exists. Gyro drift must be small enough to make this
error acceptable.

3) More time is required to reach a given accuracy with this technique than with
a Kalman filter.

4)  The equations to be mechanized are simpler than for the Kalman filter. The
| equation for a linear least squares fit is

8 | by R A
4 I oH? LE*iVi
1.
i Since a constant sampling interval may be used, the coefficients of the matrix
: inverse may be precalculated and stored.
{
[ The computation problem is then reduced to solving the equation
A A
0= 91 = b3V + cohY,
;
( Here b and c are precalculated constants and the equations for calculating them are

- given in Appendix C.
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E. MAXIMUM LIKELIHOOD FILTER

The maximum likelihood filter will be applied to determine the parameters of a
deterministic function when measurements of this function are corrupted by noise. For many
cases this filter yields the same results as a Kalman filter and these similarities will be dis-
cussed later, Out total objective is to investigate errors in the filtering process when the
assumed or modeled noise is inconsistent with the true noise.

¢

DYNAMIC MODEL

| We consider one axis of a platform system having an initial miserection 8 and a

(. constant drift rate d. Earth's motion is not considered. Then the miserection angle 0 is
given by

1 0 = 8+dt : (3-136)

An accelerometer mounted at this angle would sense gravity in the amount

LI

N N ,4’{"
a = g0 = gB + gdt (3-137) Huppe
£ The velocity output would then be
. 2
L v = gBt + Q-dzL_ (3-138)
The initial misalignment and drift are random parameters, or rather random constants.
Thus the velocity (equation 3~138 ) is deterministic and the filtering of data to determine

the coefficients of the linear and quadratic time terms will allow the initial misalignment
* and drift to be found.

A sequence of velocity measurements are made using an integrating accelerometer.
i The actual measurement is denoted by Z., Due principally to missile sway, the measure~
ment is noisy. Thus, a general measurement is

Zy = Ayt HARZHE (3-139)

where A] and Aj are the coefficients of the deterministic terms and E is the noise input.
For a sequence of n measurements

“ 3 [z, w7 A
Bl = |2z 1 2| (P (3~140a)
§ : L_,En L—Zn tn - nz..a

(S




[P

R

Wy

or
E= Z - UA (3-140b)

We consider the error is represented by Gaussian noise with covariance matrix
S’ ioeC

S = <EEl> (3-141)

Thus, the joint probability density function for the errors is

p(2) = 1 e ~1/2 (ETS"]E)
(2m) n/2/5/]/2
3 | o -1/2 (z-UA)T 571 (z-UA) i}
(2m)V/2/5/1/2 o

Maximum Likelikood Estimate

This estimate is found by determining the parameters Ay and Ay which maximize p(Z),
equation 3=142, for the actual set of observations. Several significant points must be
noted=-=====~ 1) we assume now no apriori knowledge of the coefficients, i.e. initial
variances of Ay and Ay are infinite; 2) the parameter Ay and A, are independent; this
would not necessarily be true if earth's rotation were considered.

Thus, maximization of p(Z) can be done relative to Ay and A, directly, Let
LAY = (Zz-UMNT s (z-ua) (3-143)
We maximize the taking the gradient of L(A)
grad, L(A) = 20T 571 (Z-UA) = 0
or

T

uls™ ua = uTs~lz

So that the estimated value of the coefficients is

ot

A= sy UTs 2 (3~144)
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This equation provides the weighting coefficients for determining A in terms of the
measured velocities. To estimate the error in A due to the noise, we realize that

Z = UA+E (3-145)
where the true but unknown value of A is used.

Substituting for Z in equation 3-144 ,

A= @s o)y wWis-lyya+ sty uls e
or
DA = A-A = (uTs‘]u)’] ulste (3-146)

We note that the estimate is unbiased since the expected value of E is zero.
The variance of A is

Pp = <(6A) (6A)> | (3-147)

-1
In taking the transpose, we make use of the fact that S and uls U is symmetric.
Thus,

Py = <@WIsTY T UTs EETs™ U sl (3-148)

We now consider that the true noise may have a covariance differing from the
modeled noise, equation 3-141, Thus, let

Sp=<EE'> (3-149)
Then the variance of the estimated coefficients is

Py = (UTsT0)" UTs Isis7Tu s~y (3-150a)

If the model is correct so that S7 =S, then

pp = (U5 (3-150b)

These are the two fundamental equations used in all later calculations to compare
the effects of inconsistencies between modeled and true noise.
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Example and Use of A Priori Data

