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RADIOFREQUENCY TRANSMISSION CHARACTERISTICS 

OF SEVERAL ABLATION MATERIALS 

By Melvin C. Gilreath, William F. Croswell, 

and Stark L. Castellow, Jr. 

Langley Research Center 

SUMMARY 

An experimental investigation was conducted to determine the transmission loss, 

and effects upon the radiation patterns and impedance of typical antennas, produced by 

thermally degraded ablation materials. A cone-shaped model was used, which consisted 

of a truncated aluminum substructure with flush-mounted antennas over which a thermal

protection test material was bonded. Measurements of transmission loss through several 

thermal-protection materials were made at 2.66 GHz and 9.60 GHz in apparatus C of the 

Langley entry structures facility (an atmospheric arc jet). 

The dielectric properties of all virgin materials were measured at room temper

ature. In addition, antenna radiation patterns, voltage standing wave ratios (VSWR), and 

gain were determined before and after the materials were subjected to the thermal test. 

Photographs of the models are presented which show the effects of the thermal test on 

the various materials. 

It is concluded that, in general, materials which form and retain continuous con

ductive char layers during thermal exposure produce very high transmission losses. Also, 

it is shown that antennas which are covered with such high-loss materials may exhibit 

extreme perturbations in the radiation patterns that are not present when the antenna is 

covered with the virgin material. 

The antennas used for this test program experienced an increase in VSWR when 

covered with the high-loss materials; however, the loss attributable to this mismatch was 

less than 2 dB. 

INTRODUCTION 

The antennas of reentry vehicles must be protected from the severe heating condi

tions encountered during entry into and exit from a planetary atmosphere. In order to 

maintain communications to receiving stations after the severe heating ceases, the 



degraded thermal protection material covering the antennas must not seriously attenuate 

radiofrequency energy propagated through it nor severely alter the antenna radiation 

characteristics. 

Dielectric ablation materials are developed primarily for heat-protection purposes. 

Hence, general information about the thermal protection characteristics of such materi

als is obtained during the developmental process. Some information on the electrical 

characteristics (Le., transmission-loss measurements) of thermally degraded ablation 

materials is presently available (refs. 1 and 2). However, to select an ablation material 

for use as an antenna cover or window, a transmission-loss number in decibels (related 

to material thickness and operating frequency), without other supporting measurements, 

may not be sufficient. In this paper the following measurements are presented and 

evaluated: 

(a) Measurement of the dielectric properties of the virgin materials at room 

temperature 

(b) Measurement of the antenna characteristics (gain, radiation patterns, imped

ance) of the test model covered with virgin material 

(c) Measurement of the transmission losses through the material after exposure to 

simulated entry heating conditions 

(d) Measurement of antenna characteristics of the test model after exposure to the 

simulated entry conditions 

The primary test frequencies were 2.66 GHz and 9.60 GHz. The frequency of 

2.66 GHz was chosen because of available equipment near the space communication band 

of 2.2 to 2.4 GHz. The frequency of 9.60 GHz was chosen because of its inherent 

increased sensitivity to ablation effects and characteristics. 

SYMBOLS 

E electric field 

resonant frequency of unloaded cavity 

resonant frequency of loaded cavity 

H magnetic field 

quality factor of unloaded cavity at resonance 
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S 

t 

tan 0 

x 

e 

quality factor of loaded cavity at resonance 

S-band frequency range, 2.60 GHz to 3.95 GHz 

S- band forward power 

S- band reflected power 

thickness of test material 

thickness of test material, measured in wavelengths in the dielectric 

medium, at 2.66 GHz 

thickness of test material, measured in wavelengths in the dielectric 

medium, at 9.60 GHz 

loss tangent of dielectric medium 

x- band frequency range, 8.20 GHz to 12.4 GHz 

X- band forward power 

X- band reflected power 

relative dielectric constant 

wavelength in dielectric medium 

polar angle in spherical coordinate system 

azimuth angle in spherical coordinate system 

TEST CONDITIONS AND PROCEDURES 

Measurement of Dielectric Properties of Virgin Materials 

at Room Temperature 

The dielectric properties of several ablation materials were measured by using 

the lowest order mode rectilinear-cavity method (ref. 3). A number of transverse 
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electric (TElOl ) dominant mode cavities were constructed with unloaded resonant fre

quencies from 3.0 GHz to 14.0 GHz. Coaxial probes with the center conductor machined 

flush to the cavity walls were used for coupling the energy into and out of the cavity. 

