
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

4D GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

12 3 4 s^^

T1^2

	 ryf,,	 \,^44f'

'	 f''I ,h^i' ^ I l l q ^

X-562-68-388

PRENI i7

^. 63389

SUPPORT SOFTWARE
FOR THE

SPACE ELECTRONICS BRANCH
ON-BOARD PROCESSOR

$(ACC I NUMBER)	

(CODE)
O	 (PAGES)	 ^ `^

(CATEGORY)

(NASA CR _X O D
N UMBER)

NOVEMBER 1968

t

PRECEDING PAGE BLANK
NOT fIL ED'

CONTENTS

Page

INTRODUCTION 1

SUPPORT SOFTWARE SYSTEM...;,................. 1

Assembler .. 2

Registers....	 3
Instruction Set........" 4

Assembler	 Directives ... 20

Control of Storage Allocation... 	:... 21
Data Word Generation 25
Label Definition and Subscripting....................... 29
Connectives...'.......	 ...:	 30

Relocatable Loader, 30

Simulator.....	 ..,..........	 31

Interrupt Simulation... 31
Input/Output Simulation. 	`...........	 31
Description of Dumps and Traces....... 35
Decimal	 Dump........................ 	 35

..Octal°Dump 35

Control	 Cards........ 42
Simulator Control Cards.....	 47

Inputting Data.....	 53
Stopping and/or Restarting... 53

Diagnostics:.............. 54
Library .:............... r......... 	 54

" PROGRAMMING NOTES......:.....

Input/Output...........' 57
Interrupts.........:....................,............. 60

' Scale	 Register, 000 #.* 60
Program Linkage * 000.00 61
Storage Limit Register.,. , #	,..........
A Programming Example 63

i
i

v

DING pl^G	 ^3^..N1C Nab Ftt-^.

ILLUSTRATIONS

Figure Page

I COMPUTER LISTING OF MAIN PROGRAM (COMBINATIONS)
AND SUBROUTINE (FACTORIAL) 32

2 CORE IMAGE DIAGRAM OF AUTOMATIC CODE AND
DATA RELOCATION ... 33

3 COMPUTER PRINTOUT OF DECIMAL DUMP 36

4 COMPUTER PRINTOUT OF OCTAL 'DUMP 37

5 COMPUTER PRINTOUT. OF DECIMAL TRACE :......E........ 39

6 COMPUTER PRINTOUT OF OCTAL TRACE 40

7 DECK SETUP FOR EDIT AND AUGMENT.., 	 44

TABLES

Table

1 CENTRAL PROCESSOR UNIT FUNCTIONAL REGISTERS 3

2 (M)	 INPUT/OUTPUT FORMAT...................' '59

r°

j

i

s Vii

i

i

INTRODUCTION

The support software package described in this paper was developed-
for use with the On-Board Processor (OBP) - an 18 bit, stored program
digital computer designed for.spacecraft application. 	 For a complete
description of the OBP refer to document X-562-68-387, "A GENERAL
PURPOSE ON-BOARD PROCESSOR FOR SPACECRAFT APPLICATION," dated October 1968.

The guiding philosophy for software development was to make a
powerful hardware system easy to use with the aid of software.	 To this
end a support software system has been developed which allows a pro-
grammer to use either existing English verbs, or define his own set of
mnemonics.	 Other objectives in the development of the software system
were to allow independent programming by OBP users at different locations,
and by its simplicity allow efficient user program construction and
debugging.

SUPPORT SOFTWARE SYSTEM

The support software system consists of an assembler, a'relocatable
F loader, a simulator, a library of math subroutines, and a set of CPU

diagnostics.	 The system was written in Fortran as a step towardsr
machine independence so that OBP'programs`. could be developed at different
locations.

At present, the system has been run and checked out on SDS 920 and
UNIVAC 1108 computers at GSFC, and on a GE 635 computer.at General
Electric Company, Valley Forge, Pennsylvania.	 At GSFC a special inter-
face unit between a SDS 920 computer and an engineering model of the OBP
allows object programs to be loaded into OBP memory and executed.- It
;also permits the transfer of data between,OBP memory and the SDS 920
I/O devices.

The support software system is contained on one magnetic tape.	 The
system requires a card reader, a CPU, a line printer, and three magnetic

'. tape drives (one for the 	 and two scratch). 	 The system which was
written for the SDS 920 computer contains 21 links due to core memory
Limitations.

The OBP assembler accepts punched cards as input; assembles program
segments into relocatable binary code and data and writes the program
segments on a magnetic tape.	 The binary segments can then be selectively
loaded onto a complete image of OBP memory and written on tape.	 The
memory image tape can be used to either load the OBP memory or to serve
as input to a functional OBP simulator, a unit of the support software
system.

A call to a subprogram not found in any assembled program segment
will result in an automatic.library search.	 The library now contains
the following math.functions:	 square root, sine, cosine, arc tangent,
exponential, and logarithm.

Assembler. x

A program to be assembled must be on punched cards and must be
preceded by an assemble, control card. 	 The format of the assemble control
card with an explanation o£ the various options is covered in the section
on control cards.

In order to gain a degree of self-documentation and make the genera-
tion of symbolic code as simple as possible, t1le OBP assembler has the
following unique features:

•	 English language structure - a set of verb phrases have been
- defined rather than the usual set of three letter mnemonics.

4	 Flexibility - if a particular programmer prefers a certain set
of mnemonics, this set may be "augmented" into the assembler
very easily.

•	 Free form — there are no restrictions on where specific fields
are aligned on the input cards.	 More than one machine instruc-
tion may be on;one.card, and text may be freely continued from
one card to the next with no special indication.

•	 Punctuation - free use of standard English punctuation is permitted
since the punctuation characters are treated as blanks. 	 Comments
within parentheses are ignored and are not restricted to one card
in length.

The above features make possible the following two ways of writing
;- OBP code:

EXAMPLE l

Let X times X yield X squared.	 Let Y
times Y plus X squared transformed by
square root yield Norm. 	 If Norm is
not greater than 1 then go to compute
inside the unit circle; otherwise....

r

Z

EXAMPLE 2

LDA	 X
MUL	 X
STA ,	 X2
LDA	 Y_
MUL	 Y
ADD	 X2
BRM	 SQRT

STA	 NORM
IET	 1
BRC	 COMP

In EXAMPLE 1 each line represents an input card, and in EXAMPLE 2
the mnemonics which have been added to the GSFC facility are used.	 In
both cases, it is assumed that a scale register in the OBP had been set-
to.17 resulting in an automatic shift following each multiply.

As seen from the above examples, the assembler recognized LET as a
symbol for the.operation "load accumulator," the word TIMES as a symbol
for the operation "multiply the operand by the accumulator, leaving the
result after shifting in the accumulators" etc. 	 Another feature of the
assembler which applies independently of mnemonics is that the operand
symbol may be of any length, because the assembler treats everything
between two consecutively recognized.operation symbols as an operand
symbol.	 -

Registers - Registers which can be affected by program execution are
listed in Table 1.

TABLE '1

1
Central Processor Unit Functional Registers

-

Register Symbol Length (bits) Function

Accumulator A 18 Used for operand
storage,

Extended EA 18 Holds least significant.
Accumulator half of a double length

operand in multiply/
divide operations.'

i
,;

3

t

Register Symbol Length,(bits) Function

Storage limit SL 18 Controls where writing
into memory is permitted.

Subscript SS 18 Added to address to form
effective address if
subscript bit in

_ instruction word is set.

Scale SC 6 Represents location of
binary 'point for numbers.

Page	 _ P 4 Appended to high order of
12 bit address field to
form 16 bit address.

Carry C 1 Stores a carry out of bit'
17 of the parallel adder.

Decision D` 1 Is conditionally set or
reset when executing test
and conditional transfer
instructions.

OR/AND 0/A 1 Determines whether the
result of tests are to
be ORed or ANDed into
the D register.

Overflow OV 1 Stores the overflow
condition.

MEMORY ACCESS

B B B B B B B B B' B	 B B B B B B B18 17 l6 15 lG 13 12 11 10. 9 8 7 6 5 4 3 2 1

	

Operation	 Sub-	 Operand
script

,r	 NON-MEMORY ACCESS

B18 B 17. B16 B15 sl4 BZ3--_	
86JB5 B4 B3 B 2 B1

I	 Not used	 Operation

With 12 bits of address available, 4,096 memory words are directly
addressable. A memory size as Large as 65,536 wards requires a 4 -bit
page register which can be Loaded and stored under program control and
which is appended as four high-order bits to the 12--bit address field to
form a full 16-bit address. If the subscript bit is set the low order
16-bibs of the subscript register are added to the address to form an
effective address, and the execution time is increased by 2.5 usec. The
thirty instructions which require a memory access may be indexed. Indexing
is specified by usingeither SUBSCRIPTED, or XED between the verb or
mnemonic and the noun or memory location. For example, either LET
SUBSCRIPTED NUMBER or LDA XED NUMBER will result.in a load accumulator
instruction with.bit 13set.so that the subscript register will be added
to the address field at execution: time to form the effective address.

In the following description, the English verb and assembly language
mnemonic which exist in the GSFC 920 assembler are shown.

LET noun, IF noun	 2 0 n o u n
LDA noun

The content of storage at the _effective address is placed
in'the accumulator.
Registers altered: accumulator
Timing: 6.25 uses

LET LOCATION OF noun	 4 0 n o u n
r	 LDL noun

The effective address is placed in the accumulator.
Registers altered: accumulator
Timing: 5.0 uses

i

YIELD noun	 6 0 n o u n
STA noun

The content of the accumulator is stored at the effective
address unless that address is protected by the storage
limit registers.	 If storage is protected, no write into
memory occurs.
Registers altered:	 none

-	 Timings	 7.5 uses

SET EXTENSION WITH noun	 1 5 2 1 n o u n	 '
LDE nou.r

The content of storage at the effective address is.placed
in the extended accumulator.
Registers altered:	 Extended accumulator
Timing:	 6.25 used`

SAVE EXTENSION IN noun	 1 0 n o u n
STE noun

r' The content of the extended accumulator isstored at the
effective address unless that address is protected by the
storage limit registers.;	 If storage is protected, no
write into memory occurs.
Registers altered:	 none
Timing:	 7.5 useC

PLUS noun	 1
0 4 1n o u n

ADD noun

- The content of storage at the effective address is added
to the content of the accumulator and the sum is retained

`. in the accumulator.	 If a carry occurs at the input of the
18th stage of the two's complement adder, then the carry
register is set to one. 	 Otherwise, the carry register is
reset to zero.	 Overflow can occur when two numbers of the
same sign are added.	 Overflow causes the 18th bit of the
sum to . remain in the sign position and the overflow register
to be set ` to one:.

Register altered:	 Accumulator
Carry register
Overflow register (conditionally)

Timing:	 6.25 uses

^.
6

TIMES noun	 4 41n o u n
MUL noun

The content of storage at.the effective address is multi-
plied by the content of the accumulator. The high-order
17 bits and sign of the product are retained in the accu-
mulator. The low-order 17 bits and sign of the product
are retained in the extended accumulator. The double
length product is automatically scaled by arithmetically
shifting the accumulator and the 17 bits of the product in
the extended accumulator the number of bit positions indi-
cated by the content of the scale register. The sign bit
of the extended accumulator is not shifted. If the content
of the scale register is negative, then the shift is right a
and the content of the sign fills positions vacated on the
left so that no overflow is possible. If the content of
the scale register is positive, then the shift is to the
left, with zeros filling positions vacated on the right.

i	 The overflow register is set to one if the sign, bit of.the
accumulator is changed during the shift.
Registers altered: Accumulator

Extended accumulator
Overflow register (conditionally)

Timings If content of scale register	 17, 31.25 + (# of
1's in multiplier + /scale/) r. 1.25 usec
If content of scale register 	 17, 31.25+ (# of
I's in multiplier + scale -15) x 1.25,usec

OVER noun, DIVIDED BY noun	 6 4 nd o u n
DIV noun

The content of the accumulator and extended accumulator
are automatically scaled by shifting them the number of
bit positions indicated by the content of the scale regis-
ter. The sign of the extended accumulator is ignored and,
not shifted. If the content of the scale register is
negative, then the shift is left with zeros filling posi-
tions vacated on the right and if the sign bit of the
accumulator is changed during the shift, the overflow
register is set to one. If the content of the scale regis-
ter is positive, then the shift is to the right and the
content of the sign fills positions vacated on the left so

T"	 that overflow is impossible. The scaled accumulator and
extended accumulator form the dividend that is divided by
the content of storage at the effective address. The over
flow register is set if the 	 of the accumulator is
greater than or equal to the content of storage. The
signed quotient is retained in the accumulator and the
signed remainder is retained in the extended accumulator.

7

The remainder has the same sign as the dividend and has.a
magnitude less than the divisor.
Registers altered:	 Accumulator

Extended accumulator
Overflow. register'(conditionally)

Timing:	 If content of scale . register	 17, 87. 5 + /scale/ ,.
x 1.25 uses
If content of scale register 	 17 9 87. 5 + (scale
-15) x 1.25 uses
In either case, add 7 . 50 usee	 if divident	 0

PLUS CARRY	 10 010 010 6
ADC

The content of"t:he carry 'register is added to the content
of the accumulator. and the sum is retained in the accumu-
lator.	 If a carry occurs at the input of the 18th bit of
the two's complement' adder, then the carry register is set
to one.	 Otherwise, the carry register is reset to zero.
Overflow can occur and will cause the 18th bit of the sum
to remain in the sign position and the overflow register
to be set to one.
Registers altered:	 Accumulator

Carry register
Overflow register (conditionally)

Timing:	 5.0.usec

NEGATED
NEG

The content of the accumulator is replaced by its two's
complement.	 Negating all zeros yields a result of-zero
and-sets -the carry register to one.Negating the number
that has zeros in all bit positions except.the sign yields
the same number as a-result and sets both the carry register
and the overflowregister to one.	 Other than these two
special cases, the carry register to reset to zero.
Registers altered:	 Accumulator

Carry register
Overflow register (conditionally)

Timings	 5.0 used

ANDED WITH noun	 3 0 n o u n
ETR noun

The content of storage at the .effective address is anded
with the content of the accumulator. 	 The result is retained
in the accumulator._	 The 18 bits of the result are computed
independently with a one occurring in a bit position of the

f

^:

_	
8

r

result only.i£ the accumulator and-storage both contained
a one in that bit position.
Registers altered: Accumulator
Timing: 6.25 uses

ORED WITH noun	 15 0 n o u n
MRG noun

The content of storage at the effective address is ORed
with the content of the accumulator. The result is
retained in the accumulator. The 18 bits of the result
are computed independently with a one occurring in a bit
position of the result if either the accumulator or storage
contained a one in that bit position.
Registers altered: Accumulator
Timing: 6.25 usec

EORED WITH noun, EXCLUSIVELY ORED WITH noun	 17 -0 n o un]
FOR noun

The content of storage at the effective address is exclu-
sively ORed with the content of the accumulator. The
result is retained in the accumulator. The 18 bits of the
result are computed independently with a one occurring in
a bit position of the result if either the accumulator or
storage, but not both, contain a one in that bit position.
Registers altered Accumulator

j
Timing: 6.25 usec

COMPLEMENTED	 0 010 0 1 0
CMP

The content of the accumulator is complemented and the
result is retained in the accumulator. The 18 bits of the
result are computed independently with a one occurring in
a bit position of the result only if the accumulator con-
tained a zero in that position.
Registers altered: Accumulator
Timing: 5.0 usec

SHIFTED BY noun	 1 4 n o u*i
SHF noun

The low-order 6 bits of.the content of storage at the
effective address is used as a two's complement shift
count. If the count is negative, then the accumulator is

f

	

	 shifted right the number of positions specified by the
count, with the content of the accumulator signreplacing
vacated positions on the left. If the count is positive,

r	 j

9	
,

I:

then the accumulator is shifted left the number of posi-
tions specified by the count with zeros filling vacated
positions on the right. The overflow register is set to
one if the sign bit.of the Accumulator is changed during
the shift.
Registers altered: Accumulator

Overflow register (conditionally)
Timing: 6.25 usec + 1.25 used per position shifted

DOUBLE SHIFTED BY noun	 3 6 1 n o u n
DSH noun

The low-order 6 bits of the content of storage at the
effective address is used as a two's complement shift
count. The accumulator_ and the extended accumulator are
shifted together. The extended accumulator is to the
right of the accumulator and its sign , bit -is not shifted.
If the count is negative, then the accumulators are
shifted right the number of positions specified by the
count with the content of the accumulator sign replacing
vacated positions on the left. If the count is positive,
then the accumulators are shifted left the number of
positions specified by the count with zeros filling
vacated positions on the right. The overflow register is
set to one if the sign bit of the accumulator is changed
during the shift.
Registers altered: Accumulator

Overflow register (conditionally)
Timing: '6.25 used + 1.25 usec per position shifted

CYCLED BY noun	 3 4 1 n o u n
CYC noun

The low-order 6 bits of the content of storage at the
effective address is used as a two's complement shift
count. If the count is negative, then the content of the
accumulator is shifted cyclically right the number of
positions specified by the count, with bits leaving the
low-order position entering the sign position. If the
count is positive, then the content of the accumulator is
shifted left the number of positions specified by the
count with bits leaving the sign position entering the
low-order position. 	 t
Timings 6.25 usec + 1.25 usec per position shifted

10

DOUBLE CYCLED BY noun
DCY noun	

5 61n o u n

The low-order '6 bits of the content of storage at the
effective address is used as a two's complement shift
count. If the count is negative; then the content of the 	 !.
accumulator and extended accumulator is shifted cyclically
right the number of positions specified by the count with
bits leaving the low-order position of the extended accu-
mulator entering the sign of the accumulator and bits
leaving the low-order position of the accumulator entering
the sign of the extended accumulator. If the count is
positive, then the content of the accumulator and.extendea
accumulator is shifted left the number of positions speci-
fied by the count with bits leaving the sign of the
entended accumulator entering the low-order position of
the accumulator and bits leaving the sign position of the
accumulator entering the low-order position of the extended.
accumulator.,
Registers altered: Accumulator

Extended accumulator
Timing: 6.25 usec + 1.25 usec per position shifted.

