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ANALYSIS OF NUMERICAL INTEGRATION TECHNIQUES FOR
REAL-TIME DIGITAL FLIGHT SIMULATION
By John W. Wilson and George G. Steinmetz

Langley Research Center
SUMMARY

Low-order numerical integration techniques are analyzed and established as ade-
quate for digital simulation of man-in-the-loop nonaerodynamic rigid-body problems. In
addition to low-order integration techniques, a Green's function approach is presented for
the solution of the gyroscope equations. This approach yields an exact solution to the
gyroscope output for the simulated forcing function with virtually no limitation on the
integration interval size. Effects of roundoff error are shown to be marginal for the
translational dynamics with solution rates on the order of 32 solutions per second on a
floating-point machine with a 27-bit fractional part.

Two example problems were solved by using the techniques established. A Gemini-
Agena eleven-degree-of-freedom problem was programed in FORTRAN and then modified
to a Gemini-Agena elastically coupled system. Primary concern was given to minimizing
the time required of the arithmetic unit. The results of these problems indicate the util-
ity of the IBM 7094 class of computers for this type of problem since only a small frac-
tion of the memory and arithmetic processing time was used (10 to 15 percent each).

This study strongly supports the desirability of multiprograming to alleviate inefficiency
on a more sophisticated machine.

INTRODUCTION

In the past few years, general-purpose digital computers have played an important
role in meeting resolution and accuracy requirements of real-time simulation problems.
(See ref. 1, p. R34.) However, the extensive use of digital computing equipment has been
prohibited (ref. 1, pp. R29-R30) except in special applications. (See ref. 2.) In the
early years of the 1960 decade, general-purpose digital computers of sufficient speed and
storage were available at a cost that was competitive (at least for the larger simulation
problems; ref. 1, p. R31, fig. 3) with general-purpose analog equipment. Even so, the
general-purpose analog facility, which is a composite of several basic computers, could
be tied together in different combinations to perform one large simulation or several




smaller simulations; this arrangement provides an efficiency advantage that the general-
purpose digital computer did not yet enjoy. The capacity of the digital computer was
determined by the largest problem to be solved and was totally dedicated to the solution
of a smaller problem; thus, a large amount of idle central processor time and core
remained unused. This fact led many simulation laboratories to develop software capa-
ble of doing more than one simulation on a "one computer complex either simultaneously
or alternatively." (See ref. 3, p. 249.) The methods used required concurrent compila-
tion (multiprocessing) of both problems (ref. 3, p. 250). The next logical step in software
development, which is a necessity for a general-purpose simulation laboratory, is the
ability to process and/or compile more than one problem independently (multiprograming)
on one general-purpose computer.

With the advent of the next generation of digital computers, one envisions the utility
of multiprograming in an effort to reduce cost in a general-purpose simulation laboratory.
The removal of the restriction that the computer be dedicated to a fixed number of prob-
lems imposes greater demands on the simulation programer. It is no longer sufficient
merely to generate a working program, but it now becomes imperative that the most
efficient way to mechanize a given simulation problem be determined.

In transforming a simulation problem to a digital program, attention must be given
to algorithms to approximate required mathematical functions. The analysis and devel-
opment of integration algorithms or integration schemes shall be the body of this report.
In recent years, there has been a general transfer of large simulation problems either
whole or in part to digital computing equipment. As is true in any new field, the points of
view usually cover a wide spectrum and the use of integration schemes in real-time sim-
ulation is no exception as witnessed in references 1, 2, and 4 to 9.

The general problem of differential-equation solving has led to many varied types
of integration techniques which are usually complicated and often time consuming, the
attempt usually being made to solve the widest possible class of problems most of the
time. However, these techniques are often too slow and complicated for effective use in
real-time problems. The approach taken in this paper is to consider only a rather
restricted class of differential equations from a real-time point of view. The hope is to
produce a fresh look at real-time simulation that is on a sound analytical and experimen-

tal basis.

Consideration is given in this report to the simulation of nonaerodynamic rigid
vehicles with on-off control. The results however will in part be applicable to most
flight-vehicle simulations. The accuracy requirement is to meet or exceed that of a
corresponding analog solution (usually quoted on the order of 1 percent but not always
acquired). The purpose of this report is to establish guidelines for meeting accuracy



requirements of this class of real-time simulation problems and to maintain a high

degree of computer efficiency.

The basic equations used to simulate the Gemini-Agena configuration are given in
an appendix by Roland L. Bowles of the Langley Research Center.

SYMBOLS

The International System of Units (SI) are employed in this report. For conversion
to U.S. Customary Units, consult reference 10. All systems used throughout this paper
are right-hand, orthogonal, Cartesian coordinate systems. (See fig. 1.)

A

g

a,b,c,d

aij

B'

j

e,f,g,h

transformation matrix relating observer (Gemini) body axes and target
(Agena) local vertical axes, dimensionless

column vector with components a, b, c¢, and d, dimensionless
quaternion elements (Euler parameters), dimensionless
matrix elements of A (i,j = 1,2,3), dimensionless

transformation matrix relating observer vehicle body axes to inertial frame,
dimensionless

transformation matrix relating target vehicle body axes to inertial frame,
dimensionless

matrix elements of B, dimensionless
matrix elements of B', dimensionless

matrix relating the target vehicle axes to a line-of-sight axis system,
dimensionless

matrix elements of D, dimensionless
enlargement or displacement operator, dimensionless

target quaternion elements, dimensionless



F matrix relating observer vehicle axes to target vehicle axes, dimensionless

F, total initial fuel, kilograms

Ftrans’Fatt percent fuel used by translational and attitude control systems,

respectively, percent

fij elements of the matrix F, dimensionless

G(t) Green's function of linear gyroscope, dimensionless

GT(t) associated Green's function of linear gyroscope, dimensionless
Ze acceleration at surface of earth due to gravitational attraction,

9.84 meters/second2

2o gravity acceleration at rg =rg, meters/second2

H target vehicle rotational angular momentum vector, kilograms-meter2/second

H{,Hg,Hg components of target angular momentum vector H resolved into
target body axes, kilogram-meter2/second

h integration interval size, seconds

I inertial matrix of observer vehicle, kilogram-meter?2

-1 inverse of observer vehicle's inertia matrix, (kilogram~meter2)'1

Iij elements of matrix I, kilogram-meter2

Iij' elements of matrix I-1, (kilogram-meter2)-1

Isp specific impulse of observer-vehicle reaction control system, second

i imaginary unit, V—I

J inertia matrix of target vehicle, kilogram-meter2



J-1 inverse of target vehicle's inertia matrix, (kilogra.m-meterz)'1

Jij elements of the matrix J, kilogram-meter2

Jij' elements of the matrix J-1, (kilogram-meter2)~1

K; thrust misalinements (i = 1,2,. . .,5), dimensionless

Ko +1 normalized target orbital angular momentum per unit mass, dimensionless

K, gain constant used in maintaining orthogonality of transformation matrix

L observer vehicle rotational angular momentum vector,
kilogram-meter2/second

Li,Lo,L3 components of observer-vehicle rotational angular momentum L

resolved into observer body axes, kilogram-meter2/second

l column vector of partitioned direction cosine matrix, dimensionless

I,m,n partitioned components of direction cosine rate equations (components of 1),
dimensionless

M moment vector acting on observer vehicle due to translational and attitude
control reaction jets, joules

Mj1,M9,M3g components of vector 1\_/1, joules

(Mi)T ¢i’(Mi)T G:E,(Mi)TW:t X-components of attitude control moments, joules

(Mi) T}Q’(M1>TYi’(Mi)TZi X-components of moment resulting from transla-

tional control forces, joules
(M2)T 0+ Y-components of attitude control moments, joules
(Mz) TXi’(Mz)TYi’(MZ) Ty, Y-components of moment resulting from transla-

tional control forces, joules



M Z-components of attitude control moments, joules
3 Td/i ’

(MB)T ’(M3)T ’(MB)T Z-components of moment resulting from transla-
X+ Y+ 2+ . .
tional control forces, joules

m mass of observer vehicle, kilograms

Amg i, AMyg mass changes resulting from translational and attitude reaction
control jets, respectively, kilograms

N total rotational angular momentum of observer vehicle squared,
(kilogram-meter2/second)?2

Np number of significant binary bits, dimensionless

n,N integers, dimensionless

O(hn) remainder in a series with lowest order term of hQ

P norm squared of K, dimensionless

p,q,r components of observer angular velocity vector w resolved into observer

vehicle axes, radians/second

Pt %4, T components of target angular velocity vector c—ut resolved into target vehi-
cle axes, radians/second

pg,qg,rg angular velocity components p, q, r measured by gyroscopes,
radians/second

Q norm squared of [, dimensionless

R relative range vector directed from center of gravity of target vehicle to
center of gravity of observer vehicle, meters

R relative range rate, meters/second

Rios line-of-sight range vector, meters



RX,o’RY,o’RZ,o components of relative range vector R resolved in observer
vehicle axes, meters

Te mean radius of earth, meters

ry radius of target reference orbit, meters

Tg position vector of target vehicle in a coordinate system with origin at earth's
center and coordinate directions always parallel to an inertial frame,
meters

rg,0g polar coordinates locating the center of gravity of target vehicle with respect

to inertial space (for elliptic orbits 6g = 7/2 at perigee), meters and
radians, respectively

S skew-symmetric matrix that relates time rate of change of components of a
constant magnitude quaternion to its components referenced to a rotating
frame, radians/second

s Laplace transform variable

Tx,Ty;Ty components of observer vehicle thrust forces resolved in target local
vertical axes, newtons

TxeTys Tz,
magnitudes of on-off reaction control jets, newtons

T(bi’TGi’szi

Ty b’TY 0’ L7 b total forces along observer vehicle axes resulting from transla-
’ ’ ’ tion and attitude control jets, newtons

t time, seconds

A" target tangential velocity component (V = rsés), meters/second

Vo characteristic velocity of a vehicle in a circular orbit at radial distance rg,
meters/second

AV total velocity change using translational control, meters/second



AV, AV

X,Y,Z

Xp,Yp,Zp
AX AY,AZ
X+,X-

Y+,Y-

Z+,2-

Y’

AVZ components of velocity change using translational control along

observer's X, Y,and Z axes, respectively, meters/second

components of relative range vector R referenced to a rotating coordinate
frame with origin located at center of gravity of target vehicle, meters

coordinates of pilot's eye with respect to observer vehicle axes, meters
components of ﬁlos resolved in observer vehicle axes, meters
translation forward, translation aft, respectively
translation right, translation left, respectively
translation down, translation up, respectively
dummy variables of integration
z-transform variable

azimuth and elevation angles of target with respect to observer vehicle axes,

radians
forward finite-difference operator, dimensionless
backward finite-difference operator, dimensionless
velocity perturbation variable, dimensionless

global error in angular momentum squared using Euler integration, dimension-
less; also used as orthogonality error, dimensionless

local relative roundoff error
local relative truncation error
gyroscope damping ratio, dimensionless

angle between ! and , radians




0+,0~

>

H:¢)R’V

¢+7¢—

v,0,¢

¢+,§U‘
Wc,ec,fﬁc
d/i’ ei’¢i

Q

upward and downward pitch, respectively
variable associated with gyroscope equation, radians/second

target azimuth and elevation angle with respect to local vertical axis system,
radians

Euler angles which specify orientation of scaled target model axes with
respect to simulation laboratory analog of line-of-sight axes, radians

displacement perturbation variable, dimensionless
right and left roll, respectively
angle between © and L, radians

Euler angles relating observer vehicle axes to target-centered local vertical
system, radians

right and left yaw, respectively

attitude angle errors used in attitude control system, radians

Euler angles relating observer vehicle axes to an inertial frame, radians

skew-symmetric matrix which relates components of a vector to their
derivatives due to referencing a rotating reference frame (equivalent to
wX operation), radians/second

magnitude of ®, radians/second

general characteristic frequency, radians/second

gyroscope natural frequency, radians/second

orbital angular rate for target reference orbit, radians/second

angular velocity vector of observer vehicle with respect to inertial frame,
radians/second



Wy angular velocity vector of target vehicle with respect to inertial frame,

radians/second

(") denotes time derivative, second™!

Oy evaluation at time t = nh, dimensionless

( )T transpose operation, dimensionless

[g]k transformation matrix of a simple rotation through any angle £ about r-axis,
dimensionless

[-g])\ the inverse and/or transpose of [g]k, dimensionless

( )(j) jth derivative, second™; also jth difference

Axis systems:

Xi,Yi,Z4 an "inertial" system (origin at center of the earth X;Zi-plane defines orbit
plane of target vehicle, Z;i passing through perifocus and Yj in direc-
tion of orbital angular velocity)

X,Y,Z target local vertical system (a rotating system, origin at center of gravity
of target, Z-axis through center of earth, XZ-plane lies in target orbit
plane. X-axis points generally backward in target orbit)

XT,b’YT,b’ZT,b principal axes through center of gravity of target (XT,b
forward, Zyy down, Yg completes the right-hand
b 2
system, docking ring aft)

Xo,b,Yo,b,Zo,b observer body-axis system (origin at center of gravity of the
observer vehicle; Xo,b out nose of vehicle (forward), Yo,b
out right wing, Zo b (down) completes right-hand system)

line-of-sight axis system (origin coincident with origin of
observer body axes and X;,o passes through origin of
target local vertical, Yj,g lies in the Xo,bYo,b-plane)

Xlos’Ylos’Zlos

10




PROBLEM DESCRIPTION

Background Discussion

The physical systems considered in the analysis are those of a class of problems
rather than of any specific problem in order to approach the widest possible degree of
applicability. The physical systems of concern are those of manned and unmanned flight
vehicles. The greatest variability of vehicle simulations lies in three parts: structural
effects, the coordinates used for kinematical variables, and the type of control forces.
The vehicles are considered as structurally rigid except in an example problem of a
system of two elastically coupled rigid vehicles studied in the latter part of this report.
The rotational kinematic variables chosen are, in most cases, relatively uniform, a wide
variety being used in the translational kinematics. The direction cosines and the Euler
parameters (unit quaternion) are considered as representations of rotations since they
overlap most present-day simulations. The angular momentum components are used for
the moment description, and they reduce to the angular rate equations for constant iner-
tias. The translational variables are considered in the analysis only in very general
terms. The applicability (or lack thereof) of the analysis of the translational motion to a
specific problem is clarified in the section "Analysis.' All statements apply to any
flight-rigid vehicle simulation as long as the control forces are zero. The only control
forces considered are derived from a reaction — jet control system. The complete
analysis is then only for the real-time simulation of rigid vehicles with on-off control.
However, inferences to other problems are made where possible.