This arrangement provided an under coupled cavity with an unloaded insertion loss 

greater than 25 dB. The dielectric constant and loss tangent were obtained by mea

suring the resonant frequency and the associated quality factor for both the unloaded and 

loaded cavity conditions. From reference 3, 

and 

where fr,O and ~ are the unloaded cavity parameters, and fr,Z and QZ are the 
loaded parameters. The resonant frequencies were measured by an interpolation 

method (ref. 4, pp. 386- 389). The response curves of the cavities were measured by the 

substitution method, also given in reference 4 (pp. 403-405). 

Test Facility 

Apparatus C of the Langley entry structures facility has the following 

capabilities: 

(a) Produces model afterbody cold-wall heating rates of 20 to 50 Btu/ ft2- sec 

(227 to 567 kW / m2), typical of those encountered on the afterbody of a blunt 

entry vehicle 

(b) Accommodates a test model of sufficient volume for mounting test antennas, 

cables, waveguide, and thermocouples 

(c) Permits an experimental arrangement such that transmission-loss measure

ments can be accomplished 

The details of the construction and operation of this facility are given in refer

ence 5. This arc jet is characterized by subsonic flow and an enthalpy of approximately 

3000 Btu/lb (6973 kJ / kg). Both the stream velocity and enthalpy available from this 

facility are lower than those that would be encountered by a typical blunt entry vehicle. 

For these tests the nozzle diameter was 6 inches (15.24 cm) and the arc power 

was 1.8 megawatts with the following average stream conditions: 
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I 

I 
Airflow rate . . . 

Stream enthalpy. 

Velocity ... 

Temperature 

Mach number 

Pressure .. 

. 0.35 lb/ sec (0.16 kg/ sec) 

2800 Btu/ lb (6508 k.I/ kg) 

2700 ft/sec (823 m/ sec) 

. . 37000 K 

. . . . 0.07 

Atmospheric 

These test conditions gave the desired cold-wall heating rate of approximately 20 to 

50 Btu/ ft2- sec (227 to 567 kW / m 2) over the afterbody length. 

Test Models 

Upon selection of the test facility, the largest model that the facility could accom-. 

modate was chosen. Figures 1 and 2 show pertinent dimensions and construction details 

of the basic model used in all tests. The test materials were 0.25 inch (0 .635 cm) in 

thickness and were bonded to the aluminum substructures. (See table 1.) Care was 

taken to remove the bond material over the antenna apertures. The nose cap was either 

phenolic asbestos or, for one E4Al model, a low-density phenolic nylon. 

The X-band horn antenna (excited by a rectangular waveguide operating in the 

dominant TE10 mOde) shown in figures l(a) and 2 was used both as an antenna and as a 

means of connecting the model to the water- cooled sting. The sting has an internal 

X- band waveguide and a 0.750-inch (1.905- cm) hollow tube, both of which extend the 

entire length of the sting. The hollow tube is used for the passage of coaxial cables and 

thermocouple wires. The S-band antenna (figs. l(b) and 2) is a T-bar cavity filled with 

glass-fiber laminate. The two test antennas (horn and T- bar cavity) are of the broad

band type and are not de tuned Significantly when covered with the test materials. 

There were eight thermocouple connections inside the test model, located at four 

different stations (labeled TC in fig. l(a)). A graphite ring (figs. 1 and 2) was used to 

protect the rear of the model and to provide a fairing between the test model and the 

sting. Since the graphite ring was a good thermal conductor, it had to be insulated from 

the aluminum substructure by a bakelite ring (figs. 1 and 2). This insulator reduced the 

transfer of heat into the rear of the test model. 

