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PREFACE 

In February, 1965, Dr. Ernst Stuhlinger, Director, Research Pro­
jects Laboratory (now Space Sciences Laboratory), initiated a 
series of Research Achievements Reviews which set forth those 
achievements accomplished by the la.boratories of the Marshall 
Space Flight Center. Each review covered one or two fields of re­
search in a form rer.dily usable by specialists, systems engineers 
and program managers. The review of February 24, 1966, com­
pleted this series. Each review was documented in the "Research 
Achievements Review Series. " 

. " 

In March, 1966,>a~econd series of ResearphAchievements Reviews 
was initiated. This second series emphasized research areas of 
greatest concentration of effort, of most rapid progress, or of most 
pertinent interest and was published as "Research Achievements 
Review Reports, Volume II. " Volume II covered the reviews from 
March, 1966, through February, 1968. 

This third series of Research Achievements Reviews was begun 
in March, 1968, and continues the concept introduced in the second 
series. Reviews of the third series are designated Volume III and 
will span the period from March, 1968, through" February, 1970. 

The papers in this report were presented May 22, 1968 

William G. Johnson 
Director 
Experiments Office 
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INTRODUCTION TO ASTRODYNAMICS, GUIDANCE 
AND OPTIMIZATION RESEARCH AT MSFC 

By 

Clyde D. Baker 

The periodic Research Achievements Reviews 
afford an excellent opportunity for reporting to a 
wider audience some of the more significant results 
being generated by the Aero-Astrodynamics Labora­
tory. The concepts and ideas to be discussed in this 
review will be of particular interest and importance. 

To express research results in an obscure man­
ner as a detailed list of mathematical equations is 
the quickest and easiest approach. Unfortunately, 
such an approach conveys understanding to few people. 
The challenge then is to process and present the 
materials that evolve from the scientific studies 
being conducted in such a way that persons not 
directly connected with the area of research under 
discussion can easily grasp the concepts and ideas 
being presented and the achievements being accom­
pUshed. The papers which f~U"$H\~v:e~ to a large 
degree met this challenge successfully by reducing 
the abstract and obscure to a form that is both 
reasonable to read and easy to appreciate. 

Three of the topics to be discussed bear a close 
relationship to each other. From an analytical point 
of view, the most general of the three is the paper by 

Lt. Schuyler Sampson on orbits in noncentral force 
fields. The discussion of the motion of an artificial 
satellite under the combined influence of planar and 
Keplerian force fields by Mr. Rowland Burns is a 
special case of the more general theory being examined 
by Lt. Sampson. While these two articles are entirely 
analytic, the third in this series, presented by Mr. 
J. Reynolds Duncan, Jr., represents the problem of 
generating interplanetary trajectories numerically by 
using interplanetary integrating computer programs. 

The remaining two presentations are related to 
guidance. Mr. Hugo Ingram's paper presents a 
fairly, broad class of guidance concepts with emphasis 
on optimization, while Mr. Wayne Deaton's paper 
deals specifically with the problems of rendezvous 
guidance techniques. 

All of these papers succeed in expressing con­
ceptually some of the difficult research tasks being 
undertaken by the Aero-Astrodynamics Laboratory, 
the direction being taken in the solution of the prob­
lems encountered in the studies, the accomplishments 
which are being achieved, and the goals which will be 
reached in the future. 



Page Intentional1y Left Blank 



ORBITS IN NONCENTRAL FORCE FIELDS 
By 

Schuyler S. Sampson 

LIST OF SYMBOLS 

O! constant of integration 

f3 constant of integration 

() angle between r and horizontal axis of 
coordinate system 

p semilatus recturn of a conic section 

constant angle 

x transformed angular variable 

a constant 

c constant 

D region in space 

e eccentricity 

E constant total energy of system 

F force 

h 2 x angular momentum 

H Hamiltonian of a dynamical system 

k constant 

1 constant 

m 

M 

p 

r 

remote perturbing mass 

central mass 

momentum conjugate to coordinate appearing 
as subscript 

distance from origin of coordinate system 

S function appearing in Hamilton-Jacobi equation 

t time 

T terminal time 

V potential energy in conservative force field 

INTRODUCTION 

It is frequently convenient in dealing with difficult 
problems in celestial mechanics to use an easily 
solved problem as an approximation to the actual 
situation. An example of this approach is a patched 
conic interplanetary trajectory. This author's 
research investigates a larger class of problems 
having closed form solutions that can be computed 
quickly: 

DER IVATION OF EQUATIONS FOR 
NONCENTRAL ORB ITS 

Let a particle of unit mass move in a conserva­
tive field whose potential in polar coordinates is 
given by 

Then the Hamiltonian of the system is given by 

E 

where E is the constant total energy. 

The associated Hamilton-Jacobi equation is 

1 [(8S)2 1 (8S) 2J V?«()) - - + -:::r - + V 1(r) + --.:::r 
2 8r r 8() r 

E 

~(t) == orbit determined by given initial conditions or 

3 



SCHUYLER S. SAMPSON 

~(~)2 + r 2V (r) _ r2E = _1..(8S)2 - V2(B) 
2 ar 1 2 ae 

( 1) 

Then the left s ide of equation ( 1) is a function of r, 

For initial experimentation it is convenient to 
restrict the forms of V1(r) and V2(e). Forms 
chosen are respectively 

a 
r 

and the right side is a function of e. Setting each and 
side of equation (1) equal to a constant, _c2, gives 

dS i 
dr 

dS2 
dB 

S(r,e) 

1 

+ J [2(e2 - V 2(O) (2 dO 

and the equations for the orbit are 

and 

as 
W 

as 
aE 

(2)! r -dr 

r2 (E -V1(r) 
)~ c2 2 

-? 

+J de lJ" {3i 

(c2 _ V2 (Oi) 2 

( 2) 

( 2) 

( 3) 

Differentiating equations (2) and (3) with respect 
to r yields the more convenient relations 

(4) 

and 

( 5) 

4 

v 2( 0) = - k cos (0 + ¢) - P.. cos (e + X) - m . 

Note that choosing m"* ° is equivalent to adding a 
term - m/r2 to Vi (r) . 

These selections give the equation of orbit shape 

r 
p 

1 - e cos (0' + C J 

where p 

1 

e = [1 + 4c2E/a2] 2 

~ 

The orbit is bounded for E < 0, unbounded 
otherwise. 

The constants of motion for these noncentral 
orbits are 

E = total energy 

and 

where h is twice the angular momentum. 

(6) 

From the form of equation (4) it is seen that these 
orbits are closely related to conic sections, qualita­
tively at least. In fact, if a non-uniformly rotating 
coordinate system is employed, then changing angular 
variables according to 

yields 



r 
p 

1 - e cos (O! + X) . 

EXAM PLES OF OR BITS 

Consider a three-body system consisting of a 
"central" mass M, a "remote" perturbing mass m 
and an orbiting particle of unit mass, as shown in 
Figure 1. Then under the assumption that r does 
not vary too greatly, take 

and a reasonably good approximation to the physical 
situation can be obtained. Figure 2 provides a 
comparison between the central orbit and the non­
central orbit with the same initial conditions. 

Figure 3 gives the same comparison in the case 
of an orbit that would be unbounded in the absence of 
a perturbing force. 

~ M m 

FIGURE 1. FORCE DIAGRAM 

v ' .i r 

FIGURE 2. PERTURBED AND UNPERTURBED 
ORBITS (BOUNDED) 

SCHUYLER S. SAMPSON 

FIGURE 3. PERTURBED AND UNPERTURBED 
ORBITS (UNBOUNDED) 

A COMPUTATIONAL PROBLEM 

The equation 

is rather intractable from.a computerized Runge­
Kutta point of view, since r changes signs whenever 
r attains an extreme value. It is simpler and much 
more accurate to replace it by 

d Vdr) 
d r 

which was used in plotting Figures 2 and 3. 

UTILIZATION OF RESULTS 

The basic problem of computing V1(r) and V2(8) 
may be formulated as follows: 

given as data 

V(r, 8), the. potential arising from a physical 
situation and 

~(O) I 
r( 0) 

8 (0) 

8 (0) 

initial conditions, 

5 



SCHUYLER S. SAMPSON 

find V 1 (r), V 2( e) /r2 such that the solution of the 
equations of motion (4) and (5) minimize the error 
of position as a function of time. That is, if T> 0 
r( t) is the orbit associated with the initial conditions 
listed above and .0( t) is 'the orbit obtained by replac­
ing V(r, e) with Vl(r) + V2(e) /r2 , it may be desired 
to minimize either 

Ir(T) - p(T) I 

or perhaps 

T 
f I:;-(t) - ;(t) 12 dt . 
0 

This problem, unfortunately, has no closed form 
solution unless r(t) does. Therefore other func­
tionals are selected which can be minimize<;1 conven­
iently. The two prime candidates for experimentation 
are 

and 

f f [V(r,e) - V1(r) - V2~e)J 2 rdrde 
D r (7) 

f f IF(r,B) - F 1(r,B) 12 rdrdB, 
D 

( 8) 

where D is a region in space 

F(r,B) = V'V(r,B) 

and 

V'f(r,B) = (~~, ~~!). 
These functionals can be minimized by standard 

variational techniques. The problem becomes par­
ticular ly simple if D is chosen to be the region 

Note that since no derivatives of the unknown functions 
appear in equation (7), the Euler equations for V 1 (r) 

6 

and V2(B) will not contain any derivatives, so V1(r) 
and V 2( B) can be found by algebraic manipulations. 

REMAINING PROBLEMS 

There are two aspects to the use of approxima­
tions. The first is the selection of the approximating 
function. In this case, that means finding a function 
to minimize. Hopefully something as simple as 
equation (7) will give an approximation that yields 
low errors in -; (t) . The only verification is by 
comparison of numerical data. 

The second consideration is the determination of 
a region D where the approximation is good to within 
prescribed tolerances. There is no difficulty in 
establishing the numerical difference between two 
potential functions, but a knowledge of the cumulative 
error in position is required. This is not so easily 
discovered. 

In order, then, to use these noncentral orbits 
for the computation of something like an interplanetary 
orbit, the following things must be done: (1) find the 
best local approximation to the physical situation, and 
(2) find a set of regions D1, D2, ... ,D including all 

n 
of the trajectory so that the use of a k-th approxima­
ting function in Dk will yield an orbit sufficiently close 

to the actual orbit. 

If this program proves unfeasible, an alternative 
solution is to use a noncentral orbit as an osculating 
orbit and to apply the principle of Encke's method. 