In addition to the on-off control forces, the effects of a gravitational field are also
considered. The class of orbital-rigid vehicles with on-off control can be characterized
by the frequencies associated with the motion. These characteristics are low frequencies
(#10-3 radian/sec) associated with the steady-state trajectory motion, moderate frequen-
cies (*1 radian/sec) in attitude maneuvers, and usually high frequencies (=10 to
102 radians/sec) in the attitude-control system. After the analysis, two examples are
taken from this class. The first is a Gemini-Agena rendezvous and station-keeping prob-
lem (ref. 11), the mathematical model of which is in appendix A. The second is a varia-
tion of this problem which includes an elastic tether (ref. 12). Also discussed are recent
applications of the results of this analysis to several large simulations, some of which
include aerodynamics.

Fundamental Differential Equations

Associated with every manned vehicle is a set of fundamental differential equations,
the solutions of which yield the vehicle's orientation, angular rates, position, and veloci-
ties. The description of differing vehicles mainly changes the coefficients and the inho-
mogeneous term (including the control system) of these fundamental equations.

11



Axis transformations.- Two methods of computing the transformation matrix are
commonly used, both of which are considered in the analysis. These methods use the
direction cosine rate equations and the Euler parameter rate equations.

The first and probably the most common method is use of the direction cosine rate
equations. The nine direction cosine rate equations are partitioned into three related

sets all of the form

l 0 r -q|il
mf=|-r 0 m (1)
n q -p n

Each related set has the property of normality
Q=12+m2+n2=1 (2)

which is a constant of the motion.

Equation (1) can be written as
I=Ql (3)

where [ is the vector of components I, m,and n and € is the skew-symmetric
matrix in equation (1).

The Euler parameters are obtained from the following matrix differential equation
(egs. (A35) to (A39) with K. = 0)

— — o -
a 0 by -q -plla
b 1T 0 p -ql|b
=3 (4)
é q -p -ri|c
d p q r 0 |id
L J - JuLJ
Equation (4) can be written as
A=SA (5)

where A is the vector (a, b, c,and d) and S is the skew-symmetric matrix in

equation (4) including the factor 3" The orthonormality condition is (eq. (A39) for € = 0)

12



P=2a24+0%+c2+d2=1 (6)

Hence, P given by equation (6) is a constant of motion.

Attitude control system.- The simulation of the attitude control system is comprised
of computing angles from the gyroscope outputs:

éc = pg
bc = dg (7
’;l/c =Tg

where Py, dg» and ry are the measured body angular rates and are usually given by

the approximate linear gyroscope equations:

2p

. . 2.

bg + 28gwgby + WPy = Wg
Efig + 2§gwg‘.:Ig + ngQg = wgzq (8)
i:g + Znggi'g + wgzrg = wgzr

where p, q,and r are the true body angular rates as calculated from the moment
equations.

Moment equations.- The moment or angular momentum rate equations are written

as the following matrix equation (eqs. (A43) to (A45))

Ll 0 r -q||L1 Mj
Lol =|-r 0 p |{La| + Mg (9)
L3 |a -p 0||L3| |M3

where from equations (A40) to (A42),

-1
p I11 Iz I13 Ly
qj =|Ia1 Ipg Iog Lo (10)
r I31 I3 Is3 L3

13



Equations (9) and (10) can be written as
f-0L+M (11)
and
- 1=
w=I""L (12)

Forming the scalar product with fT and equation (11) yields

T

t:fT T

L QL +L M (13)
When M is null, the right-hand side of equation (13) vanishes since L is orthog-
onal to L. This relation implies that N (the total angular momentum squared) given

by equation (14) is a constant of the motion for M null:

N=-T'L (14)

Translational equations.- The translational equations are found in appendix A
(eqs. (A4) to (AlO)). They are characterized by very low frequencies
(wc ~10-3 radian/sec) for nonthrusted motion. For thrusted motion, the frequencies
become moderately high (wc ~ 1 radian/sec from rotational motion coupling) but have
little effect on the solution character. (The effect is a small-amplitude oscillation with
we =1 radian/sec modulated with a large-amplitude oscillation with
we ~10-3 radian/sec). The constants of motion for no thrust would be the total energy

and orbital angular momentum.
ANALYSIS

The errors considered in the analysis are of two types: the error introduced by
using a finite-word structure (round-off error), and the error in using approximate for-
mulas for limiting processes such as integration or differentiation (truncation error).

The following sections begin with a discussion of local round-off and truncation error.
These local errors are related to the accumulated or propagated error by error domi-
nance. The concept of error dominance and its region applicability are discussed in the
next section. Error dominance is then the guide to the analysis of the equations of motion.
The analysis of each related set of equations is followed by a discussion of the results of
experiment. Before beginning this task, it first seems advisable to establish the ground
rules under which the analysis is performed.

14



Characteristic of any nontrivial simulation problem is the evaluation of many com-
plicated algebraic expressions for visual display drives, readout, and the derivatives of
the systems variables. The performance of the integration is, with few exceptions, the
minor part of the computation (only a few arithmetic operations per integration). Hence, '
integration schemes which require the least number of derivative evaluations per inte-
gration interval are desirable (that is, multistep methods are preferred over the single-
step methods). Equally important is the need to minimize the number of integration steps
needed to obtain the problem solution (thus, the arithmetic unit is used as little as pos-
sible per problem second). Clearly, the interval size is to be made as large as possible
in order to reduce the amount of computation required and small enough to provide
"proper' response to the pilot input. Reference 13 indicates that intervals on the order
of 100 milliseconds is adequate for sampling pilot input. However, the increased accu-
racy for smaller intervals is not clear because of roundoff error in that study. (The
maximum word length was 7 bits.) For the remainder of this report, the maximum
interval is assumed to be 50 milliseconds or 20 samples per second which should be
more than adequate. (This sample rate is a factor of 2 more often than that suggested by
ref. 13.) The minimum interval size is limited by the roundoff error and is discussed
later in this report.

Two methods are used to study the propagated truncation error. The z-transforms
(ref. 14) are used to study the linear portions of the problem. The changes in the con-
stants of motion are also used to indicate the amount of error introduced in the problem
solution by various integration schemes.

Roundoff and Truncation

Analytical development.- The errors of numerical computation are of two classes:

errors due to representing numbers by a finite word size (that is, roundoff) and errors
due to neglecting higher order terms in approximate techniques (that is, truncation).
Although the effects due to fruncation can, more or less, be determined, the propagdted
error associated with round-off can seldom be rigorously studied for practical problems.
Rather, the propagated roundoff error is studied through model building and experimenta-
tion. (See ref, 15, p. 41; ref. 16, p. 305.)

The equations of motion are approximated (in most cases) by finite difference equa-
tions of at least the same order of the equations of motion for consistency. (See ref. 15,
p. 224.) Any finite-difference approximation of order greater than the order of the equa~
tions of motion introduces extraneous roots. (The language of linear equations is used
here; the meaning should be clear.) In addition to the extraneous roots are other roots
which approach the true roots of the differential equation in the limit as the interval
approaches zero (that is, h - 0) so that nh is finite and equal to t. If the extraneous

15



roots are unstable (ref. 15, pp. 185, 242), the approximate solution is sensitive to small
errors (for example, starting error or roundoff error) introduced in the calculation.
(See ref. 17, p. 11.) This sensitivity (called numerical instability) usually occurs when
the sample rate and the systems frequencies are of the same order of magnitude.

Implicit in the following sections is the assumption of numerical stability from
which follows the concept of error dominance. Error dominance can be stated as follows:

roundoff

The propagated error will be dominated by

. error if, in the region of
truncation

roundoff
numerical stability, the local oun 0_ } error is in magnitude much larger than the
truncation
truncation . . . .
local error. This definition leaves an uncertain region between these
roundoff

regions where local roundoff and truncation error are within an order of magnitude of
each other. Hence, these local errors compete in forming the propagated error.

In subsequent sections, error dominance is used to determine the error that is
most likely to affect the solution. The equations of motion are then analyzed on this basis
and compared with experimental results. However, the magnitude of the local relative
roundoff and truncation errors must be determined first.

The local roundoff error is subdivided into two components, as in reference 15
(p. 36), the inherent error and the induced error. Extensive discussions of these errors
are given in reference 15 and are not repeated here. Instead, a few simple notions about
roundoff error are given and the reference is cited for a more extensive discussion. For
the purpose at hand, the inherent error can be considered as the error in evaluating the
derivatives of the system. Upon integration these errors are reduced in magnitude by
the integration interval h. The induced error is introduced through the actual perfor-
mance of the integration and is not reduced by h but is always of the order of the least
significant bit of the finite word structure (ref. 15, p. 35).

Before deriving an approximate model for the local relative roundoff and truncation
error, consider a few simple operations in a hypothetical normalized 9-digit floating-
point decimal machine. The word structure for a number is represented schematically as

A = (.aaaaaaa. .. .) X IOEXPA

0.1 =4 x10"EXPA .4

where the a terms are digits of values 0 to 9 and EXPp is the integer exponent of A,

The decimal machine word structure is represented as

16



EXPp | .aaaaaaaaa

for a 9 significant digit machine. Note that the relative error of this machine represen-
tation of A is bounded by 10~9 (the relative value of the first significant digit being

neglected by the decimal machine). The inherent error can largely be controlled by care-

ful programing. Taking differences of nearly equal numbers results in a large inherent
error, which is demonstrated schematically as follows:

A= EXP | XXXXYYYYY

B=| EXP | XXXX77772Z

A - B=| EXP - 4 | .DDDDDRRRR

—
Roundoff

D=Y-%2

The roundoff error represented by the R digits move into the register when left shift
is performed after subtraction. Thus, if this operation or similar ones are used, the
inherent error may be significant. With careful programing, the inherent error can be
neglected because of reduction by the interval h upon integration.

If it is assumed that the inherent error is controlled, the induced error must be
studied. The source of the induced error resulting from a simple numerical integration
procedure is shown as follows:

Xp =| EXPyx | XXXXXXXXX

Xp =| EXPy | XXXXXXXRR

Inherent error

h =| EXPp, + 1 | .100000000

AXp = hXp =| EXPyg + EXPy | XpAXAXAXAXAXAXARARA

17



Shift right on AX; exponent until equal to the X, exponent. Then add:

Xy + AXp =| EXPyx | XXXXXXXXX

Induced error

' N
T T T T T T T T T T '
+| EXPx | .000000X,X X, J:XAXAXAXARARA ;
o J
No. of zeroes = Inherent error

EXPy - EXPx - EXPp

=| EXPy | IOKXXXKKpKy }

Xy =X +Xp

The variables Xj, Xi, and h are shown (with the inherent error in X) in their decimal

oEXPp

word representation. (h =1 is assumed for simplicity.) The integration is per-

formed by (Euler integration is used for simplicity)
Xp41 = Xn + AXp

as shown schematically. The AX is computed, and is followed by a shift right (usually)
until the exponents of X and AX are the same. The addition is then performed. Note
that the induced error is that part of the AX word shifted out of the register. Thus,
-the relative weight of the induced error in X is always 10-9 (the relative weight of the
rounded digit).

The control of the induced error could be performed by using a longer register and
partial double precision as follows:

X, =| EXPx xxx;ooo(xx“xxxxxxxxx

---------

Xn= EXPx | XXXXXXXRR

h =| EXPy + 1 | .100000000
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AXp = hXp =| EXPg + EXPy | . XAXAXAXAXAXAXARARA

Shift right on AX; exponent until equal to the X, exponent and then add

Xy + AXp = EXPy | XXXXXXXXX || XXXXXXXXX

Induced error

'

+| EXPyx | .000000XAXAXA || XAXAXAXARARA | RRR

Inherent
error

] | \i
=| EXPy | XXXXXXXNXNXN || XNXNXNXNRNRNRN Ry 'Ry

XN =X+ XA
The inherent error is

Ry =X+ Ry
The induced error is

Ry =X +R

The register containing X, if sufficiently increased in length, would contain mainly the
inherent error reduced by the integration interval size h. The derivatives X may
still be evaluated by using the normal word size and two words for X; this mode of
operation (partial double precision, ref. 15, p. 94) normally reduces roundoff error sig-
nificantly. Examples are shown later in the text.

In order to make effective use of error dominance, the relative magnitudes of the
local roundoff and truncation errors are needed. It will henceforth be assumed that good
programing practices are followed and the inherent error can be neglected. A simple
model is derived for the local relative roundoff and truncation error (inherent error being
neglected) for second-order integration techniques and a normalized N-bit floating-point
machine (binary).
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It is assumed that the jth derivative of the state variables of the system are given

by the relation
x0 - o Jx (15)

where the characteristic frequency w¢ is, in general, complex.

Consider a Taylor series expansion of X from the point t=nh to t=(n+ 1)h

. 1 . 1 3..-
Xn+1=Xn+th+§h2Xn+gh Xp+oeno (16)

Substituting equation (15) into equation (16) results in

X1 = (1 +hwc+%h2wcz+%h3wc3+...>Xn (17
The solution using second-order integration is
X4l = <1 + hwe +% hzwcz> Xn (18)
and the local truncation error T is
T =2 3w %y + O<h4) (19)

The change in X to second order relative to X is
L AXp = hog {1 + 1 hog (20)
Xn ¢ 2

which is approximately the change at the nth step of the normalized portion of the com-
puter word representing X since X * 2EXPX. Because of the finite word structure
of the machine, the relative change in X to second order is approximated in the calcula-

AXn ~ 1 _N -1
<Xn>A ~ hw, <1 +§th> + 2P (21)

where Nj, is the number of significant binary bits. Hence, the local roundoff error R

tions by

is bounded by

_z‘Nb‘llxn’ <R= 2'Nb'1’xn, (22)
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The magnitude of the local relative roundoff error ¢, is defined as

|R|

€, = (23)
* lAXn]
which has a maximum of
Z—Nb-l
€ = (24)
hwe <1 + 1 hw(>
2
and is a measure of the greatest significant change in X that can occur and still be
deleted from the calculation due to rounding.
The magnitude of the local relative truncation error ¢, the remainder O<h4)
being neglected, is
Ir| 1 |h2w02|
Etr = = — (25)
[a%a] 8

1

The two local relative errors given by equations (24) and (25) are the limits of
resolution imposed on X by the word structure and integration scheme, respectively,
as seen by the variable X.