NORMALIZED	 0 0 0 OF 4
NORM,

z

The content of the accumulator and extended accumulator is
shifted left until the 17th and 18th bits of the accumu-
lator are different. The sign bit of the extended accumu-
lator is not shifted. Bits leaving the 17th bit of the
extended accumulator enter the low-order position of the
accumulator. Zeros fill the positions vacated on the
right. A count of the number of positions shifted is
retained as a 6-bit positive number in the scale register.
If the content of the accumulator and positions 1 through

4	 17 of the extended accumulator are zero, then the scale
register is set_to zero.
Registers altered: Accumulator

Extended accumulator`Y	

Scale register
Timing: 5.0 usee + 1.25 usec per position shifted or

26.25 usec if accumulator and extended accumulator
are both zero.

CLOSE EXTENSION WITH DECISION	 0'0 0 Oil 3
LDD

4	 The content of the accumulator and extended accumulator is
shifted left one position. The sign of the extended

li

accumulator is not shifted and the vacated, low-order
position of the extended accumulator is filled with the
content of the decision register.	 The overflow register
is not altered.
Registers altered:	 Accumulator

Extended accumulator
Timing:	 3.75 used

TRANSPOSED	 0 0 0 0 1 2
FLP

The contents of the accumulator are reversed. 	 The (19-n)th
and nth bits are exchanged for n=1,2,...9.
Registers altered:	 Accumulator'
Timing:	 3.75 usec

USE SUBSCRIPT noun	 5 4 n o En]
LDX noun

The content of storage at the effective address is placed
in the subscript register.
Registers altered:	 Subscript register

:.; Timing:	 5.0 usec

^.. SAVE SUBSCRIPT IN noun	 1 7 4 1 n o u n
STX .noun

The content of the subscript register is; stored at the
effective address unless, that address is protected by the
storage limit registers. 	 If storage is protected, no
write into memory occurs.
Registers altered:	 none
Timing:	 7.5 useo

STEP SUBSCRIPT BY noun	 0 2 1 n o u n
ADX` noun

The content of-storage at the effective address is added
to the content of.the subscript register. 	 The 18-bit
result of the two's complement addition is retained in the
subscript' register.
Registers altered:	 Subscript register
Timing:	 6.25 uses

_12

THEN GO TO noun 	 4 21n o u n
BRC noun

It the content of the decision register is zero, then the
next sequential instruction is executed. if the content
of the decision register is one, then the content of
storage at the effective address is placed in the instruc-
tion counter and execution proceeds from the address speci-
fied by the instruction counter.

ti	 The decision register and OR/AND register are reset to

s zero.
Registers altered: Decision register

_OR/AND register
Timing:. 5.0 usec

GO TO noun, RETURN FROM noun	 6 21n o u n
BRU noun

The content of storage at the effective address.is placed
in the instruction counter and execution proceeds from the
address specified by the instruction counter.
Registers altered: _nonei	
Timing: 5.0 usec

TRANSFORMED BY noun, PERFORM noun	 0 6 n o u n
BRM noun

i

	

	 The content of the instruction counter-plus one is stored
at the effective address unless that address is protected
by the storage limit registers. If storage is protected,
no write into memory occurs. The content of one location
greater than the effective address i.s placed in the instruc-
tion counter and execution proceedsfrom the address
specified . by the instruction counter.
Registers altered: none
Timing: 10.0 usec

AND	 0 00-0 l 1

The OR/AND register is set to one.
Registers altered: OR/AND register
Timing: 3.75 usec

a

1
`	 L3

J

a	 E

IS LESS THAN noun 	 12 61n o u n
ILT noun

If the content of the accumulator is less than the content
of storage at the effective address, then the test condition
is set to one.	 Otherwise, it is zero.	 The OR/AND register
being zero specifies that the test condition is to be ORed
with the content of the decision register and the result
is to be retained in the decision register.	 The OR/AND
register being one specifies that the test condition is to
be ANDed with the content of the decision register and the

ti
result is to be retained in the decision register.
Registers altered:	 Decision register
Timing:	 6.25 uses	 >:

IS EQUAL TO noun	 4 61n o u n
IET noun

- If the content of the accumulator is equal to the content
of storage at the effective address then the test condition
is set to one.	 `Otherwise it is zero.	 the OR/AND register
being zero specifies the test condition is to be ORed with
the content of the decision register and the result is to
be retained in.the decision register.	 The OR/AND register
being one specifies the test condition is to be ANDed with
the content of the decision register and the result to be
retained in the decision register.
Registers altered:	 Decision register
Timing:	 6.25_usec

IS GREATER THAN noun	 6 6 n o u n
IGT noun

If the content of the accumulator is greater than the
content of storage at the effective address the test
condition is set to one.	 Otherwise, it is zero. 	 The
OR/AND register being zero specifies that the test condi-
tion is to be ORed with the content of the decision
register and the result is to be retained in the decision
register.	 The OR/AND register being one specifies that the
test condition is to be ANDed with the content of the
decision register and the result is to be retained in the

..

i

14

.a _

decision register.
Registers altered:	 Decision register
Timing:	 6.25 use c

IF OVERFLOW	 10 0 0 010 1
TOV

If the content of, the overflow register is one, then the
test condition is set to one. 	 Otherwise, it is zero.	 The
overflow register isreset to zero.	 The OR/AND register
being zero specifies that the test condition is to be ORed
with the content of the decision register and the result
is to be retained in the decision register.	 The OR/AND
register being one specifies that the test condition is to
be ANDed with the content of the decision register and the
result is to be retained in the decision register.

-	 Registers altered:	 Decision register
Overflow register

Timing:	 3.75 usec

IF PARITY ODD	 10S,
IOP

If the number of ones in the '18-bit accumulator is odd,
then the test condition is set to one.	 Otherwise, it is
zero.	 The OR/AND register being zero specifies that the

5	 - test condition`'is to be ORed with the content of the deci-
sion register and the result is to be retained in the
decision register.	 The OR/AND register being one specifies
that thetest condition is to be ANDed with the content of
the decision register and the result is to be retained in
the decision register.
Registers altered:	 Decision register
Timing:	 26.25 uses

IS POSITIVE	 0 010 0 0 3
cz

• If the sign position, bit. 	of the accumulator contains
a zero, then the test condition is set to one. 	 Otherwise,
it is zero.	 The OR/AND register being zero specifies that

- the test condition is to be ORed with the content ofthe
decision register and the result is to be retained in the
decision register. The OR/AND register being one specifies
that the test condition is to be ANDed with the content of
the decision register and the result is to be retained in
the decision register.
Registers altered: 	 Decision register
Timing:: 3.75 used

i
15

_i-

t

IS EQUAL TO ZERO	 0 010 01,2 1

IEZj

If the value of the contents of the accumulator is equal
to zero, then the test condition is set to one. 	 Otherwise,
it is zero.	 The OR/AND register being zero specifies that
the test condition is to be ORed with the content of the
decision register and the result.is to be.retained in the
decision register.	 The OR/AND register being one specifies
that the test condition is to be ANDed with the content of
the decision register and the result is to be retained in
the decision register.
Registers altered:	 Decision register
Timing: 	 3.75 uses

IF SUBSCRIPT IS NOT GREATER THAN noun 	 2 21n o u n
XNGT noun

If the content of the subscript register is less than or
equal to the content of storage at the effective address,
then the test condition is set to one.	 Otherwise, it is
zero.	 The OR/AND register being zero specifies that the

_test condition is to be ORed with the content of the
decision register and the result is to be retained in the
decision register.	 The OR/AND register being one specifies
that the test condition is to be ANDed with the content of
the decision register and the result is to be retained in
the decision register.
Registers altered:	 Decision register
Timing:°	 6.25 used

8.75 usee	 if subscripted

IS FALSE 0 010 0 1 7
CPD

The Decision register is complemented
Registers altered:	 Decision register
Timing:	 3.75 usee

PASS 000002
NOP

No operation is performed other than the automatic
incrementing of the instruction counter.
Registers altered:	 none
Timing:	 3.75 usee

,: -	 16

HALT 000000'
HIT

The processor stops indefinitely.	 An initiate signal
-must be supplied from an external source to start the
processor.
Registers altered:	 none_
Timing:	 none

EXECUTE noun	 1 2 n o u n
EXU noun

The.content of storage at the effective address is used as
the address of the instruction to be executed.	 The instruc-
tion counter, is incremented by one unless it is changed by
the execution of a transfer-type instruction.	 If the
machine attempts to execute an EXECUTE noun, the program
proceeds with no operation being performed.
Registers altered:	 those associated with the instruction

executed.
Timing:	 5.0 usee + executed instruction timing.

SET SCALE WITH noun 3 2 n o u n
LDS noun

The low-order 6 bits of the content of storage at the
effective address is placed in the scale register.
Registers altered:	 Seale register
Timing:	 5.0 usee

LET SCALE 0 0 1 0 0 2 0
SSA

The content of the scale register:is placed in the low-
order 6 bits ofthe accumulator.	 The high-order 12 bits
of the accumulator are set to zero'.
Registers altered:	 Accumulator
Timings	 3.75 usee

SET PAGE 000012
LDP

' The content of bits 13 through 16 of the accumulator are
placed in the page register.
Registers altered:	 Page register
Timing:	 3.75: u see,

_ 17

RESET OVERFLOW 0 0 0 010 7
ROV

The content of the overflow register is set to zero.
Registers altered: Overflown register
Timing:	 3.75 usec

RESET DECISION 0 010 012 3
RED

The contents of the decision register is set to zero.

- Registers altered: Decision register
Timing:	 3.75 uses

EXIT 0 010 0 1 6

This instruction initiates interrupt number . 16 and uses
locations octal 200 through 207.	 Upon completion, execu-
tion proceeds normally using the new value in the instruc-
tion counter.
Registers altered: Limit register

interrupt priority register
Page register
OR/AND register
Overflow.register
Carry register
Decision register
Scale register

Timing:	 35.0 uses

RESUME FROM noun 7 21n o u.n

TIN noun

The content of storage at 0e effective address is used
as the starting address of an interrupt storage area.. This
instruction reloads the registers that were saved at the

occurrence of an interrupt. 	 Upon	 r mpletion, execution
proceeds normally using the new value in the instruction
counter.
Registers altered: Limit Register

Interrupt priority register
Page register
OR/AND register
Overflow register -

Carry register
Decision register
Scale register

Timing:	 21.25 usec

'	 = 18

CONNECT TO noun	 1 61n o u n
IO noun

The content of storage at the effective address is sent to
the I/O unit as a command.	 This word must have a zero in
bits 17 and 18 to denote the establishment of a cycle steal
channel.	 Bits l through 16 specify the data channel and
block length.	 The content of the accumulator is stored at
Iodation seven.	 The content of location seven is then out-
put as a starting memory address to the I/O unit.
Registers altered:	 none
Timing:	 11.25 usec

LET FUNCTION TO noun	 1 61 n o u n
IO noun

The content of storage at the effective address is sent to
the 1/0 units as a command.	 This word must have a zero in
bit 18 and a.one in bit 17 to denote that bits l through
16 are a function, code.
Registers.altered:	 none
Timing:	 5.0 usec

OUTPUT TO noun	 1 61n o u n
IO noun

The content of storage at the effective address is sent to
the I/O unit as a command. 	 This word must have a one in
bit 18 and.a zero in bit 17.	 Bits 1 through 16 denote the
data channel for an.output,device.	 The content.of the
accumulator is stored at location seven. 	 The content of
location seven is then output as data to the I/O unit.
Registers altered:	 none
Timing:	 11.25 usec

LET INPUT FROM noun	 11 61n o u n
IO noun

The content of storage at the effective address is sent to
the I/O unit as a command. 	 This word must have a one in
bits 17 and 18.	 Bits 1 through 16 denote the data channel
for an input device.	 The.I/O unit stores one word of data
at location seven.	 The content of location seven is then
placed in the accumulator
Registers altered:	 Accumulator
Timing:	 11.25 usec

19

I

Assembler Directives

Assembler directives are used to pass information to the assembler
concerning a particular program to be assembled. The assembler directives
are loaded in with the source program and enjoy the same freedom from fixed
card format as does the symbolic program statements. These directives
have affect only for the program with which.they are assembled and their'
affect begins when they are encountered during the assembly process. For
convenience, the assembler directives can be delineated into four cate-
gories according to their usage or function in the program. These cate-
gories are.

a. Control of storage allocation

• START THE FOLLOWING INSTRUCTION AT LOCATION

• START THE FOLLOWING`DATA AT LOCATION

• ASSIGN	 LOCATIONS FOR

• ALLOCATE	 LOCATIONS FOR

• END OF THIS PROGRAM SEGMENT

b. Data Word Ganeration

• PREDEFINE	 AS THE VALUE

• PRESET	 VALUES OF	 TO THE CONSTANTS

• THE RADIX FOR NUMBERS IS DECIMAL

THE RADIX FORNUMBERS 7S OCTAL

• THE SCALE FACTOR FOR NUMBERS IS

• THE SCALE FOR NUMBERS IS

•	 OCTAL

•	 DECIMAL

•	 SCALED

C. Label Definition and Subscripting

• DEFINING

• DEFINING FOR EXTERNAL USE

20

A

•	 SUBSCRIPTED

d. Connectives

• LET IT

• IF IT

• BE

• OTHERWISE

• AND ALSO

Control of Storage Allocation

START THE FOLLOWING INSTRUCTIONS AT LOCATION number
START THE FOLLOWING INSTRUCTIONS AT LOCATION noun

This directive allows the user to alter the assembler's
automatic `.assignment of storage by specifying the origin
of the following group of instructions. This allows
specific arrangements of various sequences of instructions
both in relation to themselves and to the memory capacity
available to the particular program. The origin is the
location in memory from which the sequence of instructions
will be executed. If number is used, then the origin will
be the absolute memory address equal to the number speci-
fied. If noun is used, then the origin will be absolute
provided the noun in question has been previsouly assigned
a numeric value. Otherwise, the origin is subject to
relocation by the loader._ Once this directive has been
encountered, the verbs are assembled as having addresses
beginning with the value of noun or number and increasing
by one for each succeeding_ instruction until either an END
OF THIS PROGRAM SEGMENT or another START THE FOLLOWING
INSTRUCTIONS AT LOCATION 	 is encountered.

Restrictions: number should be positive and smaller than
the memory size. It is the user's responsi-
bility to be sure that the same absolute
locations are used only once.
noun should have been previously used with
the directive DEFINING noun or with the
directive ASSIGN noun TO LOCATION number.	 j
The storage allocation of relocatable
sequences of instructions and relocatable
sequences of data words in independent
during assembly and loading. No distinction

21

is made during loading between instructions
and data words with absolute addresses.

Examples:	 START THE FOLLOWING INSTRUCTIONS AT
LOCATION 4095
START THE FOLLOWING INSTRUCTIONS AT
LOCATION . OCTAL 3777

START THE FOLLOWING INSTRUCTIONS AT

LOCATION LABEL 2

START THE FOLLOWING DATA AT LOCATION number
START THE FOLLOWING DATA AT LOCATION noun

This directive allows the user to alterthe assembler's
automatic assignment of storage by specifying the origin
of the succeeding data addresses. This allows specific
arrangements of various sequences, of data words or data
addresses in relation to themselves and to the memory
capacity available to the particular program. The origin
is the location in memory where data words or data addresses
will begin at execution time. If number is used, then the
origin will be the absolute memory address equal to the
number specified. If noun is used, then the origin will
be absolute provided.the noun in question has been	 -
previously assigned a numeric value. Otherwise the origin
is subject to relocation by the loader. Once this direc-
tive has been encountered, data words generated by
PREDEFINE and `PRESET-and nouns specified in ALLOCATE and
ASSIGN noun will be assigned data addresses beginning with
the value of noun or number and increased by one for each
succeeding address until, either an END OF THIS PROGRAM_
`SEGMENT or another START THE FOLLOWING DATA AT LOCATION

is encountered.

Restrictions number must_ be positive and smaller than
4096. The relocatable data origin of the
support, software loader may be altered by
the user to cause.relocatable data to be
loaded anywhere in the On Board Processor's
memory.	

-

noun should have been previously used in an
ASSIGN, ALLOCATED, PREDEFINE, or PRESET
assembler directive.
The storage allocation of relocatable
sequences of instructions and relocatable

"	 sequence of data words is independent
during assembly.and loading. No distinction
is made during loading between instructions
and data words with absolute addresses.

22

Certain data addresses are not assigned
until the END OF THIS PROGRAM SEGMENT
directive is encountered.
These includes the data address for
constants used as the object of machine
verbs, the data address of the indirect
address for the noun used as.the object of
GO TOt THEN GO T0 9 TRANSFORMED BY, PERFORM,
and RETURN FROM machine verbs; the data
address of nouns used as the objects of
machine verbs that did not appear in ASSIGN,
ALLOCATE, PREDEFINE, or PRESET directives

Examples:	 START THE FOLLOWING DATA AT LOCATION 3999
START THE FOLLOWING DATA AT LOCATION OCTAL
100
START THE FOLLOWING DATA AT LOCATION MATRIX

ASSIGN noun 1
ASSIGN noun 1 TO LOCATION number
ASSIGN noun I TO LOCATION noun 2

This assembler, directive provides a method of assigning
nouns which represent data to : specific memory locations.
It is not necessary to assign all nouns storage locations
because the assembler will automatically assign one loca-
tion for each noun that is used only as the object of a
machine verb. The first case causes noun 1 to be assigned
the next available data location and causes the data loca-
tion counter to be incremented by one. The second case
causes noun 1 to be assigned the absolute memory address
specified by number. The data location counter is not
changed. The third case causes noun 1 to be assigned to
this same memory address as noun 2. If noun 2 has previ-
ously been assigned an address then the data location
counter is not incremented. If noun 2 is unassigned when
this directive is encountered, then both noun I and noun 2
are assigned th6 next available data location and the data
location counter is incremented by one.