Velocity noise having an auto-correlation function
Rin6T)= .5 =n 87,/200 cos2nbT me’rer2/sec2 (3-151)

was used. Model noise matched true noise. Time spacing was § ¢ = 1 second and n = 25
points were used. Results for the variance are

Pl Pro\ L /-281x1074  -.110x107°

Pp = =
Po1 Py -.110x1073  ,461x1077

Thus

Pyp = 0 2A; = .281 x 1074
Since

Ay = Bg

920 23 = O’A]Z
Or

og = 21 x 103 oA, arc-second

og = 111 arc-seconds

This appears to be the error in determining initial misalignment after measure-
ments lasting 25 seconds.

Continuing let us evaluate the variance of the drift estimate. Here
Py = 02y, = 461 x 1077

Since
A2 =g g—

o4 = g o Ay = ,044 x 10™3 rad/sec. = 9.05 deg/hr
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Here we note the extremely large uncertainty in drift. However, we know apriori
that this uncertainty is very small. This knowledge can be used to reduce all variances
in Po. We consider an effective additional measurement,

Ay
y = H + noise (3-152)
Ay
where

H=[0 1]

since only drift is measured, The variance of the noise in equation 3-152 is R and is
very small compared to Pyy. After this measurement is used Pp is reduced to

PA = Pp = PAHT [HPA HT +R17T HPp (3-153)

Expanding we find

— 9 '_1
Pyy - P2 P12 = PigPo
Py = P22k P2tk (3~154)
Pig = P12y Ppp = Ppp?
[ Pao*R
g 22 2"

Since the drift uncertainty is so small compared to P99, the variance of Ay now
becomes essentially

(.110 x 1072)2

T - .0146 x 1074
. 1

oA = .281x 107 -
and thus

og = 25.6 arc-seconds

This is a much more reasonable value. An alternate approach would note that an
uncertainty of drift of even 1 meru = .015/arc sec/sec would cause an additional mis-
alignment of less than an arc-second in the total measurement period. We may in effect

continue our analysis using the maximum likelihood method to fit only a linear time
term in order to make our error estimates.
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Noise Spectrum

A typical velocity auto-correlation function for velocity is shown in equation
3-151 . We note however that the velocity measured is always the difference between
an initial velocity and the one measured, i.e.

Vi = Vo = Y
Thus, the autocorrelation is

<V Vo> = <V V> = <V \/o>-<Vn, Vo> + <V, V> (3-155)

Results

Sampling Time

For a velocity noise auto-correlation given by equation 3-151 , a series of
computer runs were made investigating the effect of sampling time. The noise center
point period was 3,14 seconds. Results shown in Figure 28 indicate that for sampling times
below 1 second, results are very nearly the same. In Figure 29 we see that large errors
exist when the sampling period exceeds the center point period. One second sampling
time will be used for all the following results.

Noise Model

The velocity noise auto-correlation will be represented by

R(n) = R, 6(o) + Ry e -n1/T cos Wnt (3-156)

The study looks at the miserection error variance after 60 seconds of measurements
for a variety of noise parameters. The filtering model here matches the true noise model.

The model allows for a white noise component, Ry, and a sinusoidal term. In general,
Ry will always be .5 (meters/sec)2.

a)  Effect of Frequency

Ro | W T One Sigma Miserection Error
0 1.5} 200 8.77 arc-seconds

0 2,01 200 7.03

0 2.51 200 6.19

69



Spuod8g Oly - 10143 uo140alasty

o _ o -~ R
< 3 o~ 0 ~
o
o
\ o
/ 8
YOI NOILDTYISIW NO TVAYILNI ONITIWYS 40 103443 8¢ 2461y \ o
N
=
o
33
A
\ _
QE
\ =
“
\\
\ o
\\ Y
\\ o
\.\\\
<
T T 0 )i 5
2 o o =) S
~ P P x F
* - — (Bg) @oupiibp ~ .




71

320 Time-Sec

YO¥YI NOILDIYISIW NO TVAYILNI ONITdWYS 40 103443 * 6z 2nbi4

280

240

200

160

120

80

\
\o

B p= o

o Iy A__. 0

x = e =
~ = (6¢) aoupLPA X X

ey Beeeg Peeetd beend et bwmemd woEd fume  Geee  beesd  BEMR  (OER R OWR R




o e

Ly

ey

PR

c)

time,

Effect of Correlation Time

R | W T One Sigma Miserection Error
0 2 200 7 .03 arc-seconds

0 2 100 10.30

0 2 20 22.2

0 2 2 67.5

0 2 0 114

Effect of White Noise Component

Ro W T One Sigma Miserection Error
0 2 200 7.03

Jd 12 200 51.8

2 |2 200 72.5

All White Noise

R.=.5 Ry =0 114

Here we see the best results which can be obtained after 60 seconds of erection
For high accuracy we require that the noise be highly correlated.