Instrumentation and Measurement Procedure 

A block diagram of the instrumentation used for making the transmission-loss 

measurements is shown in figure 3. A signal generator which was calibrated in fre

quency and power output was modulated with a 1 kHz square wave and used to drive a 

traveling-wave-tube amplifier (TWTA) to give an output power of 1 watt. This signal 

was transmitted by coaxial cable or waveguide through the water- cooled sting to the 
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model. Dual directional couplers were used to monitor the forward and reflected power 

levels. The forward power was monitored during each test to indicate any change in 

generator output power. The reflected power was recorded continuously during each 

test. The signal was transmitted from the test-model antenna and received by a 

standard- gain horn antenna positioned to receive maximum signal level. A crystal 

detector at the receiving antenna detected the signal, which was then recorded. The 

recorder had a 40 dB dynamic range and a chart drive system that was adjusted to pro

vide the desired speed for the test. Eight thermocouples in the model were connected 

through the water-cooled sting to a calibrated recorder to give the temperatures inside 

the model. 

A series of measurements was made on each model just before the thermal test. 

These consisted of determining the antenna radiation patterns, voltage standing wave 

ratios (VSWR), and gain of both S- band and X- band antennas. The results were com

pared with the results obtained after thermal degradation of the test material. 

The following procedure was used for making the real-time transmission-loss 

measurements. With the test model located as shown in figure 3, the recorders were 

adjusted to the desired levels without the arc jet operating. The recorder for the 

reflected power levels was calibrated by the use of short circuits and two calibrated 

attenuators. After all calibrations and adjustments were completed, the model was 

removed from the test position and the arc jet was ignited and adjusted to provide the 

proper test conditions. With all recording and monitoring equipment operating, the 

model was reinserted for the test. Each test was terminated when the temperature 

inside the model reached approximately 4500 F (5050 K). This maximum temperature 

was chosen to prevent damage to the aluminum substructure or antennas. Also, the 

adhesive bonding material used for attaching some of the test materials begins to lose 

strength rapidly at temperatures exceeding 4500 F (5050 K). The recording was con

tinued after the arc jet was turned off until the measured transmission loss remained 

relatively constant. 

After the model was removed from the arc jet, the measurements made prior to 

the thermal test were repeated to determine what effects thermal degradation of the 

ablation material had on the antenna characteristics. 

RESULTS AND DISCUSSION 

Electrical Properties 

The dielectric properties of the test materials were measured at room temperature 

and the results are presented in table II. The test frequencies were determined by the 
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size of cavity used for holding the test material and by the dielectric constant of the 

material. Only one measurement of each material was made in the S- band to X- band 

frequency range since the dielectric constant for most good dielectrics does not change 

appreciably as a function of frequency. 

Teflon and Plexiglas were measured to verify the accuracy of the measurement, 

which was within about 5 percent. All the materials measured have acceptable dielectric 

properties except Narmco 4028, which causes high losses because of its high carbon con

tent. This material does not appear to be suitable for use as an antenna window. 

The power transmission coefficients of all virgin materials were calculated (p. 35 

of ref. 6) and are presented in table II. The calculations were made on the assumption 

that all materials had a thickness of Itf /2, which would minimize losses due to 

mismatch. 

Radiofrequency Transmission Loss in Arc Jet 

The results of the transmission-loss measurements in the arc jet are presented 

in table III. Two loss values, designated as "hot" and" cold," are given for each model 

at each frequency. The values designated as hot are those obtained immediately after 

arc cutoff. The cold values are those obtained after the model had cooled until the 

recorded loss remained essentially constant. The values presented in table III indicate 

that the transmission loss for a given thickness of material does not vary linearly as a 

function of frequency. Figures 4 and 5 are typical transmission-loss recordings of the 

sequence of events during the thermal tests for two different materials at 2.66 GHz and 

9.60 GHz. 

No attempt was made to analyze the transmission-loss data obtained during the 

thermal test because of severe attenuation effects from the arc jet stream. 

Antenna Radiation Patterns 

The antenna radiation patterns of all models were measured before and after 

thermal degradation of the test material, using the coordinate system shown in figure 6. 

Some typical patterns for two of the models are presented in figures 7 and 8. One of the 

models was covered with cork and the other with Avcoat 5026- 39 material. The cork 

caused low transmission losses after thermal degradation, which resulted in only minor 

changes in the antenna patterns (fig. 7), as is typical of low-loss materials. The Avcoat 

5026- 39 material produced very high transmission losses after thermal degradation and 

large perturbations in the antenna patterns (see figs. 8(b) and 8(d)). 