Restrictions: Multiple assignment of noun 1 is allowed
but only the last assignment is used as
the address to be placed in machine-instruc-
tions'.
number must be positive and less than 4096.
When the next.available-data location is
used, the noun is relocatable or absolute

4	 according to the'most recent data origin

r	 that has been established.

23

Neither noun1 nor noun 2 may be used as
the object of GO TO, THEN GO TO, TRANS-
FORMED BY, PERFORM or RETURN FROM machine
verbs.	 Nouns	 for 'these verbs refer indi-
rectly to a position in the instruction

-	 sequence and must be defined by the
DEFINING or DEFINING FOR EXTERNAL USE
assembler directives.

Examples:	 ASSIGN ALPHA
ASSIGN L TO LOCATION LONGITUDE
ASSIGN COMMON DATA TO LOCATION OCTAL 7000

ALLOCATE number LOCATIONS FOR noun	 -

This directive is used to reserve data storage for a
vector or array whose name is designated by noun. 	 The
number of locations reserved for the noun vector is
specified by number.	 The noun is assigned the next
available data location when this directive is encoun-
tered.	 The data location ' counter is then incremented by
number.	 In a program, noun will usually appear preceded
by SUBSCRIPTED.	 During execution the subscript register
would typically contain a.value between 0 and number -1.

Restrictions:	 noun must not have appeared previsouly in
an ASSIGN, PRESET, or PREDEFINE assembler
directive.	 However, noun may appear in a
subsequent PRESET or PREDEFINE assembler
directive and retain 	 address assigned
when allocated.	 If noun appears in a
subsequent ASSIGN statement, its address
will be changed.

Examples:	 ALLOCATE 100 LOCATIONS FOR TEN BY TEN
MATRIX
ALLOCATE OCTAL 77 LOCATIONS FOR TABLE

END OF THIS PROGRAM SEGMENT

This directive is used toinform the assembler of the
end of a program.	 Upon encountering this directive, each
machine instruction has been assigned either a relocatable
or absolute instruction address. 	 After this.directive is
encountered, nouns that have not appeared in ASSIGN,

, PREDEFINE, PRESET, or ALLOCATE assembler, directives and
constants used with machine verbs will be assigned data

-	 storage.

24

1

Restrictions This directive must appear physically as
the last sentence of input to the assembler.
The next input card is expected to be a
control card with a semicolon in column one.

Data Word Generation -

PREDEFINE noun AS THE VALUE literal

This assembler directive may be used to initialize a data
location to a fixed constant. If noun has previously been
assigned a data address via a PREDEFINE, PRESETS ALLOCATE,
or ASSIGN directive, then the literal will be loaded into
memory at the assigned address. Otherwise, noun is
assigned the next available data location and the data
location counter is incremented by one. The literal will
be loaded into memory at the assigned address reserved for
noun. The value of noun may be moeified during execution,
by.machine instructions, that stored into memory.

Restrictions: The memory address where the literal is
initialized is not changed if noun is
subsequently assigned another data loca-
tion. If the same memory location is
initialized more than once, then the last
literal value will be in memory when the
program is executed.
The literal constant will be converted to
an 18-bit, two's complement data word. If
the literal contains a decimal point and
the radix is decimal, then the literal is
multiplied by the scale factor for numbers.
Otherwise the literal is taken as it
appears. In,both cases only the integral
part of the result is used and it must be
less than 21 7 in magnitude.

Examples:	 PREDEFINE COUNT AS THE VALUE 10
`	 PREDEFINE APERATURE AS THE VALUE -27.3127

PREDEFINE MASK AS THE VALUE OCTAL 770077
PREDEFINE PI AS THE VALUE SCALED 32768
3.1416

PRESET.number VALUES OF noun TO THE CONSTANTS literals 	 {

This assembler directive may be used to initialize
successive data locations to a set of fixed constants.
If noun has been previously assigned a data address via

25

I

00-P

a PREDEFINE, PRESET, ALLOCATE, or ASSIGN directive, then
the first literal will be loaded at the assigned address
and the data location counter is unchanged.	 Otherwise,
noun is assigned the next available data location.
Storage is allocated for number locations by incrementing
the data location counter by number: 	 The sequence of
literals will be loaded into successive memory locations
starting at the address assigned to noun.	 In a program,
noun will usually appear preceded by SUBSCRIPTED. 	 During
execution the subscript register would typically contain
a value between O and number -1.	 The preset values may
be modified during.execution by machine instructions that
store into memory.

Restrictions:	 The memory addresses where the sequence of
literals is initialized is not changed if
noun is. subsequently assigned another data
location.	 If the same memory location is
initialized more than once, then the last
literal value will be in memory when the
program is executed.
The literal constants will be converted to
18-bit, 'two "s complement data words.	 Each
literal that contains a decimal point and
has a decimal radix is multiplied by the
scale factor for numbers. 	 Other literals
are used as they appear. 	 In both cases,
only the integral part of the result is
used and it must be less than 217 in mag-
nitude.
number must be equal to the number of
constants.	 If noun was previsouly assigned
a data location, then no check is made to
determine if the number of 	 s constants 'o	 x
larger than the storage allocated to noun.

Examples:	 PRESET 5 VALUES OF TABLE -1 TO THE.CONSTANTS
10 9 -21.3127, OCTAL 770077,	 SCALED 32768, 99

THE RADIX FOR NUMBERS IS DECIMAL

This assembler directive is used in conjunction with the
directive THE RADIX FOR NUMBERS IS OCTAL, and directs the
assembler to use 10 as the base or radix inthe conversion
of numbers appearing in the program to their binary equiv-
alents.	 This base is used from the occurrence of this
directive until either the directive END OF THIS PROGRAM
SEGMENT or THE RADIX FOR NUMBERS IS OCTAL appears. 	 The

26

4

assembler will interpret all numbers appearing in the
program as decimal numbers if no radix directive is used.

THE RADIX FOR NUMBERS IS OCTAL

This assembler directive is provided for those ` situations
in which a large number of octal constants are used. It
directs the assembler to use eight as the base or radix
in the conversion of numbers appearing in the program to
their binary equivalents. This.base is used from the
occurrence of this directive until either the directive
END OF THIS PROGRAM SEGMENT or THE RADIX FOR NUMBERS IS
DECIMAL appears. The assembler will interpret all numbers
appearing in the program as decimal numbers if no radix
directive is used.

Restrictions: Numbers converted using octal radix may not
contain a radix point and must contain only
the digits 0 through 7.

THE SCALE FACTOR FOR NUMBER IS number

This assembler'drective.changes the scale factor that the
assembler uses for converting numbers, which contain a
decimal point, to binary. The whole and fractional part
of a number containing a decimal point are multiplied by
the current assembler scale factor, number. The assembler
uses a scale factor of 1.0 if no scale factor directive
occurs. The scale factor number is used until either the
directive THE SCALE FACTOR FOR NUMBERS IS or END OF THIS
PROGRAM SEGMENT appears.

.Restrictions: number is always converted to binary with
a scale factor of 1.0.
Octal numbers that contain a radix point
will not be scaled.

Example:	 THE SCALE FACTOR FOR NUMBERS IS 1000."
LET .307 (METERS) YIELD MILLIMETERS PER FOOT.,

THE SCALE FOR NUMBERS IS number

This assembler directive accomplishes the same function as
the previous directive. The difference is that the scale
factor for converting numbers is computed as 2 exp (number

17); i.e., numbers will be scaled for the'scale,register
setting specified by number.

rk

27

verb OCTAL number

This assembler directive modifies the base or radix to
eight for converting number to binary.	 This directive
supersedes the directive THE RADIX FOR NUMBERS IS DECIMAL
for conversion of this one number. 	 The verb may be most
machine verbs and most assembler directives. 	 The form
OCTAL number may be used anywhere number could be used in
the assembly language.

Restrictions:	 number may not contain a radix point and
must contain only the digits 0 through 7.

Example:	 LET OCTAL 37777 PLUS OCTAL -101

verb DECIMAL number

This assembler directive modifies the base or radix to 10
for converting number to binary. This directive supersedes
the directive THE RADIX FOR NUMBERS IS OCTAL, for conversion
of this.one number.- The verb may be most machine verbs and
most assembler directives.	 The form DECIMAL number may be
used anywhere number could be used in the assembly language.

Restrictions:	 If the directive THE RADIX FOR NUMBERS IS
OCTAL; has not been used, then the radix will
automatically be decimal.

Example:	 LET DECIMAL 99 TIMES DECIMAL 3.14.

verb SCALED number literal

This assembler directive causes number to be used as the
scale factor for converting literal to binary. 	 The whole
and fractional part of literal are multiplied by number.
The integer part of the product is the resulting binary
number.	 This directive supersedes the directive THE 'SCALE.
FACTOR FOR NUMBERS IS for conversion of this one literal.

Restrictions:	 number is always converted with a scale
factor of 1.0.
literal must contain a decimal, point and
the current radix must be decimal.

Examples:	 LET SCALED 1000 .297
PLUS DECIMAL SCALED 100 47.25

28

Label Definition and Subscripting -

DEFINING noun

This assembler directive is used to define a position in
a sequence of machine instructions. The noun should
appear somewhere in this program segment as the object of
a GO TO, THEN G0 T0t RETURN FROM, TRANSFORMED BY, PERFORM,
or EXECUTE machine verb. A data location will be assigned.,.
for noun when the END OF THIS PROGRAM SEGMENT directive
is encountered. This data Location will be preset with
a value equal to the instruction address where the DEFINING
directive occurred.

Restrictions: The only other assembler directive that
noun may occur with is START THE FOLLOWING
INSTRUCTIONS AT LOCATION noun.

{	 When using noun as the object of_LET-,
PLUS-, and YIELD-type machine verbs, the
data location referred to by noun is
expected to contain an instruction address.
If noun is used asthe.object of TRANSFORMED
BY or PERFORM machine verbs, then two
successive locations are preset to the
instruction address where the DEFINING
directive occurred.

DEFINING FOR EXTERNAL USE noun

This assembler directive is used to define a position in
a sequence of machine instructions that may be referred
to by other separately assembled programs or subroutines.
The noun may appear as the object of GO Tot THEN GO TO,
RETURN FROM, TRANSFORMED.BY,, PERFORM, or EXECUTE'machine
verbs in this program and other programs. A data loca-
tion will be assigned for noun when the END OF THIS
PROGRAM SEGMENT directive is encountered. Two data ioca-
tions are reserved and the second is preset with a value
equal to the instruction address where the DEFINING FOR
^ TERNAL USE directive occurred.

_Restrictions: The only other assembler directive that
noun may occur with is START THE FOLLOWING
INSTRUCTIONS AT LOCATION noun.
noun may be used as the object of LET-,
PLUS-, and YIELD-type machine verbs only
-in the program where it is defined.. The
data location referred to by noun is

-expected to contain an instruction address.

verb SUBSCRIPTED noun

This directive is used between a machine verb and its
object noun. Bit position 13 of the machine instruction
is set to 1. When the machine instruction is exe-uted,
the data address referred to in memory is that of noun
plus the content of the subscript register.

Restrictions: verb must be a machine verb that requires
a noun.
noun will normally appear in an ALLOCATE,
PRESET, or ASSIGN assembler directive.

Example:	 LET SUBSCRIPTED VECTOR TIMES SUBSCRIPTED
VECTOR YIELD PARTIAL DOT PRODUCT

Connectives

Connectives do not generate machine instructions or assembler.
directives but function only as a means of making the assembly language
text more readable, while preserving the verb-noun syntactic pattern.
Upon recognition of a connective, the assembler continues with the pro-
cessing of the next syntactic element. .The following is a list of the
connectives:

• LET IT

IF IT

• BE

• OTHERWISE

• AND ALSO

Connectives may be used anywhere a verb may be used. They
may not be used as nouns.

Example:	 LET A PLUS B YIELD C. LET IT PLUS D YIELD E.
IF IT IS LESS THAN 5 THEN GO TO ALPHA.
OTHERWISE GO TO BETA.
SET EXTENSION WITH X2 AND ALSO LET X1 BE.
RETURN FROM THIS ROUTINE.

Relocatable Loader

The assembler produces relocatable code and data except when it
encounters a directive, such as START THE FOLLOWING DATA AT LOCATION

30

Elm

I	 number which uniquely specifies where this code or data will be located.
This means that code or data addresses are relative to the beginning code
or data address assigned by the loader such that programs and data sets
will be automatically stacked in core without overlap and without unused
storage locations. The beginning bias for data and code is presently 210
and 4000 octal respectively, where locations O to 210 are used for input/
output and interrupt storage, and 4000 octal is the mid-,point of a 4K
memory module. As will be ,seen in the control card description, these
starting biases may be altered. Figure l and Figure 2 illustrate the
assembly of a program to calculate the combinations of n things taken k
at a time and how the assembled program and data would be loaded into
memory for execution. This example shows two assemblies - a main calling
program and a subroutine which returns n: Figure 1 lists the two programs
to be assembled, COMBINATIONS and FACTORIAL. Figure 2 indicates how
these two programs would be loaded into OBP memory where the data for
COMBINATIONS occupies locations 210 through 221 and the data for
FACTORIAL is between location 222 and 234, all numbers being in octal
The code for COMBINATIONS and FACTORIAL are loaded into locations 4000 -
4023 and 4024 - 4046 respectively. Another feature of the loader is that
a binary tape can be built up which contains many assembled program
segments and certain of these assemblies can be selectively loaded.

Simulator

The functional simulator reads the absolute memory image tape
created by the loader into core and simulates the execution of that
program. When a HALT is encountered, the simulator prints out statistics
concerning simulated running time and frequency of instruction usage. By
means of various control cards, the simulator may be made to give selec-
tive tracing and/or dumping-in either an octal or decimal mode. Control
cards are also available for specifying periodic interrupts, simulation
of input from the I/O unit, and such miscellaneous capabilities as halts
treated as no-ops and restarting after a - halt has been executed.

Interrupt Simulation - At the completion of each simulated instruction,
the interrupt processor senses if any of the 15 external interrupts
appeared during the simulation of the previous instruction. When an
interrupt appears, the comment: INTERRUPT n HAS APPEARED AT time is
written on the printer. If the interrupt cannot be honored immediately,
it is saved and the word SAVED is printed on the same line as the above
comment. If an interrupt is currently being saved and another of the
same number appears, it is lost.and the word LOST is printed. When an
interrupt is honored, the comment: INTERRUPT r. HONORED AT time is printed,

In 	 Simulation - When an I/O instruction is simulated, the
content of storage at the effective address is sent to the simulated I/O
unit as.a command. The simulated I/O unit interprets-bits 17 and 18 of
this function word to determine. the function code and interprets bits
I to 16 to identify the I/O device.

31

a
	

a

Wz0 0
V) H

H
o.000W za

0 zPa xd
d x 3 Hyy4

fAV^	 z FU) NO1-4
A E4 WO

0
W

H H A HW O	
E+ch
	 •O

`^

O E-4
0

Ho
^	 ^HW C7	

W aW
0 %.0 E/) w

	
a

cAnUO
C W a ^H

0^oE-44ow
zz0U^ ax .Hawc^^,

t^HC-'^aA
W H C' H H L9, PEI E-

E-4	 Q rX4 Pd

o wow	 o E-^o^n	 arxx
b a	 w H H

H H
W Hx o w	 PQ U

Pa

C-4 Ln 5+	 .4 w	 Z rz

E-	 -:4 z HW H zAZW ^ W W
cq a a H 	 0 E- U) a	 y-4	 ^^-, Cd P4

0 H E- OEn a0 HF40 W H	 '4
M Pd W >+ WW	 H P4	 U) H H

O O
H

a ca	 H^cna HH^	 64 PWgW
^HP4 HP4 z V	 H a	 a
HE-4f4W W • M	 OH TWA	 AE+

a d WO H a E-4 	E-4 ^-+ FZ4 1-4	 A G1 a	 E+
^W AW zz

Ht/1 V]A
?^

^	 v]zO
^+
W W	 zP U)	 W

hl	 W W C/] W P4	 Hu
O O H Z Z

z
C7 °

C/1	 ZH	 WO
A	 E^ R4	 C7

OE-+E+H H W H0 W W A	 W	 to W
to CJ H H P: u a z z O ^/] ^]	 W z a W aQ U)p'H+

W
W fs Pr4FZIW W	 ZAPaW

zOHH	 ax

r4	 W a
HgHaH	 0

PS P4 P5
•

z 	 W W z
x

A'Qr-7H
W

pC WfsaH	 ^^
Ŵ'1+cWd

P'+
P4	 P4
0	 OHa'

H O	 W
1-4H	 0

P.
P4

^ E-4	 .
P4 	 W H m m w

O W	 zfZ4 31:44	 y+aaN U) O 0214dE-+. U)

W HZZ,ZHW W	 W H W C7^cwi^C7o 00 E-4g 1-41-41-4A ^P4
::D P4 P4H000 W U z z Hz	 zZU

0 W ^T4 W z P4 P4 H H.0 (^ O H w 3 H P4 H H fraH
Z P4

Q g
t^W W WFF^^U)H000CJ O Pa' zA94Zwzz0

H a AA WA
(g-) (g-) W

H
	 0 _a HE-+W H3 HH

W x	 x W W d W
W

Z A W	 H^z, ` W W z144	 -WA lY
G4PaHc/)f

W
04 Z z^Pg xw-3

C
A••OA^AA Ww W HW HW ^ W

Z 0 a 0

0Hd4 0

H
x d' xE-4 H

OC7 rZa
0O P4w a f^>

a
W A W AaP^ aa^

i

INTERRUPT LOCATIONS

DATA

(COMBINATIONS)

DATA

(FACTORIAL)

DATA

(OTHER PROGRAMS)

•

•

•

CODE
(COMBINATIONS)

CODE
(FACTORIAL)-

CODE
(OTHER PROGRAMS)

•

•

•

When the I/O instruction is simulated, the OBP simulator writes the
following comment on the printer:

.We contents of effective address IS SENT TO I/O UNIT.