Filtering Effects

We now consider true noise to be represented by equation 3~156 with

Ry = 0

Ry = .5 (mefer/sec)2
W = 2 radians/sec.
T = 200 seconds
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and study the effect of a filtering model which does not match the true noise. Parameter
shown below are for the filter model

One Sigma Miserection

Ry R | W T Error-Arc Sec. Comments
0 S 2 200 7.03 Perfect Model
. . 0 9.
8 .g ?g 308 ]3‘3 Mismatched Frequency
0 Sl 2 100 7.03 Mismatched Correlation Time
Jd 1.5 2 200 .80
2 1.5 2 200 8.18 White ‘noise Component
S5 2 200 85
S5 10 17.5 Least squares filter

We note that it is desirable to have the filter match the noise as much as possible.

When the characteristics of the true noise are uncertain, one can guess safely by using
a higher frequency and shorter correlation time for the filtering model. A small amount
of white noise should also be used to model the accelerometer quantization.

The data below investigates the effect of two or more filter parameters which do

not match the true noise. These lead to the same conclusions as the previous data.

One Sigma Miserection

R [Ry { W T Error-Arc. Sec. Comments

.1 S 2,51 200 .

.2 | 5| 2.5] 200 White noise component and

Jd | .5 1.5) 200 . mismatched frequency

2 | 5] 1.5) 200 13.1

Jd 151 2 20 7.5 White noise component and mis-
2 1.5 2 20 matched correlation time
0 S 2.5 20 9.2 White noise component,

A 1.5 1 2.5( 20 10.7 mismatched frequency and

2 | W5 2.5 20 12.8 correlation time
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Figure 30 compares the error variance when using a least square filter with a
perfect model .

Weighting Function

Figure 31 shows the coefficients that the velocity data points are multiplied by for
two filter models. These are presented primarily to show the affect of acceleration cir-
cuitry in producing an early or late pulse. The error caused is the difference between
weighting coefficients for two adjacent points. This is about .6 x 1074, Fora velocity
quantization of .02 meter/sec., this causes an error of

-4
B = 02 96; 07" - .122 x 1076 radians = .025 seconds which is negligible.

Relation to Kalman Filter

When the dynamic model, equation 3-136 and 3-137 is proper, the Kalman filter
will give identical results as the maximum likelihood filter.

If apriori data is available as discussed in the example here, proper use of this
data conserves similarity between these two filtering methods, The Kalman filter does
allow a more realistic dynamic model in which earth's rotation is considered without
adding complexity to the computations and more easily allows additional data such as
the azimuth measurement to be entered into the filtering process.
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F.  CORRECTION FOR BIAS ERRORS IN
THE LEAST SQUARES FILTER

It was pointed out in Section I11-C that a bias exists in the angle estimates for both
vertical and azimuth. The azimuth bias is due to vertical error bias which in turn is due
to earth's rate crosscouplings. An expression for an optimal correction matrix was derived
and it was pointed out that the simpler matrix derived for a least squares filter would pro=-
vide adequate accuracy. The purpose of this section is to derive the simple correction
matrix.

This matrix is based on the assumption that the difference between the actual and
measured angles can be expressed in terms of the actual angles, the geometry of the
theodolite measurement, and earth's rate. The coordinates systems used are shown in
Figure 18.

The azimuth measurement is given by
mp = attany [Bsine + ycose] 3-157
Where

is the actual azimuth angle

is the actual miserection angle about the | axis

is the actual miserection angle about the Z axis

is the theodolite elevation angle

is the angle between the theodolite line of sight and the Z_ axis

-~
OY‘{RQ

Using the results of Appendix C (Equations C~4 and C-5) the vertical measurement
can be written as
my = 1/2 wyal + 8- 1/2 wy ¥T 3-158,

mg ==1/2w, 0T + V2w, BT + y 3-159

Where T equals the time of the measurement Wys Wyr W, are the components of earth's
rate about the x, y,, and z, axes,
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Eauations 3-157, 3-158 and 3-159 can be solved simultaneously to yield