A large class of problems in celestial mechanics 
admit closed form solutions and include all central 
orbits as special cases. This paper has indicated 
problems which remain to be solved, and two possible 
ways of applying these noncentral orbits to realistic 
situations. The long term expectation is that the very 
simple equations of motion associated with these 
orbits will permit much quicker calculation of com­
plicated orbits than is now possible. 

The class of orbits under discussion in this paper 
was observed previously by John P. Vinti of the 
National Bureau of Standards, but apparently only a 
few applications have been investigated thus far. 
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A CLOSED FORM SOLUTION FOR THE 
MOTION OF A SATELLITE UNDER KEPLERIAN 

AND PLANAR FORCE FIELDS 
By 

Rowland E. Burns 

The bulk of today's research work in astronau­
tics is numerical computation. Data from these 
computa tions are applicable to almost any problem 
and can be tailor-made to the specific problem under 
consideration. However, these data tell little about 
the general character of the problem. 

This discussion is concerned with an analytical 
solution to the problem of radiation pressure on a 
satellite. This problem attained some measure of 
importance when the first Echo satellite was launched, 
because radiation pressure over a long period of 
time will perturb the orbit of a satellite. An analy­
tical technique will provide an approximate solution 
to the radiation pressure problem; the exact nature 
of the method used can be illustrated by Figure 1. 
In Figure 1 the earth or some other similar attrac­
ting body is shown by the dotted line. The darker 
line is an unperturbed orbit (an ordinary Keplerian 
orbit such as an ellipse or circle). A parallel force 
field acting in the positive z direction is superimposed 
over these orbits to approximate the radiation pres­
sure upon a satellite. In forCing the field to be com­
pletely parallel at all points, divergence of the field 
was neglected. Thus the problem is to define the 
type motion the satellite will experience when a 
parallel force field affects an inverse square attrac­
ting field from this planet. 

t r 
r 1 t t r 

r?->\ r , \ 

\ 
\ 
\ 

r ! 

FIGURE 1. EARTH ORBIT (DOTTED LINE) AND 
KEPLERIAN ORBIT WITH PARALLEL FORCE 

FIELD IN Z DIRECTION 

To the left in Figure 2 are the equations of 
ordinary Keplerian motion that were investigated by 
Newton several hundred years ago. The ordinary 
Keplerian orbits, such as circles, ellipses, hyper­
bolas, or parabolas, are obtained by integrating these 
three differential equations in which an inverse square 
force is proportional to the mass of the planet. To 
the right in Figure 2 appears to be a somewhat trival 
modification to these equations. The first two equa­
tions are identical to their counterparts on the left. 
The last equation has been modified by the addition of 
a constant. This constant now represents the planar 
force field that will perturb the Keplerian orbit. These 
are differential equations, and the addition of a con ... 
stant of this sort can markedly change the results. 

KEPLERIAN 
(INVERSE SQUARE FORCE) 

MOTION 

. p' 
I ; - {.2 + y 2. + z2 I ~/2 

PERTURBED 
.(INVERSE SQUARE FORCE PLUS PLANAR FORCE) 

MOTION 

I: : 

(.2 + y2 + z 2 )3/2 
'i. : + A 

FIGURE 2. SIMPLE AND MODIFIED KEPLERIAN 
EQUATIONS OF MOTION 

To the left in Figure 3 is a system of spherical 
coordina tes. To the right in Figure 3 is a rotational 
parabolic coordinate system that is useful in examin­
ing satellite orbits. Rather than having circles as 
lines of constant value of the coordinates, there are 
parabolas in some planes and circles in other planes 
(thus the rotational label). Use of this coordinate 
system is expedient and permits separation of equa­
tions. 

7 



ROWLAND E. BURNS 

8 • 90· 
r • 1.0 

SPHERICAL 
COORDINATES 

(ROTATIONAL) 

y 

PARABOLIC 
COORDINATES 

( ROTATIONAL) 

z 

FIGURE 3. SPHERICAL AND PARABOLIC 
COORDINATES 

In the top left part of Figure 4 are the differen­
tial equations of Keplerian motion for the two dimen­
sional case. To the upper right ar.e the equation of 
the orbit and the equation relating to the time (to the 
mean motion in the orbit). Below these equations 
on the left side, to illustrate the modification that 
occurs when a constant is added, are two equations 
(again for the two dimensional case). The first is 

KEPLERIAN 

at 1 - ,2 ) 

1 +. cO'. 

I - '0 : l: -" 1 

(.2. ,2. , 2) 3/2 
E - • SIfI E 

PERTURBED 

the differential equation in x, and the second is a 
differential equation in z modified by the addition 
of a constant. To the right of these equations are the 
res ults of integrating these two equations. Com­
paris on of the top equation of normal Keplerian 
motion with the top equation for perturbed Keplerian 
motion indicates the modification that occurs simply 
by addition of the constant A. The sri is an inverse 
elliptic sine with some properties that parallel the 
ordinary inverse sine of circular trigonometry. 
The cn-i is an inverse elliptic cosine. The first 
equation in the lower right hand block is the equation 
of the orbit if a constant, A, is added to the right 
side of the differential equation in z. It is a much 
more complicated equation than the Keplerian equa­
tion, because it describes the profusion of orbits 
that will be obtained. Below the equation of the 
perturbed orbit is an equation which relates the 
time in orbit to the position coordinates ~ and 7}. 

E is an ordinary elliptic integral. Just as the equa­
tion for the time is more complicated than the equa­
tion for the orbit in the Keplerian case, thus the 
bottom right hand equation for the time is rp.ore 
complicated than the equation for the orbit in the 
perturbed case. 

-' [sn" (II: to. ) .sn'( IJ:; 15::)] -' [.,( """ ~ ). -, (f'I f"02 )] .jb,' vo;· v r. v t; . v r; '.."fG,+ib,i en V T,' . v o,;'f,l en V 0;- . V o,:;"f,'l 

-~I {E [en' (5 j~L) j--'L] -E [en' (G:' ro;-) r-o;-] 
2 ., ~I' ~I VT, . vq~ v¢jo,j 

FIGURE 4. POSITION AND TIME EQUATIONS FOR AN ORBIT 
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Figure 5 shows a circular orbit plotted in 
Cartesian coordinates. This has no planar force 
field superimposed upon it. Figure 5 and those to 
follow are two dimensional representations, because 
it is much more difficult to present three dimensional 
figures. In general, the values of A are chosen 
much higher than the values of A that occur for true 
radiation pressure problems. For very small values 
of A the resulting figures would be quite uninteresting; 
therefore the superimposed planar force field was 
given a much higher value than what is obtained in 
practice. Figure 5 and the following figures were 
machine plotted and may appear a little rough. 
Figure 5 is an unperturbed Keplerian orbit. Figure 
6 is the same circle plotted in the parabolic coor­
dinate system. The representation of the circle 
(Fig. 5) in parabolic coordinates (Fig. 6.) illustrates 
the results obtained by using the Cartesian coordi­
nate system versus the parabolic coordinate system, 
respectively. 

FIGURE 5. CIRCULAR ORBIT IN CARTESIAN 
COORDINATES, Zo = ±1, A = 0 

x 

A representation of a differential equation in z 
with a value of A = 0.001 is shown in Figure 7. A 
may be considered as a ratio of the initial planar 
force field to the gravitational force. In this case 
approximately 1/100(10/0 of the gravitational force 
is acting in the z direction. Figure 7 was plotted 
only to an arbitrary point in the orbit because of 
machine-time restrictions. For smaller values of 
A, which are more realistic, the orbit would almost 

ROYLAND E. BURNS 

FIGURE 6. CIRCULAR ORBIT IN PARABOLIC 
COORDINATES, Zo = ±1, A = 0 

FIGURE 7. ORBF IN CARTESIAN COORDINATES, 
Z 0 = 1, A = 0.001 

retrace a constant path. Figure 7 is plotted in 
Cartesian coordinates. Figure 8 is the same orbit 
(A = 0.001) in parabolic coordinates. The equation 
shown in Figure 4 is an analytic representation of 
the orbit shown in Figure 8. 

9 



ROYLAND E. BURNS 

FIGURE 8. ORBIT IN PARABOLIC COORDINATES, 
2:0 = 1, A = 0.001 

Figure 9 shows a value of the radiation pressure 
field of approximately 1% of the force of gravity. 
Some striking differences from Keplerian motion are 
beginning to appear. The satellite is initially in a 
circular orbit, and then is pushed to the right because 
the satellite in reality displays many of .the aspects 
of gyroscopes. Finally, it is seen that all the orbits 
pass through a pOint in the right side of Figure 9. 
This point is slightly above the axis, thus indicating 
a force in that direction. 

FIGURE 9. ORBIT IN CARTESIAN COORDINATES, 
ZO = -1, A = 0.01 
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Figure 10 is the orbit in parabolic coordinates of 
the differential equation plotted in Figure 9. It now 
becomes apparent that parabolic coordinates are 
actually more applicable to the problem. In Figure 
10 the satellite traces its path within the linear 
bounds on all four sides. 

FIGURE 10. ORBIT IN PARABOLIC COORDINATES, 
ZO = -1, A = 0.01 

Increasing the radiation pressure further pro­
duces the extremely strange effects shown in Figure 
11. At one point the orbit almost exhibits a cusp 
behavior. The radiation pressure has a value of 8% 
of the force of the gravitational field. 

x 
~~4~~~~~~*f'~~+~ 

T 

FIGURE 11. ORBIT IN CARTESIAN COORDINATES, 
ZO = -1, A = 0.08 



Figure 12 shows how necessarily complicated the 
equations of the orbit must be to represent all the 
various poss ible trajectories. 

Figures 7 - 12 indicate how a minor modification 
of a differential equation can produce some profound 
changes in the physical results. The discussion has 
been limited to radiation pressure perturbations, 
but this may also apply to the type\ of orbit that could 
be achieved by a two body system with a very dis­
tantly removed gravitational attracting mass. At a 
very far distance the gravitational attraction will be 
essentially parallel as is the radiation pressure, 
though opposite in direction. This treatment also 
neglects such things as the motion of an earth satel­
lite about the sun where the centrifugal accelerations 
caused by the motion of the earth in orbit become 
apparent. 

ROWLAND E. BURNS 

FIGURE 12. ORBIT IN CARTESIAN COORDINATES, 
ZO = -1, A = 0.05 
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A CRITICAL EVALUATION OF INTERPLANETARY 
INTEGRATING COMPUTER PROGRAMS 

By 

J. Reynolds Duncan, Jr. 

This paper will discuss the initial phases of a 
long range research project concerning the critical 
evaluation of the components of interplanetary inte­
grating computer programs. These evaluations 
should result in a meaningful classification of the 
advantages and disadvantages of not only the individual 
components but various combinations of these com­
ponents. It is anticipated that the classifications will 
be made on the basis of such characteristics as 
speed, error control, versatility, and amenability 
to change. 

