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1. SUMMARY

This report describes an investigation that was conducted to select and develop an
improved analytical method for predicting the stability and control characteristics of elastic
[ ]

- airplanes.

The investigation included consideration of the free-flight conditions of large airplanes
in their “clean” configuration. Landing, takeoff, ground effects, stability augmentation,
and control surface movements weie not considered, nor were prediction of air-
plane performance, flutter, or structural loads. Thes study was confined to a fligl.-
envelope extending from low subsonic speeds to Mach 5 and from sea level to 30 000 meters
(93 360 ft) altitude. Within this envelope, rectilinear and curvilinear reference flight paths

- were taken and analyses made of arbitrary, large, and small perturbations of airplane motion
about the reference flight paths. Airplane structural motions of dynamic-elastic and
quasi-static-elastic characters were included, and their effects on stability determined.

The approach taken in the investigation was to develop in order:

o cquations of motion

o stability criteria ] _

e stability derivative prediction methods

e stability characteristics prediction methods

A major result obtained in the investigation has been the unification and development of
aerodynamic, structural, and dynamic technologies into an overall plan for calculating
elastic airplane stability characteristics. The plan involves a computing program system

- - arrangement as outlined below.

Section Elements

Input:
Geometry
Reference Flight Airplane
Condition Definition
Flexibility - Section
Mass Distribution

Geometry Definition (GD)

Aerodynamic Influence
Coefficients (AlIC)

Structural Influence
Coefficients {SIC)

Normal Modes (NM)

Section Elements

input: Airplane
P ' Stability
rical Data
Empirical Evaluation

Section

Stability Derivatives &
Static Stability (SD&SS)

Characteristic Equation
Rooting (CER)

Time Histories (TH)




“There are two essential features to this plan;

1. The system elements anG the total system are well suited to computer programming.

2. Provision is made for introducing empirical dath (experimental measurements,
handbook results, etc.) into the system.

Other results and conclusions concerning the avalysis methods and their application to

large, flexible airplanes of the SST and 707-320B type are listed below.

1. The lumped parameter concept is the most practical way to represent an airplane for
analysis. This involves paneling the airplane so that the aerodynamic and structural
relationships among panels can be expressed in terms of influence coefficients. A
geometry definition program is desirable to mechanize and help guide the paneling.

2. Lifting surface theory gives good resulis and is the most suitable method for
determining the aerodynamic influence coefficients.

3. For most airplane configurations, equivalznt beam structural models are adequate
for determining structural influence coefficients. For very low aspect ratio wings or
for increased accuracy, however, influence coefficients from large, sophisticated,
finite element structural programs should be used.

4. The stability criteria that apply to rigid airplanes apply directly tc elastic airplanes.

5 . Stability characteristics can be influenced strongly by inaccuracies in estimating che
rigid stability derivatives. These effects on design decisions are of the same order of
importance a- quasi-static-elastic and dynamic-elastic effects.

6. The effect of airplane loading conditions (mass distribution) on an elastic airplane’s
stability characteristics can be relatively large, somefimes reversing the sign of the
parameters that represent flexibility effects.

7. The evaluations of control effectiveness and control surface angles required to trim
are influenced strongly by flexibility; however, since viscous and nonlincar
aerodynamic effects are also important in those evaluations, the applicability of
lifting surface theory based on potential flow as a prediction technique is limited.

8. Airplane stability characteristics are, in general, moderately affected by flexibility.
The quasi-static-elastic formulation is usually adequate for most prediction tasks,
dynamic effects being generally modest. However, some dynamic check casi ,
should be run, since there is no assurance that dynamic effects will be small for any
given configuration. .

It is recommended that further development of prediction methods follow the plan®
mentioned above. Lifting surface theory and beam analysis should be used to determine
aerodynamic and structural influence coefficients and to calculate stability derivatives and
stability characteristics. For dynamic stability investigations, if the center-of-gravity
disturbance is characterized by the small perturbation equations of motion, the character-
istic equation rooting technique may be used. The stability of large perturbations is best
evaluated by time history calculations.

*Mechanization of this plan is currently under way under the direction of personnel of the
Non-Steady Phenomena Branch, NASA-Amzs,



2. INTRODUCTION

The stability of an airplane is its tendency to persist in a particular reference motion
(for example, steady, level flight) when it has been disturbed from that motion. P.imary
factors affecting stability are the changes in the aerodynamic forces and moments acting on
the airplane that occur with changes in the airplane’s motion and orientation. They are
expressed as siability derivatives evaluated at the reference motion condition, such as the
change in airplane lift coefficient with change in angle of attack, 3C[ /d¢y|,.f = CL (-

In the past, the effects of structural flexi ‘ity on airplane stability were accounted for
by modifying the stability derivatives. For example, a change in airplane lift due to a change
in angle of attack might produce twisting of the wing or bending of the fuselage, resulting in
a different lift change for a particular angle-of-attack change than would occur had the
airplane been rigid. The rigid airplane stability derivatives were then corrected to include
these quasi-static-elastic effects.

The effects of structural dynamics have generally been a consideration only in flutter
predictions. The center of gravity of the airplane was (and is) considered t.» be in a state of
steady, level flight while the structure is disturbed. For example, neutral flutter stability is a
constant-amplitude, oscillatory structural motion resulting from a disturbance; however, this
motion is regarded as having no effect on the steady, level motion of the center of gravity of
the airplane. This is a satisfactory representation of the motion provided the frequency of
the structural motion is well separated from the natural frequencies of the overall motion of
the airplane, e.g., its short period longitudinal natural frequency. In this case the two
motions are not sufficiently coupled for an exchange of energy between them.

Certain aerodynamic and structural approximations have also been used. Aerodynamic
surfaces ~wings and tails—may have sufficiently large aspect ratios that lifting line theory
may be used to predict aerodynamic loads and the structure may be treated essentially as an
assemblage of beams. These and other approximations were satisfactory and led to relatively
simple methods for predicting the influence of structural flexibility on airplane stability.