(4 an 012 0]3 m}
ﬁ = 02] 022 023 m2 3"]60
'}’J 03] 032 033 m3

The matrix coefficients are given by

ay = (1+1/4w 210/

ajp = (1/2Cw T-Cy)/o

a3 = (-G -1/2C1w, T)/b

a1 = (4w, w, T2-1/20; /8

apg = (1+1/2, ¢2wyT)/A

a3 = (2w, T+1/2Cw, /A

a1 = (Vhww T+1/2 w 1)/8

agy = (-1/2 o8 wy_T -1/2 wXT)/A
“ag3 = (1-1/2C wzT)/A

A = l+l/2T[C2wy-C] wz]+l/4T2wX[C] wy+C2wz+wx]

Cy = tanyysin e

Cy = tany,cos e

Equation 3-160 is completely valid only if there are no errors in the vertical angle
measurements except for earth's rate coupling effects. There will be errors due to imperfect
filtering of sway velocity.

However, examination of the magnitude of the coefficients of the matrix indicates

that these errors should have only a small effect on the correction applied. To confirm
this conclusion, two runs were made with the Erection and Alignment Simulation Program.
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In each of these runs, an initial condition of 2 degrees on each of the three axes was
assumed. In one case, a zero sway velocity noise was used, and in the other case a sway
velocity noise of 0.5 m/sec rms at a center frequency of 2 radians/second with a correla-
tion time of 200 seconds was used. The results are tabulated in Tables 1 and 2.

Table 1
Angular Errors Before and After Correction for
Earth's Rate Coupling (Zero Noise)
Angular Error (secs of arc)

Kalman Filter Estimates Least Squares Estimates
o A Y a B Y
Original Estimate - -7.6 -8.3 -- -7.1 -7.9
Estimate after Correction 0.3 -7 =1.1 .1 -.2 -7
Amount of Correction Applied — -- 6.9 7.2 - 6.9 7.2
Table 2

Angular Errors Before and After Correction for
Earth's Rate Coupling (0.5 m/sec noise)

Angular Error (secs of are)

Kalman Filter Estimates Least Squares Estimates

o B Y o 8 Y
Original Estimate - 10,7 =5 -— 14.5 6.8
Estimate after Correction -8.6 17.6 6.7 -10.5 21.4 13.9
Amount of Correction Applied  -- 6.9 7.2 -- 6.9 7.1

It can be seen that with zero noise the correction scheme removes the error due to
earth’s rate coupling to an accuracy of about 1 second of arc. Secondly, it can be seen
that the correction applied to remove the earth's rate coupling varies only by about 0.1
seconds of arc when the noise has a value of 0.5 m/sec. Thus, it can be concluded that
the correction matrix will accurately remove the errors due to earth's rate coupling even
in the presence of noise. Unfortunately, in the run shown, the vertical errors both in-
creased when the correction was made. In this case, the errors due to sway velocity noise
and the errors due to earth's rate coupling tended to cancel. They will not tend to cancel
each other in all cases, however, and in a statistical sense the answer has to be improved
by removing the bias due to earth's rate coupling. The concept of the use of the correc-
tion matrix was developed too late in this study to allow a rigorous statistical analysis of
the improvement in performance.
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IV, DESCRIPTION OF THE ERECTION AND
ALIGNMENT SIMULATION PROGRAM

A, THE PROGRAM EQUATIONS

The erection and alignment program solves the Kalman filter equations given by
equations 3-94 through 3~100 and the least squares filter equations given by equationC-3
for each channel. In addition, the program simulates a theodolite measurement at the
final time. This is done by extrapolating the initial angles to time t¢ by the equation.

0 (t) = #yy (b 1) © (1)
Where 11 (t;, t,) is approximated by:
g1y e to) = [ - Q)]
The theodolite measurement is then given by:
my = a(ff) + C B (ff) + Cpy (tf)
Where Cy = tan y, sin €
Co = tan yo cos €

The program calculates the correction matrix derived in Section 111-F and then
calculates the final estimates of o, B8, and y.