When the I/O simulator interprets the function word and successfullyi
carries out the operation, it continues this comment by writing one 'o£
the following phrases on the same line.

Function Code	 Phrase

0	 No phrase

1	 No phrase

2	 THE DATA WORD contents of the accumulator IS OUTPUT
TO I/O DEVICE Bits 1 to 16, of function word.

3 THE DATA WORD next available data word for the
designated I/O device IS INPUT FROM I/O DEVICE
Bits l to 16 of function word.

NOTE

The current simulation time is also printed with
the above comments. It should be noted that the
I/O comment-is printed •regardless of whether or
not the simulation is being traced.

Function codes O, 1, or 2 may specify an I/O device identification
ranging from 0 to 2 16-1. However, the I/O device identification is
limited to 0, 1, 2, or 3 for function code 3 for simulation purposes. If
any other device identification is specified, the comment

ILLEGAL I/O DEVICE SPECIFIED

will be written on the printer and the I/O operation will be considered
complete with no further action.

If function code -3 specifies a legal I/O device, say 	 which has no
more data, the comment

OUT OF DATA FOR I/O DEVICE n

will be written on the printer and the I/O operation will be considered
complete with no further action. When the input/output simulation is
completed, the next sequential instruction is simulated.

34

Description of Dumps and Traces - A dump is a printout of the contents of
memory and generally comprises two parts: data and code. By means of
the several simulator control cards, the user can control the dump to
suit his needs. A dump may be decimal or octal; the entire memory may be
dumped or just a-specific segment. A dump may be printed upon simulation
of a HALT instruction or at any specific point in the program execution.
Likewise a trace, the printout of register contents during execution, has
almost as many optional forms as the dump and is also user controlled to
suit specific needs. Examples of dumps and traces with their various
columns explained are discussed in the following paragraphs.

Decimal Dump - A decimal dump is a printout of memory within specified
limits at a particular time (refer to Figure-3). The first column on the
left is the decimal address. The-entire dump is broken into several
sections, the first of which is always a printout of the content of the
interrupt locations. The remainder of the dump comprises a scaled decimal
printout of the content of memory at the data locations occupied by the
various programs and subroutines located 'within the specific limits of
the dump, and a verb-noun listing of the code locations. The name of the
program or subroutine is given as a heading and is followed by the initial
and final addresses of the segment of memory which it occupies. Each
program or subroutine is printed out in two parts: data (a decimal
listing of the data words and their addresses) and code (a verb-noun
listing of the code words and their addresses).

Octal Dump An octal dump is a printout of.mecrmory within specified limits
at a particular time. There are two columns of initial octal addresses
and 16 columns of octal code or data words (refer to Figure 4). Starting
from the left, column l and column 10 list the initial addresses of the
following eight memory locations. Each set of eight columns (columns 2
through 9 and columns 11 through 18) presents a printout of the content
of memory at that particular location. The entire dump is broken into
several parts, the first of which is always a printout of the content of
the interrupt locations. The remainder of the dump comprises a printout
of the contents of memory at the locations occupied by the various programs
and subroutines located within the limits of the dump. The name of the
program or, subroutine is given as a heading and is followed by the initial
and final addresses of the segment of memory which it occ;pies. Each
program or subroutine is dumped in two parts:' data (an octal listing of
the data words and their addresses) and code (an octal listing of the
code words and their addresses).

35

O
O

O O
O 0 -

O
-O 00 0O_

O	 -O 0%0(3%O 0O -
O ..O

0%0 0,
..a, O

- a • a0
'-'

10,
z
^ N

z z z zMA z z N A

O 00
00

O
0

O

O
00
0000

0
OO_ O 00 O OÊs4]

p 00 ^snn O îy+..r.v O
ggvvtn

PdẀ â
714

N vvvo
F+HHH

a+
L2p7

14

O O 0 N 0 0 0
V

0 00 00 0 A0 010
a^	 O	 O

00 dH7 0
-0 CN0 cO Ha. WC4FA PG O.. O

O rn0 W0	 UNV O O P	 3PE-4 O
• U	 C V C̀

44

•
rWnn
	 V) E1s/)̂ 41

0
41.

,
EyE-4

N

.
0

000 OO	
ON..

0000 v

0

0p a

O 0 0 \ N A A co -
^a

0 0 Q g	 q 0 0 0
op 0000

as	
E+H

_°o °o

NN	 N o
°o U

0 00

H
>-4>4 H a 00 0

0 0o o0

0

0 •• •	 • M
tn %o
cn

000
ID 00 Q

Ln NN.
}1

1
ID to ODrI
N N ,. w

HH

O O .n 00 W
O

9r4O	 H ^o O O O- 00 Cl) 00 'Y' of' O O T z ' O 7.00 .a o 0 0
N W

00
00

o
N

H o 0 0
0 0 O O O O O

(r^^1

0 C0

0 — OO n W ^A-4z^ ^ 0O zr-1 rd z ^i
pUWG

0 ^ -	 -
- 00O O Ei 00O O WAO 0	 O	 - 0000

--
H

OO. WA •j•• 6
A

•• xx	 W ,+	 W N.4 W A • V.
z (n v. F	 fQ ^D A ..

A
N

zz

-	 6 O I O W_Hayq	 M

`01 H E+ ` 00jH	 Wa"^^,aa""a^
E4 E-4

W az	
zb
H

o o
C/) 1^cnacn..

W	 E

o
2
Hif1 0 U

M O
En
	 F-f'. W _ \̂Y'

Q

H
	

1-4	 a
^.. _

_	 W H r1 ►1 of}	
O

to to	 O Cl)
4

In
ul 0 C	 I0..Y M	

%o "N -^-i CO	 r- 1lr-	 00 - O
0

-

N NN	 N N N N

I
0̂ n n n00
N N N N N

36

a
000 0o ^D

o ^O
O

N
NO O

o ^t

-	 -
OO

N
N

N
N -

-- O O O

O to Ln
.	 n O N N

- O O OO - O

O MCD
" O N N

O O Np C-4 ^D

O
O

N
N

NNO O O
O •D

O O N N
O O N N
OO OO O It

-	 - ^4
o
O O O O u

-O O N C-4

O
N4 m 0

Oo N • O O.
O O O OO O O O.

0
41

- -lo N H O M •1-IOO O. N O N ^..1_.^
- ' O O O O O' N pd

-.	 - 00 0 O N

p p Mp .3-I-. O N o. ci

O'-- 00.O O o-.O Oto O ON oO
e	 - -O O O N .D O

- 0 O O O It O O }..^
. O O O .O .o oO_ _ bo

.	 .. o O .4 vl' M Cl) O N - ll- o

O ^-	 -00OOO O
NOO

OOO
OITO

NOOOOO '-1-M
O-oO 4It

NOIt
OO -

O O O O O N O O o o N o
0 0 OH .. ra O M O O O O .t O

- O OOo
N
O

N
O

O
d

r4 N
NN 1N O

Ot.N
1 N 7+O

O
OO

7
- O OO O.OO

OO O'OO
OO O OO %DD rl

N -N OO
O

NO
O_

OON
H0
W

OO
O

HOWOo
O o -A o O .0 ,-{ W' r-I n t N v; O W

-	 - 00
c4
u; OO qO

.4 ^4
N N n NO

N
N Hti'

O
O' qOto

7-.
O O -v
0 0

-.	 O
O

v O O
•o d

C
O
.t- Wq

O
o

q O
O

U
O O O N

b r-I •D
A

O U z O H
-

-
O O O r-1 O N It 'D .tN W o -

O
W
P4U.

O
O OO O

H
[

O
O

H
[-+

rl .
N N

.i
O

l-4 N K.O O O
a O O ZZ^ o N O 0.S O P4 O - V o U

-	 - O O H •D - M N O O O •D o 0
O N v

^zU'-1
'G N Z -	 ,

^
O O.

V
Orl U

O O
O C14 d'W N W N FFFF----1111

__
O (C-3o O .Ott O -. M I?°v^_

.._z 00.. -O 00 -O 0 ((aa^^ W

37

Decimal Trace (Figure 5)

Column Explanation

LABEL This heading refers to the words in the first
column that stand alone on a line.	 These words
are the labels used in GO T0, THEN GO T0,
TRANSFORMED BY, RETURN FROM, and PERFORM
instructions.

INSTRUCTION This column gives a fully spelled-out listing of
the instruction being simulated.

OPERAND This lists the first 12 characters of the operand
name used with the instruction if the name is
available.

OPERAND VALUE This column gives the value of the operand
stored in memory converted to a decimal number
using the current value of the scale register to
position the decimal point:

ACCUMULATED RESULT This column presents the accumulated result after
the simulation of each instruction converted to
a decimal number using the current value of the
scale register to position the decimal point..

TIME This column lists the cumulative total time in
microseconds for the execution of instructions.

Octal Trace (Figure 6)

Column Explanation

IC This column lists the value contained in the
Instruction Counter for each simulated instruc-
tion.	 The words that appear in this column but
stand alone on a line are the 'labels used in GO
TO, THEN GO TO, TRANSFORMED BY, 'RETURN FROM, and
PERFORM instructions.

INSTR This column gives an 8-letter abbreviation of the
instruction just simulated.

OPERAND This lists the first twelve letters of the oper-
and name.used with the instruction if the name
is available.

_.
38

__

N

uy

	

000- On o Ono O On o o 	 in o inoo to	 o in bn U1 u1 Oh Lo

	

Ono N1nO N
• • • •	 •

il v1	 0

	

h . nO N uyO N^(1 ^A :h N	 1n0 NN hNu1 h.Nu1•	 • • • 	 ♦ • 	 •	 •	 •	 -	 s

	

" 0 0in HI- in 4n N to N'0 in 'H Ih it)H1-,N Co 0 H	 NO ID ID M r .4 h M H 1-1
H 	-.1 't	 v1 irlin U)inIninNh Lnin if) 	 10101010 %D10 ID in

ul

	

O O	 00000 OOO	 0000a 	 O- O. - 000 	 000000Pi 0 - O O O O O 000 0 0 0 O O O O w O O O 0 0 0 0 0 000 00000 000 00000 0 O U O O O 0 0 0 0 0 00A O O " 0 0 0 0 0 0 0 	 00000 O O H 000 - 000000

	

w rnm 00000 D+D.o	 00000	 rn	 rn y 000 000000rnrn 00000 a+rnrn 00o00 rn a. w 000 OOOOOorn rn 00000 rnmrn 00000 rn rn A O o 0 0 o 0 0 0 0

	

D, 01	 O 0000 a, m D`	 00000 	 D•	 D`	 000	 000000

	

a% D+	 0 0 0 0 0 m N D`	 0 0-0 O O	 a`	 a` ti O 0 O00000 OQ`	 00-000 D^ a: 0^	 000 00	 D\	 D^ O 000	 000 C 00
i	 U H a,	

N H H H40% 13, H	 H	
t-4

	

 (71	 M M co	 Py M M N N N

O0OOO0O
j

	

0 0 00000 OOO 0 0 0 0 0 O O 	 000 OOOOOO

	

O O 0 0 0 0 0 000 OOOOO O 0 	 000 000000(

	

00 0 0 0 0 0 000 0 0 0 0 0 O -0	 0 0 0 000000

	

0o 00000 OOO - 00000 O - O	 0 0 0 000000

	

Orn 00000 morn 00000 rn D+	 000 000000

	

5 Orn 0o000 0%001 00000 rn rn	 000 000000	00,	 0 00 00 rn O rn	 00000 	 t7%	 rn	 000 	 0 0 0 0 0 0i	 O O,	 00000 m 0 a+	 O O O O O	 D+	 D`	 0 0 0	 0 0 0 0 0 0

	

-- O D+	 1>0000 010D'..	 00000 	 D1	 d\	 0 0 0	 o 0 0 0 0 0

	

0 0^	 0 0 00 0 - a+ O a^ 	 00 0 00	 D`	 rn	 C', 0 0	 % 10 09 0 0
-	 WM N	 N H H H H- H H rid - H HAH	

m	 ^	 M M co	 M M M H N.N -
O 	 H	 -	 H r-1	 H	 H	 Inf	 in	 -

OO-OO
i	 Q

A

H
E

	

H	
'Ww	 ti{̂a^{y ^ 	 N wv q	 v in

o z h zI7.Z 4	 zpCh zHzzH	 w	 zzw zMzHzz
P

-	 OO

V	
,^...	

E4 _

	

k,	 v fr
frr,.,	 f^,O Ŵ-y^ v	 P.

N	 ';H	 H vyi C^H	 H..	 HV-1)H	 0 O
rn cngo - t^vW :.v^ao ...rn ..w. z -^. o " ^Fa --n

N!.,

39

V
co

p
H

f^
A
4
O
4J
0

^I

P4

4

^
0
0

bo

w

N

rn

^htn 4 NCO M _" 0 0^M ŵf}10 X00hN CO U1 N 00 MOMH^ ^.nbN r,.. M CO ^	 ntn r4
H.	

MMMMMM d+'1'y' .N7'.M7 7 .Mt .M7 to to
tM. tt An N to ubi Ul T M M 'pf rp ^^ '%'D' 00 OD'Nhhh

•

H

O tl tl 0 0 0 0 0 O. .O 0 0 0 0 0 0 0 00
. 000000000 p ' 	 00000 O 0 O	 0000 -

1s O O O O O S A O S O O O O S c47 5 0 0 0 O S 000 0 000 00000 O O O W 8 198 000 0W 000090080 ' 	 OOOOOOOOO 000000000 OOOOO 00 O 0 O O O O0000 O SS 0 O 0 0 0 0 0 0 0 0 0 O O O.O 0 000 0 0 00000 O

	

	 O O O d O O O OW
^D HtO NMh^DhO

o

HtONM h 10h0 1O H1O NM . h ^O -0 In 0NM hN Ln A 0'00"N M N M M N N N M NMNMONNNM N M N M M N N N M N M N MM M N N 14	 H H H NN N N N N N NN N N N N N N N N N N- N N N N N N N N N - N N N N N N N N O N N N (13 V000000000 0 0 0 0 0 0 0 0 0 -- . 00000 O O O 04 0000 Cd000000000 O000000OO '000000000000000000 '00000 O O O W 0000000000000 000000000 000000000 00000 O O 0 0 0000O
DC 000000000 000000000 000000000 00000 00 O 00 0000

000000000 - 00000000 .0 08.0.000000 000050" 00 O O 0000 4J
to 00008000 00 	 - 0 0 0 0 0 0 0 0 0 ".000000000 . 	 0 0 0 0 0 O O O O 0000 VN 008000800 '000000000 0 0 0 000000 000000 S O O 0 0000 000000000 000O0OOOO 000000000 00000 O o 0 N 0000
M 000008000 000000000 0 0 0 0.0 0 0 0 0 00000 O O O 	 0000 O00000 0 000 900000000 0 00000000 00000 O 0 O	 0000

0 H 0 N M h ID h O ID H •D N t'M'h ID h O	 ID i4 0 N M h N U1	 O HO ^D N	 '7N MNMMNNN M NMNMMNNNM N MNMMNNN M N M N M M N N- H 	 H H H N 0NNNNNNNNN N N N N N N N N N 'N N N N N N N N - N N"N N N N N N	 N N N N
FFF...	 0 0 0 0 0 0 0 O .O - 0 O O .O O O O O O- 000000000 00000 00 O	 0.000

c N-NONIt 10 NN 0'N Nt C14
ŝ

10 10 NNON4 N -40^ NN.OD NIt N% 0,410 0100

to 	 H H H H H H H H4 H H H H H H H H4 4 -H H H H H H H H H 4 H H H H H H	 -"H H H H p'lN N N N N N N N N- N N N N N NN N N -N N N N N N N N N N N N N N N N N 	 N N N N

. O OO 0 0 0 0 0 0

	

008000000 . 	 0O0000000 00000 O 0 0 M 0060000000000 O o 000000 . 000000000 O OOH O 00 O O 0000 41H H H H H H H H H H" H O H H H N000000000 . 000000000 000000000 00000 00 0 0 0000 a.