In closing this section, it seems instructive to indicate the effects of statistical
modeling on the local relative roundoff error. Two commonly used models for the dis-
tribution of roundoff error is to assume that roundoff is uniformly distributed or Gaussian
distributed. Implicitly assumed is that roundoff error at the nth step is independent of
the error at the previous steps. The uniform distribution is over the interval (0,er) and
the 50 percentile occurs at the midpoint, namely 1/2¢,.. That is, 50 percent of the errors
will be less than 1/2'5r for the assumed uniform distribution. The 50 percentile for the
Gaussian distribution occurs at 0.68STD (STD is the standard deviation) where ¢, = 4STD
is assumed. The 50 percentile point is then 0.17¢,.

Discussion of applications.- The models for the local relative roundoff and trunca-
tion error were derived by assuming the state variables of the system and their deriva-
tives were linearly related. This assumption implies that the system has a degree of
smoothness in its motion so that over short intervals of time (on the order of h), the
motion is quadratic. The degree of variation of the characteristic frequency as a function
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of the state variables and time clearly determines the validity of this local model. Dis-
continuities that arise from thrust destroys this linear relationship and this difficulty
will be dealt with later in the section "Moment Equations."

The approximate local relative roundoff (the upper bound ¢€p; the uniform 50 per-
centile ¢,.U; and the Gaussian 50 percentile erG) and truncation errors are shown in
figure 2 for N, = 27 bits. These local errors are estimates of magnitudes only and no
information is supplied for additivity (which is machine and program dependent).

The manner in which these errors propagate is a more complex problem than this
simple analysis can ascertain. However, this analysis does indicate that the error most
likely to enter the problem (error dominance) and an estimate of an upper bound of the
propagated error can be found. (See ref. 15, p. 36.)

As seen in figure 2 with Np = 27 bits, the portion of the computation including the
attitude-control system (hwc ~ 1) and moment equations and axis transformations

(hwc = 10'2> could be greatly affected by truncation with little concern for roundoff. If

low-order integration schemes are to be used in these portions of the simulation, great
care must be employed to determine any possible adverse effects. However, the trans-

lational equations (hwc = 10'5) are relatively insensitive to truncation error but roundoff

error could be a prime difficulty.

Axis Transformations

Analytical development.- The transformation matrix is computed either directly by
integrating the direction cosine rate equations or by the Euler parameter rate equations,
both of which must be subject to the restrictions of orthonormality. By using the steepest
descents, the rate equations could be augmented with constraints to maintain orthonor-
mality. (For example, see eqs. (A35) to (A39).) Although orthonormality would be main-
tained, phasing errors could become appreciable. In this vein, an integration scheme is
chosen that closely approximates the orthonormality condition. This scheme will then be
used in conjunction with a normalization procedure to maintain orthogonality of the trans-

formation matrix.

First consider Euler integration to solve the direction cosine rate equations given

by equation (3)

Zn+1 = Zn + hz.n = zn + hQnZn (26)

The norm squared {eq. (2)) by using equation (26) becomes (where QI = @XI)
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Qn+1 =Qn + h2 (ann)T (ann =Qp + (hwn sin 77n) 2Qn 27

where 7, is the angle between the In andthe @, at t=nh. From equation (27),
the per step error due to Euler integration is

2
AQ, = (hwn sin 77n) Qn (28)

Similarly, the Adams-Bashforth integration formula yields

and the per step error of the norm is

- T - 2 _p
AQy = -hiy Qp_1ln-1 + 94- ki (30)

where

U= 39nzn - Op- 1Zn-1

A striking difference in the change of the norm is apparent for the two schemes,
as seen in equations (28) and (30). Euler integration gives rise to a positive definite
change in the norm as opposed to Adams-Bashforth integration which does not have a
definite norm change. Hence, Euler integration always increases the norm for each
integration step. For example, consider the ratio of the change in the norm squared to
the norm squared with Euler integration for hw = 10-2 radian

A
29 2,2 ~ 1074

= 0.01 percent
Qn

Hence, an error of 0.01 percent is committed per integration step. Clearly, a solution
for a reasonable length of time is not acceptable even for moderate frequencies
(w =1 radian/sec) and interval sizes (h ~10-2 sec).

Consider equation (27) when @ is a constant. The z-transform of equation (27) is
(sin  is also constant to a very good approximation)

(z -1- hzwzsin2n>Q(z) =0 (31)
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which has one root

z = 1 + h2w2sin2y (32)

The solution to equation (27) is then

Q=28 = ol loge(z) (33)
By using the assumptions that
hzwzsinzn << 1 (34)
and
1oge(1+X)zX-—é-X2+%X3-iX4 (35)

an approximate solution (the first nonvanishing term in approximation (35) being retained)

for the norm squared is
h(w sin )zt
Q=~e n (36)

when Euler integration is used.

The solution of the direction cosine rate equations for Euler integration is found by
taking the z-transform of equation (26) with £ a constant. The z-transformed equation

can be written as
[(z - 1)I - hsz]z'(z) =0

where the identity matrix I in this and similar equations is suppressed in the sequel.
Hence, the equation is written

[(z -1) - hsz]z'(z) =0 (37
The characteristic equation of equation (37) is

(z - 1)[(z -1)2 4 hzwz] =0 (38)
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for which

Zl =1
. (39)
223 = 1+ iwh
areé solutions.
The solution to equation (26) is then
l_n =8y + Ezen loge(1+iwh) + E3en loge(1-iwh) (40)

where the Ej terms are constant vectors that depend on initial conditions. Again with

approximation (35) and by assuming that |ihw| << 1, equation (40) is rewritten by
retaining the first nonvanishing terms in damping and frequency errors as

2 2 3 2.3
Rt T ) A
l=cqy+e coe 3 + Cqe 3 (41

Equation (41) is in agreement with equation (36).

The solution for the direction cosines using Adams-Bashforth second-order inte-
gration is found by taking the z-transform of equation (29) for constant £ (where the
identity matrix is implied):

[z(z -1) - % Q(3z - 1)]Z_(z) =0 (42)

The characteristic equation of equation (42) is

z(z - 1) [z(z - 1)]2 +{11—2 w2(3z - 1)2 =0 (43)
Two roots of equation (43) are by inspection:
z1 =0 (44)
zg =1 (45)
and the four other roots are given by
[2(@ - 1)]2 = -c2(3z - 1)2 (46)
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where c =-1% w. Equation (46) can be reduced by taking the square root of each side:

z(z - 1) = xic(3z - 1) 47

The roots of equation (47) are then given by

23 5 =%&1 -1i3c) + [(1 - 9c2> - iZc:ll/z}

. 1/2 (48)
24 6 = 3 (1 +i3c) [(1 - 902> + iZc]
The four roots represented by equation (48) are two sets of complex conjugate pairs.
This fact can be verified by substituting -i for i.
The real and imaginary parts of the roots given by equation (48) are found by
defining
uel? = (1 - 902) +1i2¢
It is seen from this definition that
. 1/2
ul/2eio/2 - [(1 - 9c2> + iZc:,
. 1/2
ul/ze'm/2 = [(1 - 902> - i2c]
where
w= (1- 14¢2 1 81c?) 1/2 (49)
o = tan-1 —&0—2— (50)
1-9c
Hence, the roots given by equation (48) are
234 = -% [(1 +ul/2¢os g) + i<3c +ul/2gin gﬂ
(51)
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If c<<1 isassumed <for c= 229 ~10-2 radian> , equations (49) and (50) can, terms

in ¢ and higher being neglected, be approximated by

u=1-"7c2 +16¢c (52)
o=2c (1 + % cz> (53)
and similarly

/221 _Tc2,15 4 (54)

2 8

inZ = 45 .2
s1n2—c<1+6c> (55)
cosg=1-lc2—gl—c4 (56)

2 2 8

Substituting equations (54), (55), and (56) into equations (51) results in
zg 4 ~1- 2¢2 - 2¢4 & i(Zc + 2c3> (57

~ 902 4 . iflc - 203
Z5 6 2¢c4 + 2¢* + 1(c 2¢ ) (58)
The two roots given by equation (58) are quickly damped for hw small or equivalently
for ¢ small. If the heavily damped roots are neglected and approximation (35) is used,
the solution of the direction cosines for the Adams-Bashforth second-order integration
scheme is given as
4 h3w? t i (w+% h2w3> t -1 <w+-15—2h2w3> t
l=cy+e 16 Coe cge (59)

where El, Cg, and cg are the same as in equation (41). By comparing the solution
given by equation (59) to that given by equation (41), the solution for the norm squared
for Adams-Bashforth integration is by analogy with equation (36)

h3wd, . 2
8——(sin t
T (sin 1)

Q=~e (60)

when second-order Adams-Bashforth integration is used.
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In order to make comparisons of the direction cosine formulation with the Euler
parameter formulation, the Euler parameter rate equations will now be solved under the
two integration schemes. Note that the z-transformed characteristic equations (eqs. (32)
and (43)) are often similar in form so that the factors already obtained can be used in the
following analysis and will reappear in later sections.

If Euler integration is applied to equations (5) and (6),
Ansl = Ap + hSpAy (61)

hzwn2

AP, = Py (62)

From equation (62) for @ constant,
Pre (63)
which is the same result as that obtained from the solution of equation (61)

fw h2w3 fw h2w3
hw? ¢ 1<§' 54 )t '1<§' 54 )" (64)

A=e ﬁle +age

where again approximation (35) has been used and only the lowest nonvanishing order in
amplitude and frequency errors has been retained. The a; terms are constant vectors

that depend on the initial conditions.

Similarly, for Adams-Bashforth second-order integration,

po— J— h —_ —_
Aptl = Ap + §<3SnAn - Sn-lAn-1> (65)

— — 2 — _ 2
h
AP, = -hAnTSn- 1Ap-1 + ‘4—<3SnAn - Sp-14An- 1) (66)

Again, the solution of equation (65) is found by z-transforms for w a constant (that is,

S 1is constant).

l}(z -1 - % S(3z - lﬂ Az) =0 (67)
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hw

where the identity matrix is implied. By letting c¢ = = the characteristic equation of

equation (67) can be written as
9 2
[22(z - D2 + c232 - D2 =0 (68)

which is of the same form as equation (46). Hence, the roots are of the form of equa-
tions (57) and (58) where again the roots of equation (58) are heavily damped. The solu-
tion of equation (65), the heavily damped roots being neglected, is approximated by

- 256 |- \2 96 - \2 96
A=e ae +3ge (69)

where the a; terms are the same as those in equation (64). From equation (69), the
solution for the norm squared for Adams-Bashforth second-order integration (eq. (66))

256

is found to be
8(
P =e (70)

3,4
hw>t

Discussion of experiment.- The results of this analysis are summarized in table L.

The growth time constants and frequencies for both the direction cosines and Euler
parameters when Euler and Adams-Bashforth second-order integration are used are com-
pared with the parameters of the corresponding differential equations.

The effects of the truncation error (hence, the propagated truncation error) for the
direction cosine and Euler parameter rate equations has been determined for constant w.
In all cases it is seen that frequency of the system is only slightly affected. The most
prominent behavior (for @ constant) is seen to be the amplitude growth which is
reflected in the norm.

The solutions to the norm of the direction cosine and Euler parameter rate equa-
tions using Euler and Adams-Bashforth integration were obtained both analytically and
on the computer. Euler integration was used to start the Adams-Bashforth scheme. The
solutions were obtained for

— o -1 radians
p—q_r_\/§ second
sinn =1
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initially and

h= —1% second

These solutions were compared with the true norm which is unity and the resultant errors
are shown in figures 3 to 6. As seen in these figures, the solution parameters as given
by table I are accurate. (Also shown are the starting errors caused by the Euler inte-
gration starting formula.)

The solution parameters in table I clearly show that the Adams-Bashforth second-
order integration and the Euler parameters are superior to the other possible combina-
tions. The time constant is better by a factor of 16 and the frequency error is also the
smallest. This combination is sufficient for many simulation problems as witnessed also
in figure 6. (With h = 2-4 sec, |E| = 1 radian/sec for intervals of 100 seconds is
more accurate than is required for most problems.) However, note that starting errors
can be appreciable for nonzero p, ¢, and r when Euler integration is used to compute

starting values.

The assumption that @ is constant used in the analysis is not realistic. In gen-
eral, w is a function of time with magnitude varying between zero and some w,x.

When w is small, roundoff error will again affect the solution. The magnitude l’u?,
is small during coasting periods of the flight where the control system is normally in
attitude hold and the vehicle exhibits limit cycle motion inside a deadband. During this
type of motion, roundoff error is the dominant error entering the solution. The main
concern is placed on the stability of the limit cycle and usually the amount of fuel used
during this portion of the flight. For most manned vehicles, the limit cycle motion is
stable for a Np = 27 bit machine for h 2 15 msec (this value is not a known absolute
lower bound) and the experimental results are presented later.

The @ is, in general, time varying and the analysis is not applicable. Euler
integration has the property that the change in the norm is always positive definite (see
eq. (28)) and is always unstable. The Adams-Bashforth second-order integration is not
positive definite and the norm may actually decrease for time varying . (This effect
is seen later in another section.)

Typically in flight simulation, attitude maneuvers are performed by sustaining some
constant angular rate over a maximum time interval. An estimate of the adequacy of the
two formulations can then be made by using the parameters in table I. One then has a
basis for choosing a formulation and integration scheme for a particular application.
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Attitude Control System

Analytical development.- The response of the attitude-hold mode is strongly
dependent on the quality of the solutions of equations (7) and (8), the attitude angle error,
and the gyroscope outputs. If it is assumed that the solutions of equations (8) (the gyro-
scope outputs) are truly representative of the angular rates of the vehicles, conclusions
can be made as to the integration scheme to be used for equations (7). Consideration is
only given to the first of equations (7)

‘»:bc = pg (71)

since the analysis holds for the §; and ‘;Dc equations as well.

For an on-off attitude control moment, the angular rate is approximated by

z_l_y
Pg ~7y7 ) M1t (72)

The moment of inertia is a slowly varying function of time; hence, over short-time
intervals it may be considered to be constant. Since Mj is either zero or a constant,
the rate given by equation (72) is a constant or linear function of time, respectively.

Visually,
My
pg = pg’o + m- t (73)

where the t coefficient is zero or a constant value and the subscript o denotes initial
conditions. The solution to equation (71) is either a linear (Ml = 0) or quadratic

<M1 # 0) function of time, as

1 My o
q>c=¢>co+p t+ (z—]|t (74)
) g,0 211

Consider Adams-Bashforth Lth-order integration as applied to equation (71)

L-1
= v
bcpq = Pe, th ZO YjV'Pg n (75)
= |

where the 7j values are given in reference 15 (pp. 192-193). Since Pg is at most a
linear function of t, L =2 in equation (75) is an exact representation of ¢ under
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these assumptions (eqs. ('73) and (74)). This relationship is true since all higher orders
of pg vanish (ref. 18, p. 9).