A Simple breakdown that indicates the basic 
structure of interplanetary integrating computer 
programs is shown on the left side of Figure 1. 
The arrows connecting these blocks with the block 
on the right side of Figure 1 indicate the dependence 
of the selection of the components of interplanetary 
programs upon the program goals or intended uses 
of the program. The first block on·~the left, N -body 
problem formulations, refers to the formulations 
of the equations of motion of a spacecraft subject 

N-BODY PROGRAM GOALS 
PROBLEM 

J J J 
FORMULATIONS 

NUMERICAL 
INTEGRATION HIERARCHY 
TECHNIQUES OF 

DESIRABLE 
MATHEMATICAL CHARACTERISTICS: 

MODELS OF 
OTHER FORCES 

ACCURACY 

SEARCH SPEED 

ROUTINES VERSATILITY 
- - - - --- • 

VARIABLES • • 
USED IN SEARCH 

ROUTINES 

FIGURE 1. INTERPLANETARY INTEGRATING 
COMPUTER PROGRAMS 

to the spherically symmetric gravitational forces of 
mass ive bodies. Implied in this formulation is 
knowledge of the positions and velocities of the N-1 
gravitating bodies that affect the motion of the space­
craft. 

In the second block, or second part of the make­
up of an interplanetary program, is indicated the 
techniques that are used to numerically integrate these 
equations of motion. The third part, mathematical 
models of other forces, refers to forces other than 
the spherically symmetric gravitational forces that 
are taken care of in the first block. These first 
three blocks form a trajectory generator or numeri­
cal integration program which, given a set of initial 
conditions and a time for the numerical integration to 
take place, will produce a set of final conditions. 
But these end conditions may not necessarily be the 
desired end conditions. Therefore, it is necessary to 
employ the use of a search routine or isolation rou­
tine whose purpose is to search for a set of initial 
conditions that will provide the desired set of termi­
nal conditions, such as injection into a specific orbit 
about a distant planet. The dashed line indicates that 
the variables used in the search routine (the inde­
pendent, dependent variables) may have some effect 
upon the operation of the search routine. 

On the right side of Figure 1 are the program 
goals that can be expanded into a hierarchy of 
desirable characteristics. These characteristiCS 
are the properties the program should have in order 
to obtain the desired goals. Actually the construction 
of this list of desirable characteristics is not as 
simple as just indicating which things are to be 
desired in the program because many, if not all, 
of these characteristics are of a competing nature. 
For example, if you wish to have a program that is 
very accurate, then you will probably need to increase 
the running time of the program to attain this higher 
accuracy, thus improving one program characteristic 
at the expense of another. So, instead of an ordered 
list, it would be better to assign weighted values to 
each of the characteristics and thus indicate not only 
their relative importance, but how much you might 
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be willing to trade off one characteristic against 
another in order to achieve a program with the best 
combination of desired properties. 

Now that an outline has been given of the overall 
structure of interplanetary programs, each one of 
the blocks in Figure 1 will be discussed individually 
in more detail to develop a better understanding of 
the components that are under study. Three prin­
cipal formulations for the equations of motion of 
spacecraft are listed in Table 1. It is one of these 
three formulations, or a combination or variation of 
these formulations, that is used in almost all of the 
interplanetary computer programs. The first one, 
direct summation of forces, is the Simplest most 
straightforward method of formulating the equations 
of motion. It is often referred to as a Cowell for­
mulation. The second and third formulations make 
use of reference orbits. When two-body motion is 
used for the reference orbit in the variation of co­
ordinates method, the formulation is usually referred 
to as an Encke formulation. It is not necessary touse 
two-body motion for the reference orbit, since the 
only requirement is that the reference orbit that is 
used should have a closed form solution. As is in­
dicated by the name, variation of coordinates, the 
only variables' that are actually numerically integrated 
in this formulation are the variations from a reference 
orbit. The third formulation, variation of parameters, 
is very similar to the second in some ways. The orbit 
itself, instead of being represented in Cartesian co­
ordinates, is represented in terms of orbit!al elements 
or parameters. It is the variation of these orbital 
elements or parameters from the reference orbit 
which is actually numerically integrated. 

TABLE 1. PRINCIPAL FORMULATIONS 

• DIRECT SUMMATION OF FORCES 

• VARIATION OF COORDINATES 

• VARIA TION OF PARAMETERS 

Next, some of the numerical integration tech­
niques used will be examined. Table II is a list of 
some of the many integration techniques in use today. 
This paper w ill not describe the detailed structure 
of each one of these techniques, but a great number 
and variety of techniques exist. Some of these tech­
niques lend themselves well to numerical integration 
with small fixed time steps over relatively short 
periods of time, while others have the advantage of 
using variable time steps and may be used for numer­
ical integration in interplanetary space where it is 
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advantageous to use a variable D.. t. Some of the 
routines do not have error control built into them and 
do not offer any indication of how accurately the 
numerical integration is being performed, whereas 
other techniques lend' themselves well to error con­
trol or provide an indication of the numerical errors 
that are accumulating in the numerical integration 
process. 

TABLE II. NUMERICAL INTEGRATION 
TECHNIQUES 

• ADAMS-MOULTON 

• RUNGE-KUTTA 

• SHANKS 

• FEHLBERG 

• POWER SERIES 

Table III lists some of the additional mathemati­
cal models that may need to be included in an inter­
planetary program, depending upon the desired accu­
racy of the program. The nonspherical gravitational 
forces refer to those forces that arise' from the non­
spherically symmetric nature of those gravitational 
bodies that affect the path of the spacecraft. The 
aerodynamic forces, of course, refer to the atmos­
pheric drag that may be encountered by a spacecraft. 
The propulsive forces, which may require inclusion, 
are both of an intentional and unintentional nature: 
the intentional part is the nominal thrusting of a 
rocket motor for a boost into orbit or a midcourse 
maneuver; the unintentional part is the off-nominal 
performance of the rocket motor and such things as 
out-gassing and leaky valves aboard a spacecraft. 
Solar radiation pressure is the force caused by the 
impact of photons striking a spacecraft. Although this 
effect may be small, it is cumulative, and can notice­
ably perturb the path of an interplanetary spacecraft. 
Electromagnetic forces can affect the orbit of a 
spacecraft traveling through ionized gasses. The 
bombardment of a spacecraft by the heavier particle 
emission from the sun (the solar wind) can also cause 
noticeable perturbations from a desired path. Depend­
ing upon the deSired accuracy of the program, rela­
tivistic effects, as well as other forces not listed 
here, may need to be mathematically modeled and 
incl uded in an interplanetary program. 

Table IV lists a few of the search routines that 
are currently being used. These and the other rou­
tines not listed have basiC similarities;. most of them 
use partial derivatives, some use first order partials, 



TABLE III. MATHEMATICAL MODELS 

• NON-SHPERICAL GRAVITATIONAL FORCES 

• AERODYNAMIC FORCES 

• PROPULSIVE FORCES 

• SOLAR RADIATION PRESSURE 

• ELECTROMAGNETIC FORCES 

• SOLAR WIND 

• RELATIVITY EFFECTS 

others use second order and higher partial derivatives. 
Even with these similarities there is a wide range of 
performance with some routines having rapid conver­
gence over a small area and other routines having 
much slower convergence over a conSiderably larger 
area. Therefore, with regard to search routines, 
the objectives of this investigation are to identify all 
the advantages and disadvantages of each of these 
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routines and indicate how well or efficiently they 
operate with other parts of the program. 

TABLE IV. SEARCH ROUTINES 

• SECANT METHOD 

• NEWTON'S METHOD BY DIVIDED 
DIFFERENCES 

• STEEPEST DESCENT 

• NEWTON'S METHOD WITH 
INTEGRATED PARTIAL 
DERIVATIVES 

• GENERAUZED NEWTON -RHAPSON 

To indicate how the results of this study may be 
of use, two sample interplanetary programs are 
shown in Figures 2 and 3. These hypothetical pro­
grams were constructed based upon preliminary 

I ENCKE; VARIATION OF PARAMETERS ' r-- INTERP LANET ARY 
TAPED EPHEMERIS VS. SIMULTANEOUS INTEGRATION MISSION 

DESIGN I ADAMS-MOULTON PREDICTOR CORRECTOR ~ STUDIES 
POWER SERIES 

I I I IMATHEMATICAL MODELS SHOULD BE I 
RANKED BY PERTURBATIVE EFFECT I PROVIDE 

RESULTS OF 

IWIDE RANGE OF CONVERGENCE I 
VARYING DEGREES 

OF ACCURACY 
FOR HARDWARE 

DESIGN 

FIGURE 2. INTERPLANETARY NUMERICALLY INTEGRATING PROGRAM FOR MISSION DESIGN STUDIES 

I FORMULATION WHICH BEST SUITS L INTERPLANETARY 
NUMERICAL INTEGRATION TECHNIQUE I MISSION 

OPERATIONS 
I MOST ACCURATE NUMERICAL I ! ! 1 INTEGRATION TECHNIQUE I 

VERY ACCURATE 
I BEST REPRESENTATION OF I REPRESENT ATION 
ALL MODELS I OF INTERPLANETARY 

TRAJECTORIES 

I ASSIMILATION OF TRACKING DATA I 
FOR UPDATE AND COMPARISON I 

FIGURE 3. INTERPLANETARY TRAJECTORY PROGRAM FOR MISSION OPERATIONS 
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investigations and are presented only as examples of 
how the projected study results may be used. The 
format for the breakdown of the programs is the same 
as that used in Figure 1. 

In Figure 2 is shown an interplanetary numeri­
cally integrating program that is intended for use 
primarily in mission design studies. A possible 
desirable characteristic or trait of this type of pro­
gram would be to provide results of varying degrees 
of accuracy for hardware design. These results of 
varying accuracy are suggested by the nature of 
des ign studies. In the initial phases of many miss ion 
design studies, the input parameters that are needed 
fOI'the computation of design trajectories are often 
not well known and may be little more than guesses 
or best estimates. Also, in the initial phases, the 
number of trajectories that are used in the design 
of the hardware for an interplanetary spacecraft 
may be quite large compared to the number that 
would be needed in later phases when more accurate 
values of the input parameters are known. If a 
program could provide results commensurate with the 
accuracy of the input parameters, this may result 
in a considerable savings in computer running time. 