000000000

 . 	 0 0 0 0 0 0 t7 O O. 0 0 0 0 O O O O O O O o 0 0 0 0 O ° 000 0000000000 000000000 000000000 00000 00 0	 000r7 O000000000 000000000.000000000 00000 00 o C 0000 O000000000,000000800 OOo000000 00000 0 0 O F 0000000000000 OOO O O 0 .0 01' 0 0 0 000 0 0 0 0 0 0 0 0 0 0 O d, 0000O00000000 000000000 000000000 00000 0 O O ^Aaa 0000

to It d It d N 0 0 0 d M M M M p 0 0 0 MNNNNOOOO N H,4 H H -o o O G M M M M

	

H H0000000 O 00 N H 	 s-1 M M M 0 o.O o o M ^O %D %D 00000 ID 10 %O	 O 000
U - 0.00 00 Mtn U1 U1 00000U1.hhh 000009 %0 0 00000 %D 10 0

fZL
000000000014H" 0 0 0 0 O Hd 4 00000 d H H H 00000 H H H H O O O000000000 00000 0 0 00 0 0 0 0 0 o H H H 0 0 0 O o -41-1H	 0 0 0 0000000000 000000000 000000000 -00000 0 0 0	 000

	

 0	 Jy .
b0

to H d N M N d 0 N d H M N M 8 M O N M H N N M O N O N N H H N M O U1 o	 H M M N A04	 0 0 0 O d N 0,4 C l) 0 0 0 O d H O M M 0 0 0 0 d M O ID M -00004 W O ID	 000.-4

O	 0.00 OO M O to o o o o o o to o h o 00009 h o t0 o 0 0 0 0 0 t0 o 0	 0 0 0!3
`•F.1 - 0000400"4 O o 0 0 1* O4 0 4 ' 0000 . 4O H4 4 0 0 0 0 t H d H. • 000 -000000000 00000000 000000"40 00000 Ho H F 000000000000 0 0000OO0O0 000000000 00000 00. 0 H 10000

Gz^	
x

H 0W

RC	 aC .Fa.^
F̂

7	 {ay4 ,
H
.1 .H7	 psi F

	
.
E4 ,.7

	 E-4
	 cHi	 H w	

Htaw	
zz {

t
a
p

.	 W	 ẑz (1s
N
s^^ (VcA{^^i

r1 "	
to ({rr^^ (bW

zi H	 t
zzo (sD

CWn^ U W 0	 V

-	
0	

xHZNCP47...04h z 4zN6axP4h . z H ?+N IYiZa 6h 'Z H _zCq 	,4w W" '7..
H^y

o (may - ^w	 p ry. 	 (^ ŵ	 ^y	 p ŵ 	 W 0
H	

(N l-I N

N U' H	

o {[

H

^y
(̂ a-fit N t7

N

l{.-^1	

-H

(^a-^l

 to U' H1},^^W - HH

^7
N

1
8 H	

1r,^

N
p\yWH z6

W—WON

H 7tHZ, âj C7 N 7+H
W
H

r_. Hp
W .^+0 y' W XHpH W RH. x W pF H H 'LHW (wr4 H 8 H	 H t-7 F H C7 - rd r' '^+ M [i ^-7 C9 Yt 00 H p+ ri FFF

NMd to oh OHN NM dN 0hO -HN NMd 00 h0HN - V) It 	 M gt ^to O .^O 1^OH

	

^^ MMMMMMd d MM M MM m d	 MMMMMMddd M ppMMMM d.t O ^D -oOHH6,)	 000000000 0 It OOOOM	 0003003 .0Y.Ot0 0st Ot ^s07 sOt. sOt OsOt	 soi'0i'.Ot
 PO

H	 .T44 8 8 4 d d d d d d dd	 3333 d7	 .J^
. 0000000070 1-7 00000000000^OOO p OO p0 O0 O0 .O 0000 0OO HO iC 0000000000000 t' 1'	 0000000 000008	 00000	 -00Jo 91 0000

40

Octal Trace (Figure 6) (Continued)

Column	 Explanation

MOR	 This is_a printout of the value contained in the
memory operand register:`after each simulated
instruction.

AC
	

This column shows the value contained in the
accumulator after each simulated instruction.

EA
	

This column shows the value contained in the
extended accumulator after each simulated
instruction.

ACDO
	

This lists the value contained in each of the
following one-bit registers AND/OR, carry,
decision, and overflow after each simulated
instruction.

S
	

This column presents the. value of the scale
register after each simulated instruction.,

MEM
	

This, is a printout of the contents of memory at
the address indicated by the instruction counter
prior to simulation of each instruction.

P
	

This lists the value of the page register after
each simulated instruction.

SS
	

This column gives the value contained in the
subscript register after each simulated
instruction.

X
	

For each instruction, the value listed here is
a one if bit 13 of the instruction contains a
one, thus designating use of the subscript
register to determine the effective address.

EAR
	

This gives an instruction-by-instruction listing
of the contents of the effective address register.
The content of this register specifies the memory

Octal Trace (Figure 6) (Continued)

Column	 Explanation

TIME	 This column presents the cumulative total time
in microseconds for the execution of instructions.

I	 This is a listing of the interrupt number being
processed, if any interrupts have occurred during
the simulation.

Control Cards

All control cards must have a ; (11/8/6) punched in column one.
The function follows with blanks being disregarded. Thereafter, one or
more blanks are used as delimiters. No control function can be co.atinued
onto a second card. Anywhere number appears, a decimal radix will be
assumed unless OCTAL is specified; i.e., 11 is 11 10 , but OCTAL 11 is 910.

DATE characters

This card causes the first 12 nonblank (blanks are
delimiters) characters to be printed as a part of the
heading printed by the major functions (Assembler, Loader,
etc.). For example, 7/4/8, 1400 could be used for date
and time on the listing for the current run.

; ASSEMBLE 	 name	 PRINT	 NOLIST	 EDIT	 AUGMENT

This card causes the execution program to call in the
assembler to assemble a program designated by name and to
inform it of the options desired by the user. The output
of the assembler is accumulated on. the assembly tape.
Only the first twelve characters of name are retained,
any remaining characters are ignored. There must be no
blanks interspersed in a program name. The remaining
control card fields are optional, and if used their format
is free form with blanks used as separators.

42

Options:

	

	 PRINT - If this word is present on the
control card, the assembler will print out
a statement by statement listing of the
source language input.
NOLIST - This opLion directs the assembler
to suppress the card image printout. If
this option is not present, then a card
image listing of the program being assembled
will be given.
EDIT - This option allows the user installa-
tion to use its own mnemonics in place of
the distributed verb phrases. The editing
procedure assumes a deck setup as shown in
Figure 7. Each card of the editing deck	 p

must have the format indicated. In partic-
ular, each new verb phrase must be accom-
panied by the exact,number code of the
standard verb which it will replace. This
option will cause the new verb table to be
punched out in the form of data.statements
representing the internal tree structure
of the verb table. The installation must
then place this punched output in the sub-
routine VERB according to the comments given
in that subroutine.
AUGMENT - This option allows the user to
temporarily include mnemonics of his own
choosing-for the program which he is
assembling. The AUGMENT option assumes the
same deck setup as the EDIT option and must
precede each source deck. The-new verb
phrases are valid only for the current
assembly.

Figure 7. Deck Setup for EDIT and AUGMENT

EPROG

RAM	 AMNAME 1, PROGRAM NE 2, 	PROGRAM NAME n

LOAD program nameLOAD program name DATA AT number AND CODE AT number
The ;-LOAD program name card loads the entire assembly
tape into core and then writes tho On-Board Processor
.core image onto the absolute core image tape. The loader
will assume a starting location of octal 210 for data.

44

When an 8K memory is being loaded, a starting location of
octal 10000 is assumed for code, whereas octal 4000 is
assumed when loading a 4K memory. The relative origins
assumed by the loader may be altered by using the optional
; LOAD program name DATA AT number AND CODE AT number card.
If the user chooses to alter the assumed origins, care
should be exercised to prevent data words from overlapping
a block 4096 words. For example, if a program is loaded
with data beginning at location 4000 and there are 100
words of data, then the first 96 words must be accessed
with a page register setting of zero, and the remaining
four words must be accessed with a page register setting
of one.

The ; LOAD $ indicates selective loading to the loader.
The program names listed on the following cards will be
loaded from the assembly tape. There must be a blank in
column 1 of the program name 'cards but as many cards as
needed may be used. However, the number of specified
programs is limited to 25. The order in which the speci-
fied programs are loaded is '_he order in which they appear
on the assembly tape. The relative origins assumed ` by the
loader during selective loading may be altered by using
the optional ; LOAD $ DATA AT number AND CODE AT number
card.

; REWIND ABSOLUTE CORE IMAGE TAPE

; REWIND ASSEMBLY TAPE

Either of these cards causes the specified tape to be
rewound.

PAUSE

1

This card will.cause the OBP executive routine to pause.
This _option is included to allow the 920 user to'.switch
tapes, save tapes,, or hang tapes if necessary during his
run

45

C

;END F FILE ON ASSEMBLY TAPE

This card causes an end-.of-file record to be written on
the assembly tape. This is to be used if and only if the
file of relocatable programs on the tape is to'be used at
a later time.

SAVE PREVIOUS ASSEMBLIES

This card causes the executive routine to space down the
assembly tape until an end-of-file record is read. The
assembly tape is then backspaced over the EOF record, thus
positioning it for further assemblies.

DELETE name FROM PREVIOUS ASSEMBLIES

This card causes the executive routine to search the
assembly tape and delete the assembly specified. All
other assemblies are preserved. The end-of-file record is
removed, and the assembly tape positioned for further
assemblies. If a routine is to be reassembled with an
assembly tape containing a previous assembly by the same
name, the above card should be used to remove the old
routine before the new routine is assembled.

Or-LIST

/; LIST THE NOUN TABLE ALPHABETICALLY NUMERICALLY

This card causes the executive to read in the absolute
core image tape prepared by the loader. It then'will list
the complete noun table of all the loaded programs. The

46

order of the two options is irrelevant and either one or
both may be omitted. If both are omitted, then numeric
and alphabetic lists will be given. Both lists may also
be obtained with the abbreviated control card ; LIST

Options: ALPHABETICALLY - This option causes the
alphabetically ordered noun table to be
printed.
NUMERICALLY - This option yields a printed
list of the nouns used ordered on the
relocated addresses assigned to the nouns.

This card causes a complete listing of the absolute core
image. The core image, allocation table, and noun table
is read from the absolute core image tape produced by the
loader. The allocation table is then used to list data
and code for each program segment. Data is listed in an
octal format. Code is listed as the octal bit pattern for
each instruction, with the decoded verb-noun phrases and
labels as they were defined in the program. All indirect
instructions are flagged with the indirect address.

CHECK PRINT XX

This card causes the executive to turn on debugging flags
within the OBP software package. This control option is,
provided as an aid in maintaining the OBP package and
should be used-only as directed by GSFC personnel.

Simulator Control Cards

The control cards for the simulator are grouped into the following
six categories	 starting, tracing, dumping, interrupting, inputting,
and stopping (and/or restarting).

s

'	 The format for the simulator control cards is the same as the format
for the.,control cards discussed in Control Cards section, page 42.

47'

Column one must contain a ; (11/8/6 punches) and columns 2
contain the control information One or more blanks are us

delimiters. No control function may continue onto a seconc

loaded into
ounter to the

hen the
, initial
,r is then
ntrol cards.

.trol card and

This control card causes the simulator to be
memory. The simulator sets the instruction
load location of name. If name is omitted,
instruction counter will be set to the norma
load location for instructions. The simulat
ready to interpret any remaining simulator c
This card must beplaced between the LOAD cc
the START control card.

ms, should

.he simulator

'ied by the

number or
commence at

This control card, or one of its optional fc

appear as the last control card. It causes
to commence simulating at the location speci

SIMULATE function. The optional form, where
label, is specified, causes the simulation tc

the location specified.

This card causes the simulator to print tracing information

in the decimal mode for each relocatable instruction
simulated.

48

This control card causes the simulator to print tracing
information in the octal mode for each relocatable

instruction simulated.

TRACE FROM label or number TO label or number

This card causes the simulator to print tracing informa-

tion for each instruction simulated between the limits
specified in the decimal mode by label and/or number.

'TRACE OCTALLY FROM label or number TO label or number

This card causes the simulator to print octal tracing
information for each instruction simulated between the

limits specified by label and/or number.

TRACE PROGRAM name

This control card causes the simulator to print decimal

tracing information where the limits of name are taken
from the allocation table.

TRACE OCTALLY PROGRAM name

This card causes the simulator to print tracing information
in the octal mode where the limits of name are taken from
the allocation table.

i
49

f

This control card causes a decimal dump of the entire

memory when the specified location is accessed (either

code or data).

This ,card causes an octal dump of the entire memory when

the specified location is accessed (either code or data).

DUMP AT label or number FROM label or number TO label or number WITH

SCALE FACTOR number

This card causes a decimal dunip of the segment of memory
located within the limits specified by the second the

third label or number when the location specified by the
first label or number is accessed. The user denotes the
scale factor to be used in generating the dump.

1
DUMP OCTALLY AT label or number FROM label or number TO label or number

This card causes an octal dump of the segment of memory

located within the limits specified 'by the second and
third label or number when the_ location specified by the

first label or number is accessed.

f

50

When the location specified by label or number is
accessed, this function causes a decimal dump of the
single program specified by name where the limits of
name are taken from the allocation table. The user
denotes the scale factor to be used in the dump.

This control card causes an octal dump of the program

specified by name, where the limits of name are taken
from the allocation table, when the location specified by

label or number is accessed.

This control card causes a decimal dump of the entire
memory at the time of simulation of a HALT statement.

This control card causes an octal dump of the entire
memory at the time of simulation of a HALT statement.

i

i

i

51

INTERRUPT number EVERY number MICROSECONDS or MILLISECONDS or SECONDS
STARTING AT number MICROSECONDS or MILLISECONDS or SECONDS

This card causes the specified interrupt (legal inter-
rupts are -1 through 15) to occur at the specified interval
beginning at the specified start . time. The user must
specify the time-measure of the interval length and start
time in microseconds, milliseconds or seconds.

INTERRUPT number EVERY number MICROSECONDS or MILLISECONDS or SECONDS

This control card causes the specified interrupt (legal
interrupts are 1 through 15) to occur at the specified
interval beginning at time zero. The user must specify
the time-measure of the interval length to microseconds,
milliseconds ., or seconds.

MAXIMUM TIME IS numberMICROSECONDS or MILLISECONDS or SECONDS

This card will cause the simulation to cease at the speci-
fied simulation time. If this card is omitted, then a
value of 5 milliseconds is assumed.

This control card causes the simulation to cease after the
specified number of instructions has been executed. if
this function is omitted, a value of 500 instructions is
assumed..

a

Inputting Data

iata	 data	 data	 data	 data	 data	 data$

DATA FOR 'INPUT DEVICE number. USING SCALE REGISTER SETTING OF number

This is the control card used for inputting data. Data
may be input by one of four different input units numbered
zero through three. A total of 200 data words may be
specified. The user should denote the setting of the
scale register for the input data words. Immediately
following this card are the cards of input data for the
specified input unit. As is ►any cards as needed may be used
and the format.of these cards is free form with one or
more blanks used as delimiters. Column one must be blank.
The last data word must be followed by a $.

During the simulation, when the specified unit is refer-
enced in the input command, the data words, which are
converted in accordance with the specified scale register
setting, are input one word per call until the buffer is
exhausted.

It should be noted that if it is desired to supply the
exact octal bit pattern for data words instead of convert-
ing a decimal number, c-'-,en a scale register setting of 17
should be used regardless of the actual scale of the number
supplied. For example, 0.5 with a scale register setting
of zero may appear at input time as octal 177777, instead
of octal 200000, because of truncation errors in the
conversion process. However, octal 200000 with a scale
register setting of 17 will appear at input time as octal
200000; i.e., 0.5 if the scale register is set to zero.

Stopping, and/or Restarting - The normal means of ending a simulation is
by simulating a HALT. Any remaining control cards will then be honored.

NO HALT

This control: card causes all HALT instructions to be
simulated as PASS instructions.

53

RESTART AT HALT

This control card causes one HALT instruction to be
simulated as a PASS instruction. There must be a RESTART
AT HALT card for_ each HALT that is to be simulated as a
PASS instruction.

; STOP AT HALT

This control card allows the HALT statement to be simu-
lated normally. Its main purpose is to allow proper page
skipping between multiple jobs.

Diagnostics

A set of CPU diagnostics exists which is aimed at testing the
exeention of all machine instructions in order of increasing complexity.
The diagnostics consist of seven program assemblies and must be segmented
into two parts with a 4K word memory since the total set of diagnostics
requires approximately 4,500 words of memory. The diagnostics can be
loaded into OBP memory at the GSFC installation using the SDS 920 computer.
Then, the results of the diagnostics can be monitored with a program in
the SDS 920 version of the support software system. The diagnostics can
be set in a mode whereby when a test fails, the accumulator is loaded with
a code word which indicates which test failed. Thus, diagnostics can be
run independently of the SDS 920 and if a display console is connected to
the.CPU, test results will be automatically displayed. Future effort will
be directed toward the development of a set of system diagnostics in which
the input/output unit, memory, and peripheral devices, if possible, are
also tested.

Library

The following subroutines have been added to the GSFC 920 system
tape.

• ARCTAN

Entry Points: ARCTAN

Accuracy: 10-g

54

J9

Storage: 36 data words + 73 code words

Execution Time: 800 usec

Function The argument in radians, scaled by the scale
register, is received in the accumulator. The arctangent
of the argument is computed and returned in the accumu-
lator with the original scale setting. Overflow will be
set if the result is larger in magnitude than 2 S where s
is the content of the scale register.

• EXPONENTIAL

Entry Points: E-EXPONENTIAL, 10-EXPONENTIAL, and 2-
EXPONENTIAL

Accuracy: 10-4

Storage: 43 data words + 84 code words

Execution Time: 800 usec

Function: The argument X, scaled by the scale register,
is received in the accumul.:,^or and is transformed by
either eX, 10x, or 2x depending on the entry point. The
result returned in the accumulator has the original scale
setting. Overflow will be set if the magnitude of the
result is greater than 2 s , where s is the contents of the
scale register.

• LOGARITHM

Entry Points: NATURAL LOGARITHM, COMMON LOGARITHM, and
LOG BASE - 2

Accuracy: 10-4

Storage: 41 data words + 100 code words

Execution Time: 800 usec

Function: The argument X, scaled by the scale register,
is received in the accumulator and is transformed by
either log (base e), log (base 10), or log (base 2),
depending on the entry point. The result returned in the
accumulator has the original scale setting and overflow
will be set for negative arguments or for arguments-less
than 1 which yield a result larger in magnitude than 2s
where s is the content of the scale register.

55

• SIN/COS

Entry Points: SIN, COS, SINF and COSF

Accuracy: 10-4

Storage: 35 data words + 59 code words

Execution Time: 500 usec

Function: For the entries SIN and COS the argument is
assumed to have a scale of zero and is expressed in
fractions of PI/2. The argument X as received in the
accumulator is transformed by either SIN (X) or COS (X)
and returned in e accumulator. The cosine of 0 will be
returned as 1-2	 For the entries SINF and COSF, the
argument X, in radians, with a scale determined by the
scale register, will be transformed by either SIN (X) or
COS (X) and returned in the accumulator with the original
scale setting.

• SQUARE ROOT

i Entry Points: SQUARE ROOT

Accuracy: 10 -0

Storage: 44 data words + 83 code words

Execution Time 800 usec

Function: The double length argument X, with a scale
setting equal to the contents of the scale register, is
received in the accumulator; extended accumulator and is
transformed by (X)	 and returned in the accumulator
with the original scale setting. Negative arguments will
be returned as octal 400000 and overflow will be set.