The equation for Py is considered to be representative of equations (8).
P, + 28,wD +w2p = wy2p ('76)
g g7gvg g *g g

The forcing function in equation (76) is a relatively smooth function of time. Even so,
with typical parameters (wg ~ 102 radians/sec and Cg = 0.8>, the numerical solution of
equation (76) is not well behaved for simple numerical techniques when a reasonable
interval size (h ~10~2 sec) is used.

The solution to equation (76) has been the object of research for many investigators.
Examples of these efforts are given in references 4 to 7. The results of several such
studies are summarized in reference 5. In view of the conclusions of reference 5, the
next matter to be considered in this paper is to derive a method by which equation ('76)
can be solved. The complete derivation is contained in appendix B and only the high-

lights appear in this section.

The solution to equation (76), as found in appendix B, is

t
pg(t) = § 6t~ 1 () ar (1)
where
W2
G(1) = —% e~&7sin I'T ("78)
with
1/2

- 2
I'= (1 - g ) “g
§ = Sgvg
and G(7) is a solution of the equation

Glt - T) + Zg’gwgf}(t -T) 4+ wng(t -7 = wgzé(t -7

and O(t - 7) is the Dirac delta function. (See ref. 19, p. 255.) As shown in appendix B,
the solution given by equation (77) is valid even when p is a nonlinear function of pg.
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(p is a nonlinear function of Pg for most control systems.) For further discussions of
nonlinearities, see reference 20.

A step-by-step evaluation procedure for solving equation (77) is found to be
(egs. (B36))

— — -r— h -
pg(t +h) cos Th sin Th pg(t) +S‘ G(-x)p(t + x)dx
0

= e-gh h (79)
At + h) -sin Th cos Th|| A(t) + go GT(-x)p(t + x)dx

— —J — ) W ~J

If p(t) is known on the interval (t, t + h), equations (79) could be evaluated exactly. In
practice, p(t) is known to the accuracy of the integration scheme used to obtain it.
Assume that p(t) is known to within a linear function (Euler integration) on (t, t + h)
(see eq. (73))

pt +x) =a + bx (80)

where 0=x=h and a and b are constants over the interval that depend on p(t)
and its derivatives. By substitution of equation (80) into equations (79), equations (779)
can be written as

pg(t +h) cos T'h sin T'h pg(t) + aly + blg
= e-£h (81)
A(t + h) sin Th  cos Th||A(t) +al;T + bIyT

where
ﬁ

h
I; = S‘O G(-x)dx

h
Iy = ‘S‘O G(-x)x dx
(82)

h
IlT = S;) GT(-X)dX

IzT = S:GT(-x)x dXJ
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Evaluation of integrals (82) results in

'\
I = -—IEEG(-h) + I‘GT(-hE] -1
wg
nt- %—E&GT(-h) - FG(—hﬂ -%
wg
¥ (83)
I =_l§ h&G(-h) + hT'G'(-h) - £I1 - nlﬂ
wg
15f=_l§EgGT@h)-hrG@h)-gIﬂ'+11ﬂ

The integrals (82) are constants that need only be evaluated once and then used as coeffi-
cients in equations (81). For each interval step, only the coefficients a and b of
equations (81) need to be evaluated. An obvious choice for a and b is

a = p(t)
(84)
b = p(t)
However, more accurate approximations for b can be made; for example,
b = 213p(t) - |
=3(3p® - p(t - h) (85)

It is also a simple matter to make more accurate approximations to p(t) than that given
by equation (80).
When gyroscopes are involved, a more accurate approximation for ¢, can be

made than that given by equation (75). This approximation is made by integrating pg as
given by equations (81) and expanding the results in a manner similar to this treatment.

Discussion of experiment.- The linear gyroscope equations were solved by using
the Green's function technique for a step and ramp input. The parameters were
wg =125 radians/sec, {z=0.8,and h= 1/64 sec. The response, as seen in figures 7
and 8, were unchanged when the interval size was doubled. This result is expected since
it is an analytical solution. Note that the solution even for discontinuities occurring at
the beginning of the integration interval is still exact.
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An independent study (ref. 8) has shown the h = 10-4 sec (10 000 solutions per
second) is required for the Adams-Moulton second-order method to obtain a reasonable
solution. This requirement is obviously a difficult one for simulation in real time.

The Green's function technique employed to solve the gyroscope equations is exact
when the forcing function is linear over the integration intervals. Higher order terms
can be carried in approximating the forcing function with little added computer time.
This method should be extended to include such effects as nonwindup limiting (piecewise
linear gyroscope equations). This technique can also be extended to other linear and
piecewise linear systems.

Recently, Giese (ref. 21) has used a similar method for solving the linear part of
control systems. He has developed an algorithm for computing an approximate Green's
function for the general case. Although the approximate Green's function is step size
dependent as can be seen in figure 12 of reference 21, the algorithm approach is in the
right direction. The Giese algorithm, however, does appear to have convergence problems
as seen by comparing the results from second-order Adams-Bashforth solutions and the
results of the Giese algorithm shown in figures 11 and 12, respectively, in reference 21.

Moment Equations

Analytical development.- The analysis of the moment equations is accomplished in

two steps. First considered is the case of no external torques for which the total angular
momentum squared (eq. (14)) is a constant of the motion. This analysis is followed by a
discussion of applied on-off control torques. Throughout the analysis, it is assumed that
the angular momentum and angular velocity are measured in the principal axes. The
inertia matrix and its inverse are then diagonal. This procedure greatly simplifies the
analysis without loss of generality.

The moment equations are not linear. This nonlinearity is seen by writing the
moment equations in component form, the angular velocity components being replaced by
their functional form given by equation (12),

w
. 1 1
Li=rLy ~qlLg + M{ = LolLg{+—~-=—) + M
1 2 1 3133 " Tz 1
Lz =pLg - rLq + M2 = LgL L - L) + Mo (86)
I11 I33
il _ 1 1
3 =qlj - pLg + M3 = LjLg(— - —) + M3
Igg 1I1
S
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Although a solution to the general problem has not been found, two solutions have been
approximated for two important types of vehicles. The first is vehicles with "near"
cylindrical symmetry (that is, only two principal inertias are nearly equal), and the sec-
ond is vehicles of "near" spherical symmetry (that is, all three inertias are nearly equal).
For types of near cylindrical symmetry, the moment equations are approximately linear
and z-transforms can be used. The moment equations are nonlinear for "near' spheri-
cal symmetry but an approximate solution can be found for the Euler integration scheme.

No external torques: The moment equations have the same form as the direction
cosine rate equations for no external torques (that is, My = Mg = Mg = 0). It follows
that the per step error in the total angular momentum squared due to Euler and Adams-
Bashforth second-order integration are, respectively,

ANj, = hzwnan sinzxn (87)

and
2

— T 2( - -~
ANy, = -hTy T, 1 + %<3Ln - Ln_l) (88)

where ¥, is the angle between the wp and fn vectors. Again, the change due to
Euler integration is positive definite and the Adams-Bashforth integration result is not

positive definite.

Near cylindrical symmetry: Assume that the X-axis to be the axis of near sym-

metry, that is

By using definition (89), equations (86) become, if first-order terms in 6l are retained:

.

Ipp?
Ly = [-K+-2 L3L1> (90)
In2
L3 = KL{Ly

where K=— - —,
Ipo Ijg
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The near cylindrical symmetric approximation is used when

|51|
|K|>>_
1222

(91)
61| << 159

for which equations (90) degenerate to the equations of an oscillator since f-‘l =(0. Equa-
tions (90) become, in matrix form,

Lo 0 KLy |Lg
HE (92)
La| |-KLy 0| |Ls
with
- I11
KLj =KI11p, = Py {1 - — (93)
I

where P, is a constant roll rate.

To analyze equations (92), the range of the quantity KI11 needs to be determined.
To accomplish this end, first observe that the inertias do not uniquely define the body
configuration; that is, bodies of uniform material but with many different shapes can all
have the same inertia matrix. Hence, perturbations from the set of all cylinders of uni-
form material are (dynamically) equivalent to the set of all nearly cylindrically symmet-
ric bodies. Therefore, no generality is lost by considering perturbations of the cylindri-
cal body of uniform material shown in figure 9; the inertias are (for &I = 0):

I11 =?21- mR2 w
Igg = 11_2. m<3R2 + 12) (94)
I3z = Ig2

./

Where R and ! are as indicated in figure 9. Substituting equations (94) into equa-
tion (93) yields
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1 (95)

K4 = -
i 3 +1r2
where r =1/R is the ratio of length to radius and always positive. Looking at the
derivative of K with respectto r

reveals KIy1 to be a monotonic decreasing function of r (r >0). The minimum and
maximum values of I{1K are at the maximum and minimum values of r. Looking at
the limits of the rotating disk (r — 0) and rotating rod (r -~ «) establishes the limits of

equation (95).

lim KLy = p,
r-0
(96)
lim KL1 = -p,
T

The general character of I11K is shown in figure 10. Consider a slight perturba-

tion from cylindrical symmetry
I33 =199 + 01
For the near cylindrical symmetric approximation to be valid

122 ’KI >>.|]%];l

but from equations (91),

,122 - I11! |51,
= >> (9

IzleI I11 Ing

Hence, as shown by this relation, small perturbations from cylindrical symmetry for very
long slender and/or short flat bodies do not greatly remove the motion from that of cylin-
drical symmetry since relation (97) is valid. However, as
,122 -111] | o1
111 Ig
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the motion approaches a region where nonlinear motion resumes since the coefficients

in equations (90) are then on the same order of magnitude | that is, ‘K| z—l—é—Il— . Hence,

Iy
figure 10 can be divided into two regions. Region I is where relation (97) is satisfied and
the motion is nearly linear. Region II is where relation (97) is not satisfied and the
motion is not described by the approximate equations (92), In region II is the class of
bodies with near spherical symmetry.

For near cylindrical symmetry, the angular momentum rate equations are

-1 T
Lol [0 -Kk| [Lg

= (98)
where k = LjiK.

Consider the integration of equations (98) by using first the Euler integration and
then the Adams-Bashforth second-order integration formula. For Euler integration,

Lo Lo 0  -k{ |Lo

- =h (99)
Lg L3 k 0 Lg
n+l -n n

Taking the z-transform and collecting yields

0 -k L1(z)
(z-1) -h =0 (100)
k 0| |La

which has a nontrivial solution if
0 -k
(z-1)-h =0 (101)
k 0
The characteristic equation of equation (100) is

z - 1)2 +h2k2 =0 (102)
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Equation (102) can be factored into two roots by inspection; the roots are
z =1 x ihk (103)

from which the solution to equations (99) by using approximation (35) is

E‘g - )
213 2.3
nk2 | iéﬁhfLa -4G-E§>t
=e 2 |cqe +Tg8 (104)
L3 L __J
_ _J

where cq and cg are constant vectors. By using equations (104), the solution to
equation (87) is

2 hk2f, 2 2
N = Ll,o + € LZ,O + L3,O (105)

Note that for the case of cylindrical symmetry, the rate equations are linear (see
egs. (98)). For this case an expression can be found for the error when Adams-Bashforth
second-order integration is used. Consider

Ll [ o ][] o - ol
h
- =13 - 1
5 (106)
L Lg k 0 L k 0 L
- Bﬂn+2 ~ “n+l - 13 n+l - -t 3-n

Taking the z-transform and collecting terms yields
0 -k Lz(z)
mz-n-%@z-n =0 (107)

k 0 L3(Z)

for which the characteristic equation is
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2.2
22(z - 1)2 +PTk_(3z -1)2=0 (108)

which can be factored as
2(z - 1) = +i %(32 - 1) (109)
The roots of this equation are known to be

zy g ~1- 2¢2 - 2¢4 & i(Zc + 2c3> (110)

b
z ~2¢2 4+ 2¢% + i(c - 2c3> (111)
3,4
hk

where ¢ = 5 (Compare eqgs. (57) and (58).) The roots given by equation (111) are

heavily damped and need not be considered. The solution obtained by using approxima-
tion (35) is

b2 3,4 i (k+2h2k3)¢ -ik+2hZK3)t
gk ¢ 12 12

~e 16 cie + Coe (112)

L3

— -/

where ¢y and Cy are the saine as ia equations (104). The solution to equation (88) is
given as

3,4
gh™k*,

16

2 2
N=L1,o2+<L2,0 +L&O>e (113)

Near spherical symmetry: Consider regionII of figure 10 where nonlinear effects
cannot be neglected (that is, relation (97) is no longer valid). In the nonlinear region K
is no longer large compared with 61/1222; this condition implies that

'122 -111| l133 -122}
I11 I22

(114)
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A solution to the general problem has not been found in region II. However, an approx-
imate solution can be found for the Euler integration formula if, in addition to rela-
tion (114), the following relations also hold:

~
[51'
<< 1
2
I11
5 (115)
|
_E << 1
I
22 )
where
o' =199 - Ig (116)
oI =133 - Igg (117)

Relations (115) then define near spherical symmetry and equation (12) can be rewritten as

— o — — ' p— —
p L |%5 o 0 ||Lq
Iog
1 512
Ioo
51
I
22
— J —_ -/ S ..J - —

Substituting equations (118) into equation (87) and neglecting terms in 6I and o1’

results in

2\ 2
NhNn

ANp = sinzxn (119)

I

Dividing equation (119) by N,2 and letting

2
h™_ in2 (120)
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yields

e - VS (121)

For ANj << Np, equation (121) can be approximated by a perfect difference, namely,
1 AN AN,

Np NnNp.1 an

The approximate solution to equation (88) for nearly spherically symmetric vehicles when
approximation (122) is valid is

No

Ny x——2—— (123)
1 - Ng z Kj
j=0
which for K nearly constant or constant
No
N(t) » ———— (124)
Ny«
1--9

and the resulting error in the total angular momentum squared is

N - N, Nkt

e(t) = =
Ng h - Ng«t

(125)

Thrusted case: To study the on-off thrust controlled vehicle, assume that M is
defined only on the integration intervals. This assumption neglects the small delays in
applying thrust. The effects of this delay can be evaluated by analysis or by comparing
solutions at two different interval sizes. The latter method was chosen since the fine
detail of the limit cycle motion was not of great interest in this problem. Under this
assumption, the M of equation (11) can be integrated exactly by using Euler integration.