These large pattern perturbations could also cause the real-time transmission

loss measurements (table III) to vary, depending on the exact location of the receiving 
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horn antenna in the measurement setup. For example, in figure 8(d) a variation of 100 

in elevation angle could result in a transmission-loss variation of 10 dB or greater. A 

variation of 100 could easily have occurred because locations for mounting receiving 

antennas were limited by reflections from equipment such as arc-jet piping. However, 

care was taken to mount the models and receiving antennas in the same positions for all 

the tests. 

In addition, the radiation patterns were measured several days after thermal 

degradation of the test materials, in which time the condition of the charred materials 

could have changed considerably and thus caused variations in the radiation patterns and 

gain measurements. 

The severe charring of the phenolic-asbestos nose cap had no appreciable effects 

on the antenna patterns, as can be seen by comparing the before and after patterns in 

figures 7(b) and 7(d). 

Voltage Standing Wave Ratios 

Measurements of voltage standing wave ratio (VSWR) were made on all models 

before and after the thermal test. These measurements for two materials, cork and 

Avcoat 5026-39, are given in figure 9. The VSWR for the cork material (fig. 9(a» did 

not change appreciably after the material was subj ected to the thermal test; however, 

the VSWR for the Avcoat 5026-39 material (fig. 9(b» increased considerably. This 

increase in VSWR accounts for less than 2 dB of the total transmission loss, which 

varied from 16.5 dB to 45 dB for the Avcoat 5026- 39 material. 

The VSWR's for all materials, except Narmco 4028 both before and after thermal 

exposure, were less than 4. However, as was stated previously, even in its virgin state 

this material is not acceptable as an antenna cover or window because of its high trans

mission loss (>30 dB). 

It is interesting to note that the VSWR levels observed during the arc-jet tests 

were very small for all materials except Narmco 4028, even though a conductive char 

was developed on some of the test materials. 

Description of Models After Thermal Test 

Photographs of the models after they were subjected to the thermal test are shown 

in figure 10. In this section the irregularities that could cause errors in measurement 

of the antenna characteristics of some models are described. 

Figure 10(a) shows the Avcoat II model, which is partially covered with a residue 

that resembles soot in both color and texture. The cork-covered model is shown in 

figure 10(b). Almost all the test material was consumed during the thermal test, and 
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that which remained had the appearance of a wood char. The Avcoat 5026- 39 model is 

shown in figure 1 O( c). A deposit of glass was left on the upper portion of the model, 

apparently from the erosion of the phenolic-asbestos nose cap. The test material 

appeared to be charred to the bond line. Figure 10(d) shows the E4Al test model, on 

which a low-density phenolic-nylon nose cap was used. Immediately after the thermal 

test began, large cracks developed in the test material; however, as the test continued 

the cracks appeared to close up somewhat until they reached the condition shown in the 

photograph at the end of the test. Some of these cracks occurred over the test antennas. 

In addition, this model had to be handled with extreme care to permit measurement of 

the antenna characteristics after the thermal test because the material appeared to be 

separating from the substructure at the bond line and was very fragile. Figure lO(e) 

shows the Narmco 4032C material which developed many small surface cracks during 

the thermal test. The phenolic-nylon model (fig. 10(f)) shows the type of carbonaceous 

char layer formed during the ablation of this type of material. The material appeared 

to be charred completely to the bond line and the nose cap was fused to the substructure 

and had to be sawed off to allow removal of the test antennas. A considerable amount of 

material had fallen off the model, making measurement of the antenna characteristics 

difficult. Figure 10(g) shows the Narmco 4028 material, which, like the Narmco 4032C 

material, developed many small surface cracks during the thermal test. 

Transmission Losses Determined From Antenna Gain Measurements 

The transmission-loss values obtained from the antenna gain measurements are 

presented in table IV. These values were obtained by finding the differences between the 

absolute gain values measured before and after thermal degradation of each ablation 

material. (The gain values were determined by comparison with a reference antenna.) 