However, the advent of large airplanes operating in the transonic and supersonic flight
regimes nas led to configurations for which some of the acceptable approximations of the
past are of questionable validity or are obviously invalid. The frequencies of the structural
motion have been sufficiently reduced by the increase in both airplane flexibility and cruise
dynamic pressure that coupling with overall motion of the airplane is attendant. The use of
low aspect ratio aerodynamic surfaces invalidates the lifting line aerodynamic approxima-
tion and reduces the applicability of equivalent beam structural models, Different methods
of analysis must be introduced.



i Bisplinghoff and Ashley (ref. 1, chapter 9) have laid the ground work for new, less
restrictive inethods by presenting equations of motion that have the required degree of
generality. Milne (ref. 2) also presents the development of more gencral equations of motion
that integrate conventional stability and aeroelastic methods. Milne’s rather extensive work
also includes the application of the equations to the problem of slender airplane trim state
and longitudinal stability. Most major airplane companies are also involved in developing
new, less restrictive methods. However, results of these studies are usually not available in
the open literature.

With this background in mind, an investigation was conducted for the purpose of
developing an improved method for predicting the stability and control characteristics of an
elastic airplane, Objectives of the study were to:

1. Develoy equations of motion that have sufficient generality to handle large, flexible

airplane stability and control problems, including dynamic-elastic effects.

2. List and evaluate assumptions and restrictions introduced and determine how they

may influence the prediction of airplane stability and control characteristics.

3. Develop stability crite 2 applicable to flexible airplanes.

4. Develop improved methods for predicting elastic airplane stability derivatives using

" current and/or improved aerodynumic and structural techniques.

5. Develop an frﬁprové_d_épproacﬁ for pfedibjciilg_élasficﬁblaﬁé stability characteristics

using the results of 1 through 4 above.

6. Document the results of the study in a precise, understandable form.

The work was accomplished under the technical direction of the Non-Steady
Phenomena Branch, Ames Researcin Center, Moffett Field, California. Members of the
Aerodynamics and Structures Staff of the Commercial Airplane Division of The Boeing
Company at Renton, Washington conducted the investigation as a joint effort. Frequent
coordination meetings and reviews with Ames representatives were held during the course of
the contract.

The scope of the investigation included consideration of large, flexible a.: g
operating in the flight envelope of fig. 1. Only “clean” configurations were studied; lanuing,
takeoff, ground effects, stability augmentation, and control surface movements were not
considered. Rectilinear and curvilinear reference flight paths were assumed, and arbitrary,
large, and smali airplane motion perturbations about the reference flight paths investigated.
Structural motions of dynamic-elastic, quasi-static-elastic, and rigid nature were included in
the study.

Only stability and control characteristics were included in the investigation; nc
consideration was given to the prediction of airplane performance, flutter, or structural
loads. Both static and dynamic stability characteristics were studied. Stability citeria were
also examined, but no handling-qualities work was included.
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The investigation was fur er restricted to the consideration and development of
analytical methods; experimental methods were of interest only to the extent that they
served as a standard for comparing and evaluating the analf/tical approaches. Although the
number of theoretical methods considered was large for the initial part of the investigation,
it was rapidly narrowed for the major task of comparing and evaluating the several most
promising approaches.

The approach taken in the investigation was to develop in order:
e equations of motion '

@® stability criteria

e stability derivative prediction methods

® stability characteristics prediction methods

Three mathematical models of an elastic airplane were considered; rigid (generally
frozen in the reference shape), equivalent elastic*, and dynamic elastic.

The rigid model admits no structural deflections from the shape in the reference
motion. it serves as a base and provides a means for evaluating theoretical methods by
comparing predictions with data obtained from essentially rigid wind tunnel models. The
rigid model was sufficiently accurate to describe most aircraft prior to the introduction of
large (weights of over 100 000 Ib (45 359 kg)), swept-wing jet aircraft flying at dynamic
pressures above 400 psf (19 152 N/m2). -

The equivalent elastic model assumes that all structural deflections are of a
quasi-static-elastic nature. Air and inertia loads are considered to be in phase with the
deflections. No structural dynamic effects are included. This model has also been referred to
as static-elastic or quasi-static-elastic in the literature. For this model, flight test and
flexible-model wind tunnel data are used as the basis for validation. The equivalent elastic
formulation is satisfactory wherever there is a reasonable frequency spread between
structural and control modes.

The dynamic-elastic model is the most complex of the three. It takes into account
dynamic motions of the structure as well as in-phase deflections. Usually this case is handled
by considering 10 to 80 structural vibration modes. A variation of this approach that lends
itself to computer calculation is the residual-flexibility formulation, which considers the
coriect phasing of the lower frequency vibrational modes but assumes that higher frequency
modes are in phase with the loads. This approximation gives to the residual-flexibility
method advantages for compt ter mechanization that may result in more accurate answers
than would be obtained wih the straightforward inclusion of modes with their

*The terms quasi-static-elastic, . ati - .2 equivalent elastic are used interchangeably
in this report.



mathematically correct phasing. The dynamic-elastic formulation is usually required for
cases where the structural frequencies are near maneuver and control frequencies
(approximately within a 2:1 ratio).

The equations of motion were developed first for the rigid airplane, treating first the
general equations of motion, then airplane motion perturbations about the reference flight
path. Next, the flexible airplane equations of .motion were developed, using the lumped
parameter concept in describing structural flexibility and structural equilibrium. Perturba-
tion motions were united with the structural motions for both equivalent elastic and
dynamic-elastic cases. Both residual-flexibility and completely elastic approaches were taken
in developing the equations to describe the dynamic-elastic airplane case. Assumptions and
restrictions introduced into the developments were carefully evaluated as to their effects on
stability and control applications of the equations.

The approach taken in establishing stability criteria was essentially one of examining
rigid airplane criteria to determine whether they do or do not apply to flexible airplanes.
This part of the study was divided into consideration of static and dynamic stability cases.
The usual mathematical approaches of characteristic equation rooting and time history
traces to assess dynamic stability were taken. Some consideration was given to energy decay
methods for possible future application.