By using Euler integration, the per-step change in the total angular momentum
squared is

ANy, = hNp + h2<wn2Nn sinZy, + 2wnNn1/ M, sin Xp COS ¥p + an) (126)
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where M is the magnitude of M and 7 is the angle between the L and M. Nom-
inally, the control moment M is appliedto . Since L and @ are orthogonal, vy

is always near 7/2. Hence,
AN,, ~hNy + h2 (wnan sin2y, + Mn2> (127)
From equation (127), the per-step deviation from Euler integration is
Agy = h2 (""nan sinzxr1 + Mn2> (128)

The importance of this result is that the per-step error given by equation (127) is inde-
pendent of the frequency associated with M; only the magnitude M contributes to the

solution error.

It would seem that an impasse has been met since on-off control thrust dictates the
use of Euler integration. However, equation (125) indicates rather poor behavior of the
nonthrusted portion of the moment equations for this scheme. Equation (11) can be par-
titioned so that each term can be integrated in a manner most likely to yield a quality
solution. To do this, consider the integral of equation (11).

T- RQ : E)dt + X'M dt (129)
Define the partitioning as

Ty= g( : 'Ij)d]

Ly = fﬁ dt f (130)

L=f]_ +i_2

The two terms, fl and fg, can be integrated by using the Adams~Bashforth second-
order and Euler integration schemes, respectively, and a high quality solution is obtained
with little added complication.

Discussion of experiment.- The angular momentum rate equations were first
analyzed for the nonthrusted case (that is, M = 0) for two integration schemes. The
analysis was done for two classes of vehicles which were nearly cylindrically symmetric
and nearly spherically symmetric. The forms of the angular momentum rate equations
are the same as those of the direction cosine rate equations with the exception of the
nonlinearity defined by @ as a function of the L. For the near cylindrical case, the
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equations are nearly linear and the solution for Euler and Adams-Bashforth second-order
integration can be approximated.

The angular momentum rate equations were solved for initial conditions of

_1 radians

V‘§ sec

Iy1 = 500.0 kg-m?

p:q:r:

Iog = 878.9 kg-m?2

I35 = 881.9 kg-m2

1

h =
32

sec

with Euler and Adams-Bashforth second-order integration schemes. For these values of
inertias, the motion is described by the near cylindrical approximation. The predicted
and computed motion for Euler integration is shown in figure 11 and the agreement is
good. The corresponding predicted and computed errors for Adams-Bashforth second-
order integration is shown in figure 12. Two computed errors are shown in figure 12;
they are for Ny = 27 bits and Ny, = 48 bits. The roundoff error is shown to be domi-
nant on the 27 significant bit machine. The solution using extra precision is closely
approximated by the approximate analytic solution of the Adams-Bashforth second-order
integration. It is not clear at this time whether the roundoff error is caused from the
induced error or the inherent error. The Adams-Bashforth scheme is sufficient for
solving the nonthrusted portion of the angular momentum equations, the accuracy
exceeding that of Euler integration by several orders of magnitude, even for Ny = 27 bits.

The use of Euler integration for a vehicle of near spherical symmetry is, in gen-
eral, inadequate. The behavior of the total angular momentum squared was found not to
be a positive definite form under Adams-Bashforth second-order integration. In general,
one can expect the error due to Adams-Bashforth integration to be of several orders of
magnitude less than that due to Euler integration.

It was assumed that the small time delays in applying thrust were negligible. This
assumption clearly depends on the control system parameters. For the Gemini problem,
the effects of these time delays were determined by comparing two solutions of different
interval sizes which were h = 31.25 milliseconds and h = 15.625 milliseconds. The
control system was placed in attitude hold and three stick deflections were commanded
as follows:
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(1) Roll right at one-half maximum rate for 0 £t = 3 seconds
(2) Pitch up at one-half maximum rate for 10 =t = 13 seconds
(3) Yaw right at one-half maximum rate for 20 =t = 23 seconds

The results of these attitude-control cases are shown in figures 13 to 15. As seen from
the figures, the gross behavior is, for all purposes, identical. There are small apparent
discrepancies in the limit cycle and end point motion. Even so, these solutions show
good agreement.

When L and @ are parallel, the integration of the nonthrusted portion is
integration-scheme independent. The L and @ are parallel whenever the ® (hence,
the L )lies along a principal axis. Most vehicles are constructed so that the body axis
and principal axis are nearly alined. The typical pilot uses the single-axis technique
(that is, a sequence of maneuvers about a single body axis at a time) for which @ and

L. are nearly parallel. The primary contribution to the angular momentum is thrust
which can be integrated exactly.

When either the 1. and @ are nearly parallel and/or the magnitude of @ is
small, the roundoff error is the dominant error. Clearly, the most likely area of diffi~
culty is in the limit cycle motion. The results indicate no serious instability in the limit
cycle motion; thus, the only remaining question is the fuel usage in the limit cycle. The
change in fuel usage will not be greatly affected for short-period flights; however, for full
mission simulators where the motion is in the limit cycle for several hours, considera-
tion should be given to the fuel cost due to computation errors.

In simulating the angular momentum rate equations on analog computers, the mini-
mum pulse width of the attitude control moments is determined by the switching time of
the computers logic components unless otherwise provided. An analogous situation
occurs in digital simulation where the minimum pulse width (Euler integration) is the
integration interval size unless it is provided by other means. In digital simulation prob-
lems where rather large integration intervals are used, a minimum pulse width must be
provided. Large erroneous expenditures of fuel due to erratic limit cycle motion can be
caused by oversized minimum pulse widths which are determined by the integration
interval. Although the simulation of minimum pulse width on general purpose analog
computers is somewhat difficult, this provision is an inherent consequence of digital
simulation and requires only a small amount of simple logic.

It is often desired to compute the mass change of the simulated vehicle. The mass
rate is usually given as proportional to thrust. Hence, Euler integration gives an exact
representation of the mass since mass is a linear function of time or a constant.
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Translational Dynamics

Analytical development.- The mathematical model representing the trajectory

motions is extremely nonlinear and therefore does not lend itself very readily to the type
of analytical investigation made in the other sections. However, since the trajectory of
the two vehicles referenced to inertial space is very smooth, some comments concerning
truncation compared with roundoff effects can be made. The frequencies associated with
the trajectories are on the order of 1.2 X 10-3 radian/second. When this frequency is
coupled with the maximum interval size, h = 0.05 second, the graph in figure 2 provides
an estimate of the local truncation and roundoff errors (for hw = 6 X 10-9 radian):

ey ~6x 10710
ey ©6.2% 1072

The indication given by these results is that roundoff error constitutes most of the error
in the solution of the trajectory motion. In order to verify the prime source of error and
to evaluate the effects of the propagated truncation and roundoff errors, computer solu-
tions with widely varying interval sizes can be compared with a double-precision fourth-
order Runge-Kutta solution (or any other reliable solution).

Discussion of experiment.- The global errors, using double-precision fourth-order
Runge-Kutta as a standard, in the trajectory variables (eqs. (Al) to (A16)) are shown in

figure 16 as functions of the integration interval size at t = 5004 seconds. It is noted in
figure 16 that the minimum global errors occur around an interval size of h = 0.1 second.
However, because of the pilot input and the need for a smooth visual display, an upper
bound on the interval size must be placed at 0.05 second (that is, h § 0.05 sec). The
logical choice, if constrained to powers of two to minimize roundoff effects, is

h = 2-% second. Also, note that there is little difference in the global errors of Euler and
Adams-Bashforth second-order integration; thus, truncation error constitutes a minor
part of the total error and hence, contributes to the confirmation of the validity of error
dominance. In figure 17 is the global error in two coordinates as a function of time for

h = 29 second. Again, it is apparent that roundoff error is by far the largest contrib-
uting error.

Further evidence verifying roundoff error (in particular, the induced error) as the
major contributor to the global error is seen from the results in table II. There is excel-
lent agreement between the standard solution and the partial double-precision (for control
of induced error) second-order Adams-Bashforth solution. When compared with the
single precision second-order Adams-Bashforth solution, the severity of the roundoff
effects on a Np, = 27 bit class of machine is clearly indicated.
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TWO EXAMPLE PROBLEMS

In the past, the simulation engineer has relied heavily on an intuition developed
from years of experience with analog (electronic differential analyzer) computation. The
advent of digital simulation requires the building of a reliable intuition of the numerical
processes of digital computation before digital simulation can become highly productive.
It is for this reason that two example problems are considered.

The first problem is a Gemini-Agena rendezvous and station-keeping simulation.
(See ref. 11.) This problem fits the class of problems studied in the analysis. Hence,
the integration schemes discussed are directly applicable.

The second example is a modification of the first, the modification being the addi-
tion of an elastic tether (ref. 12) coupling the two vehicles® motion. The two vehicles are
now somewhat like a single structure with internal degrees of freedom. Considered as a
single vehicle, the system has a structural frequency that depends on the tether proper-
ties. The results of the analysis are no longer applicable in its entirety. However,
these results are used as a starting point. The methods used to improve the digital pro-

gram are discussed later.

Hopefully, several things will be accomplished in these two examples. FORTRAN
is adequate in its present form for the IBM 7094-1I, especially with regard to the amount
of core and processing time for large simulation problems. The storage and processing
time depend upon how well the FORTRAN compiler has been adapted to the particular
machine being used. The integration schemes discussed in the analysis were not intended
for blanket approval. The second example problem then gives the next logical step for
arriving at a working simulation program. The tether program is a direct modification
of the first. Hence, the effort involved to modify a large existing digital simulation pro-
gram is better understood.

Gemini-Agena Problem

Program development.- The physical problem being simulated was that of two
vehicles in near-earth orbit. One of the vehicles was constrained to a planar orbit and
was considered to be passive. Tumbling or any special orientation could be simulated
with proper initial conditions on the inertial moment equations. No external thrust was
provided. The other vehicle had a full six degrees of freedom. There were external
thrust capabilities provided on this vehicle. The external thrust capabilities can be
divided into two categories. The first category includes translational movement jets
which were located approximately along each principal axes. These jets were used in a
strict on-off fashion and were activated by the pilot's stick deflection. External thrust
for the second-category attitude movements can be further subdivided into several modes
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of operation. These jets could be activated by a system of switches and stick movements
in either rate command with attitude hold, acceleration command, or pulse modes. Each
of these modes was determined by using standard methods. A block diagram depicting
the flow of the equations (eqs. (A4) to (A106)) is presented in figure 18. The control sys-
tem was not listed in appendix A because of the difficulty of expressing the control sys-
tem in equation form.

An exception has been made to the original Gemini-Agena problem. The ''cage’
mode of the Gemini control system has been deleted because of the present limited num-
ber of digital-analog converters but this dgletion does not jeopardize the results of this
study.

Discussion of experiment.- The Gemini-Agena station keeping and docking problem,
the equations of which are discussed in appendix A, were programed for the IBM 7094-1II
in FORTRAN. This program was used with the Langley visual rendezvous simulator
which is shown schematically in figure 3 of reference 12. Some of the results of this
program are discussed in references 11 and 12. The integration schemes used in this

program are given in the following table:

Portion of program Integration scheme used
Euler parameters Adams-Bashforth second order
Control system Adams-Bashforth second order

Angular momentum:

Dynamic part Adams-Bashforth second order
Thrust part Euler

Trajectory:
Dynamic part Adams-Bashforth second order
Thrust part Euler

Mass Euler

Subroutines such as sine, cosine, and square root provided with this language were used.
This Gemini-Agena program was used in conjunction with a machine language program
which provided mode control and communications with a real-time clock and simulation
hardware. The integration interval used was h = 31.25 msec. The two programs com-
bined required about 6000 locations in core and less than 4 msec for all calculations and
input/output functions. This program leaves approximately 85 percent of core unused
and the central processor free approximately 87 percent of the time.

The amount of core and central processing time required for this problem clearly
indicates that more than one such problem could easily be processed simultaneously
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(multiprocessing) with sufficient conversion equipment and a control program to provide
independent mode control. (See ref. 3 for other discussions of multiprocessing.) This
operation is limited in that a single program must contain all such problems to be com-
piled as a group. On a more sophisticated machine, it would be desirable to compile,
process, and terminate a real-time simulation job while processing other real-time pro-
grams and/or nonreal-time programs whenever sufficient core or central processing
time is available (multiprograming).

Gemini-Agena Tether Problem

Program development.- The system consi.dered is essentially a modification of the
Gemini-Agena rendezvous and docking problem already considered. The equations of
motion are referenced to the center of mass to retain a similar form for the translational
equations except, of course, for the elastic coupling. A more complete discussion of

this problem is in reference 12.

The longitudinal translational vibration frequency was estimated to be 0.5 Hertz for
the worst case. The expected relative local truncation and roundoff error for this mode
is (wh = 9.6 x 10-2 radian)

er = 1.5 x 10-4
ér ~3.8 x 10-8

for h =31.25 msec where a second-order integration technique is assumed. The new
equations of motion were programed and Adams-Bashforth second-order integration
schemes were used for both the translational and rotational degrees of freedom. The
program was initially checked by using this method of integration and the answers were
compared with a fourth-order Runge-Kutta solution. The observed computation errors
(Error = [Runge-Kutta — Adams-Bashforth|/maximum value) were on the order of or
less than 10 percent.

At this point a simple analysis was made. The initial conditions can be chosen so
that the longitudinal translational equation becomes

2

X = -weXx

where w is related to the masses of the vehicles and spring constant of the tether. The
roots using Adams-Bashforth second-order integration are found to be

Zy9=~1- 2¢2 - 2c4 +i2¢(1 + c2)
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~ 902 4  ; - 902
z3’4 2c4 + 2¢* +ic(l - 2¢4)

where ¢ = hw/2.

log,, z) and using approximation (35)

==

Transforming these roots to the s-plane <s =

yields
51,2 4hw i1w<1+8hw

with the real parts of S3 4 large and negative.
b

The next scheme considered was to use Adams-Bashforth second-order scheme to
obtain x and the Adams-Moulton second-order scheme to obtain x:

: . hfoz ) . hw?
Xi+2= X4l +39 <3Xi+1 - Xi) =Xl T~ <3Xi+1 - Xi)

and

h - .
Xi42 = X1 ‘2‘<xi+2 + Xi+1)

which can be written in matrix form as

- 1 [
hw2 .