B, DEFINITION OF THE PROGRAM CONSTANTS

There are 16 floating point constants which must be read in. They are called C(1)
through C(16). They are defined by

Program Constant Definition
c(n g - rms angle error {arc seconds)
C(2) o, -~ rmssway velocity (m/sec)
C(3) fo = sway velocity center frequency (cps)
C(4) T = sway velocity correlation time (seconds)
C(5) g - gravity (m/sec)2
C(6) & - acceleration quantization level (m/sec)
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Program Constant

Definition

C(7)

C(8)

C(9)

c(10)
c(1m)
Cc(12)
c(13)
C(14)
Cc(15)
C(16)

Yo
€
alt)
B(to)
Y ()

time between measurements (seconds)

final time (seconds)

earth's rotation rate (rad/sec)

latitude of launch site (degrees)

target bearing (west of north) (degrees)

theodolite elevation angle (degrees)

angle between Z, axis and theodolite LOS (degrees)

initial misalignment angles in degrees

o, B, and v are defined by Figure 18. When B is equal to zero, the Z axis is north.

C. INPUT CARD FORMAT

The format of the input cards is listed in Table 4.

Table 4

INPUT CARD FORMAT

Card No. Variable
1 NNR UN
2 IPRNT
3 c(1)

4 C(2)
5 C(3)
6 C(4)
7 C(5)
8 C(6)
9 C(7)

10 C(8)

11 C(9)

12 C(10)

13 c(11)

14 Cc(12)

15 c(13)

16 C(14)
17 C(15)
18 C(16)

L4

Format Description

12 NUMBER OF RUNS

12 =1 - PRINT FILTER GAINS AND
CORRECTION MATRIX, =0 =
BYPASS

£20.8 , C'S DESCRIBED ABOVE

A

£20.8
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Table | (Continued)

Card No. Variable Format Description

19 80H HOLLERITH IDENTIFICATION
20 NUMBER, DA,TE 12, A6, A2 CASE NUMBER, DATE

21 T(1S), XD(1), 3X, E14,7, 22X, TEST DATA - Time, y velocity,
l XD(2) E14.7, 4X, E14.7 l Z velocity

MULTIPLE CASES BEGIN WITH CARD 19, IDENTIFICATION

D. PROGRAM OUTPUT

The program output consists of a printout. First the program constants defined in
Part B of this section are printed out in three rows. The first row contains C(1) through
C(6). The second row contains C(7) through C(12) and the third row contains C(13)
through C(16). Then the estimates of B and v given by the Kalman and least squares filter

_ equations are printed out at each sampling time. Then the final angle estimates at the end

of the filtering period are printed out. These estimates are.calculated using the correction
matrix of Section lI1-F. The actual angles at the end of the filtering period are then
printed out. If the printout of the filter gains option is chosen, the 4 gains used in the
Kalman filter at each sampling time and the elements ot the correction matrix used to de-
termine the final angle estimates at the end of the filtering period are printed out.
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V. DEFINITION OF COMPUTER REQUIREMENTS

ASSUMPTIONS

1)

2)

3)

4)

5)
6)

8)

These requirements for storage and execution time are based on the character-
istics of the RCA 110-A computer. The execution time estimates assume fixed
point calculations.

It is assumed that certain calculations can be made each time a data point is
received. This is not a necessary assumption but it reduces the required storage
since each data point does not have to be stored. '

In determining the azimuth requirements, the multiplication ]C2 2C4 is assumed

to be performed using a conventional matrix multiplication algorithm with
several loops. Since the other matrices contain many ones and zeros, the multi
plications invclving them do not use the loop type algorithm in order to save
execution time. A slight penalty of about 50 storage words is incurred by this
approach.

When defining both the storage required and the execution time, it is assumed
that an increase of 50% in the arithmetic instructions will be required for
scaling.

No allocation has been included for progrum self-checking provisions.

The filter weights are assumed to be precalculated and stored.

The program used for determing the requirements is configured so that all read-
in constants are saved and initial conditions of variables and index registers
are set without further read-in if more than one pass is required due to a hold
on the launch sequence.

The CTMC velocity registers are assumed to be set to zero before start.

EQUATIONS

1)

Azimuth - The equations used are based on those shown in AIAA paper No,
67-556 "Initial Alignment of a Strapdown Inertial Reference and Navigation
System" by Hans F. Kennel.

m a12 a13

]C6= ]C2 2C4 4C5 5C6= agj a9 an3
931 932 923

83



T O N

Kodinis

The elements of ]CZ are obtained from the CTMC., The elements of 2C4 and 5C6 are

fixed constants which are read in. The elements of 4C5 are calculated from the porro prism

encoder angle and a fixed misalignment.