Stability derivative prediction methods for rigid airplanes can involve the use of a
variety of aerodynamic theories and methods. The approach taken here was to compare and
evaluate against experimental data those methods based on lifting line theory; lifting surface
theory; and handbook compilations of theoretical, empirical, and test data. For the elastic
airplane, the structural methods considered were finite element theory and equivaleni beam
analysis. Structural methods were compared for the purpose of finding the one most
suitable for preliminary design application.

Methods for the more extensive task of predicting the stability characteristics require a
unification of the previously mentioned areas. Static stability characteristics were
determined by using the stability derivatives. The dynamic stability calculation methods
investigated consisted of approximate empirical handbook formulas, roots of the small
perturbation characteristic equations, and time histories from solution of the large
perturbation equations of motion.

The approach taken for this part of the study was to investigate the regions of
applicability of the available methods and to assess the relative importance of static-elastic
and dynamic-elastic effects on airplane stability. Areas in the flight envelope of fig. I where
specific calculations and comparisons were made to validate the methods are shown by cross
hatching. Application of the methods to other areas within the envelope was justified by an
evaluation of the assumptions and restrictions incorporated into the governing equations.



The report consists of four separately bound volumes: a summary report and three
-appendixes. These also serve as a handbook which describes and discusses the pertinent
aeroelastic methods.

The summary report presents the results and conclusions of the study with discussions
as required for the reader to gain an understanding of the subject. It should be useful for
managers, those new to the field or experiencéd only in related fields, and any others
desiring an overview of the subject. '

The appendixes contain those results of interest primarily to the specialist, including
the detailed steps and discussion of the various derivations and developments as well as the
‘variations in approaches and applications of the methods. Appendix A treats the
development of the equations of motion and stability criteria. Appendix B develops and
evaluates methods for determining longitudinal and lateral-directional stability derivatives.
Appendix C, using the results of the previous work, discusses and evaluates the pertinent
factors important to the prediction of airplane stability and response characteristics.

Matrix notation and methods have been used in developing and presenting many of the
equations in the summary report and succeeding parts of the study. The reader not familiar
with the notation is advised to spend the short time necessary to learn the basic ideas and
symbols of matrix methods. For the specialist, a thorough understanding is essential.
Reference 3, or one of the many other available books on matrix methods, is recommended.

It is also assumed that the reader has some background in the field of stability and
control. If this is not the case, or if review is desired, Etkin’s book (ref. 4) is suggested for
study.



3. SYMBOLS

This list includes the symbols found in the Summary and appendixes. In different
technologies some of the symbols have different meanings. For example, € means downwash
angle to an aerodynamicist, but strain to a structural engineer. In these cases the several

det aitions have be:n lis.ed after the symbol.

General

AR
(A}

[6A]

a

Aspect ratic nondimensional

Sieady aerodynamic influence coefficients mairix, meterszlradian

Unsteady aerodynamic influence coefficients matrix, meter?

radian

-seconds;
Aerodynamic matrices, newtons, newton-meters

Root of characteristic equation, second™! ; lift curve slope, radian”!

Speed of sound, meiers/second

Vertical tail elastic to rigid lift ratio, nondimensional
Acceleration, mefiers/second2

Wingspan, meters

Cycles to damv to half amplitude, nondimensionai
Cycles to double amplitude, nondimensional

Drag coefficient, D /qS, nondimensional

Induced drag coefficient, D; l4S, nondimensional
Lift coefficient, L [qS, nondimensional

Rolling moment coefficient, My [ qSb, nondimensional
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Cy. <y
{(cl

(Co)

(Cl

[Tyl

‘R

ol

ref

(D}

ol

{d;}

{a,}

Pitching moment coefficient, My /§S¢€, nondimensional
Normal pressure force coefficient, N /§S, nondimensional
Yawing moment coefficient, MZ/QSb, nondimensional
Pressure coefficient, (P - P, )/q_, nondimensional

Thrust coffficient, T / qS, nondimensional

Side force coefficient, Fy 1qS, nondimensional

Fiexibility matrix with reference point fixed, meters/newton

Flexibility matrix with reference point fixed and with reference
point rows and columns removed, meters/newton

Flexibiiity matrix with reference point free, meters/newion
Residual flexibility matrix, meters/newton

Wing chord, meters

Root chord, meters

Mean aerodynamic chord, meters

€ for the 707 and cp for the SST, meters

Drag, newtons

Induced drag, newtons

Transformation matrix from fluid to stability axis system,
nondimensional

Elastic displacement, meters

Column matrix of elastic displacement components at the ith

element, meters

Matrix of elastic displacement perturbation, meters

Total airplane perturbation energy, newton-meters; Young’s modulus,

newtons/meterz; induced drag efficiency factor, nondimensional;
energy, newton-meters



2l

{r}
{Fp}

[F )

{F,}
{Fr}

[Fg]

™

{r}
{fal}
{fr}

GW

Qb

Internal energy density, newton-meters4/kilogram
Energy decay parameter, nondimensional

Force, newtons; surface stress vector, newtons/meter2
Total force matrix, newtons

Aerodynamic force matrix, newtons

Flexibility matrix relating changes in panel centroid deflections to
unit loads, meters/newton

Generalized forces at ith

element, arbitrary dimensions
Thrust force matrix, newtons
Flexibility matrix relating panel slopes to unit loads, radians/newton

Aerodynamic influence coefficients (subsonic), newtons/radian

Perturbation force, newtons; perturbation surface stress vector,
newtons/meter2

Perturbation force matrix, newtons

Aerodynamic perturbation force matrix, newtons

Thrust perturbation force matrix, newtons

Shear modulus, 1r1ewtons/me‘ter2

Gross weight, newtons

Structural influence functions in diadic form with reference point
free, meters3/newton

‘Aerodynamic influence coefficients (supersonic), newtons/radian
Acceleration due to gravity, meters/second2
Unit base vector, nondimensional

Altitude, meters; specific enthalpy, ﬁewton-meters/kilogram; center-
of-gravity position, nondimensional

11
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Lyxs lxy’ Iz

lyys lyz: 12

(i, f1d

po>
y—->

i I
ke
=h=>

Cant

Ké(W)
Kw(B)
(K]