PROGRAMMING NOTES

The support software which has been developed for the OBP was aimed
at allowing independent programming by OBP users at different locations.
In keeping with this philosophy, all I/O processing, interrupt processing,
data decommutation and formatting, job sequencing, and storage limit
control will be programmed by one group so that program integration and
checkout problems will be minimized. The items under this section, then,
that relate to some of these functions are presented to alleviate curiosity.

56

It +- 1, r	 t i t t t b	 ill	 4. 	 d d	 d	 d'	 tY	 a cu re n n en o e a e o prov e e a a an co a nliks	 age
between an EXECUTIVE routine and OBP worker programs so that the author
of the worker programs can assume his input data will be properly
formatted and appear at a known place and he can operate on these numbers,
using available mathematical subroutines, and deposit his output numbers
in a known segment of storage, leaving all housekeeping duties to the
central housekeeping group.

Input/Output

The OBP has two modes of input/output: program-controlled and
cycle steal. For program-controlled I/0, either the contents of the
accumulator is output to a device or the data from a device is input to
the accumulator. For cycle steal operation, there are two cycle steal.
channels in the input/output unit which control block transfers of data
between input/output devices and memory. These data transfers are
independent of program execution and the external device supplies the
I/O request pulses. The cycle steal channels provide memory addressing
and either the gating of data from an external device onto a memory input
data bus or select pulses to an external device, since for cycle steal
output operations the data is broadcast to all devices. The initializa-
tion of a cycle steal channel may be accomplished either under CPU control
by executing the appropriate I/O instruction or under external command
control by receiving the appropriate ground command sequence. The
following information is sent to the I/O unit to initialize a cycle steal
channel:

• Starting address (16 bits) - denotes the initial address of the
data block to be transferred.

• Device (2 bits) - specifies which device is to be connected to
memory. A device will have different numbers for input and output.

• Control channel (1 bit) - specifies which of two control channels
is to be initialized. Note that control channel redundancy exists
since a device can use either channel.

• Block length (12 bits) - indicates the number of words to be
transferred.

Once a channel has been initialized, it will remain active until
either the block transfer is complete, at which time a block length =
zero interrupt is produced, or until the channel; is re-initialized.

The one I/O instruction results in four different actions depending
on bits 17 and 18 of the contents of the effective address of the instruc-
tion. When the I/O instruction is executed, the content of the effective

57

address instruction is examined by the I/O unit so that harmony will exist
between the I/O and the CPU. The four I/O operations resulting from
executing the I/O instruction are shown in Table 2. The I/O unit is
designed such that any device connected to the OBP can transfer data in
and out of the accumulator by executing the I/O instruction. For input,
1,1 in bits 18, 17 and device number in bits 13-16 of the cell at the
effective address is required. For output, 1,0 in bits 18, 17 and device
number in bits 13-16 of the cell at the effective address is required.
A subset of all devices, depending on the application, may be connected
to memory through cycle steal control. Again, to effect this connection
by program execution, the I/O instruction must be set up such that the
contents of memory at the effective address has 0,0 in bits 18, 17; block
length in bits 1-12, device number in bits 13-15 and cycle steal channel
selection is made in bit 16. For initializing a cycle steal channel the
accumulator must be loaded prior to executing the I/O instruction with
the block starting address right justified. The fourth I/O action which
occurs when bits 18, 17 of the content of the effective address are 0,1
will depend on the application since the remaining 16 bits of that memory
word are available for any use by the I/O unit.

Factors to be considered in tb-e choice of program controlled versus
cycle steal I/O are:

• Hardware - additional gating is required to add the capability
of connecting devices to memory through a cycle steal channel.

0 Timing - the fastest program controlled I/O rate is limited by
an I/O sequence consisting of:

DEFINING, I/O ROUTINE

LET INPUT FROM DEVICE

YIELD SUBSCRIPTED BLOCK

STEP SUBSCRIPT BY 1 IF

SUBSCRIPT IS NOT GREATER

THAN BLOCK LENGTH THEN GO TO I/O ROUTINE

This routine for input and a similar one for output requires 37.75
usec to execute plus the time required to process interrupts needed to
synchronize the data with program execution. Cycle steal I/O rates as
high as 400 (10 3) words/second are possible. Generally, program control
of I/O is restricted to 1) devices for which the data transfers are program
dependent or 2) very low frequency devices if ` interrupt of the program is

necessary for synchronization.

58

59

i

I

CONNECT TO M

18 17 16	 15	 14	 13	 12---------1 18	 17	 16---------1

0 0 1 CC	 I X	 IDevice #	 Block Length X	 CC	 Starting ADD]

CC = 0 Channel A is selected
CC = 1 Channel B is selected

LET FUNCTION TO M

---M--- ---A---

18 17 16---------------1 18	 1

0 1 Bits to be defined X	 X

OUTPUT TO M

-M--- ---A--

18 '17 16----13	 12-----------1 18	 1

1 0 Device #	 X	 X Any Data to be output

See note

LET INPUT FROM M

---M-- -A---

18 17 16	 13	 12 ---------- 1 18	 1

1 1 Device 4	 X	 X Holds incoming word

See note

NOTE:	 Device Ps 00002 to 00112 are identical to Device Gk's 002 to 112

for the "CONNECT TO" instruction.

Interrupts

There is a 15 bit register in the I/O unit which stores interrupt
requests. As each request is serviced, the corresponding bit in the
register will be reset. There is another 15 bit register in the I/0,
called the interrupt priority register, where each stage indicates
whether or not an interrupt request at that level is to be locked out.
An interrupt is sent to the CPU when the request bit is set and the
corresponding bit of the interrupt priority register is zero. Should
two allowable interrupts simultaneously request interrupts, there is a
hard-wired 15 level priority circuit in the I/O unit (interrupt 1 is of
highest priority) to determine which interrupt request is to be honored
first. The interrupt priority register is set either when an interrupt
is sent from the I/O unit to the CPU, or when the CPU executes an EXIT
instruction, or when the CPU executes a RESUME instruction, the instruc-
tion normally executed at the termination of an interrupt routine. The
interrupt priority is set by the contents of a memory word so that the
determination of which interrupts are to be allowed can be dynamically
changed. The one exception is that interrupt 1 has top priority and
cannot be locked out. This interrupt will be used to initiate program
execution. When an interrupt is received by the CPU, the instruction being
executed will be completed and then an automatic sequence is entered in
which the address of the next instruction to be executed, the contents
of the storage limit ro,).ster, the miscellaneous registers (page, scale,
D, 0/A, OV, and C), and the current status of the interrupt priority
register are stored in a bank of four memory locations, NO to N3. Then
the same registers will be loaded from the four memory locations N4 to
N7. It is the programmer's responsibility to initialize locations N4 to
N7, where N is the interrupt number, with the desired interrupt priority,
miscellaneous register settings, storage limit setting and starting address
of interrupt routine N. At the conclusion of interrupt routine N there
must be a RESUME FROM N instruction which will result in returning con-
trol to the interrupted program and restoring the interrupt priority,
storage limit, and miscellaneous registers. Of course, any addressable
.register which may be altered during the interrupt routine should be
tucked away and uncovered upon entering and leaving the interrupt program..

Scale Register

The 6 bit scale register can be loaded from memory with the SET
SCALE WITH noun instruction and the instruction LET SCALE maps the scale
register onto bits 1--6 of the accumulator with the remaining accumulator
bits being set to zero. The scale register is used to control the length
of automatic double-length left shifts following multiply operations and
right shifts preceding divide operations. The value of the scale register
denotes the number of places to the right of the sign bit at which the
binary point is located.

sr';

_	
60

Fractional numbers have a scale of 0, and integers have a scale of
17. Another convenient way of visualizing the scale register is if the
contents of the scale register is s and the unsealed accumulator contents
is X' where 0 < X' < 1, then the scaled number in the accumulator X=2sX'.
If two numbers are multiplied, the result should have the same scale as
the arguments. That is, if X=2 8X' and Y=2 sY', X • Y = 2 2s• X'Y'. What is
needed is for the product to be of the form 2 s (Z), thus Z=2 sX'Y' which is
a fractional. multiplication of X times Y shifted left s places, exactly.
what occurs in hardware with the scale register. Similarly, for division
X/Y = 2sX'/2 sY' = X'/Y' but, to maintain the same scale, the quotient
should be of the form 2 sZ where Z=2- sX'/Y' which indicates a shift right
by X by s places prior to division, again what is accomplished in hardware
with the implementation of the scale registers. It is noteworthy that if
two numbers with different scales, sl and s2, are multiplied with a scale
register setiing of sl then the product will be scaled by s2. That is,
for X = X'2s and Y = Y'282, X • Y = 2sl+s2 (X'Y'), but what the hardware
produces is 2 sl (X'Y') for a scale register setting of sl. Therefore,
X • Y = 2 s1+s2(X , Y I) = 2 s2 (2 s1X'Y') which is the product scaled at s2.

The scale register is also used to store the shift length of the
NORMALIZE instruction. The NORMALIZE instruction performs a double
length shift left for up to 34 places until bits 1 and 2 of the accumu-
lator are different. If the accumulator and extended accumulator contain
all zeros, zero will be set.into the scale register following a NORMALIZE.
Since the NORMALIZE alters the scale register and multiply/divide opera-
tions always use the scale register, care should be taken when minting
these operations.

Proeram Linkage

The DEFINING. label noun assembler directive makes label/noun avail-
able as a transfer point within an assembled program segment. Each
transfer, GO T0 9 THEN GO T0 9 RESUME FROM, and TRANSFORMED BY is indirect
and the DEFINING statement makes the pointer available for loading into
the referenced memory location when a transfer instruction is encountered.
For program linkage between separate assemblies, a DEFINING FOR EXTERNAL
USE statement makes that definition external and, during load time, if
another assembly had the same undefined symbol, linkage is then made.
All subroutines, then, must have a DEFINING FOR EXTERNAL USE preceding
each entry point for providing linkage information. Two cells are
reserved for subroutine entry points with the first used to hold the
address to which control will return and the second holds the pointer to
the entry point. When a TRANSFORMED BY instruction is executed the
current instruction address +1 is written into the first word of the two
word address block corresponding to the defined entry point X and the
instruction counter is set to X,:the contents of the second word. Each
return point in a subroutine, then, should be a RETURN FROM (GO TO) X
which automatically return,. control to the calling program. If a routine
has more than one entry point with a common return point, a procedure which

61

a

i

x

i

1
may be used is that each entry point should store the return address in
a dummy return point so that one return statement RETURN FROM DUMMY
RETURN may be used. As an example, suppose that a SINE routine had
three entry points corresponding to the input argument in radians,
degrees, or fractions of pi/2. If the polynomial expansion assumed an
argument in fractions of pi/2 9 the fallowing code in the subroutine to
allow correct linkage could be used:

DEFINING FOR EXTERNAL USE SIN 1 LET IT
TIMES 2 OVER 3.1416 YIELD ARGUMENT. LET SIN 1 YIELD SUBROUTINE,
GO TO COMPUTE. DEFINING FOR EXTERNAL USE SIN 2, LET IT OVER 90
YIELD ARGUMENT, LET SIN 2 YIELU.SUBROUTINE. GO TO COMPUTE.
DEFINING FOR EXTERNAL USE SIN 3. LET IT YIELD ARGUMENT. LET SIN
3 YIELD SUBROUTINE,
DEFINING COMPUTE......
RETURN FROM SUBROUTINE,
DEFINING SUBROUTINE. END OF THIS PROGRAM SEGMENT.

When writing separate program segments, it is advisable to leave
code and data relocatable and let the loader provide linkage and absolute
memory assignments. However, if it is necessary to make a block of code
or data absolute, the following sequence permits the return to relocatable
mode at the completion of the absolute segment.

• Relodatable to absolute to relocatable data storage assignments

•
•

Relocatable	 •
ASSIGN DUMMY TO LOCATION DUMMY

START THE FOLLOWING DATA AT LOCATION number

Absolute	 •
•
•

START THE FOLLOWING DATA AT LOCATION DUMMY

Relocatable	 •
•
•

• Relocatable to absolute to relocatable code storage assignments

•

Relocatable	 •
•
DEFINING DUMMY

62

tooTART THE FOLLOWING INSTRUCTION AT LOCATION number

Absolute

START THE FOLLOWING INSTRUCTION AT LOCATION DUMMY

Relocatable	 •
•
•

Stora&tee Limit Re ister

The OBP has an 18 bit storage limit register which is used to enable
blocks of memory into which writing is pe witted. Those instructions
which require writing into memory, and therefore consult the storage limit
register, are YIELD, TRANSFORMED BY, SAVE EXTENSION IN, and SAVE SUBSCRIPT
IN. The register is broken into two 9 bit fields .- A and B - where A =
(Bl-B9) and B - (BLO-B18), BI = the I C" bit of the storage limit register
numbered from the right. A and B represent upper and lower limits on the
9 high order bits of a 16 bit effective address between which writing will
be permitted. Stated symbolically, if C - (B8-B16) of the effective
operand address for one of the four instructions listed above and A and
B are the two fields of the storage limit register, then if B < C —<A
write permitted, otherwise, write will not be permitted. Note that if
A - B then one 128 word block is enabled whereas if A e (1,1.....1) and
B = (0•,0.....0) then all of memory is enabled.

A Programming Example

The example which follows was run on the GSFC 920 system. This
example is the combinations routine which computes the number of combina-
tions of n things taken k at a time and calls the routine factorial,
which takes the factorial of positive entegers. The first control card
is a DATE card which results in the date being listed for assembler/
simulator printouts. The next control card is the ASSEMBLE card for
COMBINATIONS using the print option which causes a line-byline listing
of assembly language statements which follows the card image listing,. A
synopsis of storage allocation data follows each assembly listing. The
assembly language deck for COMBINATIONS followed the ASSEMBLE COMBINATIONS
control card. The first two pages of the listing are associated with the
program COMBINATIONS. The next set of cards is the ASSEMBLE control card
for the program FACTORIAL, followed by the source deck for that program.
The assembler again produces the printout shown on the third and fourth
pages of Listing for FACTORIAL. If the ASSEMBLE control card did not
have PRINT following the program name, the line-byline listing of source
statements would not appear. The next input card was the LOAM control
card which produces the printout on the fifth page of the example and, of
course, performs a loading of the two assembled programs. A LIST THE
ABSOLUTE CORE IMAGE TAPE control card followed the LOAD. This listing

63

shows the initial values of the data cells and decodes the program
segments with all transfers flagged to show the indirect pointer. A
sequence of control cards to provide a simulation at.d octal trace with
input data _followed. The octal trace continued until the program was
fir:ished, and the last part of the example shows the frequency of instruc-
tion using statistics which the simulator provides upon normal termination
of a simulation.

j:

_ f	 -	 -
e

64

z0H
zH
O

3 U^

O	 O
rdHNO	 WU

wd	 a ^ a
o	 ^A^z	 z

O OWOUnO	 H

o	 r	
E-

0

SOW	 WAWE	 N
zzP4	 O

WO

W WPGWO	 ^
Lr) End ^H	 ^+y+PP4+ .4

E-4
	

a0

N a w

x ^xz	 IE- 01-40

cU)
n PWEnE-4U	 ohod	 w

Aoa'^zn	 xwacwo
E

U
PO4 U)Zz	 u]	 w^wPCIuulr4w

z

Z W
HEW-HHOHt^A	 A	 HO W

a U) 1-4
	4z	

z	 za

E-400zoaozoa

a'

woo0
z

H
o zw W W	

WE
U]fsr

^ 	 AU

W

PO4'

H
w

f^	 Z PLI 0 Z	 Zra O

^ O pG ZZ	 EEEEEED+ E EH
ow rH P4 44	 a a a ow www

a
w HaaP4 ŵ

A ^ cn

^q
65

4

z
>

z

H O
It
04

0
0

°a
z

w Z
>

I^w z
m

0
to r4 A O

QZ
coOOH

E
H 0 V O O N
R o

W^

IW—+U t^
U

ao
W

to	 w	 z
CO	 ZO 	 to	 O i1+

oa
Hu:

x
U

H	 H 7.
^,
W

H
O cn '4 m	 H	

A

fA E O iO W	 £	 H	 ^	 ^	 OH W
^,
U

E z 5-. 6

[-[

H	 H	 V	 8O	
U to z H

E4 a	
a	 W	 O	 W
W

WO	 0	 0	 U	 V	 O
WV 0	 O	 U

6c W	 W	 WH	 O	 W O.
U
O

00
00

:0
 WO.-t

o o	 .c	 5	 ?+aC	 >>r^	 - ?+aGdE n%
p+

`^
M

W " H Z
-'

z o
YY

pp	 p^!̂	 dW	 fxFO	 Woo	 WO'	 IA0
FPG	 F	 EWOrj W,SWWWOHPi

z

!

6

a

777-...D2P7. ".aâW'3W	 ^xA7^W	 AQ	 A^OE.'F..
^^FFyy]]
	 ,((zFFy.^[WE	 £ W E.	 W	 WzUO	 O

F
H^W^W6

Hx
H

WU'd Htoy
^"O

H
P
PCI

F pq
T.+

H	 z > z 5 a o	 WH	 H	 H	 daz	 oz^F+'	 Ì̂ -.A ww
W w W W W W	 U 7.	 W	 W	 - W	 Ato	 z ^'+O

W
£

6
N

H
H

w A-
W

o.
O,.. W

M
H	 z	 A	 AW	 W x W	 to	 A z to A H A	 to	 Z to W

A	 A F A	 ra	 ^-1	 [-1 ..	 [-7	 .7	 d+	 W

OWW

F gg
z

to

A p

a
Z.

O p

7
a	

a ` vwia	 ara raara-I H
^

d7

W

•4 N M d Ln %0 I, 00 0% O H N Cl d [n %0 l- 00 a+
«4 ^4 .4 .-1 .-1 r1 .4 r4 e4	 H

0N Gz7 H. 0
Z

I	 o
9 O 3

A
A

O to kt W tf Oo F 08
R

3

Yn	 it HH O W U cn O

H LHw H
W O

o w v w•
1^ 00 0+ 0 r1 4 C4 	 L4 ,z ^ 00 0: C;	 C4,4,; [n a0 l^ a0 QUO

rl N M 4 [t1 ^0
Q
7. ,[^^5 Q'	 yW

000 0
^.