E(E - 1) homsE - 1) %) o

-%E(E+1) E(E-l)q B _OJ

If the z-transform (E — z) is taken, the characteristic equation is
z[z(z - 1)2 +c2(z + 1)(3z - IE] =0
Hence, one root is zero and the factor in brackets can be written as
(z - 02)[22 - 2(1 - 2¢2)z + 1] +4zct =0
If the system is assumed to be nearly stable (that is, |z]% 1), the last term is

4zc4 ~10-6
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and can be neglected because of its small value so that
(z - cz)[z2 - 2(1 - 2¢2)z + 1] =0

Thus, the four roots are
219 ® (1 - 2¢2) +i2¢ (1 - % cz)

23=(3z

Z4=0

Transforming these roots into the s-plane yields

S1 9 z—ih3w4 +iw|l +§h2w2
) 16 8

where sg is large, real, and negative and s, = -. Hence, the roots are by a factor
of four closer to the real roots in damping and the frequency error has improved by

almost a factor of two.

Discussion of experiment.~ The Gemini-Agena program, discussed in the previous
section, was modified to accommodate the tether and the additional degree of freedom.
The integration schemes were not changed in the initial stages of checkout. The observed
computation errors were on the order of or less than 10 percent when compared with an
all-fourth-order Runge-Kutta solution. The Adams-Bashforth scheme was then modified
by applying the Adams-Moulton second-order corrector once to all translational and
rotational variables. The solution obtained from this integration scheme was within one-
half percent of the fourth-order Runge~Kutta solution and the addition to the computation
time is virtually undetectable. The final integration schemes used are summarized as

follows:

Portion of program Integration scheme used

Euler parameters Adams~Moulton predictor-corrector*

Control system Adams-~Bashforth second order

Angular momentums:
Dynamic part Adams-Moulton predictor-corrector™
Thrust part Euler

Trajectory: *
Dynamic part Adams~Moulton predictor-corrector
Thrust part Euler

Mass A Euler

*Second order with corrector applied once.
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The amount of core and central processor time required was virtually no different than
that required for the Gemini-Agena problem. The modification and ensuing checkout
process was accomplished in less than one man-day (8 hours). This time does not
include the Runge-Kutta check case that was already available.

RESULTS AND DISCUSSION

The basic equations considered in the analysis are common to most flight simula-
tion problems. In particular coordinate transformations, the attitude control system and
angular momentum equations commonly reoccur. The greatest variations are in the
addition of aerodynamics, structural effects, and the description of the trajectory which
could cause large deviations from the conclusions of this study. For example, the addi-
tion of nonlinear aerodynamic moments could greatly alter the basic stability of the
angular momentum equations as discussed in the analysis. In some special applications,
the trajectory is computed from the body-axis force equations which are of the form of
the direction cosine rate equations, the constant of motion being the total velocity squared
for no applied forces. The addition of body bending modes and the flutter of appendages
generally raise the frequencies of the problem. The effects of truncation error must
then be reexamined and a higher order integration scheme may need to be applied.

The trajectory calculations of many simulations, in general, exhibit a low-frequency
component, where the frequency of this component is several orders of magnitude smaller
than the frequencies associated with the remainder of the problem. Hence, roundoff error
will generally be a concern. The analysis of roundoff and truncation error should be
helpful in determining the need for concern. Hence, if a particular problem has the local
relative roundoff and truncation error of the same order of magnitude, great care should
be applied to determine the propagated roundoff error. If roundoff error is important,
partial double precision should be applied to as few of the sensitive variables as possible
to obtain a reasonable solution.

Roundoff error has been shown to be a prime consideration on a computer with a
2'7-bit fractional part. Langley Research Center now has available a complex of Control
Data series 6000 computers. The fractional portion of the floating-point word is 48 bits
in this computer series; hence, the roundoff error is reduced by 2-21 as compared with
the error for the Np = 27 bit machine used in this study.

Because of the roundoff error, the choice of integration interval size is greatly
limited for manned simulations of this class of problems on an Ny, = 27 bit computer
(that is, 31.25 msec < h = 50 msec where the lower limit is chosen to control roundoff
error). Greater flexibility is afforded on the 6000 series machines (namely,
2-21 x 31,25 msec ~10-5 msec S£h £50 msec) without roundoff error becoming a serious
problem.
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APPLICATIONS

Langley Research Center now has three Control Data series 6000 computers with
multiprograming capability in a mixed real-time and/or nonreal-time environment.
The prime computer for real-time jobs is a 6600 computer with a 131K)y3 memory.
Most of the problems solved digitally to this date are problems which are clearly too
large or marginally large for the analog-TRICE computer complex (TRICE, a digital dif-
ferential analyzer) at the Langley Research Center. There are several real-time simu-
lation consoles which provide the simulation engineer program control, input, and output
(to change problem parameters). The language used with this computer complex is the
FORTRAN language with a relatively early compiler; the compiler is still relatively
inefficient with regard to central processor time. A brief description of several flight
simulation problems with corresponding vital statistics that have been completed or are

currently in progress follows:

The lunar-orbit and landing-approach simulations were formulated for real-time
digital operation. This problem consists of three separate vehicles each employing six
degrees of freedom and relative geometry between vehicles. All integrations used
second-order Adams-Bashforth and Euler integrations as previously discussed. The
results were largely compared with analytic results and showed good agreement. The
interval size was 1/64 second or 15,625 milliseconds (this size could be increased) which
was chosen to accommodate the minimum impulse of the attitude-control system. The
required central processor time was approximately 7 milliseconds including all overhead.
The memory requirement was approximately 37K)1,. (37K)jq denotes 37 000 in
decimals.)

An Apollo-LEM rendezvous program was obtained by modifying the lunar-orbit and
landing-approach program. The integration schemes and interval size were the same.
The central processor time was approximately 8.5 milliseconds with 24K){ core loca-

tions required.

The lunar-orbit and landing-approach program was again modified for an Apollo-
abort study. Among the features retained in this modification is staging capability. The
central processor time was approximately 7 milliseconds and less than 24K)1g core loca-
tions were required.

The original Gemini-Agena program, the first example problem for the IBM 7094-1I,
was converted for the Control Data 6600 computer. The interval size was 2-9 second
or 31.25 milliseconds when second-order Adams-Bashforth and Euler integrations were
used. The central processor time was approximately 2 milliseconds with 6K)10 core
locations required.
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A simulation program of F-105 and F-86 fighter airplanes has been developed to
study the feasibility of employing research simulators for evaluating the tactical effec-
tiveness of fighter aircraft. In the program, each airplane had six degrees of freedom,
relative geometry equations, and simplified line-of-sight scoring equations. Adams-
Bashforth second-order integration was used exclusively with an interval size of 2-9 sec-
ond or 31.25 milliseconds. The error was less than 0.5 percent when compared with
fourth-order Runge-Kutta check cases. The total central processor time including
input/output and the real-time monitor is approximately 17 milliseconds and requires
less than 40K)qq core locations. (Note that this program includes two complete airplane
simulations.)

The HL-10 lifting body was simulated in full six degrees of freedom using second-
order Adams-Bashforth integration with an interval size of 2-5 second or 31.25 milli-
seconds. The errors were again under 0.5 percent. The total central processor time
was 10.21 milliseconds with 16.5K)1¢g core locations required.

The static test program is a FORTRAN-coded simulation of an orbiting laboratory
of an Apollo telescope mount (ATM) configuration. Six elastic-body modes are incorpo-
rated directly in the model, the other modes being accounted for in a quasi-static model.
The program is being used to evaluate the use of a control-moment-gyroscope system to
generate control torques for attitude stabilization of the telescope mount. This program
runs in a closed loop with three control-moment gyroscope prototypes mounted on a
moving-base simulator. The loop is closed through 14 bits plus the sign, analog-digital-
conversion equipment which transmits the measured torque output of the control-moment-
gyroscope system. There are provisions for external torque input from taped frequency-
modulated analog or discrete crew motion disturbances. The fourth-order Runge-Kutta
integration scheme is used with h = 31.25 milliseconds which is sufficient to keep errors
below 0.2 percent when compared with a nonreal-time solution. The central processor
time is about 19 msec with approximately 16K)1g core locations required.

In addition to these large simulation programs, many small simulation problems
have been studied. Many advantages have become apparent from these small jobs. These
jobs can be used to fill central processor time slots and core positions not used by the
large simulation jobs (which is otherwise filled with background nonreal-time jobs). Many
research engineers are familiar with the FORTRAN language; hence, the research engi-
neer can prepare his own simulation program without relying on highly specialized per-
sonnel. It has been demonstrated that inexperienced personnel can operate even large
digital simulation problems with little supervision.
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CONCLUDING REMARKS

The analysis indicates that the lower order integration schemes, second-order
Adams-Bashforth and Euler, are generally adequate for the class of nonaerodynamic
rigid-body problems. The accuracy of these techniques indicates that these integration
schemes are reasonable starting points for similar flight simulations. In the event of
failure, a simple analysis, similar to those contained in this paper, can often be performed
to indicate the next step in determining a working simulation program. The Adams-
Moulton second-order corrector is a reasonable second step. A relatively efficient com-~
puter program in either case is indicated by the computer results of this study.

The Green's function technique employed to solve the gyroscope equations is exact
when the forcing function is linear over the integration interval. Higher order terms in
the forcing function can be carried in this technique with effectively no added computer
time. This method should be extended to include such effects as nonwindup limiting
(piecewise linearity). This technique can also be extended to other linear and piecewise
linear systems. For example, consideration should be given to the computation of struc-

tural effects where frequencies are often high.

Assuming the control moment to be defined only on the ends of the integration inter-
vals and hence neglecting small time delays in applying thrust was shown to be valid for
the Gemini-Agena example problems. This procedure was also valid for other vehicles.
Clearly, this approximation is dependent on the control system parameters and further
analytical work is needed. However, a simple check by changing the integration interval
size should lend confidence in the solution of any particular problem.

Roundoff error was shown to be marginal on a floating-point machine with a 27-bit
fractional part with an integration interval of 31.25 milliseconds. Partial double pre-
cision was shown to be an effective method for controlling the induced error. Itis
recommended that double precision be used with care because of the additional central
processor time. On machines with a fractional part less than 27 bits, partial double pre-
cision is likely to be unavoidable. In any case, efforts should be made to control the
inherent error and error dominance should be used on short word machines (less than
27-bit fractional part) to locate areas where the induced error is likely to cause difficulty.

Low-order multistep integration techniques were applied to two large simulation
problems and solved on an IBM 7094-1I (a large last-generation digital computer). The
results of these experiments show these problems to be small compared with the capacity
of this computer. Hence, multiprocessing (concurrent processing of more than one prob-
lem but in a dependent manner since all problems must be compiled as a single program)
on the last-generation computer is a reasonable approach to reduce cost. Otherwise, a
smaller slower machine (hence, less expensive) is sufficient for many simulation problems.
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Recent computers with hardware and software oriented toward multiprograming in
a real-time environment (concurrent processing and/or compiling more than one problem
independently) are clearly indicated as desirable for a general-purpose simulation labo-
ratory. Langley Research Center now has a complex of Control Data series 6000 com-
puters with a multiprograming system. This mode of operation has proven to be very
successful in that one or more large real-time simulation programs can be processed or
compiled, with other smaller real-time or nonreal-time jobs giving better utilization of
the computer's capabilities.

The use of FORTRAN as a simulation language is shown to be adequate, especially
in view of the core storage and central processor time required for the several simula-
tion problems discussed, most of which involved two or more vehicles. However, the
efficiency of the FORTRAN language depends on how well the compiler has been adapted
to the computer used. The efficiency of the object code of the 6600 computer used for
this computation is not yet commensurate with the capabilities of this machine.

This investigation has given primary consideration to the simulation of nonaerody-
namic vehicles. The conservative attitude about possible instability when aerodynamic
control is added to the simulation is largely unwarranted. Two rather unconventional
aircraft simulations, the F-105 airplane and the HL-10 lifting body, indicate that the inte-
gration schemes are applicable to a wide class of aerodynamic problems.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., August 21, 1968,
125-23-03-02-23.
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APPENDIX A

GEMINI-AGENA EQUATIONS OF MOTION

By Roland L. Bowles
Langley Research Center

The purpose of this appendix is to present in concise format, with no derivation,
the basic equations used in this study. The following equations have been developed to
simulate the Gemini-Agena configuration in eleven degrees of freedom. These equations
are particularly well suited for simulation of terminal rendezvous and such close-in
operations as station-keeping and fly-around missions. Foremost in the selection of
this formulation was that it meet mission and simulation hardware (visual docking
simulator) requirements and overcome computing difficulties with this class of piloted
simulations.

Equations of Motion

The force equations defining relative motion of the observer vehicle (three degrees
of freedom) are referred to a rotating local vertical axis system centered in the target
vehicle (two degrees of freedom). Polar coordinates (rs,es) are employed to locate the
center of gravity of the nonthrusted target vehicle with respect to inertial space. There
is essentially no restriction imposed on the eccentricity of the target orbits. Basic coor-
dinate systems and relative geometry of the two vehicles are shown in figure 1. Both
vehicles are assumed to be moving over a homogeneous nonrotating spherical earth.

In order to improve absolute computational accuracy and increase effective com-
puter resolution, perturbated equations were used to generate the target orbit. For tar-
get orbits of moderate eccentricity, there are obvious computational advantages to be
gained by transforming the dependent variables to represent deviations from a nominal
circular orbit. In this manner the importance of computer errors for orbital or near-
orbital simulations can be minimized. The necessary dependent variable transforma-
tions are

_Ts _
P =i 1 (Al)

6=%L-1
0 (A2)
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where r, is the radius of the reference orbit, g, is gravity acceleration at rg=rg,
and V., is the characteristic velocity of a vehicle in a circular orbit at radial distance
ro- In equation (A2), V is defined as the tangential velocity at any time (that is,

V= -rsés). For computer scaling purposes, it is advantageous to choose rg equal to
the mean radius of the highest apogee and lowest perigee trajectories which must be
computed. Hence,

hg . h
ro=Te + a_;n (A3)

where rg is the earth radius and hy, and hp are the apogee and perigee altitudes,
respectively. Thus, the nondimensional perturbation variable p will have a symmetric
excursion about p =0, over one orbital period. The degree of symmetry for & depends
strongly on the eccentricity of the orbit to be generated. By using the definitions of &
and p in addition to the well-known Keplarian equations of motion for two-dimensional
orbits and by making use of the fact that the orbital angular momentum is a constant of
the motion, the resulting perturbation equations can be written as

1..=K02+2K0—p Ad
c%2:0 TPVE (A4)

. 1 +K,

QS = -wo[a—+?)—2] (A5)

where woz = %9 and K, is specified from initial conditions (that is,
o]

Ko = 8(0) |r_—1 + p(Oﬂ + p(O)). The coordinates (rs,es) are computed as follows:

rg = ro(1 + p) (A6)
t
Os = 04(0) + go b dr (A7)

Equations (A4) and (A5) are characterized by divisions which have a denominator of the
form (1 + p)! where n is an integer and typically p << 1.