Maneuver point position, nondimensional

Neutral point position, nondimensional

Static margin, nondimensional

Velocity of panel normal to the streamwise direction, meters/second

Moments and products of inertia, kilogram-meters2

Identity matrix, nondimensional
Horizontal tail deflection, degrees

Unit base vectors, nondimensional

Torsional constant, meters4/radian

Angular deflection at the exposed horizontal tail due to a unit load
at the tail, radians/newton

Structural stiffness coefficient, newtons/meter

Ratio of aircraft nose lift to aircraft wing lift, nondimensional
Effective change in vertical tail angle of sideslip due to a unit change
in rolling acceleration measured at the exposed vertical tail, degrees/
radian/second2

Effective change in vertical tail angie of sideslip due to a unit change
in yawing acceleration measured at the exposed vertical tail, degrees/
radian/second

Effective change in vertical tail angle of sideslip due to a unit change
in side acceleration measured at the exposed vertical tail, degrees/
meter/second2

Effect of lift carryover on the body due to the wing, nondimensional

Effect of lift carryover on the wing due to the body, nondimensional

Stifiness matrix with respect to fixed reference point, newtons/meter

beovr cemada



(K}
(K]

(K]

(k1,[KkJ

=4

(M]

[m]

ml,mz, m3

(m]
[in]

Zi

Element stiffness matrix, newtons/meter
Stiffness matrix with respect to free reference point, newtons/meter

Generalized stiffness matrix with free reference point, newtons/
meter

Thermal conductivity, newton-n;eters/second~meter~degrees Celsius;
elastic constant, newtons/meter<; Strouhal number, nondimensional

Corrector matrix for influence coefficients, nondimensional
Lift, newtons

Moment arm, meters; characteristic length, meters; pressure difference
across surface, newtons/meter2

Wing c.¢/4 to horizontal tail C,of/ 4, meters

Wing c_.¢/4 to vertical tail Crof/4, meters

Direction cosines, nondimensional

Mach number, nondimensionai; mass of the airplane,‘kilograms
Moment, meter-newtons

Inertial matrix, kilograms, kilogram-meters2
Generalized mass matrix, kilograms
Direction cosines, nondimensional
Perturbation moment, meter-newtons

Mass matrix, kilograms

Diagonal mass matrix, kilograms

Yawing moment, meter-new{ons

Normal force, newtons

Load factor, nondimensional; number of elastically connected mass
elements nsed to represent the airplane, nondimensional

13



nl, n2, n3

=)

[nJ
P

P,Q,R

{pr}

0, q, I

{Q}

Direction cosines of t.he normal surface, nondimensional

Unit vector normal to the surface, nondimensional

Diagonal matrix of panel unit normal vectors, nondimensional
Period, seconds

Coinponents of the angular velocity & in the body axis system, radians/
second

Total pressure, newtons/meter2
Aerodynan‘lic panel pressure forces, newtons
Static pressure, newtons/meter<; roll rate, radians/second

-t

Perturbation components of angular velocity Wp in the body axis
system, radians/second

Generalized force, arbitrary dimensions™

Matrix of generalized aerodynamic and thrust forces, arbitrary
dimensions*

Pitch rate, radians/second; rate of internal heat energy addition, newton-
meters/second

Generalized coordinates, arbitrary dimensions *
Dynamic pressure, newtons/meter2
Pitch rate, qc,op/2V, l,nendimensional

Matrix of generalized coordinates, arbitrary dimensions*

Matrix of generalized coordinates of elastic free vibration, arbitrary
dimensions*

Cantiiever eignvectors, nondimensional

*The units of a generalized force times the generalized coordinates must be newton-meters.

14



Re

-} -t ) 1) -> .1 =i

-:J

O-i\‘

wd

{0}

[sd

Universal gas constant, newton-meters/kilogram-degrees Kelvin;

magnitude of position vector, meters; region of XY, plane not covered

by the airplane or wake, nondimensional
Reynolds number, nondimensional

Position vector at an initial instant of time, meters; body force per
unit volume, newtons/meter3

Reference distance, meters; magnitude of the position vector, meters

Yaw rate component, rb/ 2Vcl , nondimensional

Position vector relative to the body axis system, meters; position
vector relative to the fluid axis system, meters

Position vector of the center of gravity relative to the fluid axis
system, meters

Position vector relative to the stability axis system, meters
Position vector relative to inertial space, meters

Position vector of the center of gravity relative to the inertial space,
meters

Position vector in the undeformed airplane relative to the body axis
system, meters

Matrix of airplane position and orientation perturbations, meters,
radians

2

Reference area, meters<; airplane’s projection on the XY plane,

nondimensional

Diagonal matrix of panel areas, me:te’rs2
Complex frequency function, 1/seconds

Kinetic energy, newton-meters; thrust, newtons; time, seconds

Time to damp to % amplitude, seconds

Time to double the amplitude, seconds

15
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1T,

-1/T,

t*

A
u

{u}, {up}

w

{x}

Rolling convergence .modc root, 1/seconds

Si)iral mode root, 1/seconds

Time, seconds; airfoil thickness, meters

Nondimensionalizing time factor, seconds

Potential energy, newton-meters

Components of velocity VC in the body axis system, meters/second

Perturbation components of the velocity in the body axis system,
meters/second

( Generalized coordinates, nondin ensional
Forward velocity component, u/V, I’ nondimensional
Generalized eiastic displacements, meters
Lyapunov function, nondimensional; volume, meters3
Equivalent airspeed, meters/second
Velocity vector of the airplane center of gravity, meters/second

Velocity vector, meters/second

Perturbat'ion velocity vector of the airplane center of gravity
meters/second

- Matrix of airplane liuear and rotational rate perturbations, meters/
second, radians/second

Matrix of airplane Jinear and rotational acceleration perturbations,
meters/secondz, radians/second2

Weight, newtons; airplane’s wake projection on the XY plane,
nondimensional

Matrix of panel centroid distances to the reference point, meters

{ ]

Body-fixed-axis system (app. A); fluid axis system (app. B)

)
Poviino e [ | 1! Fir oo .