The gain values measured after the thermal test were subject to the following conditions: 

(a) Perturbations of antenna radiation patterns 

(b) VSWR variations 

(c) PhYSical condition and aging of test material 

An example was presented previously of a material (Avcoat 5026- 39) that produced 

severe perturbations in the radiation patterns after thermal degradation which could have 

caused errors in the transmission-loss measurements given in table IV. Narmco 4028 

was the only material that had a VSWR loss of more than 2 dB after thermal degradation. 

The physical condition of the E4Al and phenolic- nylon models had a very definite effect 

on the transmission-loss measurements presented in table IV. For some of the models 

of these two materials, the values given in table IV differ greatly from the cold-loss 

values in table III. These differences are attributed to cracks in the test material, loss 
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of charred material over the antenna apertures after thermal exposure, and possible 

changes due to aging of the charred material, since these measurements were made a 

few weeks after the thermal test was conducted. 

CONCLUDING REMARKS 

The transmission loss, radiation-pattern perturbations, and VSWR changes of 

typical antennas, produced by thermally degraded ablation materials, have been investi

gated experimentally. Dielectric constants and loss tangents of the test materials were 

measured at room temperature. All the materials had acceptable dielectric properties 

except Narmco 4028, which had a very high loss tangent due to its high carbon content 

and therefore was considered unsuitable as an antenna window or cover. 

The transmission losses through several thermal protection materials measured 

at 2.66 GHz and 9.60 GHz in a high-energy arc-heated airstream indicated that, in 

general, materials which form and retain appreciable conductive char layers during 

thermal exposure produce very high transmission losses. A typical material of this 

type is Avcoat 5026-39. 

Measurements of antenna radiation patterns after thermal degradation indicated 

that a material which produced high transmission losses may also produce perturbations 

in the radiation patterns of the antenna which it is covering. Low-loss materials, how

ever, produced only slight changes in the antenna patterns after thermal exposure. 

The VSWR of the antennas increased when a high-loss material was covering them; 

however, this VSWR mismatch of less than 4 contributed less than 2 dB to the total 

transmission-loss values presented. 

Measurements of transmission losses through the thermally degraded test mate

rials after the model has been removed from the arc jet are subject to changes in the 

physical condition of the test material and also any changes in the char characteristics 

produced by aging. 

Langley Research Center, 
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Test material 

Avcoat II 

Cork 

Avcoat 5026- 39 

E4A1 (developed at 

Langley Research 

Center) 

Phenolic nylon 

Narmco 4028 

Narmco 4032C 

---~ ----- - -----

TABLE I 

TEST-MATERIAL CHARACTERISTICS 

Test- material composition Bond material 

Epoxy and additives Self- bonding 

Cork and phenolic binder Epoxy and fillers 

Avco 5026-39 gunned into nylon- Epoxy and fillers 

phenolic 3/ B-in. (l-cm) 

honeycomb 

Silicone elastomer with fillers GE RTV-60 

50 percent phenolic and 50 per- Epoxy and fillers 

cent nylon (by weight) 

Modified phenolic reinforced Epoxy and fillers 

with carbon fibers 

Nylon-phenolic resin with high- Epoxy and fillers 

silica fibers 

Test- material thickness 

t 
ts Sc 

in. cm 

0.25 0.635 0.092 0.332 

.25 .635 .076 .272 

.25 .635 .085 .305 

.25 .635 .OB1 .291 

.25 .635 .105 .376 

.25 .635 .083 .298 

.25 .635 .103 .372 



t-4 
C!.:) 

--- ------

TABLE II 

ELECTRICAL PROPERTIES OF ABLATION MATERIALS AT ROOM TEMPERATURE 

Dielectric Power 

Material Frequency, constant, Loss tangent, transmission 
GHz tan 0 coefficient, i 

Er 
ITI2 

Teflon 10.03 2.00 0.0007 0.998 

Plexiglas 8.84 2.57 .0045 .984 

Avcoat II 6.14 2.68 .013 .954 

Cork 9.87 1.80 .050 .835 

Avcoat 5026- 39: 

With grain 9.82 2.26 .031 .894 
Cross grain 9.82 2.25 .035 .881 

E4A1 9.63 2.16 .013 .956 

Phenolic nylon 5.46 3.36 .018 .933 

Narmco 4028 9.92 2.05 .200 ~.500 

Narmco 4032C 7.64 3.44 .011 .959 



...... 
"'" 