The observer vehicle is located relative to the target local vertical by the three
components of R that is, (ﬁ = x,y,z). Since |R|<< rg for missions considered in
this simulation, the solution can be considerably enhanced by expanding the gravity
gradient which appears in the equation for R and by retaining terms to the desired
order of accuracy. Relative equations which are correct to the second order in the
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gravity gradient were utilized in this study. The scalar equations used to define relative
motion of the observer vehicle are

o 3wn2 T
%+ 205z + 0gz - —2—|p - —2 z =X A8
S S 1+plz) To (1+p)3] m ( )
. . . . 2wn2z 3(.02 1 Ty
7 - 20g% - bgx - 2642 - o __,2°0 /x2+y2-2z2 =4 (A9)
0 ® @1+p)3 2 To (1+p4 ) m
. w2 3we2 T
o0y ye X (A10)
1 +p) To (1 +p)?

where Tx, Ty, and Tg, are components of observer vehicle control forces resolved
in the target local vertical axis system, and m designates the constant mass of the
observer vehicle. Acceleration coupling terms 'és and p resulting from elliptical
target motion are retained. The variables és, és’ p, and p are found from equa-
tions (A4) and (A5).

Components of observer-vehicle thrust forces resolved in the target local vertical
(that is, Tx, Ty, and TZ) are defined as

Tx =211Tx,p + 212Ty,p + 213Tz p (Al1)
Ty = 221Tx p + 2a22Typ + 223Tz (A12)
Tz = a31Tx,p + 232Ty,p + 33Tz p (A13)

where TX,b’ TY,b’ and TZ,b are body-axis force summations and ajj are direction
cosines relating the observer vehicle body axes to the target local vertical. The body-
force summation, for the Gemini thruster configuration, can be written as

Tx,b = Tx+K1 + Tx.Kg + (TY+ + Ty + Tz, + Tz-)Ks (A14)
Ty,b = (Tys - Ty)Kg + Ty - Ty, (A15)
Tz,b = (Tz+ - Tz)Ka + (Ty. - Ty,)Ks + To, - Te- (A16)
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where Tx,, Ty, Tz, Tl[/:l:’ and Ty, are "on-off"' signals of appropriate magni-
tude, and the constants KJ are defined as

K3 = cos 7.6°
K9 = cos 26°
Kg = sin 26°

K4 = cos 26° cos 50
Kg = cos 269 sin 50

No provision has been made for simulating individual jet failures. The direction cosines

ajj are computed as follows:

a1 = byq sin g + b3 cos fg (A17)
ayg = bgg sin 65 + bgg cos g (A18)
ayg = bgy sin 65 + bgg cos 4 (A19)
ag] = -byy cos 64 + byg sin g (A20)
agg = -bgy cos Og + bgg sin 64 (A21)
agg = -bgy cos Og + bgg sin g (A22)

agy = b1 (A23)

agg = by (A24)

agg = b3y (A25)

where 64 has been defined previously (fig. 11) and bij are direction cosines relating
the observer vehicle body axes to inertial space. The bij elements, specified as a
function of four parameters (quaternion elements), are written as
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b1y = 2(a% + d2)- 1 (A26)
by = 2(ab - cd) (A27)
b13 = 2(ac + db) (A28)
bgq = 2(ab + cd) (A29)
bag = 2(b% + d2) - 1 (A30)
b3 = 2(cb - ad) (A31)
b3g1 = 2(ac - bd) (A32)
b3g = 2(cb + ad) (A33)
b3 = 2(c2 + d2) - 1 (A34)

The parameters a, b, c,and d are bounded continuous functions of time and can be
generated by knowing the components of the observer vehicle inertial angular velocity
resolved in the body axes. The x, y, and 2z angular velocity components are defined
as p, g, and r, respectively. Expressed in terms of p, q, and r, the differential
equations defining the rotation parameters are

= %( -pd - qc + rb) K. ae (A35)

=1 A36

= E(pc - qd - ra) K be (A36)

_1

= § -pb + qa - rd) Kece (A37)
1 3
E(pa +qgb + rc) - K¢ de (A38)

where ¢ is defined as
e=a2+b2+c2+d2-1 (A39)

and K¢ is a gain constant which is determined empirically on the computer.
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The angular momentum vector is related to the angular velocity by a linear trans-
formation. By using this basic definition, the body angular rates are computed as

follows:
p=Tp1'Ly +I1p Ly + I13'Lg (A40)
q=1I91'Ly + Igg'Lg + Ig3'Lg (A41)
r =1I31'Lq + I32'Lg + I33'Lg (A42)

where Iij' are the elements of the inverse inertia matrix, and by definition, Iij' = Iji'
(symmetric matrix).

The components of angular momentum Lj, Lg, and Lg can be generated as a
function of time by knowing the external moments acting on the observer vehicle. The
differential equations defining the angular momentum components are

Lq = rLg - qLg + My (A43)
Ly = pLg - rLy + My (A44)
L3 = qL; - pLg + M3 (A45)

where Mj, M,, and Mg are external moment summations resulting from attitude
jets located on the observer vehicle. The moments are computed from the following

Mj = [:(MI)T¢+ - (Ml)Tw_] + KM1>T9_ - (M1)T9J + EM1)T¢+ - (M1)T¢_]
+ KMI)TX+ + (MI)TX_J . EMI) Ty, - (Ml)Ty_] + [(Ml)Tz+ - (Ml)TZ_] (A46)
Mg = [(MZ)T s (Mz)'rg_] + [(MZ)TX_ - (Mz)TXJ - [(Mz)Ty+ * (M2>TYJ

* [(Mz)TZ_ - (Mo)T, J (A47)

Mg = (o), - (g, |+ (- (rg)ny ) = (0o, - G,
- EM3)T2+ + (Ms)p, _J (A48)

Standard convention has been adopted for positive yaw, pitch, and roll.
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The Agena target vehicle is assumed to be passive; however, tumbling capability
in three degrees of freedom was simulated. The equations defining the target rotational
motion are identical in form to those previously given for the observer vehicle, with the
exception My = Mg = M3 = 0. The necessary equations are summarized below:

The transformations relating target body axes to inertial space are

bip' =2(e2 +12) - 1 (A49)
b1y = 2(eg - hi) (A50)
b13' = 2(eh + fg) (A51)
bgq' = 2(eg + hi) (A52)
bog' = 2(g2 + fz) -1 (A53)
bg3' = 2(hg - ef) (A54)
b31' = 2(eh - gf) (A55)
b3a' = 2(hg + ef) (A56)
by3' = 2(h2 + 12) - 1 (A57)

The rotation parameters e, f, g, and h are computed from

:‘12-( -pif - q¢h + rtg) - K eey (A58)
g = %(pth qif - rte) - Kegey (A59)
h = %( -Ptg + e - rtf) K hey (A60)
B= (e + age + reh) - Kfey (A61)
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where €y = e 4 g2 + h2 +f2-1 and K. is constant. The target vehicle body rates

are given as

Py =J11'Hy +J12'Hy + J13'Hy (A62)
qi = J21'H1 + J22'H2 + J23'H3 (A63)
Ty = J31'Hy + J39'Hg + J33'H3 (A64)

where Ji]-' are elements of the inverse inertia matrix, and Hj are components of the
target vehicle angular momenta. The angular momentum components are computed as

follows:
Hj = r¢Hy - qH3 (A65)
Hg = piHg - riHq (A66)
H3 = qHy - pHp (A67)

Simulation Hardware Equations

This section is primarily devoted to the geometric relationships existing between
the target image and the pilot's line of sight. The vector represented by the directed
line segment irom the pilot's eye to the center of gravity of the target vehicle defines the
space line of sight (los). The components of the vector R = -x,-y,-z resolved in the
observer vehicle body axes are given as

Rx o= -(311X + a1y + a31Z) (A68)
Ry o= -(alzx + agoy + a32z) (A69)
Rz o= -(313X + a3y + a33Z) (A70)

Combining equations (A68) to (A70) with the pilot's eye offsets yields

AX = RX,O - Xp (A71)
Ay = RY,Q - Yp (A72)
Az =Ry ¢ - Zp (A73)
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The angles « and B which specify the direction of the line of sight (los) with
respect to the observer are defined as for mirror drives as

a = tan-1 % (A74)
8 = tan-1 ~Az (AT5)
I:(Ax)z +(Ay) 2]1/2

The relative range <that is, 'ﬁlosl) which is used to drive the range bed is com-
puted as follows:

[Rros] = + @52 + (a9 + (a9)7]"/2 (a76)

The direction cosines relating the target body axes to the line-of-sight axis
system are now determined. This transformation is represented by the matrix

D= [qu] los [[J.JY[V]Z, which is obtained by applying three successive simple rotations

about the specified axes. Alternately, the matrix D can be expressed in terms of
known information; that is,

D = gy [o],BB' T (A77)

where [a]z and [BJY are simple rotations about the Z-observer body axis and the new

Y-axis, respectively, and the matrices B and B'T are defined by the matrix elements
given by equations (A26) to (A34) and equations (A49) to (A57). The superscript T
denotes the matrix transpose operation. Expanding equation (A77) yields

di1 = f11 cos o cos B + fg1 sina cos B - f3¢ sin B (A78)
dyg = f19 cos a cos B + 99 sin a cos B - f39 sin 3 (A79)
dyg =13 cos a cos B + fg3 sin o cos 8 - f33 sin B (A80)
dgy = -fy1 sin o + f97 cos & (A81)
d22 = -f19 sin a + f99 cos « (A82)
dgg = -f13 sin a + f93 cos « (A83)
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dgy = f11 cos a sin B + f31 sin o sin B + f31 cos (A84)
dgg = f19 cos a sin B + f99 sin o sin 8 + fg9 cos B (A85)
dgg = f13 cos a sin B + f95 sin @ sin B + f33 cos B (A86)

where fij coefficients are elements of the matrix BB'I. The matrix elements of B
and B' are known functions of time, and hence the fij elements are uniquely specified.
These elements are computed from the following equations:

f11 = b11byy’ + byab1a’ + b13byg’ (A87)
f1g = by1bgy" + bygbag’ + by3bas’ (A88)
f13 = by1b3y’ + bygbgy’ + bygbss’ (A89)
fa1 = baibyy' + bagbya' + bagbys' (A90)
fag = baibai' + bagbga' + bggbag' (A91)
fa3 = bg1bgy' + bagbgy’ + bggbss’ (A92)
f31 = bgib1y’ + bgab1a’ + bygbys' (A93)
f39 = bg1bgy’ + bggbgg' + b3gbas' (A94)
f33 = bg1bgy’ + bagbsgy’ + b3sbss’ (A95)

Cockpit Instrument and Auxiliary Equations

Target azimuth and elevation with respect to the local vertical axis system is

given by
x=tan~1 2 (A96)
5 =tan"1 2 (A97)
Xy
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where
Ryy = -(x cos A + y sin }) (A98)

Range rate is computed for display purposes and is given by

R=XX+yy+22 (A99)
lﬁlosl

where lﬁlosl is defined by equation (A76). The components of Av are computed from
the following definitions:

£
AV = = 5 Tx p 47 (A100)
0 b
et
avy=1 S‘O Ty p dr (A101)
ot
avg =L So Ty 1, d7 (A102)

In these equations, the total mass m is assumed to be constant. The mass changes due
to translational and attitude control jets, respectively, are given by

t
Amgpang = + 5 <ITX+I v |Tx-| + | Tye] + |Ty.] + |Tz4] + ,TZ_D dr  (A103)

gelsp Yo

Amgit = +

t
Zelsp 50 (’TW‘ * ,Tw-, * |T9+l +|Tg-| + 'T¢+] + IT¢_f>dT (A104)

Thus, the percent fuel used by the translational and attitude control systems are com-
puted as follows:

A
Firans = _____mlt:;ans 100 (A105)

Fatt = - 100 (A106)

where F, is total fuel initially in kilograms.
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DERIVATION OF GREEN'S FUNCTION TECHNIQUE

This appendix is intended to give a comprehensive derivation of the Green's func-
tion technique used in this paper. The motivation for this derivation is that the equation

(dgf—z + 2§gwg % + wg2>pg = wgzp('r) (B1)
for the values of ¢( g and Wg for this problem and related problems is difficult to

solve by using standard numerical techniques. The difficulty in solving this equation is
not the forcing function p(7), but is found to be the differential operator on the left-hand
side of equation (B1). The approach used in this paper was to find a different linear
operator, generically different from the differential operator, with the hope that a more
adequate numerical approximation exists for this new operator. Such an operator was
found which cast equation (B1) as an integral equation involving Green's function.

The Green's function of equation (B1l) satisfies the equation (ref. 19)
d2 a G - 1) = w. 25(t -
<-dt_2 + Zngg 3t wg>G(t 7) = Wg 6t - 7) (B2)
The Green's function also satisfies boundary conditions. These values at the boundaries

must be chosen so that a solution to equation (B2) exists and the integral representation

of equation (B1) has a simple form.

Multiplying equation (B1) by G(t - 7) and equation (B2) by pg( 7) and subtracting
the two results gives

N d 9 ) d2 2 d Nevgs
G(t 'T)(m + 28 wg i wg>pg(7) pg(T)(dt—2 + 28gwg 3" Vg Gt - 7)
= wg?[G(t - M) p(1) - py(M 8t - 7] (B3
Integrating equation (B3) on the interval B), t o+ e:] results in
9 t+e
Wg S‘O [G(t - 7) p(7) - pg(’i’) 6(t - 7| dr

= SO Gt - T)(aTZ + Zig’gwg + Wg pg('r) - pg(‘r) w2 + Ztgwg I + W Gt -7 dr (B4
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Performing the integration of equation (B4) with the delta function yields

t+e 1 t+e a2 a2
pg(t) = 50 Gt - 7 p(7) d7 + w_gz gO pg(’T) @G(t -7 -Gt -7 d—Tz-pg(Til dr

28y (tHe d

S i - 7 -cit - DlL

+ g Jo pg(T)I:dt G(t 'rEI G(t T)EiTpg('rEI dr (B5)
Consider the last two integrals of equation (B5). Note that

dat-n=-2at-n (B6)

Then

S;+€ {pg('r) %G(t - Tﬂ - Gt - T)[cl%pg(Tﬂ} dr
- §;+e {pg(T)l: - J + Gt - 7)[ pg(T]} ar

- S't+€ d [g(T) G(t - 7)| d7

t+e

1

1l

(M Glt - 7) (B7)

0
The second integral of equation (B5) is evaluated by integrating by parts. Consider

t+e

t+e a2 d
S‘O Gt -7 Fpg('r) dr = G(t - T)I;:l—Tp(T):I .