In the blocks on the left side on Figure 2 are 
indicated some choices or characteristics of the 
components that might be used in the construction 

of this type of a program. The line joining the first 
two blocks indicates that the evaluation of the combina­
tion of the numerical integration technique with the 
formulation of the equations of motion may be more 
important than the separate evaluation of these com­
ponents. That is, since these two components work 
very closely together, a better measure of their 
efficiency might be to evaluate them together rather 
than separately. Indicated in the first block is the 
use of Encke or variation of parameters in the for­
mulation of the equations of motion. These were 
chosen since most of the interplanetary trajectories 
will be numerically integrated in heliocentric space 
for which these formulations are well adapted. Also 
indicated is another possible choice, and that is the 
use of a taped ephemeris versus simultaneous inte­
gration. In most N-body problem simulations, where 
all the planets are represented, use is quite often 
made of a taped ephemeris where the positions and 
velocity of the planets for a future time span (20 or 
30 years) are precomputed and stored on tape. Then, 
the values needed for the numerical integration of a 
trajectory are retrieved and interpolated. If the 
required accuracy of the program is not precise, and 
it would not be in the initial phases of a miss ion 
design study, it may be possible to use a two or three 
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massive body simulation. Then the equations of 
motion of the massive bodies, such as the sun, the 
earth, and the target planet may be simultaneously 
integrated with the equations of motion of the space­
craft. It is possible that this method may provide 
some saving in computer running time. In the second 
block are indicated two possible choices for a numeri­
cal integration technique. The Adams-Moulton pre­
dictor-corrector technique is probably one of the 
techniques most widely used in interplanetary pro­
grams. Another poss ibility is'the use of power series 
for the numerical integration procedure. Both of 
th~se techniques are well suited for this type of 
numerical integration. Whatever technique is used 
should be capable of integrating with an easily con-' 
trolled variable degree of accuracy to satisfy the 
requirement of a variable accuracy trajectory. 

In block number three it is indicated that the 
mathematical models should be ranked by perturba­
tive effect. This would be very helpful in construct­
ing the type of program indicated in Figure 2. It 
would then be possible to include or exclude those 
model's needed to maintain but not exceed a specified 
degree of accuracy. Of course, the fewer models 
used, the faster the program operations can proceed. 
Then, as the desired accuracy increases, additional 
models could be added with the most perturbing 
forces being added first and the least perturbing 
forces added later, if needed. One of the goals of 
this study is to attempt to rank these models in this 
fashion so that they will be available for use in such 
programs. 

As indicated in the fourth block, one advanta­
geous property of a search routine for this type of 
program would be a wide-range convergence of the 
search routine, since, as previously mentioned, some 
of the initial trajectories that would be run would 
probably be based upon guesses or best estimates of 
the input parameters. 

Shown in Figure 3 is another example of an 
interplanetary trajectory program, but this one has 
a quite different function. Its main purpose would 
be for use in mission operations, which, in this 
sense, would be the interplanetary program used to 
numerically determine the path of a spacecraft after 
launch. The program would therefore be used in 
the determination of such things as the time of firing 
of the midcourse engines, the time of firing of the 
engine to inject the spacecraft into Qrbit about 
another planet, and may be used in th~ §election of 
the proper time for activating a camira or videcon 
for taking television pictures or photographs about 



another planet. To perform these and other tasks, 
it is important that the program give very accurate 
representations of interplanetary trajectories. With 
this as a desirable characteristic, certain require­
ments can be placed upon the components of such a 
program. As in Figure 2, the line joining the first 
two blocks indicates that consideration of the union 
of these blocks is probably more important than their 
separate consideration. As indicated within the 
blocks, the selection of the formulation should be 
based upon which formulation best suits the numerical 
integration technique. Since accuracy is of prime 
importance, the numerical integration technique 
chosen should, of course, be the most accurate 
technique available. The models used (block 3) 
should be the best representations· that are available. 
As indicated in block 3, all of the models should be 
used so that the resulting trajectory will correspond 
as closely as possible to the actual interplanetary 
trajectory. In this interplanetary miss ion .operations 
program, use would not necessarily have to be made 
of an isolation or search routine, but the program 
itself would have to have the capability of aSSimilating 
tracking data for updating and comparison purposes. 

:;'! 
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(see block 4.) With the addition of this particular 
function, the program might more accurately be called 
an orbit determination program. 

By use of these two sample programs, an attempt 
has been made to illustrate the impact of the intended 
use of the program upon the construction of inter­
planetary programs and to explain the value of having 
available a detailed analYSis of the properties of the 
various components and combinations of these com­
ponents. The study has not yet reached the point 
where specific recommendations can be made con­
cerning the construction of particular interplanetary 
programs; however, some of the basic formulations, 
in combination with different numerical integration 
techniques, are now being readied for computer 
checkout. Upon completion of the study, the results 
should not only be applicable for the construction of 
efficient programs with a resultant reduction of com­
puter running time, but also these results should 
provide some added degree of confidence to the user 
of the interplanetary programs which are presently 
available. 
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OPTIMAL GUIDANCE 

By 

Hugo Ingram 

The topics discussed in this paper are the mathe­
matical formulation for optimal guidance and the 
effort involved in the implementation of optimal guid­
ance. Also, this work is compared with the present 
iterative guidance mode (IGM) onboard guidance 
scheme. In order to fully understand an optimal 
guidance procedure, it is first necessary to under­
stand how to compute an optimal trajectory; there­
fore, the first part of this paper will be a brief 
description of the optimal trajectory problem. 

Figure 1 is a pictorial representation of the 
optimal trajectory problem. A set of functions to 
be satisfied at the initial time are to be connected by 
a trajectory to a set of functions that are to be satis­
fied at the final time. The trajectory connecting the 
ini tial functions, F, to the final functions, G, is 
determined by a set of ordinary first order differen­
tial equations (the x's) usually referred to as the 
equations of motion. vector notation is used in 
Figure 1 and thus x is a vector with components that 
denote the state of the trajectory at a partic).llar in-:­
stant. For example, in a rocket trajectory 'the state 
is characterized by the following quantities: x, y, 
and z (the position vector), X, y, and z (the velocity 
vector), and F/mo and Iil/mo (the performance 
characteristics). The parameters ~ and {3 are 
parameters which can be specified arbitrarily at the 
initial and final times, and the parameters u are 
called the control variables which are also assumed 
to be able to be specified arbitrarily at any instant of 
time. Thus the determination of the optimal trajec­
tory (denoted by the solid line in Figure 1) involves 
the selection of the parameters ~, {3 , and u such that 
the quantity J is maximized or minimized. Usually 
the function J in Figure 1 is just the mass at the final 
time; the F's represent the initial state of the vehicle; 
the G's represent the desired end conditions (for 
example circular orbit conditions) . 

To minimize or maximize J subject to the con­
straints of the problem, it is necessary to define a 
new quantity J' as is shown in Figure 2. JI is equal 
to J when the constraints are satisfied [i. e., when F 
and G = 0 and x = F(x, u) 1. At this point it will be 
advantageous to note that discontinuities in the state 

TO BE OPTI MIZED 

J = + ()(o, '0 I + t ( xf, 'f I + f 'f f ()(, u) d t 
to 

FIGURE 1. THE MATHEMATICAL 
SIMULATION OF A TRAJECTORY 

variables can occur at points between to and t
f 

If 

these discontinuities 'occur at times such as t1 and t2, 
, then ,the integral in J and JI can be divided into parts 
'as foilows 

Also, the specified discontinuities at t1 and t2 can be 
considered as constraints and adjoined to J' with 
additional multipliers just as the functions F and G 
were adjoined with the multipliers p and p and the 
differential constraints x = F(x, u) with the A's. 
For simplicity this is not done in Figure 2 and JI is 
written only for a one stage problem, but the addi­
tional work for multiple stages is not difficult con­
ceptually and has been performed for staging dis­
continuities and for coast-arc discontinuities. 

The first ;variation for JI is also given in Figure 
2. This must be zero in order for JI to be a maximum 
or a minimum. The second variation, which is not 
written out, must then be examined to determine 
whether J' is maximized or minimized when ~ J' = O. 
Then in Figure 3 the conditions necessary for causing 
~ JI to be zero are given. When taken all together, 
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= F ( t ) + .1, ( xf, tf ) + pT XO' 0 ' a 'f 
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FIGURE 2. THE OPTIMIZATION TECHNIQUE 

these conditions form the boundary value problem 
for the determination of an optimal trajectory. To 
solve this boundary value problem, initial guesses are 
selected for xo, to, a, p, p, f3 , and tf" With this 

information the initial constraints can be evaluated, 
the differential constraints integrated ( usually 
numerically since the equations are nonlinear), and 
then the terminal constraints evaluated. Naturally, 
the initial constraints and the terminal constraints 
will not usually be satisfied for the guessed initial 
conditions, but there are many techniques a¥8.ilable 
for using the amount that the initial and terminal 
conditions are not satisfied to compute corrections 
to the initial guesses. This procedure will more 
nearly satisfy the boundary value problem and thus 
finally yield an optimal trajectory. References 1 
and 2 describe some of these procedures, This 
concludes the brief description of the techniques 
necessary for the determination of an optimal tra­
jectory. 
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In Figure 4 the necessary conditions for the 
optimal guidance boundary value problem are given. 
It should be noticed immediately that this problem is 
alm.ost identical to the optimal trajectory problem. 
The only difference is that the initial constraints are 
eliminated from the problem because when active 
guidance is used, the vehicle must determine its 
present state. These conditions are then fixed and 
the optimal guidance problem is to determin~.aft . 
optimal trajectory that connects thes-e measured 
initial conditions with the desired terminal constraints. 
Thus the number of guessed initial conditions is 
reduced to only AO' t

f
, p, and f3 as is shown in 

Figure 4. It is usually assumed at this point that it 
is too difficult to use this approach for actual onboard 
guidance, and thus many approximations are attempted 
to simplify the guidance boundary value problem so 
that is may be used in a form suitable for onboard 
computations. Some of these approaches will now 
be discussed and then some more details about 
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possible implementation of complete optimal guidance 
will be mentioned. 

Figure 5 is an enumeration of the principal 
approximations that are made for the implementation 
of the present IGM guidance scheme. Approximations 
(1) and (2) allow the differential equations or the 
equations of motion to be solved in closed form. Then 
thESe closed form solutions can be substituted into 
the terminal constraints to yield a system of non­
linear equations which must be solved for A, E, and 
t
f
. This can only be done in explicit form by making 

some more simplifying approximations which then 
yield the final form of the IGM guidance equations 
which are given in Reference 3. It must be noted 
that approximation (1) listed in Figure 5 eliminates 
any consideration of optimality and thus also elimi­
nates the transversality conditions so that only the 
physical boundary conditions (the G's) must be 
satisfied as terminal constraints. It has been ob­
served, however, that numerical simulations of the 
IGM guidance procedure perform extremely well in 
obtaining the desired terminal conditions and the 
deviations from an optimal trajectory are usually 
insignificant. 