After calculating the elements of ]C(, the following calculations are required.

ajyy sin Yotayg V02]2 - sin2 Yo * 02”

sin ¥ =
p
an? + a1p?

cos ‘yp = \/T - sin zyp
Ly] = -a91 sin ”p * a9y cos Yo
L7 = -=as3q sin Yo + agp cos 7o

”

- L
m =5 + tan™! _Y_]_

my is the azimuth measurement to be used in the correction equations.

2)

Kalman Filter Equations for Level = The equations to be solved are equations
3-94 to 3-97 in Section Ill. The K* (t;) are precalculated stored constants and
are calculated by the Erection and Alignment Simulation program for each data
goint. The equations are of a recursive form and the four components of each

X are calculated each time data is received.

3)

4)

Least Squares Equations for Level - The equation to be solved for each channel
is given by equation C-3, Each time a data point is received the L'V and
TtV; are calculated, At the end of the filtering period the two summations
are multiplied by stored constants and the resulting products added to provide
an angle estimate.

Corrections Equations for Bias Errors - These equations are given by equation
3-160 of Section l11~F. The a's are precalculated and stored constants. mj
is obtained from the azimuth calculation. m, and my are obtained from the

level equations.

C, COMPUTER REQUIREMENTS

The storage requirements are tabulated in Table 5.
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Table 5
STORAGE LOCATIONS REQUIRED

Program Stored Scratch Scaling

Storage Constants Pad Instructions Total
Azimuth 171 27 43 20 261
Kalman Filter 77 247% 16 13 353
Least Squares Filter 34 5 8 4 51
Correction Equations - 19 9 8 2 38

* Kalman filter assumed 60 data points. For each additional data point, four additional
storage locations are required fo store weights,

Total storage requirements, assuming scratch pad is shared, are 636 locations if the
Kalman Filter is used and 342 locations if the Least Squares Filter is used.

The execution times are listed below.
Azimuth

0.085 seconds plus 1 pass through the sin/cosine subroutine, 2 passes through the
square root subroutine and 1 pass through the arc tangent subroutine is required. The time
to execute these subroutines in RCA=110A computer was not listed on the books provided.
Kalman Filter

When each data point is received, 0.02 seconds plus 1 pass through the sin/cosine
subroutine is required. In addition 0,00086 seconds is required to zero initial conditions

at start of the filtering process.

Least Squares Filter

When each data point is received 0.0048 seconds is required, In addition, 0.003
seconds is required to zero initial conditions at the start of the filtering process and to
perform calculations af the end of the filtering process.

Correction Equations

0.0095 seconds is required.
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APPENDIX A -
FILTERING PROBLEM WHEN ERECTING WITH

STRAPED DOWN ACCELEROMETERS

PURPOSE

The purpose of this appendix is first to derive the equations describing the output
of strapped down accelerometers in a rotating and translating vehicle, The magnitude
of the various terms in these equations are then discussed and the terms which must be
filtered out are determined.

DERIVATION OF THE ACCELEROMETER OUTPUTS

The coordinate systems to be used are shown in Figure A-1. The'i , I ‘T<

. . . . _ <0% Ci( o
system is an inertial system with origin af the center of the earth. The i, j, k system
is earth fixed with its origin at the center of the earth. The i', j', k' is missile fixed
with its.origin at the center of rotation of the missile. The position vector of the _
accelerometers is given by R_ in the inertial system and is made up of the components R,
the vector from the center of the earth to the center of rotation of the missile and ¥, the
vector from the missile center of rotation to the accelerometers.

Then _Iio = R+7

=R, T + Ry]" Rk o i+ or K (A-1)

X yJ Z

The acceleration of the accelerometers is given by the second derivative of R with
respect to inertial space,
5T * 1 <\

Ro = R + RJ + R, K+RJ +R} J

o = R +Rj + Rk i+
't k! (A-2)

'rzk' + rxl' +

yd
The first group of three terms in A-2 is the velocity of the origin of the
primed system with respect to the earth and will be called V. The second group of
three terms in A~2 is the velocity due to the rofation of the earth and can be written
WE XR. The third group of three terms in A-2 is the velocity with respect to the
missile-fixed system and, thus, is zero. The fourth group of three terms in the
velocity with respect to the origin of the primed system due to rotation of the primed
system and can be written (WE + Wm) Xt. Here WE is the rotation of the earth and

W, is the rate of rotation of the missile with respect to the earth.