XB, YB, Zy; Body-fixed-axis system

XB: YB» 2B

Xos Yo’ Z, Axis system fixed to a material point

XY’z Earth-fixed-axis syster

xyz

Y Side force, newtons

tayd Matrix of spanwise panel widths, meters

Zp Vertical displacement of structural reierence point, meters
{z} Matrix of vertical displacements of each panel from equili! t:.im,

meiers

(1 Square matrix

{} Column matrix

i) Row matrix

tJd Diagonal matrix

Ty Transposed matrix

[ ]'l Ma'trix inverse

It ]|i Determinant of a matrix

[0) All zero elements
{1} Column matrix of ones

tn “Jump”’ in enclosed quantity
Greck Symbols

o Angle of attack, radians

aR Angular rotation of structural reference point, radians
Qpef Angle between X body axis and Vcl , radians

{a} Mairix of panel slopes, radians
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{6}

{os}

)

-3

s

9ix,iy,Piz

©

Angle of sideslip, radians
(M2 - 1), nondimensional
Circulation, meterszlsecond

Structural influence functions with reference point fixed in diadic
form, meters3/newton

Flight path angle, radians: ratic of specific heats for air,
nondimensiona}l

Finnce change in some parameter, nondimensional
Control surface defiection, radians; arbitrarily small number, non-
dimensional; Dirac’s function, nondimensional; thickness ratio,

nondimensional

Matrix of displacements relative fo a space-fixed inertial system,
meters

Marrix of flexibie displacements relative to the structural axis system,
meters

Downwash angle, radians; arbitrarily small number, nondimensional;
strain, meters/meter

Change in downwash angle at the stabilizer per unit change in wing
angle of attack, 9¢ /9, radians/radian

Damping ratio, nondimensional; nondimensioaalized coordinate,
nondimensional; dummy variable, nondimensional

Efficiency factor, nondimensional; coordinate, nondimensionai;
dummy variable, nondimensional

Euler angle, radians
Perturbed Euler angle, radians
Streamwise rotation of panel, radians

Node rotations, radians

Rate of change of Euler angle, radians/second



Oei Rotational rate of paneled airplane about axis of rotation, radians/
second
5} Rigid-body rotation about center of gravity, radians
(8] Angle mode matrix, radians/meter
A Eigenvalue, nondimensionai; taper ratio, nondimensional; bulk
modulus, newtons/meterz; Lame’s constant, newtons/meterz; sweep
angle, degrees
7\} Roots of characteristic equation, 1/seconds
B Reduced mass parameter, nondimensional; Lame’s constant, newtons/
mcterz; extent of influence region, nondimensional
{1} Cantilever mode shape matrix, nondimensional
(1] Matrix of all cantilever modes, nondimensional
v Poisson’s ratio, nondimensional
&8 Coordinates, nondimensional; dummy variables, nondimensional
T Constant, 3.14159. . ., nondimensional
p Density, kilograms/meter3
o Normal stress, newtons/meterz; density ratio, nondimensional; real
root of characteristic equation, 1/seconds
%R Rotation of structural reference axis system, radians
Op Rectilinear translation of structural reference axis system, meters
T Coefficient of viscosity, kilograms/meter-second; shear stress,
uewtons/meterz; time, nondimensional
¢ Total velocity potential, meterszlsecond; Euler angle, radians

(®n] Normalized natural free vibration modes of the airplane, nondimensional
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Subscripts

A

ac

Perturbation velocity potential, meters; perturbe¢ Euler angle radians
Rate ot"change of Euler angle, radians/second
Free-vibration mode shape matrix, nondimensional

Rigid-body mode shape matrix, nondimensional
Stress diadic, ncwtons/meter2

Normal mode of generatized coordinate, nondimensional
Velocity potential, nondimensional

Arbitrary positive function of time, arbitrary dimension
Euler angle, radians

Perturbed Luler angle, radians

Rate of change of Euler angle, radians/second

Inertia diadic

Phase angle, radians

Frequency, radians/second; imaginary part of a pair of complex roots,
1/seconds

Undamped natural frequency, radians/second

Perturbed angular velocity, radians/second

Aerodynamic; airplane; aileron
Aerodynamic
Aerodynamic center

Body reference axis system
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cp

221}

Eff

EqEl

exp

HB

h, ht

LE.,LE

Is

sp

Center of gravity

Center of pressure

Dutch roll mode

Equivalent elastic (Formulation II); elevator
Equivalent elastic (Formulation I)
Effective

Equivalent elastic

Experimental

Flutter

Handbook methods

Horizontal taii

Inertia relief

Lower surface

Leading edge

Lifting surface theory method
Phugoid mode

Rigid; rudder

Rolling convergence root mode
Spiral root

Short period

Stability axis system; spiral mode

21
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sl

u

v, vert, V.T.

W

WB

WBT

WT

-

Sca level

Tip; total

Upper surface

Vertical tail

Wing

Wing-body

Wing-body-tzil

Wind tunnel

At a=0g =i, = 0°; initial state

Steady state motion variables; trimmed condition

Undisturbed condition



4. ASSUMPTIONS

Assumptions used in developing the equations and methods are listed here for
reference. Where appropriate in the summary report, pertinent assumptions used in
obtaining a result or equation are given. However, discussions of the assumptions as they
come into the developments are given in the appendixes. Further descriptions and
Jjustifications are included in those discussicns.
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General Assumptions
Airplane mass and nass distribution are constant with time
No thermoelastic effects considered

No electromagnetic effects considered

Q

Symmetric airplane

Q
N

Variation of air density with altitude is negligible
No gust effects considered
Gravitational forces on the field are negiigible

Small perturbation theory

Q
)

PO®RERAI®O®®G

Large perturbation theory

Origin of coordinate system is at the center of mass

1

Arbitrary perturbations

<

Aerodynamic Assumptions

—

Potential flow theory

Thin body

Siender body

High aspect ratio

Prandtl boundary layer approximation

Perfect gas, thermally nonconducting and chemically nonreacting
Isentropi(;'flow

Steady flow

EOOOHOE®G



Unsteady flow

Inviscid flow

9160,

Quasi-steady flow

>
—
()