TABLE III 

RADIOFREQUENCY TRANSMISSION LOSSES DUE TO CHAR MEASURED IN ARC JET 

Transmission loss, dB, at Transmission loss , dB, at 

Test material 
Test 2.66 GHz 9.60 GHz Test time, sec 

specimen 
Hot Cold Hot Cold 

Avcoat II 1 1 1 5 2.0 11.5 

2 3.4 1.2 5.4 2.0 19.5 

Cork 1 5 1 7.6 2.4 53 

2 5.6 1.2 14 3.5 54 

Avcoat 5026-39 1 20 16.8 41 37 50 

2 21 16.5 24.6 23.4 57 

3 26 20.6 44 45 55 

4 20.2 17.6 42 38 55 

E4A1 1 21 16 47.2 27.2 95 

2 26.5 22.5 20 13.4 89 

3 19.8 15.6 38 34 90 

4 16.8 16.2 32 31.2 90 

Phenolic nylon 1 18 20.2 22 24.2 103 

2 14 15 17 20.2 90 

Narmco 4028a 1 15 -7 7 0 44 

2 b10 b9 b3.2 b2 .8 44, 28 

Narmco 4032C 1 18.2 27.4 25.5 27.4 83 

aRadiofrequency transmission loss through virgin material was greater than 30 dB and the numbers given 

here represent the additional loss (or, in the case of a negative number, the decrease in loss) after charring. 

bModel was exposed to thermal test twice with total time of 72 seconds. 



TABLE IV 

RADIOFREQUENCY TRANSMISSION LOSSES DUE TO CHAR 

DETERMINED FROM ANTENNA GAIN 

Test Loss, dB, at -
Test material specimen 2.66 GHz 9.60 GHz 

Avcoat II 1 1 1.2 

2 1 1 

Cork 1 1 1 

2 1 4.0 

Avcoat 5026- 39 1 30 36.8 

2 28.4 28.8 

3 21.8 a22.2 

4 20.8 25.6 

E4A1 1 26.3 29 

2 23.6 31.7 

3 b12.4 27.4 

4 7.4 22.6 

Phenolic nylon 1 17 9.1 

2 c10.6 (d) 

Narmco 4028 1 (e) (e) 

Narmco 4032C 1 23.4 32.4 

aLoss value is dependent on angle chosen for gain value on antenna pattern 

because of severe deterioration of pattern. 

bMaterial buckled and cracked over S- band antenna. 

cConsiderable amount of charred material had fallen off model; therefore, 

attenuation values are reduced. 

dNo value available. 

eLosses through virgin material were greater than 30 dB and no Significant 

change was measured after charring. 
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-- - - -------~. ---- ~-. - --- .--------- ~ 



t\:) 
~ 

--~---T-----=-lL- 0 I 0- , I 
' ---1 Ffjtu~C~'ib~~~ Ij vel =- 'f ' .. ~ L ~. ; 1 : I JQ L-_----y_ 

, t , :): ! 1+=+=1 

.. j ; ed from test position . ' \ j:.; Test model remov ~ ,-. ~ 10 --1 ~f ' " I,! , . -1 

, 

'? ~ I ~; 1 1--.. t~~:m~'~p", 
~ 1-, I 

L 

1 
J 

-1 
I I I I \1 , , vcr I ' '~JO I I ~ I I 30 I I . : ! I I i I 

~ Arc off - begin cooling period j. t 

COOlingperiod ;::: 180sec~nd.s .--.---::. f. -'-r.' litB.· ' ....... · t-.~ .mf=' .. ~ , 
j- j t--~ ... . ...... .. . . . t T-

_ b==~ -~ 38 +-:---;- ~ I I j . " ±~ '-' . 
Test time, seconds 

la) Frequency of 2.66 GHz. 

i 0 . -h J -1 rl' t I,....,.· . ; On -t- , - '. ~. h f-+-'-- . ' f-i' 

t'. ' ~-, t ~; t1=1=t I ~ '+~. ~'f+ ~ ' p:lR 
. ---- -;- -;: 'IM' .' ~ ~m . ,-. · .. -h +- -J.' . , ; f-'.h-I 

- --t---- . . t . . t + ~ 'f+ I ~ .y 
-'----+----~ t-- IO ,." " ~r . 1O~ 

- -r ,-~ . ~ ~,~ . H + LC L..J.il...q 
~ - . T . 1-1- ,~ ~ Transmission loss :::: 23 dB ; 
t- .- - . r '++-J..J:tj:' 

'-t++ _. r-t+ .'~' . 1 ':;h 
n -t--r-;-f- 20 ,+-l-J-.. Ii' :' 'j.... l ~'o ...:: 

I !-- , ,- _ "7 t ++. If. + ~ ~ !! - .::j .L' k.' 