Figure 6 is an improvement of the IGM guidance 
procedure that is somewhat similar in approach. The 
principal approximation is the assumption of a con-

(1.) U = A + B t 

stant gravity. Then the problem is formulated and 
solved as an optimal trajectory problem or as the 
guidance boundary value problem of Figure 4. Again 
the assumption-of a constant gravity allows tqe 
differential constraints (both the x's and the A'S) to be 
integrated in closed form which results in a system of 
simultaneous nonlinear equations (the terminal con­
straints) which must be solved for the unknowns /1.0' 
tf' p, and {3. For this procedure no additional 

approximations are made to solve the system of 
nonlinear equations. Instead a numerical procedure 
such as Newton's method, Reference 1, or the Secant 
method, Reference 2, is used. Numerical simulations 
of this procedure have been performed and a paper on 
more details and improvements has been prepared 
for the AIAA Guidance, Control, and Flight Dynamics 
Conference to be held in Pasadena, California, in 
August 1968 [2]. 

A summary of the three guidance schemes dis­
cussed here is given in Figure 7. The first and most 
desirable scheme for implementation is called optimal 
guidance, which involves numerical integration of the 
differential constraints and a numerical solution of 
the boundary value simultaneous equations. The 
second approach is called quasi optimum trajectory 
analysis (QUOTA). The only difference in this 
approach is the simplifying assumption of a constant 
gravity which allows a closed form solution of the 
differential equations and eliminates the necessity of 

( 2 ) CONSTANT GRAVITY (MAGNITUDE AND DIRECTION) 
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(1.) CONSTANT GRAVITY (MAGNITUDE AND DIRECTION), THEN THE 
BOUNDARY VALUE PROBLEM BECOMES; 

DETERMINE Ao ' tf I p, AND f3 SUBJECT TO: 

DIFFERENTIAL 
CONSTRAI NTS 

x = HT 
A 

A = -H T x 

o = H u 

G(Xfl t f ,fj) = 0 

TERMI NAL 
CONSTRAINTS 

A ( t f) - - lit - pT G - YXf xf 

= 0 

= 0 

FIGURE 6. APPROXIMAtIONS FOR IMPLEMENTATION OF QUOTA 

1. OPTIMAL GUIOANCE 
(A.) NUMERICAL INTEGRATION OF DIFFERENTIAL CONSTRAI·NTS 

(B.) NUMERICAL SOLUTION OF BOUNDARY VALUE SIMULTANEOUS 
EQUATIONS 

.u. OUOTA 
(A.) APPROXIMATION OF CONSTANT GRAVITY ALLOWS CLOSED FORM 

SOLUTION OF ALL THE 01 FFERENTIAL CONSTRAINTS 

(B.) NUMERICAL SOLUTION OF BOUNDARY VALUE SIMULTANEOUS EQUATIONS 

IU. 16M 

(A.) APPROXIMATIONS OF A LINEAR X PROGRAM AND A CONSTANT 

GRAVITY NECESSITATES A CLOSED FORM SOLUTION OF ONLY 

THE EQUATIONS OF MOTION 

(B.) AN ALMOST EXPLICIT SOLUTION FOR A, B, AND tf IS OBTAINED 
USING ONLY THE PHYSICAL BOUNDARY CONDITIONS 

FIGURE 7. COMPARISON OF GUIDANCE SCHEMES 
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numerical integration. The third approach is the 
present IGM guidance equations, which does not 
involve either the numerical integration or the numer­
ical solution of the boundary value problem. This is 
the approach which is implemented for flight vehicles 
primarily due to the limitations of the present on­
board guidance computer. It is hoped that future 
guidance computers will allow the more complicated 
but more effective procedures listed in Figure 7 to be 
used as onboard guidance schemes. Even if this is 
not the case, mathematical simulations of the first 
two procedures will still prove useful for comparison 
with the IGM procedure. For example, References 
4 and 5 give some comparisons of Optimal Guidance 
and QUOTA with IGM. 

Figure 8 indicates several approaches to improv­
ing the implementation of optimal guidance for onboard 
use. The first improvement listed is the preflight 
solution of the guidance boundary value problem for 

a nominal set of initial conditions. When these solu­
tion unknowns are used as initial guesses for the 

onboard solution of the optimal guidance problem, 

the work and time used for a particular guidance 
cycle is greatly decreased. The second preflight 
calculation that can be made is the determination of 
the matrix [Pol, which tells how the nominal unknowns 
vary with respect to changes in the nominal initial 
state for the guidance boundary value problem. Also, 
it is shown in the figure that [P 1 can be determined 
at any time (not just at to), so that this is equivalent 
to linear feedback guidance if only this correction is 
used each time a guidance signal is needed. When 
this linear correction is combined with the normal 
procedure for solving the guidance boundary value 
problem, a type of nonlinear feedback guidance 
res ults. More details on this type procedure can be 
found in Reference 5. 

In conclusion it is necessary to reiterate that the 
improvements made in numerical integration tech­
niques' the improvements in techniques for the solu­
tion of simultaneous nonlinear equations, and the 
expected improvements in guidance computers make 
optimal guidance appear to be feasible as an onboard 
guidance scheme and desirable because of its flexi­
bility for different missions and problems. Most of 

( 1. ) AO ' t f ' p, a f3 ARE DETERMINED FOR A NOMINA L xo ' to 

? THE MATRIX [po] IS DETERMINED SUCH THAT '-

6- Ao 

6 t f 
[ po] = 6- xo 

6- p 

6- f3 

THEN AT ANY TIME to < t < t f 

THE INFORMATION NEEDED TO S TA RT THE BOUNDARY 
VALUE ITERATION IS GIVEN BY NUMERIC A L INTEGRATION 
OF: 

U 
= HT 

A 
[ P ] M(t; [p], x, A) = -H T AND = x 

= Hu 

FIGURE 8. PREFLIGHT CALCULATIONS FOR OPTIMAL GUIDANCE 
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the derivation and development of the ideas concerned 
with QUOTA and Optimal Guidance are relatively new, 
thus there is not a large amount of numerical simul­
ation and documentation available; although some are 

given in the list of references. Further work is in 
progress and the results will appear in later publica­
tions and presentations. 
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RENDEZVOUS TECHNIQUES 

By 

Wayne Deaton and ·Wendell Elrod 

SUMMARY 

This paper presents the overall progress made 
by the Aero-Astrodynamics Laboratory's Guidance 
Branch in the area of rendezvous techniques research 
which encompasses orbital mechanics, trajectory 
shaping, profile selection, guidance compatibility, 
and targeting data generation. 

INTRODUCTION 

This paper describes research work performed 
on the Apollo Projects and the Apollo Applications 
Projects. This research work was required to solve 
the operational problems encountered on a miss ion 
to miss ion bas is. The task of achieving rendezvous 
of two spacecrafts in orbit is an integral part of the 
mission plans of both the mainstream Apollo Lunar 
Landing Mission and the Apollo Applications Program 
Miss ions. Therefore, it is evident that research in 
the area of rendezvous techniques plays an important 
role in the present and future plans of Marshall 
Space Flight Center and NASA. 

Given a rendezvous mission and the characteris­
tics of the launch vehicles to be used in the mission, 
the methods of achieving rendezvous are divided into 
essentially four phases of operation. The first phase 
of rendezvous normally starts with the prelaunch 
analysis with both vehicles on the ground. After 
sufficient analysis and planning, the first vehicle is 
launched into some desired earth parking orbit. The 
second phase begins while the second (pursuit) vehi­
cle is still on the launch pad. The operational plans 
have to be established so that lift-off time and tar­
geting conditions can be determined for the second 
launch vehicle. The third phase begins with the two 
vehicles in different orbits. Transfer maneuvers 
have to be determined that will permit position inter­
cept to occur and a velocity matching maneuver to 
place the two vehicles in a station keeping mode. 

The fourth phase is the final docking phase and will 
not be discussed in 'this paper. 

The prelaunch analysis required in planning a 
rendezvous mission represents a tremendous amount 
of work; therefore, doing justice to this topic is out­
side the scope of this paper. A brief discussion of 
the features of rendezvous miss ion planning will be 
presented at the end of this paper. However, since 
the orbital parameters of the target satellite dictate 
the performance requirements of the pursuit launch 
vehicle, it seems worthwhile, and perhaps fundamen­
tal, to examine the desirable features of selecting a 
set of orbital conditions that will be compatible for 
the second launch and subsequent rendezvous. 

RENDEZVOUS COMPATIBILITY 

Rendezvous ·compatibility applies to an orbit 
that periodically phases with the launch site in such 
a manner that no plane change will be required in the 
ascent trajectory to achieve rendezvous. A daily 
rendezvous compatible target orbit, whose inclination 
must be equal to or greater than the latitude of the 
launch site, allows an inplane rendezvous aSQent 
trajectory profile to occur nearly over the launch site 
either once or twice per day. The only requirement 
for the one opportunity per day case is that the target 
satellite appears above the launch site at the same 
times on successive days. Since the radius of a cir­
cular orbit determines its periop,,- the proper choice 
of altitude alone is sufficient to· permit correct phas­
ing. That is, the altitude should be chosen so that 
the orbital period will divide into 23 hr and 56 min 
an integer number of times. 

The computed orbital period must be corrected 
to compensate for the oblateness of the earth. The 
major effect of oblateness on a circular orbit is the 
precession of the orbital plane whose rotational 
direction about the polar axis is opposite to the 
general direction of motion of the satellite. Thus, for 
an eastwardly traveling satellite, the nodal rate with 
respect to the earth is the sum of the earth's rota­
tional rate and the nodal precession rate of the orbit. 
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The basic targeting angles required to specify an 
earth parking orbit that will require no plane change 
in an ascent trajectory from a purely spherical earth 
standpoint is displayed by Figure 1. The launch 
azimuth measured from true north is shown by the 
angle Az. The geodetic latitude of the launch site is 

denoted by the angle ¢ L and the orbital inclination 

and descending node by the angle i and eN' respectively. 

Those angles will be needed for establishing inplane 
rendezvous compatible targeting data. 

To establish a twice per day rendezvous com­
patible orbit, separated by one complete orbit, only 
discrete combinations of inclination and altitude will 
satisfy the phaSing requirements since a relationship 
between the time for the earth to move a fraction of 
a revolution and the time for the satellite in orbit 
to travel the necessary distance must be satisfied. 
The orbital trace of a twice per day rendezvous 
compatible target satellite orbit separated by one 
orbit is illustrated by Figure 2. The circular orbit 
altitude selected was 185.2 km (100 n. mi.) and the 
orbital inclination was 28. 896 degrees. After 16 
orbits, the target satellite will be in proper phase 

lATITUDE 

FIGURE 1. DESCRIPTION OF EARTH 
PARKING ORBIT 
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for a northerly 'inplane launch and one orbit later 
( 17th orbit) a second inplane launch can be achieved 
with a southerly launch azimuth. Once the orbital 
inclination and circular orbit altitude for a rendez­
vous compatible orbit have been defined, the rela­
tionship governing the choice of launch azimuth and 
the corresponding value of the orbital descending node 
can be derived from spherical trigonometry (see 
Fig. 1). 