Aerodynamic influence coefficients for nonzero sideslip
Continuum flow
No finite shock waves

Velocity field is irrotational

1616}

Structural Assumptions

Hooke’s law applies

Only small strain and displacement gradients are considered
Structural damping is negligible

Structurai perturbations can be represented by normal modes

Comyplctely elastic math modet of elastic airplane

7]
=y

OO WELEEEEO®®

Residual elastic math model of elastic airplane
Equivalent elastic math model of elastic airplane
Rigid math model of elastic airplane

Airplane displacement vector field is such that the center of gravity
does not displace or rotate

X component of elastic deflection is negligible

Y component of elastic deflection i. .1egligible

! L bl by

The structure can be adequately represented with beams

Tibeas a

Inertia of each finite mass element about its center of gravity is
negligible t .
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Dynamic Assumptions

=)

POOOOOERRO®ERE®G®V

w

Free flight only

No spinning rotors

Steady-state curvilinear flight
Steady-state rotation is small

Zero-lag thrust derivatives

CL5 is negligible

CYi’[’ CYEI’ Cyp ;;(I, and Cn§l are negligible
C.Dq is negligible

Steady-state rectilinear motion
Stick-fixed-and-unaugmented airplane
Thrust perturbation forces are negligible
Steady state, wings level, and zero sideslip
Level flight'(steac"iy state)

Linear aerodynamic stability derivatives

' Two-degree-of-freedom longitudinal motion



5. EQUATIONS OF MOTION

»
»

The equations of motion for rigid airplanes and flexible airplanes are presented in this
section in the forms deemed most suitable for assessing airplane stability characteristics. The
stability of an airplane is its tendency to persist in a steady reference motion when it has
been disturbed from that reference motion. The steady reference motion must be defined
and the perturbation motion analyzed. Thus, four sets of equations of motion are presented.
Two govern the reference and perturbation motions for rigid airplanes and two govern the
reference and perturbation motions for flexible airplanes.

The perturbation equations of motion are presented for three different order-of-
magnitude approximations of the size of the perturbation motion variables. These are
termed arbitrary, large, and small perturbation equations of motion. The small perturbation
equations are those which have had greatest application’in the analysis of the stability of a
steady reference motion. Arbitrary and large perturbation equations may be used in
investigations involving large disturbances that upset the airplane and in the study of
maneuvering flight. However, since neither upset nor maneuvering flight are within the
scope of this study, the small perturbation equations of motion are given primary emphasis.

The equations of motion presented for rigid airplanes are those which are familiar to
engineers working airplane stability and control problems. They are essentially those
developed by Etkin (ref. 4); however, here they are expressed in a body-fixed-axis system
that is convenient for the application of aerodynamic influence coefficient methods. This is
in contrast with the usual formulat.on in the stability axis system (ref. 4). In addition, the
formulation provides for very general steady-reference motions including curvilinear flight.

There is considerable diversity in the manner in which the equations of motion for
flexible airplanes have been formulated. Modifications have been made in the past to
accoramodate new methods for predicting the aerodynamic forces on the airplane. This is
apparent from a review of works on this subject such as those by Bisplinghoff and Ashley
(ref. 1), and Milne (ref. 2).

The formulation used here is called a lumped parameter formulation. It facilitates the
use of aerodynamic influence coefficients that relate a change in aerodynamic force on a
small region of the airplane’s surface, a panel, to an average change in flow incidence at
another panel. This aerodynamic representation is particularly well suited for making
empirical corrections to account for separated flow, viscous phenomena, and other
aerodynamic phenomena that are not readily predicted theoretically but are of considerable
concern to the stability and control engineer.
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The basis for the lumped parameter formulation is described briefly in this section and
in more detail in app. A. A complete description may be found in Bisplinghoff and Ashley
(ref. 1). It usually is used in flutter analysis, although it has also been used to predict the
longitudinal stability of flexible airplanes. It is the basis for the prediction of the
longitudinal stability characteristics of the SST configuration appearing in this volume and
in app. C. The formulation appearing in this section and in app. A is more general. This
extended generality is included in the expectation tnat an aerodynamic influence coefficient
method for wing-body combinations in nonsymmetrical motion can be developed. It also
incorporates the useful approximation called residual flexibility, which is introduced by
Schwendler and MacNeal (ref. 5). -

The presentation appears in the form of a derivation. This form of presentation is used
merely to introduce the principles on which the equations are based and to delineate the
most important approxim.:tions which are included in their formulation. The derivation is
not complete, although it may appear extensive in the flexible airplane case because of its
inherent complexity. A detailed derivation appears in app. A; related derivations concerning
aerodynamic and structural theories are provided in app. B.

Figure 2 summarizes the various forms for the equations of motion appearing in this
section and gives a brief description of the approximations that characterize them.

5.1 Equations of Motion For a Rigid Airplane

5.1.1 General equations of motion.— The equations that govern the motion for a rigid
airplane follow directly from fundamental principles of mechanics. These are the laws of
conservation of momentum, which state that the rate of change of linear momentum is
equal to the total force applied to the airplane and that the rate of change of angular
momentum about the center of gravity is equal to the total applied force couple (or
moment) about the center of gravity. They are stated analytically as

av, N
M"&‘;=M§+£ F ds (1)
d 7% =/ FxTFas
at W w)-s rxF (2)



Mcditication

Formulation

General equations
of motion

Equations 5 and 6

Perturbation
substitution

»
ot

Y

Arbitrary perturbation
equations of motion

Equation 14

Small orientation
angle perturbations

Y

Large perturbation
equations of motion

Equation 16

All perturbation
variables are small

Y

Y

Small perturbaticn
equations of motion

Equations 17 and 18

Character

-
L]

Nonlinear; dynamically couple.
longitudinal and lateral-directional
motions; no simplifying approxima-
tions

Nonlinear; dynamically coupled
longitudinal and lateral-directiona)
motions; no simplifying approxi-
mations; no restrictions on mag-
nitudes of perturba.ion variables;
stability analysis by time histories