In 

20 

~ .1 ',"'r j.l. . -IH r.------ ...<-l.. t-- " . .' H . . j ' -++-I 

. ., I·H;. t t;-J:1 H-+ ' rt End <-h 

~ Arc off - begiiiCOO!ing period ~ I- -l-+ . T H·, +- .! . t i +:t cooling r 
! . . 30 , tH ~I +F+ 1';' -[ period 30 

>-t---_ +t-- _- -+-, -coollng period :::: 180se: ds . ; -TooL H.+ -+ ~. i ,,'1 ),~8 -r:f 

- - rt' ~; rrt:f-ftd G1=t : ttf ~ t- 38 ':' 
L.... ~ .L...i,;J· .F 

~ 
3 

3! 
Test time, seconds 

Ib) Frequency of 9.60 GHz. 

Figure 5.- Transmission-loss recording during thermal test in arc jet for Avcoat 5026-39. 

~ 



(j) = 270° 
e 90° 

22 

-------------+--------~ 

x 
¢ = 0° 
e = 90° 

z 

antenna 

'-----,,,c-- X - band 
antenna 

Figu re 6.- Geometry of test- model anten na patterns. 
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After thermal test 
e = 90· 

I/J = 90· 

(/) '" 270· 

(al Frequency, 2,66 GHz; H-plane pattern; antenna located at () = 90°, <1J = 90°, 

Figure 7.- Typical antenna radiation patterns for cork. 
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------ Before thermal test 
- - -- After thermal test 

e -
.. o· 

Ib) Frequency, 2.66 GHz; E-plane pattern ; antenna located at e = 90°, ill = 90°. 

Figure 7.- Continued. 
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.~ - 270· · 

¢ - 180· 

(e) Frequency, 9.60 GHz; H-plane pattern; antenna located at e = 900, ill = 00. 

Figure 7.- Continued. 
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(d) Frequency, 9.60 GHz; E-plane pattern; antenna located at e = 900, <I> = Do. 

Figure 7.- Concluded. 
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(a) Frequency, 2.66 GHz; H-plane pattern; antenna located at e = 900, ct> = 900. 

Figure 8.- Typical antenna radiation patterns for Avcoat 5026-39. 
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----- Before thermal test 
- - -- After thermal test 
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(bl Frequency, 2.66 GHz; E-plane pattern; antenna located at 8 = 90°, <l> = 900. 

Figure 8.- Continued. 
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------ Before thermal test 
After thermal test 
e = 90· 

o· 

o 2 180. 

(e) Frequency, 9.60 GHz; H-plane pattern ; antenna located at e = 90°, III = 0°. 

Figure 8.- Continued. 
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(d) Frequency, 9.60 GHz; E-plane pattern; antenna located at e = 900, <I> = 0°. 

Figure 8.- Concluded. 
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(a) Cork. 

Figure 9.- Antenna vo ltage standing wave rat io (VSWR) as a function of frequency before and after therma l test. 
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(b) Avcoat 5026-39. 
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(a) Avcoat II. L -66-2561 

Figure 10.- Models after testing. 
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(b) Cork. L -66-2560 

Figure 10.- Cont inued. 
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(c) Avcoat 5026-39. L-66-2559 

Figure 10.- Continued. 
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(dl NASA E4Al. l-66-2562 

Figure 10.- Continued. 
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(e) Narmco 4032-C. L -66-2564 

Figure 10.- Continued. 
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(f) Phenolic nylon. L -66-2563 

Figure 10.- Continued. 
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(g) Na rmco 4028. L-66-2558 

Fi gure 10.- Concluded. 
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