..i r-1 ^-1 .-I H .-t [--1 r-1 rl r-1 N N N N N N N N N N M W W

Aim

66

I`

0	
• E

E-4	

•1 w^^	 ow3 H
ow

a 	
x	

boa,

wr4A	
Ho	

ww

HW

W	 0	 PWy'
u~i PH 6	 a

P4 E4	 E-4

C14 z
OC9HZ^c7A	 WH

Wn m W

C)Wx 0W4 x Ha
4

U
In

wHH>4	 Z	 ^W z^, N 	 cWWnZO WO	 ('^-
'-4	

aw
Wcn

w a H	 a

avid	 wr w roaUHW

O
V]H fyi	 V]d3^vw

24 1-4 	 W	
ht/^U]^

p x
W O	 HH H Ga H	 E 4

H	 o	 HaH
w H	

O	
H

W
Z	 Z	 z	 O

a A A	 Aa^Ŵ

E

9

67

z

w

v
0

0
[
ŵ

o

`J O
0
0
w

All

m
z^H

W	 H

U	
WW

O W	 Z	 W	 W 0
WU W	 N	 O-	

U E-4	 a
w	

^	 0
O

P4 ;2:	 ^	 w	

WW	
ad	 x^	 H ^N

H W
	

3 ..
	

3	 W	 U W'	 U oo

i:7 a O W O6	 ,H,..^^H	
NZ
dx	 E4	

W N
z
	W Phi . y w

AZ	
o. oO

d k	 H H HW	 voi
ti 	 FH W E4 f0n l ^ E- OC	 Oax	 H	 oO
CD

w H ^c°h ^03Hzv°iww'
	 .-+z v^OH V^iZ W'r^"jz	

z	 W H N_	 _

C7 zE4 W Fd p;HAQAZZ^AH W U 0.' W'tg qq OHZzW	 H	 W	 W

d HHr]zz
k
HwzW .-1. ^WlH ^^- P4 ^rH.,

r4z W -1E	 E °	
H

QH1-4	 HN a'H' H"a a ?+HH^or^ 'r c°̂ aam aAarWa w F Q	 a

I
.	

0 qa
	 0,4

	

o	
ua

rl rN ri	 ^n ^o n w a: o ^ C-1 r4
 ra
^ Sri -4 n ao rn	 z

T-.

-I

	

	 ^- ^-+	 .-+	 r-7	 1.	 U'	 E	 00

w	
A	

°o	 z O°00

	

o N	 w

	

U)	 H	 w F
T^	 n	 k	 '#	 .#	 ''F ^	 5'C	 H	 O	 W ..

	

yz	 O 7

	

w	 Mi r	 H E-4 a

	

p.,'	 H W	 ^ cUi^ k4i h

	

!-i	 N	 rM-1 Q	 ^AZ7 W H H

	

mat	 6	 H c7
w

	

° 	 E°+ w c^ 010

°o °o

	

rl N M ^t u1 ^D I^.00 rn 0 .-1 N M"^ M^ n w O^ O rd N M ^7' ul ^D (^ ; ., , N M	 O ^ O O,-.^ HFI .-i rl H.4 ^4 r4 r4N N N N N N NN 04	 M W	 k+

68

A

1

h	 ^^	 O
r	 O..	 N	 0

4	 1O
w	 O

O
3	 ^
E	 O

Z0,0 Cl) .400 HO	 O 0,OcMM HOOD	 W
0	 00	 H M It

cq cq	Cl) It

^	
Qi	 V.00	 NO NO

n z 0	 0 0
 It 04
 00

W H	 E	 cn O 0 0 O O
U	 U	 N N	 00O Nit

cn

W
V	

^
'-̂+	 W	 V]	 0 W	 NO NO

i	 ^n 0	 WH cn	 O PG	 O	 O 7

pA•a 0	 V] nnErl	 O	 M f^nHO	 H	 O	 700 00 Z
6 f^,	 Z cn H O	 W	 Q	 z	 E	 .-i	 O	 O

PQ	 4 p 44P (MW 	 H WH	
H	 N	 Z HQ' W d' wH

Z aaHHU	 A	 HHV A	 W	 cn0H	
HAUOAU0

PG 3 ZZj.4EnnC-^^^ 1	 r7Z^4 V) E4 	 A	 Ha	 U	 E

(^ W aaE¢'pW^TH	 WEW-7^W-7E f	 P'' N-+	 !; V

a ^ Wcw/] 0.Ŵ i-I W W@ Z adW^W^H+W Wn	 E a	 '^	 O

	Ac°^a^w z w^"a11134 Hw^a °Z ^ w o	 o
0 rx	 w	 W	 U	 U	 w

OO
OO

OO M.7
O .Ot
O O

?! OO NOO

O
O
O

N M

4N	 N	 N

C14OO
C-4OO

0O	 O	 0
O O

^, ^ S
.'.' A O

^
-O

..0
O

O
U

O	 ^00	 ^ O	 ^ ^^OCO
a a H a	 a F	 a H	 F la

HVC,OQV'OwO O N U W	 U W	 V W 7.W'X+

ZZWZW'^F^..AZA-
..

O

O
O O.

-

-.

-
- 0

O
- O

O
O
O -

t^

.:

00
O

00.

O
p0
O

^.' O OHHG

^4	

EW

	
Ar

^y--'11

1;,
O 00 .(Fyn

3 w	 q	 W	 Q	 q	
aWM	 ^£y	

,WF^	 [^

H N - 0 N s cnv'i O aPOrQ-1vU)irA-1Haycna
-1 vaG H

n °o °o wrw(Ew+wwao
N Oo Oo Oo V]	 r a	 r.	 ra	 ra
ra

W O
N
O O

M
O O

-
O

N
.py'

-	 -

W
z

0 rl N
O 0 O

-P O

H o

N

O

C-4 O O

p^pq^ 0
OC) O O M O	 - O

_0.
O 00 C

y

W
CCya^11

OO
H
M "4

O
a
6' W

F6
OO

H[-, Mradd NUIO ^D ^ON1^^7 SON I^Ou'1 CJN Orl rl .-1 ra N r-1 rd ,4 ra N rl rd r4 N rl N H N,4 ONNN NN NNNNNNNNN NNNNN O00000000000000	 OPG O O [O^ d is O `
3
00000

- a M W O ^ C7 O ti O M.^1^ NO^O rI .pDNO^DNNO	 ^C41D -4 O

-
^w

OO
U Orl

W NN u1P^	 -

O
V O.-^ N M .? vl ^D f^ O ri N M .y' 1''1 ^O f^ O rr N NC)	

Cl OO OOO NrI r-I-rt rl rl rl rl NNNNOO
NOO

NOO
1lMO

OOOOOOOpO0000p p0000 O.7 +t ^t .7' ^Y' ^1' .7 ^t ^7 ^1 ^Y ^t .Y ^t .Y' '7 '	 ^t -'00000 0000000	 000 0 00 0- O O O 0 00000000000000000000

/0

ms's,

4	 tn	 M	 N	 -	 It
". N	 -T	 M	 N	 NO	 O	 O	 O	 O	 O

O O	 O	 O	 OOO	 O	 O	 O	 O	 O

W

.4
	 E4
	 U

H ^3	 ^3	 U)

O WOd z0.i zr4 zN	 i zA4 h^'+G^1-I9

n ^ ^

W	 G^	 W

4

O	 E-4
	 H

H H H	 H_	
v

cn 00' 	 44H	 HC0.7	 to C0'J
W	 d	 Ov0v0azwzaaaaz]a H 	 H	 H
U) M3 	HcAWp". WHHO	 OWOWHE- 1.4 y+ ^a	 D+ HHaH^ ' C7aC7aC7

"r ^O

o- d
f! O W n

{ N O O

A
U)

dWH,

O'

4 N t̂ Ln %D 1-- %0 - %DNM1— %D1-01-N"HN ON N N N N N N M N M M N N N M N N M N O" N N N N N N N N N N N N N N N N N N N0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N %D N O O O -t O %-D N O	 O N O N O N

N .tit T . %D %D N N %D N %* Cl	 %D%D N%D NOD
O

d' .tLn sat-^oY i Ncn4Ln%D1-0.-1NM-' V) %D(s, NNNNM . cMtY1MMMMcn 4-t .t4444
Qi

0000000000000000000
0000000000000000000

a

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O

_
71

00
11 to

o intnOO tntnoc 00Ln00PLn0tntntn 0Lnin00tQ000O N1^O0 NN U l LM 0 to 1- O to h ll O tl N N Vl h Ntn N h Ln 0 C•
vY

•	 •	 •	 •
^D MOO

•	 •	 s	 •	 •	 ••	 •	 •	 •
ID H	 Oh MO

•	
W+DH Ph M r•t t4 N ODNHNM^Y' in	 a, 00 M.T tt)lfS ^O t^(< W a`0^O0H "̂ tT OHHNNOO00

H
4 04

Hr-1.-tHHH H N N N N N N M M

f

0 0000 0000000O0000000 000000000	 -
- a OO r4 00000 0 0 0 000000000OOOOOO000000000000000 000000000 000000000 - to O tJ a o 0 0 000000000000000 °OOq°°o0°0 W 0000 0000 0 0000000000 000000 0 00 o W 0000 00000 0000000000 000000000

A- Cl) H ST .T N -T 04 4 to ^D r, ,D	 4,0 N M r, 01,O 0 4%ON Mr, ,D I-O	 -
"

HN '^'.,
O

r4 H r404N N N N NNNN NNNMNMMNNNMN N N N N N N N N N N N N N N NMNMMNNNMN N N N N N N N Nyy6++ O OC 0000 0000000000OOOOO 000000000 W OO W 00000000 00000000000OOOO000000000000000 000000000 000000000 O
yt O 0 0000 000000000000000 000600000

.. - O
O
O 0000 OOOOOOOOOOOOOOO 000000000 0 0 0000 000000000000000 000000000 "	 •. Ow OO OO 00000000 000000000000000000000000000000 000000000 000000000 O O 0000 OOOOOOO00°00000 000000000 O- • 0000 OOOOOOOOOOOOOOO 000000000

P+ 0 0000 000000000000000 000000000 0 0000 000000000000000 000000000
"- M H.T.TN .T N 4 In 1.0 P, vD 'A 10 N M n 10 t, O 0r410 NM h ID 110

N C13F+ O 0000 OOOOOOOOO0°OOOO 000000000
- N 1000 . 10 IDNIDN OOO4O%ONO4ON 040ON040NM H%0 NO N.7	 Q ID %D N N.D N.T N.T 10 0 NNON4N400

co H 1- -4 HH HHHH r4 4,41	 1,4 H.H HHHN HrI H H N H H 	 H
3 N

O - 0000 OOOOO°OOOOOOOOO 000000000
4

Fa O
O

t,
O

00000000
000000000000000 ".
p 0 0 0 0 0,-) 0 0 0 r-4 0 0 0 0

000000000
0 0 0 0 0 0 0 0 0	 -

- WO O
OOO O 0 0 0 000000000000000 000000000O v 0000 000000000000000 000000000 -	 C.7 ¢' OO Q', 00000000 OOOOOOOOOOOOOOOOOOOO0OOOOOOOOO 000000000 000000000 H 0 H 0000 000ooO0oo°oo0°° 000000000o 0000 000O00°00OoO°00 000000000 Q

W O r,	 nn f`rnn n n F8 10 ID 10 ID t, N N N a0 to tO try hNNNN
" U 0O pp^ 0000O O O O 000000	 0000Otntntn000000000000000 OOOOOtnN NN0 0 0 0 0 0 M M M

" H OO 7..H 00000000 000000000000000000000000000000 0 0 0 0 0 0 0 0 0000000000
H 0 0000 O00000000000000 000000000

t WW H HnnM 0"0M 1`Iw 1` 1410 NMn10 NN 10 HMNMNtnN NN 0000 000300000040O Lnm O000 g LnO NMO 0O • 0000000l• O O O O O p O 0 0 0O O O O OO.T04OOOOOO 30004. 0 0 0 0 0 0 o M 000004 0001:'n O H 0000 OOg000000p00000 000000000 to\ O H %D O O O 000000000000000 00°000000
to

7P
111

a

P OW ° W

-.

^41
aaO^..1t W^F.tzZ O WO	 ZPG2r12Nc^Zw 2.-IZtNzw'M- D W b

A P4
^+`f OO w~

a
V)

p^H 6U \ HW o o 4	 0 0 W	 V)	 W

FA	
NV' Htq U L^U'	 try V' HWW

WH	 Wy[4WOM.aa
6 V H

P E W EE^^	 t7WZwWWHH?trta,e rHFaFrU' t-7rHFaHrC9-.

-

M

W	 n	 H
OO O.D HNm40000 MN̂i' in %0 n O H N M ST to W hOwHN

NNNM MMMMMMM.i' 44 NM4"V' rIOHNMMMMMM^T+y'+tU	 Q', S0 UH O.y h
O O O 0 M
4	 It

O O O O 0 O O O O O O a O O O
t•J .T .t .t ^7'^3	 ^.T .7 ^t 7^7 ^""

000000000
4T T .T 4-44 4IT 4¢	 F co 0 ^t O O O O H O^O . O 0 0 0 O O O O O O O O O `..7 000000000 - V7	 A	 VJ z 0 t O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0^ 0 0 0 0 0 0 0 0 0

-
72

00 N o0u1 u1 u1
. -	 ^i	 NuIO NUINRR

A 9,n A 'D N 0 M f0

M M M M M M^7'^^i'4

000000000
000000000^	 (h.	 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0OOOOOpOOp
^O rI ^ONMh^DhONMNMMNNNMN N N N N N N N N
°0000oo°o°a°o°o

- 0 0 0 0 0 0 0 0 0
> X000000000

000000000N 000000000U]	 000000000000000000000000000
Al	 000000000000000000

.Or-1.DNMh^0h0N M N M M N N.N.MNNNNNNNNN0 0 0 0 0 0 yoy ^ 0 0
NN 00 N .7N Q%00 IO

c'	 fq	 .4 r4 r4 rJ " .-I r4 rJ rJNNNNNNNNN

0 000000000!!	 q	 000000000
d' 000000000

 -	 000000000
0000 0 0000W 000000000

- 000000 000
00 y ' 0 ^7 N00000 O O O N " .14 .-1o u1U 000000C, 00 00 00 4H
000000000-	 000000000
u1.4 7 N MN.70 Nl+G	 00004NOx1MO	 OG00000 VYO0000700x140 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

H E+

FL	 ŷ-G) M
W
N

1	 O	
,ZHZN. ^i W' V. 167

O u1 u100 u1000ONROO NO u1 u1
u1 x•100 u1 000hN
clM Y' ^.Mtululn'

0 0 0 0 0 0 0 0 00 0 0 00000000000000
000000000000000000
0 r4 NMR^ORON tI N M M N N N MN N NNN N NNN000000000000000000000000000
000000000
00
000000000.0 	 0 0
10 1-1 10 N M'R0 R0N M N M M N N N MNNNNNNNNNO O0.070 k00 NON O N N 10 N It N 10 10

H xl r •1 -4 r4 r4 r4 ",-INNNNNNNNN

0 0 0 0 0 0 0 0 0000000000r-1 rJ r♦ rJ rJ x4,4 rd r4000000000
0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0
OOoOOOOOO

4 M M M M 2 0 0 00 0 0 0 0 rl M M M00000Inf RROOo00	 It0 0 0 0 0 0 0 0 0000000000
4" M N M O M O N0 0 0 0 4 xl O M M00000 u10 hp0000+7 x40 •.70 0 0 0 0 0 0 0 s000000000

u1.0 O U1 u1 O Ln 0
R O 1n R R O R N N

M.MY M u° 1. O N M .' ' '4' 1'. YN ul ul h in in tD0

O O O pp O O O O O0 0 OO 0 0 0 0 0
0000000000000 0 00000
01.4 ID NMh 10 P- 0N M N M M N N N MNNNNNNNNN0000000000000800000000 0000
000000000
00

000000000000
0 410 NMR%O hON M N M M N N N MNNNNNNNNN000000000
N N 0 N .N7 N 00 M

N N N N N N N N N

000000000000000000rJ r♦ ",4 r-1 ",4 r4 r4000000000
00
M N N N N O O O OO OOo 0M%01010O O O O O R 10 10 1000000 , 1-1"r4O 0000 O r4 r4 x4000000000
MHNNMONON0 0 0 0 4 1' lO M0 0 0 0 O R O 1 D O0000.7 X70 x1-70000000x10000000000

U)^̂
Zr4ZC14 mzP

r

n 1M. N 0n 117 11.	 N	
0
1!1 00 NN•.