Integrating again by parts yields

5";* Gt - )[2 pgﬁﬂ ar =6t - 1| pg(f)] o - [Z 6t - )] ogt) 0
+ S:Jre pg(T)[ G(t - Ti] (B9)

By substitution of equation (B6) and the identity

t+e 4
- g() d’rpg(T) Gt - )dr  (BS8)

t+e

1



APPENDIX B

4 2 92 G- 1) = C‘I%G(t -7 (B10)

t+e

equation (B9) becomes
t+e a2 d t+e d '
Slo G(t - 'r)[(—i—T—z—pg('r)_l d7 = G{t - 'r)]:d—Tpg(’rJ . + Ed—tG(t - 7'] pg('r)

t+e
+ §0+ pg(T)[ G(t - Tﬂ dr (B11)

Substituting these results (eqs. (B7) and (B11)) into equation (B5) yields

0

t+e 1
p® = | Gt - 7 p(7) a7 - AL L py(n) + ]pgﬁ
2¢ t+e
- T,_,_gpg(T) Gt -7 (B12)
€ 0
Evaluating the algebraic expressions at their limits and grouping yields
t+e
pg(t) = 50 G(t - 7) p(7) d7
-1 —LE}(-E) Polt +€) + G(-€) p,(t + eﬂ + 2¢,G(-€) pg(t +€)
wg \Wg g g g g
1)1 . :
. 5;%)—g[e(t) 5y(0) + GO py(0)] + 26,61 pg(O} (B13)

with the convention that f(x) = lim Jﬁ Therefore a solution to equation (B2) is needed
y—>X

which satisfies the following condltlons.

N
G(t) =0 (t=0)
lim G(-t) =0
t—0

;
G(0) = wg2
thm G(t) = hm G(t) = J
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Taking the limit of equation (B13) as ¢ goes to zero yields

t 1 2¢ 1 .
pg(t) = S.o G(t - 7) p(7) dT + [;g-z-a(t) + ?SG(tﬂ pg(0) + @—ze(t) bg(0) (B15)

Adding the further restriction on the Green's function yields
G(0) + 2£,w,G(0) =0 (B16)

The boundary conditions given by equations (B14) and (B16) are needed for the solution to
have a simple form (eq. (B15)) which satisfies the initial conditions of pg(t). A solution
to equation (B2) must be found which satisfies these boundary conditions, that is, if such
a solution even exists.

The existence of the Green's function is shown by finding a solution to equation (B2)
which satisifes equation (B14) and equation (B16). Consider the equation

d2 d 2 _ 9
(@' + 20y &+ wg> G(t) = wg? 5() (B17)

Taking the Laplace transform s of equation (B17) (ref. 19) yields

<s2 + chwgs + wg2>G*(s) = wgz (B18)

from which G*(s) is found, as expected, to be the transfer function of equation (B1)

2

*ron Yo
G'(s) = 7.2 5 (B19)
S& + nggs + g

The inverse Laplace of G*(s) can be found in standard tables to be

2
w
G(t) = %e-ﬁt sin Tt (tz0) (B20)
A1/2
where £ ={,w, and T = wg<1 - 8o The first two derivatives of equation (B20)
are
Loy 2 -t
G(t) = -£G(t) + wge cos I't (B21)
G(t) = -£G(t) - twgZe™tt cos Tt - T2G(YH) (B22)
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for t 20 and by equations (B14)
G(t) = G(t) = 0 (t<0)
Hence, the following boundary conditions hold:
G(0) =0
tli_r)rb G(-t) =0

G(0) = wgz

lim G(t) = lim G(t) =0
t—>o0 t—>c0
From equation (B22)
G(0) = -£G(0) - .gng = -2¢,wyG(0)

Thus, the Green's function of equation (B20) meets all the requirements of equations (B14)
and (B16).

In determining equation (B15), no assumptions were made of the form of p(7).
Equation (B15) is a valid solution even when p(7) is a nonlinear function of Pg-

The remainder of this appendix is centered on the evaluation of the integral. Nor-
mally, initial conditions are zero which is consistent with the usage in the text. Initial
conditions can be incorporated in the resulting integration scheme; this procedure is
shown later in the appendix. Equation (B15) with zero initial conditions is

t
Dy(t) = go Gt - 7 p(7) dr (B23)

which is not in a useful form. The solution would require storage of the forcing function
from the beginning of the problem and the evaluation of a rather complex integral over
increasingly large ranges as the problem progressed. For an efficient integration of
equation (B23), a form needed to be found so that only local information of the forcing
function and values of the integral are needed to propagate the solution. To find such a
form, consider p_(t) to be known at time t and p(7) specified on the interval (t, t + h)
and look at equation (B23) at time t + h; then,

t+h
pg(t +h) = g Gt +h - 7) p(7) dT (B24)
0

74



APPENDIX B
Note that

Gt +h - 1) = —F—z[GT(h) G(t - 7) + G(h) G(t - ’TEI (B25)
w
g

where
w 2 t
GT(t) = —I%—e'g cos I't

Equation (B24) is then

t+h

t+h
polt + 1 =L 67w {7 6t - pn ar+ Lyaey (7 6T - 1 pin) ar

Wg wg

t t+h
= —F—ZGT(h) [go Gt - 7) p(7) d7 + S‘Jr G(t - 7) p(7) d%

Yg t |

t t+h
+ L6 B 6t - nom ars {6l - 1 oo dr} (B26)
0 t

“g

where equation (B26) has the form of an integration over the last interval with the addi-
tion of previously computed information provided the auxiliary computation
t ot
A(t) = 5 G'(t - 7) p(n) dr (B27)
0

is made.

The computation of equation (B27) can be placed in a similar form by using the
same process. Consider

t+h
At +h) = S‘O GT(t +h -7 p(7) dT (B28)
where
Glt+n-7= LZGT(h) T - 7 - —FiG(h) G(t - 7) (B29)

Equation (B28) can then be written

t t+h
At +h) = L.cTm) 5 Tt - 7 p(n ar+ g ¥ GTt - n p( ar
wgz 0 t

t t+h
_%G(h)lj Gt - 7) p(7) d7 + Sl+ Gt - 7) p(7 dﬂ (B30)
wg 0 t

75




APPENDIX B

Substituting equations (B27) and (B23) into equations (B26) and (B30) and writing the
result as a matrix product results in

T t+h
pglt +h) Ty 6 ||pg® + 6t - M p(n) ar
r t

t+h
At+n)| floam ofm)|aw 52 6l - 1) p(n) dr

To this point no approximations or assumptions have been made. The solution is
valid and almost in a form to be realized on a digital computer. At this point many vari-

ations of the evaluation of the integrals leading to various numerical techniques can be

made. An example is the approximation for p(7) on I{t,t +h) of

p(7) = p(7) 8(t - 7)

which leads to the primitive recursive filter.

(See ref. 5.) In this application p(7)

(B32)

is

known to the accuracy of the integration scheme in the moment equations where p(7) is
computed. Hence, p(7) is known to be some polynomial on I(t, t + h):
p(r)=a+br+cr@+. . . fD (B33)

Within this framework, equations (B31) can be evaluated exactly (at least within computer

accuracy). To do this, first change the integration variable by the transformation

X=7-t (B34)
Thus,
dx = dr (B35)
and equations (B31) become
t h |
pglt + h) T 6 |[og® + | 6= bt + %) ax
T 0
= ) (B36)
w
A(t +h) g gt cm)aw + go GT(x) p(t + x) dx
and equation (B33) becomes
n .
plt + %) = Z ajxd (B37)
=0
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Substituting equation (B37) into equations (B36) yields

) _ ) T i
pg(t + 1) afm) o o0 + ) ayy
r j=0
=52 n (B38)
“g
At +h) o) GTwlam + ) ayf
L | B AL j=0 J

where
h .
L = S G(-x)x] dx
0
h .
IJ-Jr = S‘ GT(—x)xJ dx
0
for j=0,1,2.... Rewriting equation (B21) in terms of G(t) and GT(t)
G(t) = -£G(t) + TG (t) (B39)
S0 that
Gt) + 26,0,G(t) = TGT (1) + £G(E) (B40)
Neglecting the integral part of equation (B15) results in
pg(t) = |-5G'0) + 55 G(B)] pg(0) + —5G®) Dg(0) (B41)
w w w
g g ' g
Advancing equation (B41) in time results in
po(t + h) = —-p (0) Gt + h) + [—5-p_(0) + —=p_(0)| G(t + h)
g o.2ve 0.2l . 208
g g
= Lop 0)[GHm) Gt - G G|
wg2 g
(B42)

1 - t t
- [;—25 pg(0) + ngpgmﬂ 6t 6@ + 6o Gt
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Grouping terms in equation (B42) gives

Pyt + h) = w—zgctm) L—éet(o . fgga(tﬂ Pg(0) + ;?pgm) G(t)

I & ate - I 1. t
+ Lz [wng -3 G(tﬂ B0 + 5 500 GO

Comparison of equation (B43) with (B38) yields for p(t) =0

A = [Ei‘z‘c‘t“) . ;I;—ZG(t)] Rl + ZLzhg® 60

The initial conditions to start the integration scheme (eqs. (B38)) are then

pg(0) = pg(0)

A©) = £pg(0) + T54(0)
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TABLE I.- ROOT LOCATIONS FOR EULER PARAMETERS
AND DIRECTION COSINES

Parameter

Euler

parameters

Direction
cosines

Laplace Adams-Bashforth Euler
Time Time Time
constant Frequency constant Frequency constant Frequency
) w/2 From equation (69) | From equation (64)
2,3
1256 |w_ 5 42,3 8 |@_hiwd
43,4 |2 96 ho? |27 24
oo w From equation (59) From equation (41)
116 5.2 31 _2 _ h2e3
13,4 |C 1M 2 |Y T3
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TABLE II.- ROUNDOFF AND TRUNCATION ERRORS

IN TRANSLATIONAL VARIABLES

9, X, z,
Source p radians meters meters
Time, 1008 sec
\ Double precision Runge-Kutta (4th order) -0.00299817 | 1.1991391 | -1179.7356 | -1381.6586 |
. Partial double precision Adams-Bashforth (2d order) -.00299817 | 1.1991391 | -1179.7333 | -1381.6559
\ Single precision Adams-Bashforth (2d order) -.00299756 | 1.1990303 | -1179.5947 | -1381.3930
] Time, 2004 sec
' Double precision Runge-Kutta (4th order) -0.01266422 | 2.3510946 1990.8761 | -1055.6684
" Partial double precision Adams-Bashforth (2d order) -.01266422 | 2.3510947 1990.8720 | -1055.6661
; Single precision Adams-Bashforth (2d order) -.01266017 | 2.3506772 1990.1228 | -1055.2903
: Time, 3000 sec
Double precision Runge-Kutta (4th order) -0.01626021 | 3.4786051 | -2717.4585 486.8879
Partial double precision Adams-Bashforth (2d order) .01626021 | 3.4786052 | -2717.4524 486.88"73
Single precision Adams-Bashforth (2d order) 01625222 | 3.4777238 | -2715.9020 486.6915
Time, 4008 sec
Double precision Runge-Kutta (4th order) 0.00346380 | 4.6313472 | -148.1033 1474.5843
Partial double precision Adams-Bashforth (2d order) .00346380 | 4.6313472 | -148.1018 1474.5815
Single precision Adams-Bashforth (2d order) .00346282 | 4.6297367 | -147.7157 1473.6415
Time, 5004 sec
: Double precision Runge-Kutta (4th order) -0.01052772 | 5.8052815 | -2703.0378 681.0652
~Partial double precision Adams-Bashforth (2d order) -.01052772 | 5.8052815 | -2703.0333 681.0635
: Single precision Adams-Bashforth (2d order) -.01051593 | 5.8027082 | -2701.1182 680.5329




Observer

Earth's center —1,_

Figure 1.- Basic coordinate systems and reiative geometry of target and observer vehicles relative to a geocentric coordinate frame.
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Figure 2.- Local relative roundoff and truncation errors as a function of frequency and interval size for second-order technigues
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Figure 3.- Predicted and computed errors in the norm of the direction cosines for p=g=r =% radian/second

and h = lié second using Euler integration.
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Figure 4.- Predicted, computed, and starting errors in the norm of the direction cosines for p=q =r =L3 radian /second

and h = % second using Adams-Bashforth second-order integration with Euler integration as starting formula.

85



500

T
<+
=
) 400_L
[3)
o
3,
300 .
o T Predicted
[}
H
200_1
M Computed
100 |
0 . , iy
T 7 i
0 40 80 120
t, sec
Figure 5.- Predicted and computed errors in norm of the Euler parameters for p=q =r =‘/% radian/second

and h = IL second using Euler integration.
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Figure 6.- Predicted, computed, and starting errors in norm of the Euler parameters for p =q=r = 1 radian/second

and h
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% second using Adams-Bashforth second-order integration with Euler integration as starting formula.
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Figure 7.- Gyroscope response {solid) to a step input (dashed) for wy = 125 radians/second and Cg = 0.8 with h = 6 3
using the Green's function technique.
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Figure 8.- Gyroscope response {solid) to a ramp input (dashed) for Wy = 125 radians/second and Cg = 0.8 with h= i 3
using the Green's function technigue.
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Figure 9.- Cylindrical shape of uniform density showing location of axes.

r = /R

Figure 10.- 111K as function of the ratio r of length 1 to the radius R.
Regions | and Il refer to the linear and nonlinear regions, respectively.
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Figure 11.- Predicted and computed errors in total angular momentum for 137 = 500.0 kg-m2, [y = 878.9 kg-m2,

133 = 8819 kg-m2, p=g=r =% radian/second and h = 312- second using Euler integration.
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Figure 12.- Predicted, computed, and starting errors in total angular momentum for I1] = 500.0 kg-mz, 22 = 8789 kg-m2,

133 =881.9 kg-m2, p=q=r= % radian/second and h = % second using Adams-Bashforth second-order integration

with Euler integration as starting formula.
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Figure 13.- Time-history plot of p for attitude control step input.
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Figure 14.- Time-history plot of q for attitude control step input.
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Figure 16.- Global error as function of step size h in trajectory variables at t = 5004 seconds for Euler (E} and Adams-Bashforth (AB)

second-order integration over the range %64 second £ h é% second on a 27-bit fractional part machine.
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second-order integration on a 27-bit fractional part machine.
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