Nonlinear; dynamically coupled

longitudinal and lateral-directional
motions; no restrictions on mag-
nitude of perturbation variahles,
except that orientation angle per-
turbations admitsin & ~ &,

cos @@= 1, sin =P, and cos@=

1, etc; equations of motion for
reference motion are sepai able;
stability analysis by time histories

Linear; dynamically uncoupled;
equations of motion for reference
motion are separable; stzbility
analysis by characteristic roots

FIGURE 2.— MODIFIED FORMS OF EQUATIONS OF MOTION
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where

total airplane mass

= velocity of the airplane c.g. relative to earth-fixed-axis system (x',y',Z ), fig. 3
= gravity force per unit mass B

surface force per unit arec

airplane’s total surface

inertia tensor expressed as a diadic

=TI+ I +K LK - 1Lk -K L i

= rate of rotation of airplane relative to e.rth-fixed-axis system

position of an arbitrary Q point relative to airplane ¢.g., fig. 3

=)wn “nloo;n<‘ =
|

®
:t SIL

P = Center of mass
ro. = Position of center of mass

FIGURE 3.— AXIS SYSTEM FOR THE UNDEFORMED SHAPE OF AN ELASTIC AIRPLANE

The time rate of change d/dt is that apparent to an observer in the earth-fixed-axis system
x",y’,z’, which is assumed to be an inertial reference frame. Thus, letting 3/9t represent the
time rate of change apparent to an observer in a body-fixed-axis system x,y,z and letting a
dot () represent the partial derivatived/dt, the equation of motion may be expanded as
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M(Vc+wac) =M§+I-"‘A+'FT (3)

+ MT (4)

where

and ]
MA+MT=f rx Fds .
S
and where -IEA and -I\EA are the total force and moment due to aerodynamics and -I‘?T and HT
are the total force and moment due to the thrust of the propulsion units.

Equations (3) and (4) represent the general equations of motion for a rigid airplane.

The x,z plane of the body axis system has been made to coincide with the plane of
symmetry of the airplane so that the inertia diadic contains only the Iy, product of inertia.
Certain assumptions have been used in writing these equations. They are:

Free flight only

Origin of coordinate system at the center of gravity

Airplane mass and mass distribution constant with time

No consideration of electromagnetic effects

No spinning rotors

Symmetric airplane

Equations (3) and (4) may be expanded as six scalar equations, but before they may be
so expanded the gravitation force vector must be written in terms of the body axis system.
A convenient form is obtained in terms of Euler orientation angles. These angles orient the
airplane in space relative to the earth-fixed-axis system, as shown by fig. 4. Let Z'in the
earth-fixed system be directed positively down toward the earth’s center, and let x' have
some specified direction. Let axis system x,y1,z] be initially codirectional with the xy'z
system but with origin at the airplane’s c.g. Introduce the rotation ¥ about the z| axis,
which rotates a system x9,y,zp such that x is in the plane of airplane symmetry. Then
rotate a x3,y3,z3 system about y; through the angle 6 so that x3 coincides with x. Finally,
rotate about x3 through the angle @ so that y3 coincides with y. This completely orients
the airplane relative to the earth-fixed-axis system. One may choose alternate definitions of
the Euler angles; the definition presented here is the one used by Etkin (ref. 4, p. 100).

EEOEE®
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X / o Y2Y3

i\ X'Y'Z’ Parallel to earth’s axis
i\ XYZ  Earth-fixed axis
_,"._o/\ Note: Rotation sequence is:
i \ L AN

232'

FIGURE 4.— EULER ANGLES

The gravity force vector is in the direction of z', i.e., o= ch'. The transformation of g-l?

to body-fixed axis is given by

gk' =-gsing1+gcos6singj+gcos 8 cos o K

Now, the general equations of motion may be written as six scalar equations in terms of the

body axis system as

MU+ M (QW -RV) =-Mgsing+F, +F

AX TX
MV + M (RU + PW) = Mg cos 6 sing + F, +F,
y y
MW+M(PV+QU)=MgcosOcos ¢+FA +FT
Z Z

LyP L, R+QP)+ (I, -1 )QR=M, +M,

X X

(5a)
(5b)
(5¢)

(5d)



. 2 2 _
L, Q+L, (P -RY+ ([, -1 )QR=1M, +Mp (5e)
Vi, ¥
+

M, (50

| R-IXZ(P—QR)+(IXX--IZZ)PR=MAz .

ZZ

These are six equations in the eight unknown quantities, U, V, W, P, Q, R, ¢ ,and 6. The
aerodynamic and thrust forces and moments in the right-hand members are functions of
these eight quantities or their derivatives with respect to time and, possibly, control
variables. The control variables are regarded as known functions of time.

A complete <=t of equations is obtained by introducing the following two kinematic
relations obtained from the Euler angle definitions:

é=Qcos¢—Rsin¢ (6a)

@ =P+Qsingtand + R cos ¢ tan 9 (6b)

The heading angle for the airplane may be obtained from the additional kinematic relation

P =(Q sin ¢ + R cos ¢) secd )

Equations (5) and (6) are eight equations in eight unknowns. They may be integrated if the
aercdynamic and thrust terms are specified functions of the 1otion variables, but they are a
nonlinear system of ordinary differential equations. If initial data, consisting of U, V, W, P,
Q, R, 6, and ¢ specitied at an initial instant of time t, are given, then in general it is
possible to integrate equations (5) and (6). This results in a determination of the variables at
times later than t,. Because of tae nonlinearity of these equations, however, integration is
possible only by mechanical quadratures, except for exceptional cases consisting of steady
motion of the airplane.