	

N tp 1O Nh M00 a,	
O
Rut r-1M

	

LA u1 W h R 0f1 co O^	 xI N M

	

^O ^D ^O ^D ^D .O ^O ^O 	 h h h h

rJ

	

0 0 0 0 0 O O O	 0 0 0 0

	

00000 0 0 0	 000000000 0 0 O 0 000 000000 O O O H 000000000 0 0 O W 0000
0 rJ 10N h'N u1 Q 0%b10NN MNMM NN 14 F4 x4 C-4N NN N N N N N O N N N N00000 00 O pG 000000000 O O O W 000000000 00 0 O 0000
00000 0 0 O 0 0000
00000 O O 0 0 000000000 0 0 O O 000008000 O 0 O O 00000 0 0 o 00 O O 000000000 O O O O 000000000 00 0 N1 0000

	

00000 O O 0	 0000

	

00000 O O O	 0000

	

%D .A 10N Cl) hN in	 0,0,0N

	

NM NM M NN r-1	 rd r4.4 NN N N N N N N "04 N N N

	

00000 0 0 O	 0.000

	

0 ^7 O 10N ON O	 -	 100010

	

N N 10 N -7 N 10 10	 -4,0 N O

.4 .4 rJ r-1 r•i	 r4 r-I	 14	 .4 rd r4 .-1

	

N N N N N N N 04	 N N. N N

00000 0 0 O M 0000OOO x-10 00 O O 0000rJ .-1 r-1 r 4,-4	 .-1 r-1	 14	 O	 .4 .-1 .-1 .•400000 0 0 O 00 0000O00000 0 0- O v 00000 0 00 00 Ci0 00 O 6 0000
0000000 0 C 000000000 0 0 O [Q 0000
N .-4 .-1 r4 .i 00 0 O Cl) M M M00000 1010 10 (?I 0000
OOOOO 1010 10 ^/ 0000

	

0000 § r-I r-414	 00000 0 00 0 	 CO O O	 0 0 0 0

	

N rJ .-4 NM 0 L O	 4MMN

	

0000.DO 10	 000x1

	

0000 0 1D O 10	 0 00 0

00000 Ho r-4 N 0o0000000 OO O M 11^0xa 000

O H
H O

	O 	 pâ

	

O U	 . ^ W	 O	H 6 	 H

	

zz {
rWn U W	 O	 cu^

.Z,AZN6 m W 'X+ H - ZN

F-I	 OW

Z

JAW
^^^--11x

^ W ppp ^H^7^'aax^^0AEp8°+ ^WAWrµ^11r:1 WO^^FSQ-.•^11pH {v^Mx^l.^•7-^ ^p0 	0r^l	 pzydlµ-
•

^71vW

1W1;r HHaE4V i-^HC7	 ?^Mr7?a C9 r7?H"M 	rW1 C7 ,M+ o H^"0

Mtn MMM 40̂1' .t M
©
MM pMMM+0yyh ' 44 mm mm 44 4 MMMMM 4 .740 100 00^^

H	 -01 .07 .07 .07 .07 07 07 J +07 aa +07' .7 .0y' +t 3 •0'1' O ^ O a O O O O O 0 ^ +O7 .07 X07 0 0 ^ ^ P'. .07 O O 0y^ 07 .07' ^0707

0 0 00 0 0 0 0 0 0 F1 0 0 00 0 0 0

	

coo M 0 0 0 0 0 . 0 0 0 0 0 0 0 08, 8 0 9 0	 0 0 0 000666666	 ^444^y0000ii 	 666666y	 4444

73

H

onlnlnln^no Vl lnoawoon Lna0Lnin Oo onoo "V)000 0")0O'n^nO^n	 0u"11f1 h1^N h ON 1h O O N0 U1 Ln th 0 to r-h OO V1 r'.00 NN"^n O^n IhO LnhM10 h N N

m-*4LMn%D10Dh00000(710 0DNtiO WOOOOSOO NN 16101-hh00MOON0 W w4	 Cl) a,00F	 hhh l-- h h h l+ h h 00 00 00 00 00 OD 0001 0101 OS OS
en Cl)010/810/ 01 d` OS 0h a, 0 OS 00000 OW W-	 r1 W w1 e-IW WW W

 O00 0000000000000 00000 00 0000 0000 c0a 0 000000000 k7	 0 0 0 O O O 0 O O O O O O O O 00000 0 0 0000 000000000000000CA 0000000000 O 00O0000000000000000 00000
0 0

 O O 00 0000 O0O0OOOOOOOOOO0000000000000 0 	 0 0 0 0 0 0 0 	 0	 0J	 0
^C` 1	 01D r,0 W 0 NM h 1D hO 1D W SD NM hN f- *%0N gN4010 h10 W 10 NMh SOr, 0N N N N N N N M N M M N N N MN N N N N N N N N N N N N N N- N M N M MN NN	 N N N NN " W W NN N NN N N N N N N N M N M M N N N MN	 N N	 N N	 N NN N	 N N	 ctVV	 N N N000000000000000 00000 N00 0000 00000000O0OO000- 000000000000000 00000 00 0000 000000000000000000000000000000 00000 00 0000 000000000000000

D4	 000000000000000 00000 00 0000 000000000000000
000000000000000 00000.- 00 0000 0000000000000	 01000000000000000M	 000000000000000 0000000000 0000 00000000 000000000000000000000000000000In	 000000000000000 OOOOO - 00 0000 000000000000000000000000000000 00000 00 O O O O 000000000000000 000000000000000 00000 00 0000 000000000000000

W	 000000000000000 0000000000000000 	 0 0 0 0 0 0 0 0 0 00 00 00 00 0 	 0 	 0
4N 4v1 10 h1D W W NMh 10 hO 10 40 NM hN h.t ID 04 N 4 in'D hlD W 0NMh 1D1-0'-,1:"_'	 NNNNNNNMNMMNNNM NMNMMN N N N N NNN N W W r4 CN N N N g NNNNNNMNMMN NN MN N N N N N N N N N N N NN tJF+F.1	 N N N N N N N N N N N N N N N000 . 000000000000 00000 00 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 07

ON
N.7 N.7N .h'^t .710 SD

04 100	 SDSO NN10D N.I ND NNO.SOD N.t .7 ^0^NN^ N.tN11010

O	 W H r-1 W W W W H W,-4 W r-1 ",-4 W W W W W W W W W ".-4 W r 4,4 W W W W W W W W W W W,-4 WN - N- N

O.	 000000000000000 00000 00 0000 000000000000000000000000000000 U O 0W OW ^ 0 00 0000 O 00 0 0 0 0 0 0 0 0 0 00 0 0, W	 W000000000000000 0 0 0 0 0 00,0000 ",j 0 0 0 0 0 0 0 O O 00 O 0 0 0 0
000000000000000 00000 00 0 C+ O O 000000000006000 000000000000000 00000 O O 0000 000000000000000.00000000000000000000000000000 00000 00000 0000 00000000 O O 0 0 0 0 0 0 0 0 0 0 0 0 000000000 0 000000 000000000000000 0 0 0 0 00	 00 00000 00000000000000 0 00.0 00000000 	 0
M MMMMMMNNNN MJ7 SD SD N W W W W 1D SD I -tr't 4't+t .t.t M(+1 M M 't .t .t40 0 0 00 0 000000000 00000 00 0000 O O 0 O 0.0 O O O O qQ O W W W00000000000000000 00 0000 00 00 00 00 00 00 00 00 00 00 00000 0 00 0000
00 00 000 00 00 00 00 00 00 00 00 00 00 00 00000 0000 0000000000000000000000000000
O NO0MMM W NNMM N - 1D N N W W NM ID C14 1D h M10 000 to 4 4 4 W M NM It M4N!Y. or-4040000004000M 000017 014 000r-1 0"0400000040 OWM
0404000 0 00^ 00O04 00000OM' 040,1000000900 004000000000000000 00000 00ll00 00040000 OO00000000 6 0000 000000000000000 00000 00 0000 000000000000O0O

Q
VA 44

V H0	 P)	 C/) (a
y

e	 ^ryi 1wi^	 W
(A

zz {{p^^
U V	

(A
`
	 0W

	
V)

O W0	 'Z	 Z AZC4	 z ^h-	 040+	 zmzW zN Q:(Yzm" zWZN^G fDW z	 f^

p:	 p	 ttax,
1,	

/(r1
tAU' 0CD	 H	 fgC7HF

/^t

H
pp	 /(̂1	 p

Nv^ 4v p 8	 N0NW	 w	 (I	 caA ^^nAW	 • 020
H W w W W H F	 '^GaF	 aF1z1

H	 (40..v^Aw
aa w

H..O WA•. ww
w	 ^'

w	 a mn. omw	 'ho
`^wwww0F+	

a0	 a
F
Nz	 1-1 p ... N8 . AA HF.00H FH p 	>lN .

z	 4	 N H>l r.4. 1̀3- ^^

N N N N M	 M	 MH	 M M M	 M	 Ohl 4 It. .t MMMMM	 44̂ NNNNMMMMCc(1MMlh"1Wr4,q W
f1500100 W

941t
000U	 0;000000000.000000

H	 0

00000.{P{xd̂ oo
Q

0000oi^ 00000
 0 0 00 0 0 0 aH000000000 O O O O O 3 O O O O O Ou 0 .0 O O O O Ov O 0 0 0 0 O 0 0 OU0000000000000 0 0 M O o o o o w v o o o o o u o o o o o o o O O Q O O CrQ o

'A

1

0

74

_	 ;t

- N

r-I
0 V) Ln 0 0 v1 0 0 0 v1 0 0" Ln 00 u"f u'I O U1 00
v1 F.N In th f-n00 N00 NN Ifa un r.ON ul L/1

-
-	 -

•	 •	 •	 •	 •	 •	 •	 •	 •
04	 %0 NhMh Ul0

•	 •	 •	 •. s
ID NO D r4 1`N 'D MO NO hI'^

; wN	 NMM.70 FI N{,N'^ .7'4 010 N	 ,7M
4 rl rl^

in Ul

r1.W N C-4 14 	 w4 r4 4	 r4 -4	 4 r4 W FBI ;$

- o o o o d o o 0 o 00000 0 0 0600 w 00	 .
J. 0 0 0 0 0 0 0 n o- 00000 00 0000 W 00aw 000000cao000000000 0000000000 0000 00000000+cv 000000000000 0 00000 00 0000 i O O00_	 - 000000000 00000 00 0 0 0 0

A

0w0 NM PR 0 0"4%0 NM rlN 11 0 In O NO
NMNMMNNNM NMNMMN N N N N

NNN N
r1 N FINN N N N W "0N ON N N N f^ Vr N N N N000000000 00000 00 0000 O 0 0

- 000000000 00000 0 0 0000 O O000000000 O
E, p{ 000000000 00000 00 0000 O 00

000000000 00000 00 0000 0 00
p 0 0 0 0 0 0 0 0 0 00000 0 0 0000 O 00pp-	 d ViW @000000 0 0000000000 00000 OOOOO O O0 0 00000800 O O O 000000000000 00000 0 0 O 	 00 O 00000000000 00000 O O 0000

U1

00

PI 000000000
00 0 0 0 0 0 0 0000 M

O 0
t'	 .+.. NM	 O ^O	 0D NM IAN f`. O U1p NO04	 N

N MM	 NMdIcli Cn N
	 M N N

M
N NN FI NN C-10N N N N N	 N N N N N N N N0000 0 N N00 N	 NN	 N00. 0 0 N 0 O O00000 0 080 O''O,O NO:t 	 N O N '700 7 ADO} NNIO N .t04	 ^D ID

0A 0,0 N.NN 10 N.7 NID I71ONW 140

V) -I w w r4 w r1 w N r4 w Fi r4 w rd w r4 .4 .4 r4 ,^4 ^4 rl
- N-

ti

0 000000000 00000 00 000 8 0 O
A 000000000 000.-i0 00 OOO M 00
U nd r 4 r l r4 rd r4 rI r4 w r4 r4 " r4	 4 r4 w w r4 wI '"? w w

000000000 00000 00 0000
0

O O

? 000000000 00 0000 6̀'00 oocô 0800 0
008000000000 0 0 0 0 0 00 0	 0.0 O-	 - 00000 00 0000 ^. 00QO0'0000000 0 0 000000 O CJ 000 d O 0 0 00 00 000000000 00000 00 0000 O O --

`I MNNNN4000 Nr-I ra w ra OO - O OOM ^ MM
- 00000MMMM 00000 Cl) M N N W+7 1717

-	 - -	 U
•C

0000@00000@0000000 00000'0000000 00 N.N 1OO00r40 0000000000000 00000 0 0 O 0 ' el O O O- 000000000 OO000 00 0000 0 0.0
? MF4 NNM .7 NON Nra r 4 NM 0 I 10000 H0 00004 	 OMM 0000.7 M r4 ONION 00O O O O O C O 0 00000+7000+7 000000000 ^' O OOEM O N 10 N00r40 • 0000- - 000000000 0000 0 00 00r40 O o- 000000000 00000 00 0000 *7 O

Pd	 94 0 0

H o dW

a4
0

W
- ,zr-I z 	 z rZ.-1.Z Cq^ R W :NA SA

[
z^

_

^. n n n W K7Vi[ĉ.,^	 -	 Sn	 ^z, w	 !n N' 0
i

MOF+71.a^ ~̂^H (p"^W7g A r

N

-7 H NA^j
I"'I E

{-i ^ rr7pt

Epp

N 0 N5^	 H	 w^l E+	 C7 -	 ^ 7	 M 8 ^4	 x-1 0

MMM	 +7+7 MMMMM +:r^M.7 ^^HM pN ^ NNN

s. H
m MM pM

J 	 00+7	 X7-7X07+0707 070+7 g ,;r 1 07 0.07.07+070
F OOOO

^ii +7 O

'f'

O@
-`

@00000000
000000000

OQOc.+O
 0 0 0 0 0

sOO
N 0 0 Q 0 0 0 0 0 0

t ti h ^ W

75

MV^- e

s

3

a 000 ocl o n 0000000000OL+100.700000000 00000000000 00 000 Ou100.0000 ^11^00000000 000 0000000 0000 000000000 000 t^^100 -y	 - - S-4

- .- F E M	 M H -	 In o0	 -	 a0. co 	 N ^n co

Ln Ll O o Lnn Ln... LnO Ln in 0O0u1",nO	 OOO MLmNOOO M M	 O M O Ln O	 n in Ln O Ln -
4 NNO^1ONNNNNN N - ONNOO ulN NNONto O ON N N'! 00%%%O N OnOnnn nrOn r

- -- z j-=̂ •M^C ^OO1^1n .O ri ^O ^O ^D ^O .D ^+'Y .D J' ^+'1 ^'1 N.D ^D ^O ^1 .D I^ ul ^l ^D..0 .-f f^	 M M Ln	 'nM Ln M MM M M-AM
M.	 E

£ H E '+	 •4	 J	 co	 iV	 N

E OOM 000 M OO	 ­4N.70 - 000 t^ 4^M 0000 oa 0 OO.O	 000000000 00000 O
OU

O
' r 2	 - O tAe] -	 E	 w	 ti	 y	 - v

o F kid	 3	 a	 H

W
X

_ H	 Z	 E	

Hd -
	 OA -^i, 	 3 3x

-	 11	 W. 5
[A^e	 r O.	

W	
d	 F - W	 ZFGI	 y0H	 A	 O	 -	 H _

E''
-

to 40
coF+	 H	 . c+	 G'	 H	 F Z	 O Pa W	 F	 H	 Fl	 a A	 W

En	 5	 3	 W O .	 O	 H H a	 [sI	 Y	 W a	 3	 W	 O	 1'. W	 Z
-. -	 ZHo

F
iL'(sl

'

w'	 {0z^

Uq
'^]^ P+	 S	 H 1-H O	 E	 {L' U -: v	 PL µa,-O U Q	 O	 ayY O: E	 X4 w

ai V	 WF P	
W
O HFx W p O Cam.,	 to 3 C	 Owou .0	 '^ H ^Ŵaa	 C4C H	 ^. .W-7	 WM'	 H l] F1 d O	 U kl H	 U

XJW	 WMW v]:a	 t^	 UUU O	 t:1EW \ H	 W	 UA	 0	 W	 w` a	 W weta' H ^. -	 _ y 	 .O	 c.+.v to y W !A /n W a •7	 Vi d	 W	 rl A O	 fL 0	 H	 O F <C
wv,	 wU	 o	 cnaaw [̂ am	 z	 wa	 E.	 c^a ^W	 EoInaaamw	 v	 ^.W -

+̂ Cawo^waF [[yy z	 pyW voE~wyy 	 w

W
Fwawo-^	 cxx̂ sn>m	 c^	 7^

U °A a	 H O	 a q N	 H	 - fL	 F S	 w r ^z w a a	 u 	 o^ N
vi a	 v¢i r to H .w- H	 H	 V]	 H E	 tn	 C09 0	 W	 Ŵ+	 c°) C

. 04 -- i

" -

J:

s

76
i

l

	GeneralDisclaimer.pdf
	1969002280.pdf
	0043B03.pdf
	0043B04.pdf
	0043B05.pdf
	0043B06.pdf
	0043B07.pdf
	0043B08.pdf
	0043B09.pdf
	0043B10.pdf
	0043B11.pdf
	0043B12.pdf
	0043C01.pdf
	0043C02.pdf
	0043C03.pdf
	0043C04.pdf
	0043C05.pdf
	0043C06.pdf
	0043C07.pdf
	0043C08.pdf
	0043C09.pdf
	0043C10.pdf
	0043C11.pdf
	0043C12.pdf
	0043D01.pdf
	0043D02.pdf
	0043D03.pdf
	0043D04.pdf
	0043D05.pdf
	0043D06.pdf
	0043D07.pdf
	0043D08.pdf
	0043D09.pdf
	0043D10.pdf
	0043D11.pdf
	0043D12.pdf
	0043E01.pdf
	0043E02.pdf
	0043E03.pdf
	0043E04.pdf
	0043E05.pdf
	0043E06.pdf
	0043E07.pdf
	0043E08.pdf
	0043E09.pdf
	0043E10.pdf
	0043E11.pdf
	0043E12.pdf
	0043F01.pdf
	0043F02.pdf
	0043F03.pdf
	0043F04.pdf
	0043F05.pdf
	0043F06.pdf
	0043F07.pdf
	0043F08.pdf
	0043F09.pdf
	0043F10.pdf
	0043F11.pdf
	0043F12.pdf
	0044A03.pdf
	0044A04.pdf
	0044A05.pdf
	0044A06.pdf
	0044A07.pdf
	0044A08.pdf
	0044A09.pdf
	0044A10.pdf
	0044A11.pdf
	0044A12.pdf
	0044B01.pdf
	0044B02.pdf
	0044B03.pdf
	0044B04.pdf
	0044B05.pdf
	0044B06.pdf
	0044B07.pdf
	0044B08.pdf
	0044B09.pdf
	0044B10.pdf
	0044B11.pdf
	0044B12.pdf
	0044C01.pdf