A-1



Hence
f'{o = V+Wg X R+Y) + W, X7+ (A=3)
Then
Ry = V + Wg X(R+7) + W, XT + W _x7 (A-4)
but
V = RXT + RYT + 'iiz I2+I‘QXT + RYT + R, K=A+WgxV)
Where A is the acceleration of the origin of the primed system with respect to the -
earth, then A-4 can be written
Ro= R (Wen®) + We x[7+ W xR + W x [(We+ W) x7 )
+ Wm x?+\7\/m X E(V'\-/E+\7Vm)x?]= A+2 (V_\)Ex\~/) +\T\/Ex
[We x ®+7)] + Wiy x Wiy x7) + We x (W x D) + Wy
(We xD +W_ x7 (A-5)
If Wy, is written as
Win = Winid' * mej' * Wing K!
Then
Wm = me?' * mej' * Winz K+ me.i' * me]' * Wiz k!
‘T — — Cnd
= W, + (W, + We) X W,,
W = Wm + WE x Wm (A-6)
Where \}\/m is the angular acceleration of the primed system with respect to the
earth. Using A-6, the last three terms in equation A-5 become
X = W X(\-/"Vm x—r)+V—me(\-A-lE x~r)+wmx-r. = me7+(WE me) X
+ WE X (Wm X 1) + Wm X (WE X 1) (A=7)

A-2
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Then using the relationships

PXQXR=R « P) Q- (

it
-
O
~—
-©

RXPXQ =R - QA P-R +- P Q

T -~ e - — a— B
Xo= Wt (Wg e t) W= (r » W) WE+(WE = 1) Wiy = (Wg « W) r

x [+ D Wy - (W + W7
X =Wy, X7+2 Wg x (W, x7) (A-8)
Using A-7 and A=8 in A=5 and the fact that the accelerometers read g +:ﬁo yields
Accel t e - - = - =
cee gz':;iter =g +<WE x[WE x (R x r)])+ AW s+ Wx (W x r)
2 W x (W x )+ V) | (A-9)

DISCUSSION OF THE ACCELEROMETER OUTPUT

Of interest here are the horizontal components of equation A=9 since these are
the cutputs of the transformation computer that will be used to erect the computing
coordinate system in the computer, When the system is erected, these outputs should
be zero. Therefore, it is any non-zero horizontal components of equation A-9 which
must be filtered out.

The first two terms of equation A-5 are due to gravitational attraction and the
centrifugal acceleration of the earth and are essentially directed along the local
vertical (R >> 1), The second three terms represent the acceleration relative to the
earth and are caused by missile sway in the case of interest here. The last term in
equation A=9 is the Coriolis acceleration and is proportional to the velocity relative
to the earth,

For missile sway then, both the acceleration and velocity relative to the earth
will be essentially horizontal and have magnitudes related by the equation A = WV

Where: A = magnitude of the acceleration
V = magnitude of the velocity
W = frequency of sway motion




50

Then the ratio of the horizontal acceleration to the Coriolis acceleration is equal to
or greater than W . For a W of 1-radian-per-second, this ratio is on the order of 104,
2 We
Therefore, the Coriolis acceleration can be neglected and the quantity to be filtered is the
output of the accelerometer due to sway acceleration. Writing the sway acceleration as
a =asin (Wt + 8 (A-10)
The integrated output of the accelerometer; i.e. the velocity indicated by the

accelerometer is V= =9 cos (Wt + ) +ng' cos ¢ (A-11)
W

It should be noted that even though the input acceleration is oscillatory, the
output of the accelerometer has a constant term in its integral, The magnitude of this
term is a function of the phase angle of the sway acceleration at the time the inte-
gration procedure is started. The filtering technique must then be concerned not only
with the elimination of oscillatory error terms but also with the elimination of con=~

stant error terms.




FIGURE A-1. COORDINATE SYSTEMS
USED IN THE ANALYSIS
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APPENDIX B
OPTICAL ALIGNMENT EQUATIONS

The purpose of this appendix is to explain the azimuth angle equations contained in
the report "Initial Alignment of a Strapped-down Inertial Reference and Navigation System'
by Hans F. Kennel. Specifically, equation 16 and the equation at the top of page seven
for § A, the azimuth error caused by leveling error will be derived. This work was done to
assure that we had a proper understanding of the coordinate systems involved and the
relationship between azimuth and leveling errors.