Fortunately, the cases of steady motion that satisfy equations (5) and (6) represent
solutions that are of prime interest. They are the subject of the following paragraph. The
stability of an airplzne in these steady motions, i.e., the tendency for the airplane to persist
in the steady motion when disturbed from it, is evaluated using perturbation forms of the
general equations of motion, equations (5) and (6). These perturbation forms are discussed
in pars. 5.1.3 and 5.1.4. Paragraph 5.1.4 also introduces expressions that describe the
dependence of the aerodynamics on the motion variables.
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5.1.2 Steady reference motion.— In a steady reference motion all of the derivatives

with respect to time in equations (5) vanish. The equations of motion must be satisfied tor
the airplane to be in equilibrium. Therefore, the steady vel?cities (denoted with a subscript
oneas Uy, V], Wi, Py, Q, Ry) must satisfy

M(QlW1 - R1V1) = - Mg sin 01 + FA + FT (8a)
X X
1 1
M(RlU1 - P1W1) = Mg cos 01 sin 2 + FA + FT (8b)
i N
M(P1V1 - QlUl) = Mgcos 01 cos ¢1+ FA + FT (8¢)
Z Z
, 1 1

- Ixz lel * (Izz - Iyy) QIRI - MAx * MTX . (8d)

1 1
2 2 _

IXZ (P1 - R1 )+ (IXX - Izz) PlRl = MA + MT (8e)
y y
1 1

Ixz QlRl * (Iyy - Ixx) PlQl - MAz * MTz (89)
1 1

and the kinematic relations
. = _ . )
8, Q, cos ¢, Rl sin o, (9a)
3 = i 9
¢1 P1_+ (Q1 sin ¢, + R1 cos ¢1) tan 01 (9b)

Rates of change of the Euler angles §1 and ¢ have been admitted, but it must be
recognized that this leads to time rates of change in the components of gravity force in the
right-hand members of equations (8a), (8b), and (8¢). The left-hand members of these
equations are invariant in time. Thus, in the case of motion in which 9 1 and wl are
nonzero, to maintain steady motion the aerodynamic forces and moments, or those due to
thrust, must be controlled in such a manner as to balance the gravity force changes. In all
cases for which él and ¢ | are zero the aerodynamic and thrust terms are constant during
the steady motion.



Four of the most important steady reference flight conditions for assessing the stability
and control characteristics of large airplanes are level flight, climbing flight, turning flight,
and pullup. The steady velocity components and Euler angles and the equations of motion

for those four cases are as follows: .
a. Steady, level, rectilinear flight:

V1=P1=Q1=Rl=¢1=0 s 01=constant

v

- Mg sin 31+}3‘Ax +FTx =0
1 1

FA +FT =0
Y1 Y1

Mg cos ()1+FAZ + FTZ =0 (10)

1 1

MAx +MT‘{ =0
1 “1

MAz +MTz =0
1 1

t Steady, climbing flight: . B I
The equations are identical to equations (10), aithough it must be noted that
atmospheric density variation will lead to unsteady motion for constant control

settings. However, this unsteady motion may be regarded as negligible for shallow
climbs over moderate time periods.

c. Steady, turning flight: -
V1 =0 |, 81 = constant and ¢1 = constant

MQ1W1=—Mgsin 61+ FA +FT

X1 X1
M (RlU1 - P1W1) = Mg cos 61 sin q)l + FA + FT
. i vy
- MQIU1 = Mg cos 61 cos ¢, + FA + FT (11)
Z z
1 1
"L Pt O, - Iyy) QR, = MAx * MTx
1 1
I ®2-R3H+(1_-1_)P.R, =M, +M
Xz 1 1 xx ‘zz' 11 A T
Y1 Y1
e QB * Oy =L P19y = MAZ *Mp
1 1

where the kinematic relations, equations (9), may be used to eliminate Qq and P| by
introducing
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d. Steady pull-up:

V1=P1=R1=O and ¢1=O
MQ1W1=—Mgsin 61+FAx +FTx
1 1
FA +FT =0
Y1 ¥y
~MQ1U1=Mgcos 61+FA +FT =0 (1
Z Z
1 1
MAx +MTx =0
1 1
MA +MT ={
Y1 Y1
MAZ +MTZ =0
1 1

To maintain a steady pull-up it is necessary that

Mg cos 91 Q1 =FA + FT
X Xy

and

Mgsm91Q1=FA +F



5.1.3 Perturbation equations of motion.— Many of the major objectives of a stability
and control evaluation of an airplane are achieved by considering motion deviating from a
specified steady reference motion of the airplane. Thé deviation is often termed a
perturbation, and the variables that describe the motion are taken to have values consisting
of the sum of the reference value and a perturbation value. The notation of par. 5.1.7 is
used to identify the reference values of the variables, while a lowercase letter or a subseript
p is used to identify the perturbation values, e.g.,

U=U1+u

t9=01+9p

The perturbation equations of motion are obtained from the general equations of
motion, equations (5) and (6), by replacing the velocities, accelerations, and Euler angles
appearing in those equations by the sum of a perturbation and a reference value. The
reference values correspond to steady motion so that their derivatives with respect to time
vanish.

The substitution of perturbation and reference values for the values of the variables
appearing explicitly in equations (5) and (6) does not constitute an approximation.
However, an assumption is made regarding the aerodynamic and thrust terms. These terms
are functions and are, in general, functions of the velocity of the airplane and its
acceleration. It is assumed that the functionality is such that it is possible to write

FA=FA1+fA ; FT=FT1+fT
. = = (13)
My A1+mA v Mg MT1+mT

Clearly, this eliminates functionality that is transcendental as in the case of the gravity
forces that have transcendental (harmonic) dependence on the Euler angles.

The perturbation form for the equations of motion may now be written as

Mu + M[QIWl - RIV1 + Qlw + qu +qw - Rlv - Vlr - rv]
- . (14a)
Mgsm(01+ ep)+}3‘A +FT +fA +fT
Xy X, X X
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MY+ M@®R, U -P,W, +Ru+Ur+ur -Pw-W, p-wp)

= 1 n % (14b)
Mg cos(e1 + Gp) sin (q)1 +¢p) + I‘A + FT + fA + fT
Y1 ¥y y y
Mw + M(PlV1 - Q1U1 + Plv + le + pv - Qlu - Ulq - qu)
= (14c)
Mg cos (91+9p) cos(qt:1+q)p)+FA +FT +fA +fT
zq zZq zZ z
@ IXX p- IXZ (r + le + qu + pq) + (IZZ - Iyy) (er + qu + rq}
= (144)
mA + mT
X X
I 4+1_ (2Pp+p2-2R.r-1t)+(_ -1 _)