If the launch azimuth is varied from north to 
south and the corresponding orbital inclination and 
descending node are determined that satisfy inplane 
launch parameters, inclination versus descending 
node becomes a double valued function with the mini­
mum inclination equal to the latitude of the launch 
site as indicated by Figure 3. It is easy to see from 
Figure 3 that for the same value of inclination, the 
separation in descending node must be perfect if an 
inplane condition is to exist one, two, or three orbits 
later. P in Figure 3 represents the orbital period 

c 
corrected for the movement of the launch site from 
one orbit to the next and w represents the combined 
effect of the earth's rotational rate and the nodal 
regression rate as a result of the oblateness of the 
earth acting on the target satellite. 

INClINAT ION (deq) 
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NODE (deg) 

FIGURE 3 . INC IlNATION VERSUS NODE 
FOR A COPLANAR LAUNCH 
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Now that rendezvous compatibility conditions 
have been analyzed, the next step is to examine the 
consequences of nonrendezvous compatible target 
satellite orbits on the pursuit launch vehicle perfor­
mance. The effect of noncompatibility is simply that 
when the launch site moves to an inplane condition 
with the satellite orbit, the satellite's location in 
orbit is out of phase with the pursuit vehicle at orbital 
insertion. The mission planner would have essentially 
three options available: (1) The pursuit vehicle could 
be launched inplane (biased by the nodal regression 
rate differences) and accept the phase error and plan 
to take these errors out by proper selection of the 
geometry of the orbits. (2) The pursuit vehicle 
could accept the performance penalty for launching 
inphase and subsequently make a plane change 
maneuver to properly align the two orbital planes. 
(3) The pursuit vehicle could be launched in some 
compromise between inplane and inphase. Figure 4 
illustrates the plane change penalty associated with 
selecting a target satellite orbit that is rendezvous 
noncompatible. The phase error will cause a day to 
day shift in the pursuit vehicl,e targeting requirements 
until it is impossible to achieve orbital insertion 
strictly from a plane change standpoint. The plane 
change penalties bec,ome more severe for the higher 
target satellite inclination cases. 

The importance of prelaunch analysis from the 
viewpoint of rendezvous compatibility and launch 
vehicle performance to the mission planners can be 
illustrated by discussing a particular rendezvous prob­
lem. Suppose a space station was in operation at an 
orbital inclination of approximately 34. 3 degrees and 
a circular orbit of approximately 407 km (220 n. mi.). 
This particular combination of orbital parameters will 
yield two launch opportunities separated by three 
orbits and occurring inphase every five days. Sup­
pose for some reason a critical resupply mission 
(or rescue) was required just after one of the ren­
dezvous compatible days had been passed. Since the 
launch site will pass through two inplane launch 
opportunities per day, the value of having the capa­
bility of correcting the phasing errors by proper 
selection of the geometry so that a sizeable period 
difference can be realized between the two orbits can 
be an advantage. If a direct ascent type rendezvous 
scheme is selected for this type of mission, then it 
could be that resupply or rescue capability would 
occur only on rendezvous compatible days. 
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RENDEZVOUS PROFILES AND 
LAUNCH WINDOWS 

The t012.ics covered thus far have centered 
axeund selecting desfrnhle target satellite orbits that 
tend to simplify the launch operations of the pursuit 
launch vehicle. The discussion will now shift to that 
of selecting pursuit vehicle rendezvous profiles that 
meet all the requirements for rendezvousing with a 
target satellite in some given orbit. For Simplicity, 
the assumption will be made that the target satellite 
is in some given circular orbit; although, all profiles 
discussed will also apply to elliptical target satellite 
orbits. 

The problems of selecting a rendezvous profile 
can best be described by reviewing some of the pro­
files analyzed for the proposed Apollo Applications 
Program Mission (AAP-4). For the planned AAP-4 
mission an unmanned Lunar Module minus the descent 
stage with an attached Apollo Telescope Mount (LM/ 
ATM) will rendezvous with an orbital assembly com­
posed of a spent S-IVB stage workshop (OWS) multiple 
docking adapter, and a docked command and service 
module (CSM) with a three man crew on board. 
The launch vehicle configuration consisted of a S-IB 
first stage, S-IVB second stage, and the LM/ ATM 
payload which has only the low thrust reaction con­
trol system (RCS) for maneuvering and attitude con­
trol. There were five profiles selected for analysis 
from a launch window and vehicle performance stand­
point. 

The basic co-centric orbit rendezvous approach 
will be considered first since it was the basiC ren­
dezvous plan used in project Gemini and represents 
essentially the simplest plan from an operations 
viewpoint of any rendezvous profile. The co-planar 
profiles and maneuver points are shown in Figure 5 
and labeled mode 1. The S-IVB-LM/ATM would be 
inserted into a circular orbit either below and behind 
or above and ahead of the OWS. The separated LM/ 
A TM would remain in the lower orbit (below and 

"behind) in a catch -up mode until the phas ing was pro­
per to initiate an intercept transfer maneuver and then 
a velocity correction to match orbits in a station­
keeping state. Midcourse corrections would be 
required to compensate for navigational uncertainties. 
The phasing orbit can be used to take out launch 
vehicle insertion dispersions and build a launch win­
dow. For a 18.5 km (10 n.mi.) height differential 
in near earth space, the average orbital rate differ­
ence is approximately 0.0006 degrees/sec. At this 
orbital rate difference, it would require 1,000 sec 
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in the catch-up mode to offset the phasing of a 10-sec 
launch window. Any variation to this simple plan 
means complicating the rendezvous maneuvers and 
increasing the vehicle performance requirements 
(.6. V, delta velocity) . 

TARGET ORBIT 

CIRCULAR 
PHASING --/----1 
ORBIT 

FIGURE 5. MODE 1 

Mode 2 illustrated by Figure 6 is a rendezvous 
scheme that uses elliptical phasing to build a launch 
window and take out insertion dispersions in the power 
flight burn arc. The LM/ ATM is inserted into an 
elliptical orbit that intersects the circular target 
orbit with a fixed perigee radius. Obviously, either 
intersection point could be selected as an orbital 
transfer point, but not both, since the two points 
represent different phase relationships. The target 
orbit shown here could be a position rendezvous point 
or some desirable transfer orbit whereby a series of 
maneuvers could be made to enhance a position ren­
dezvous at a low closing rate. The correct phaSing 
between the orbital workshop and the LM/ ATM is 
determined by selecting the proper apogee height to 
enforce the transfer or intersection point. The limit 
to the amount of launch window that can be built with 
this mode is determined by the geometry limit 
(target and LM/ ATM orbit tangent), the launch 
vehicle performance limit, and the number of phasing 
orbits allowed. Since the Saturn launch vehicle guid­
ance system predicts the range angle and flight time 
to orbital insertion, it is a simple operation to 
determine the phasing error for an inflight performance 
perturbation and correct the apogee height to restore 
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correct phasing. This technique of power flight 
phase correction will be covered in greater detail 
later in the paper. 

GEOMETRY 
...-----/--- LIMIT 

~--...... 

'---- PERFORMANCE LIMIT 

FIGURE 6. MODE 2 

Another mode of operation for achieving rendez­
vous is possible by inserting the LM/ ATM into a 
fixed ellipse defined by a selected perigee radius 
below the target circular orbit radius. After LM/ 
ATM coast to apogee, a maneuver would be initiated 
to adjust the perigee radius to correct the phasing 
error and build a launch window. A second maneu­
ver would then be initiated at second apogee passage 
to match the OWS orbit and achieve a station-keeping 
state. The amount of launch window available is, of 
course, limited by the perigee variation possible 
and the number of phasirg orbits permitted before 
the second maneuver. The amount of phasing possi­
ble is directly controlled by the orbital period dif­
ference between the target and pursuit orbits. This 
mode is illustrated by Figure 7 and known as mode 
3. A variation to this method would be a direct 
insertion into the OWS orbit and maneuver to raise 
apogee to correct any phasing errors and a subse­
quent second maneuver at perigee to match orbits 
at a station-keeping distance. 

Since a launch window can be built by both peri­
gee and apogee radius variations, mode 4 (Fig. 8) 
considers the basic features of such a mode of 
operation to achieve rendezvous. This method of 
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obtaining a rendezvous combines the features of 
mode 2 and mode 3. Since the Saturn IB S-IB stage 
USes an open-loop time-dependent steering program, 
this steering program should be selected for the 
worse performance case, which would be a high 
perigee radius and a maximum apogee radius that 
will still satisfy the mission performance require­
ments. This trajectory profile will represent the 
slowest of the LM/ ATM orbits (largest orbital 
period) that would permit a position intercept. As 
the phasing requirement changes across the launch 
window, the perigee altitude would be lowered to 
s peed up the LM/ A TM orbital rate (shorten the 
orbital period). This procedure would conflict with 



the open-loop steering program since it was designed 
for a high perigee insertion. Since the open-loop 
steering program is a strong fWlCtion of the altitude 
of orbital insertion, the difficulty can be overcome 
by rotating the perigee radius (line of apsides) until 
the altitude of orbital insertion is nearly equal to the 
slow orbit perigee insertion altitude. The apogee 
radius is then deterlI!ined to satisfy the required 
phasing and hence rendezvous. The perigee radi4s 
is continually lowered until the minimum allowable 
altitude is reached, 150 km (81 n. mi.), and the 
geometry limit is reached (LM/ A TM apogee radius 
tangent to the OWS orbit). At LM/ ATM lift.:.off, 
the location of the perigee radius and its magnitude 
is determined as well as the corresponding apogee 
radius magnitude to insure correct phasing. During 
power flight, the apogee radius magnitude will be 
permitted to vary to take out down range insertion 
dispersions the same as mode 2. This mode com­
bines the best features of each scheme to yield the 
maximum launch window; but, it represents the 
most difficult one to implement because of the 
additional targeting requirements. 