Figure B-1 shows the relationships between the various coordinate systems used in
Kennel's report under the conditions that the system has been leveled (that is: coordinate
systems 1 and 3 are coincident). The azimuth angle measurement desired is o, s the angle
between the theodolite reference and the Y, axis. The components of the line of sight in
the 6 system are given by

Lyg = =sin 'Yp
Lyé = cos ¥y
L= 0

Then the components in the 1 system are given by

Lt aqy ajy 913 'ﬁnyp
Ly] = a9 a99 a93 cos YP (B-1)
Lt ag] a3y a3y | 0

where the a matrix is the transformation matrix between the 1 and 6 systems. When the
1 system is level, this matrix is a function of missile tilt, the porro-prism encoder angle,
and the known misalignment § 's.

But L1, and L, can also be written in terms of the angles ¢ and 7y, the
elevation of the line of sight in the leveled coordinate system

Lyl = cos yq cos a,
L,1= ~cosyq sing .
then

~— ==-ctn g}
zl

»

B-1
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but
tan rv] =tan /2

= -ctn ¢
1+ tan /2 tan o ]

tan{or | - n/2) =

s op=a/2ttanTt o byl (B-2)

z1

which is equation 16 of Kennel's report.

The remaining thing to be determined is the error in the measurement when system
1 is not level. In Figure B-2 the non-level system 1 is denoted by primes and is mis-
leveled by small angles ¢ about zy and B about Y.

For small angles, the coordinate transformation matrix from the 1 system to the 1

system is:
1 v o -B
Cy =|~r 1 0
B 0 1
but
L 1 0o 0 ~sin ¥
L = 0 cos @] sin o] cos Y (B-3)
LLZ] HO ~sing] cos o] 0
50
(L 1oy ) [ 0 0 [ =sinyg
Ly]‘ = -y 1 0 0 cosaj *sinaj| | cos 70 (B-4)
LLZ]‘ B 0 1 0 =-sinay cosaj| | 0

comparison of B=-3 and B-4 indicates that
Li' = Ly # 7.sin Y0
Lz1' = La1 =B8sin g

Then the errors in the y and z components of the line of sight when system 1 is not
level are given by

il

ALY]
ALz]

¥ sin Y : (8-5)
-8 sin Yo

il
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The error in ¢/ is given by

] 1 Lyj
6 = B e — - Y -
A 1+ iLy]ia {[ Lz] ALYI] [ e ALz]] (B-6)

From B-3

Ly] = cos @] cos Y

(B-7)

Lzl = =sin o] cos Y

Substituting B-5 and B-7 into B-6 yields
1 vsin ¥Q Bsin Ygcos o} cos Yq
oA = . cos® o1 sin ] cos ¥ sin® o1 cos® Y0
sin® o/
6A= tan Y {—')’sin oy + B cos a]} (B-8)

But ~¥sin iy + B cos @ is the tilt about the horizontal projection of the
line of sight and equals 6 .

8A = 6L tan yg which is the equation in Kennel's report.

An estimate of ay calculated using equation B-2 can be used in equation B~9
to determine a correction to be applied to the original estimate of oy to obtain a
better estimate. The correction can be calculated using estimates for ¥ and g obtained
from the erection system.
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APPENDIX C
CLOSED FORM SOLUTIONS TO THE LEAST
LEAST SQUARES EQUATION

The form of the linear least squares curve fit equation is

%, [ K 1
2 i Z t
— i=1 i=1
K K
4, A
i i=] i=1
o -

[k h

z \Y
i=1 (c-1)

™M X

T

L- -

The estimate of the erection angle, 0 is given by

6=<’§]

.E_.

When the data is taken at constant time intervals 6§t

K
X =K
i=1
K 5t (K) (K+1)
te = =
R
i=1
K 2]
Dof = 2L () (k) (k)
i=1
Using C~2, and C-1 yields
6 =4 = é RV
) .51 T VR CE ) o
|:‘.

\

$ (C-2)

12
g6 (K) (K-1) (K+1) ]’V'
|=

(C-3)

C-1



Equation C-3 can also be used to derive an exact equation for the angular error
resulting from a quadratic term in the data. The data is assumed to contain only a
quadratic term of the form 1/2 g8+ . Using C-1, C-2 and the fact that

K
poop = CHHP g
i=1
yields
A . +
) =_gl = (1/2) 0 K&t (EK—]) (C-4)

Equation C-4 is the exact equation for the error. In deriving the equations to
be used to correct for earth's rate coupling in section Il1-F, it was assumed that the
error was G-)e = 1/20 T where T= Kbt (C-5)

Comparison of equations C-4 and C-5 shows that C-5 is correct to about 1% when
100 data points are taken at 1 second intervals. This error is perfectly acceptable.
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