The next mode of operation to be considered uses 
essentially a fixed ellipse; but allows rotation of the 
line of apsides to correct phasing errors. The co­
planar geometry of mode 5 is displayed by Figure 9. 
The LM/ A TM orbit has a fixed perigee radius and an 
apogee radius that is equal to the circular target orbit 
at the tangency point (intercept point of the OWS orbit 
if elliptical). The proper phasing is achieved by 
rotation of the perigee radius in the LM/ ATM orbital 
plane about the insertion radius. At the opening of 
the launch window, the LM/ATM would be inserted 
on a true anomaly greater than zero and achieve an 
intercept in less than half an orbit. At the middle 
of the launch window, the LM/ ATM would be inserted 
at perigee and achieve an intercept in exactly one­
half an orbit (Hohmann Transfer). At the closing 
of the launch window, the LM/ATM would be inserted 
on a negative true anomaly and achieve an intercept 
between one-half and a whole orbital period. The 
open-loop steering program would be designed for 
either the opening or closing of the launch window and 
does not present a major problem since the perfor­
mance penalty is decreased with altitude of insertion. 
If a performance variation were encountered during 
power flight, the true anomaly can be determined that 
will enforce the proper phasing. If the OWS orbit 
were elliptical, the height of apogee would have to 
become a function of LM/ ATM insertion true anomaly 
so that intercept (or transfer condition) would slide 
alongthe surface of the OWS orbit. The advantage 
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to this scheme would be the near constant delta 
velocity required at the intercept point. 

TARGET ORBIT 

Kp' TRUE ANOMALY 
OF PURSUIT INSERTION 

FIGURE 9. MODE 5, RENDEZVOUS VIA 
ROTATION OF PERIGEE 

Since the five modes have been described from 
a flight and orbital mechanics aspect, the modes 
will now be summarized using the AAP-4 mission 
launch vehicle characteristics. The modes will be 
compared by selection of an arbitrary delta velocity 
of 75 m/sec for the LM/ ATM maneuver at the posi­
tion intercept point. The OWS orbit is assumed to 
occupy a 407 km (220 n. mi.) circular orbit. The 
pertinent data pertaining to the five modes are shown 
by Table I and will be described in the following 
paragraphs. 

MODE 1 

Mode 1, or the co-centric orbit mode, would 
need to be launched directly into an orbit of 
282 x 282 km (152 x 152 n. mi.) so that the com­
bined delta velocity (tl V) would be 75 m/sec for the 
two impulse transfers into a 407 x 407 km 
(220 x 220 n. mi.) orbit. The surplus payload 
above the required LM/ ATM payload for this profile 
is 2040 kg (4500 lb). The phasing available for 
1. 5 orbits is 4 min and each additional phasing orbit 
gives an additional 2.6 min. One and one-half orbits 
was selected to make the data consistent with mode 2, 
which assumes one complete orbit and a planned 
intercept between one orbit and one-half orbit 
(geometry limit) . 
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TABLE I(A). SUMMARY CHART 

INITIAL ORBITS TRANSFER ORBIT PHASING 
(FAST) (FAST) f:l f:l AFTER 1. 5 EACH ADD. NUMBER OF 

MODE (SLOW) (SLOW) 
v wp ORBITS ORBIT LM BURNS 

km km (m/s) Mg (min) (min) 

1 
COCENTRIC 
CmCLES 282 X 282 282 x 282 75 2.0 4 2.6 2 

2 
ELLIPTICAL S-IVB 148 x 407 
PHASING KICK 148 x 570 250 0 3.5 2.4 0 

APOGEE LM 268 x 407 
KICK 268 x 443 75 1.8 .7 .5 

1 
VARIATION 

LM 370 x 407 
KICK 370 x 496 75 0 2.2 1.5 

3 
PERIGEE 

148 x 407 148 x 407 
VARIATION 407 x 407 75 3.6 2.6 2.6 2 

4 
APOGEE & 148 x 407 
PERIGEE 268 x 443 75 1.8 3.5 2.4 1 

VARIATION 148 x 407 
370 x 496 75 0 7.5 5 1 

5 148 x 407 75 2.7 < 1 ORBIT 2.0 < 2 ORBITS 2.0 
PERIGEE 204 x 407 60 2.7 < 1 ORBIT 1.2 < 2 ORBITS 1.2 1 
ROTATION 259 x 407 44 1.8 < 1 ORBIT 1.0 < 2 ORBITS 1. O· 

TABLE I(B). SUMMARY CHART 

INITIAL ORBITS TRANSFER ORBIT PHASING 
(FAST) (FAST) f:l f:l AFTER 1. 5 EACH ADD. NUMBER OF 

MODE (SLOW) (SLOW) 
v wp 

ORBITS ORBIT LM BURNS 

(nmi) (nmi) (m/s) (klb) (min) (min) 

1 
COCENTRIC 

152 x 152 152 x 152 75 
CmCLES 

4.5 4 2.6 2 

.-
2 

ELLIPTICAL S-IVB 80 x 220 
250 0 3.5 2.4 0 PHASING KICK 80 x 308 

APOGEE 
LM 145 x 220 
KICK 145 x 239 

75 4 .7 .5 

1 

VARIATION 
LM 200 x 220 
KICK 200 x 268 

75 0 2.2 1.5 

3 
PERIGEE 

80 x 220 
80 x 220 

75 8 2.6 2.6 2 VARIATION 220 x 220 

4 
APOGEE & 80 x 220 

75 4 3.5 2.4 1 PERIGEE 145 x 239 

VARIATION 80 x 220 
75 0 7.5 5 1 200 x 268 

5 80 x 220 75 6 < 1 ORBIT 2.0 < 2 ORBITS 2.0 
PERIGEE 110 x 220 60 6 < 1 ORBIT 1.2 < 2 ORBITS 1.2 1 
ROTATION 140 x 220 44 4 < 1 ORBIT 1.0 < 2 ORBITS 1.0 
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MODE 2 

The elliptical phasing by apo~ee variation 
approach to rendezvous known as mode 2 has data 
listed for three cases. Since a low perigee altitude 
insertion gives such a large payload surplus, it 
would be possible to use the S-IVB stage in a reigni­
tion mode. For the geometry shown for this mode, 
a total of 3630 kg (8000 lb) above the required LM/ 
ATM payload was reserved for the reignition of the 
S-NB stage (2720 kg or 6000 lb for reignition pro­
pellants and 910 kg or 2000 lb for additional pres­
sure bottles and ullage rockets). The performance 
limit for this case is defined by the 148 x 386 km 
( 80 x 208 n. mi.) orbit which is the maximum apogee 
height possible and still have the 3630 kg (8000 lb) 
surplus needed for reignition. The delta velocity 
available for the 2720 kg (6000 lb) of reignition 
pr6pellants is approximately 360 m/sec. The geom­
etry limit is a 148 x 407 km (80 x 220 n. mi.) 
ellipse. The transfer delta velocity required to 
transfer from the 148 x 570 km ( SO x 30S n. mi.) 
orbit to the 407 x 407 km (220 x 220 n. mi.) OWS 
orbit is 250 m/sec giving a phasing capability of 
3.5 min and an additional 2.4 min for each additional 
phasing orbit. Case 2 gives the geometry range that 
corresponds to a payload surplus of 1S15 kg (4000 lb) 
and a D. V or 75 m/sec. Case 3 gives the geometry 
range for a zero payload surplus giving a phasing 
time possible of 2.2 min and 1. 5 min for each addi­
tional orbit as compared to O. 7 and O. 5 tnin for case 
2. 
MODE 3 

The LM! ATM is inserted into a 148 x 407 km 
(SO x 220 n. mi.) orbit and the perigee altitude at 
first apogee passage is varied by the range of 14S 
to 407 km (SO to 220 n. mi.) to generate a phasing 
capability of 2.6 min with a surplus payload of 3630 
kg (SOOO lb). Each additional phasing orbit adds 
2.6 min phasing capability. 

MODE 4 

The apogee and perigee combination yields a 
3.5 min launch window for a profile selected to give 
a 1S15 kg (4000 lb) payload surplus and a 7.5 min 
launch window for a zero payload surplus with each 
having a 75 m/sec D. V requirement. 

MODE 5 

If a 148 x 407 km (SO x 220 n. mi.) phasing 
ellipse is selected and the true anomaly restricted 
such that 2720 kg (6000 lb) of payload surplus is con­
served, the perigee rotation mode will permit 2.0 
min of phasing with a constant D. V requirement of 
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75 m/sec. Data are also presented for perigee 
altitudes of 204 and 259 km (110 and 140 n. mi.). 

The trends indicated for these five rendezvous 
modes will change as the target satellite orbit is 
raised or lowered since the orbital period difference 
determines the phaSing capability of any rendezvous 
mode. Again, the AAP.-4 mission data were selected 
only to give some basis for comparison of the five 
modes. 

S-IVB-LMI ATM 
UNMANNED RENDEZVOU S 

The original plans for the AAP-3 1'J,nd AAP-4 
missions called for the AAP-3 launch configurations 
(S-IB stage, S-IVB and CSM) to be launched into a 
220 km (120 n. mi.) circular orbit essentially co­
planar with the OWS. On the following day, the AAP-
4 launch configuration would insert the LM/ A TM into 
a 296 km (160 n. mi.) circular orbit. The CSM 
would then use the co-centric rendezvous mode and 
dock with the LM/ATM. The CSM-LM/ATM would 
then rendezvous with the orbital workshop. This 
procedure of dual rendezvous caused several diffi­
culties in terms of vehicle performance and nodal 
regreSSion when the LM/ATM failed to meet the 
narrow launch window time resulting in launch delays 
and crew operation complexities. To solve these 
problems, NASA Headquarters directed the Manned 
Spacecraft Center to study the problem from a 
LM/ ATM unmanned rendezvous standpoint and 
Marshall Space Flight Center to study it using the 
S-IVB stage to achieve unmanned rendezvous, and 
deliver the LM/ATM in a station-keeping position at 
approximately 150 m (500 ft) from the OWS, MDA, 
and CSM cluster. A discussion of the analysis 
required to establish feas ibili ty of the S -IVB - LM / 
ATM unmanned rendezvous should be helpful in 
understanding the operational problems associated 
with making modes 2, 3, 4, and 5 succeElsful on a 
rendezvous mission. The analysis was based on an 
assumed circular orbit of 407 km (220 n. mi.) for 
the OWS/MDA;CSM configuration and using. mode 2 
for achieving rendezvous. 

The performance and the launch window charac­
teristics for one complete phasing orbit (N =i) of the 
S -NB - LM/ ATM before the transfer into an orbit 
that is co-centric with the orbit workshop configura­
tion is given in Figure 10. Figure 10 indicates the 

. relationship between launch vehicle performance, 
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FIGURE 10. MODE 2 PERFORMANCE AND 
LAUNCH WINDOW CHARACTERISTICS 

geometry, transfer impulse (.6. V), and launch win­
dow duration. The payload reference (P LDREF) for 

the LM/ATM is 14600 kg (32,200 lb). There were 
2720 kg (6000 lb) pounds of propellant, 910 kg 
(2000 lb) of reignition structure, and the flight per­
formance reserves (FPR) set aside above the refer­
ence payload. Delta payload (.6.P LD)' height of 

apogee (H A)' and launch window duration are plotted 

against the delta velocity (.6. V) required to transfer 
into the co-centric orbit. The height of perigee of 
the S-IVB-LM/ATM was selected at 148 km (80 n.mi.) 
for performance and phase capability. The geometry 
limit, shown by the vertical dashed line, is a 148 x 407 
km (80 x 220 n. mi.) Hohmann transfer ellipse. The 
launch window duration is displayed for using the third 
intersection (first intersection after one full orbit) 
and the fourth intersection. A 30-sec launch window 
and the fourth intersection point, altered to yield 
a .set of transfer conditions 9.26 km (5. 0 mi.) below 
and 0.85 degrees behind the OWS, was used in the 
feasibility analysis. The orbital transfer maneuver 
was performed by using the S-IVB stage in a reigni­
tion mode of the main propuls ion system (J -2 engine) . 
The orbital trim, plane change, and rendezvous trans­
fer maneuvers used a modified S-IVB stage auxiliary 
propulsion system with longitudinal thruster capa­
bility. 
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The task of making any rendezvous mode 
successful in a real mission depends upon how 
accurately and how rapidly the launch vehicle tar­
geting data can be determined based upon the target 
orbital ephemeris. Keplerian solutions can be used 
to generate the targeting data if detailed orbital 
tracking and orbital corrections are included in the 
mission plan; but, this can become expensive in 
terms of propellant comsumption. The orbital per­
turbation effects of atmospheric drag, propulsion 
venting, and the oblateness terms of the gravity 
model make corrections to the Keplerian solutions to 
targeting data a nec~ssity regardless of what mode 
of operations is selected to achieve rendezvous. 
A flow chart in block diagram form for determining 
the refined launch vehicle targeting data for the pur­
suit launch vehicle is illustrated by Figure 11. The 
target satellite ephemeris data are used in a block 
of Keplerian equations in which solutions are obtained 
as initial targeting estimates to a more complex 
numerical model. This numerical model will deter­
mine the necessary corrections to the pursuit orbital 
plane and conic energy needed to generate the ren­
dezvous solution (or transfer conditions) for any 
particular mode selected under the orbital perturba­
tions of atmospheric forces, propulsion venting, 
and the non -uniformity of the gravitational field. 
These numerical solutions are then processed 
through a launch vehicle targeting function generator 
to obtain targeting data in a form that can be imple­
mented in the launch vehicle digital guidance computer. 
This particular method of generating launch vehicle 
targeting data can be accomplished in less than 15 
minutes with the present high speed digital com­
puters, making it a feasible system from an oper­
ational standpoint. 

TARGET 
SATE LLiTE 
EPHEMERIS 

KEPLERIAN ANALYTICAL 
SOLUTION TO PUR~UIT 

VEHICLE TARGETING 

NUMERICAL ORBIT INTEGR.ATION 
WITH: 
1 AERODYNAMIC FORCE MODEL 
2.GRAVITY MODEL 
3. PROPULSION VENTiNG MODEL 

COMPLETE)---"N"'-O----' 

YES 

NUMERICAL SOLUTION 
TO PURSUiT VEHICLE 

TARGETiNG DATA 

LAUNCH VEHICLE 
FUNCTION GENERATOR 

FIGURE 11. TARGETING DATA FLOW CHART 



Since the method of generating targeting data has 
been discussed, it seems noteworthy to cover the 
required modifications to the present Saturn IB 
gUidance equations (iterative guidance mode - IGM) 
to implement a rendezvous scheme that can be used to 
build a launch window and restore correct phasing 
during power flight to compensate for any power 
flight performance perturbations. The details of the 
guidance system will not be discussed since adequate 
documentation is given in the references. The basic 
block diagram form of the guidance equations, shown 
in Figure 12 illustrates the modifications required 
to implement any of the rendezvous modes that permit 
phase correction during power flight (modes 2, 4 and 
5). The inputs to the guidance computer are: I. Vehicle 
parameters (mass, mass rate, burning time of each 
stage, and specific impulse) ; II. Target parameters 
(radius of perigee, radius of apogee function, orbital 
plane regression function, and launch window dura­
tion); III. Guidance options (fixed end conditions, 
variable end conditions, range angle update, and 
terminal coordinate system rotation). The precom­
putation section of the ascent guidance system uses 
the lift-off signal to set the desired orbital plane 
orientation (inclination and descending node), define 
the conic parameters, and orient the major axis 
of the conic. Normally the guidance equations will 
use the current navigational information of the 
vehicle state to determine the range angle and flight 
time to orbital insertion (Fig. 12, 1 and 2) and then 
evaluate the remaining closed integrals so that 
steering commands (Fig. 12, 6 and 7) can be issued 
to the control system network, and thereby, enforce 
a desired set of terminal conditions. The software 
(equation changes) required to implement modes 
2, 4, and 5 are shown as statement number 3, 4, 
and 5 in Figure 12 under the heading guidance equa­
tions. The predicted range angle and time of flight 

INPIJT r- PRECOIfPIJTATION f-- IlIJIOANCE 
EfJlJATIONS 

I VEHICLE PARAMETERS TARGET PLA N E 1. RANGE ANGLE 
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ORIENTATION 

LI FT -OFF SIGNAL CORRECTION 
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__ CQ'!!1.sC.!lg~_ 
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NAVIGATION J INTEGRALS 

7. STEERING 
ANGLES 

I CONTROL NETWORK I 
FIGURE 12. ASCENT GUIDANCE FLOW CHART 
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to orbital insertion can be used to determine the 
down range disperSion of this insertion, point, and 
hence, the phase error between the target and 
purs uit vehicles. The phase error can then be used 
to determine the corresponding conic orientation and 
energy correction needed to restore proper phasing 
at orbital insertion so that rendezvous can occur in 
an economical fashion with respect to time and 
vehicle propellant budgets. 

The co-planar geometry of one particular method 
of using mode 2 to achieve a station keeping position 
between the S-IVB-LM/ATM and the orbital assembly 
is illustrated by Figure 13. The geometry is shown 
for achieving rendezvous by transferring into an 
orbit below and behind the OWS and then an intercept 
transfer maneuver to place the S-IVB-LM/ ATM on 
an intercept course with the OWS. The S-IVB-LM/ 
ATM would then perform a velocity matching maneu­
ver at the station-keeping position. The targeting 
can just as easily be determined for transferring 
above and ahead of the OWS or a direct insertion into 
the workshop orbit by some given lead or lag angle. 
A series of transfer maneuvers could then be used 
to achieve rendezvous. 

The uncertainties of the navigation information 
available to the S -IVB - LM/ A TM make orbital trim 
maneuvers a necessary part of achieving rendezvous. 
After performing the orbital transfer maneuver into 
a set of conditions below and behind the orbital work­
shop, the Lunar Module rendezvous radar data and 
advance OWS ephemeris data can be used to correct 
the orbital elements of the S-IVB-LM/ A TM. The 
inplane corrections would be performed at maneu­
ver 3 (height adjustment) and the out-of-plane 
corrections would be applied at the line of nodes 
between the OWS orbit and the S-IVB-LM/ATM orbit 
denoted by maneuver 4. Maneuver 4 would always 
occur within one-half an orbit after maneuver 3. 
After sufficient time in the lower catchup orbit to 
allow proper phasing to occur, the terminal rendez­
vous transfer maneuver would be initiated (maneuver 
4) and a subsequent final velocity matching maneuver 
at position 6. Midcourse corrections between maneu­
vers 5 and 6 can be applied to reduce the errors 
caused by radar measurement noise. 

The guidance equations (software) required to 
perform the orbital trim maneuvers and the rendez­
vous transfer maneuvers are presently under devel­
opment. The.6. V requirements for these maneuvers 
are normally small and velocity steering is adequate 
without any appreciable vehicle performance losses. 
The feasibility analYSis of using the S-IVB stage 
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in a reignition mode and using the modified auxiliary 
propulsion for the orbital trim and rendezvous trans­
fer maneuvers indicate that the S-IVB-LM/ ATM is 
feasible from the standpoint of performance, guidance, 
and system lifetime in orbit. The results of a detailed 
analysis will be documented at a later date. The use 
of the S-IVB stage to rendezvous orbital workshops 
and resupply modules in high circular or elliptical 
orbits has been verified by this feasibility analysis. 
For circular orbits much above 370 km (200 n. mi.) 
the high thrust of the S-IVB J-2 engine becomes 
incompatible with the altitude constraint, and it 
becomes more economical to use a thrust-coast-thrust 
trajectory profile. The useful payload can be improved 
over the bulky adapted lunar module payload by more 
effective use of the S-IVB stage and a redesign of the 
S-IVB payload package. Modifications in the propul­
sion system of the J-2 engine may make reignition 
available in the near future with lower propellant 
levels, thus increasing the payload capability of the 
S-IVB stage. 
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RENDEZVOUS MISSION PLANNING 

A detailed discussiQn of the essential features of 
rendezvous mission planning is outside the scope of 
this paper and only a few words about the major items 
will be included to indicate its importance to mission 
success ~ The items to be discussed are given in 
Table II. 

The launch vehicle performance capability will 
dictate the range of geometry available for rendez­
vous flight profile selection. This could very easily 
determine whether mode 1, 2, 3, 4, 5, or some 
other mode would be selected to accomplish rendez­
vous phaSing. 

A combination of launch probability and urgency 
of launch will establish the required time duration 
of a launch window. If there were no urgency of 
launch considerations and a 50-50 chance of achieving 



a count-down to a launch on time, then a selection of 
a launch window of zero would be justified. If a hold 
occurred during countdown to zero, the launch vehicle 
would simply be prepared for the next launch oppor­
tunity. If there were a high priority given to achiev­
ing a launch vehicle lift-off (critical resupply, rescue, 
etc.) then a launch window within the performance 
capability of the launch vehicle would be a desirable 
feature. 

The success of any rendezvous mission is 
strongly influenced by the orbital tracking capability 
of the target satellite since this will establish the 
orbital ephemeris from which targeting data must be 
derived for the pursuit launch vehicle. The orbital 
trim maneuvers will be smaller as the uncertainties 
in the target ephemeris are reduced. 

The terminal rendezvous hardware (optical or 
radar tracking) and the flight crew training (manned 
flight) will also have an influence on the geometry 
selected to achieve rendezvous. 

The launch vehicle guidance system capability 
and flexibility will ai-so influence the freedom of 
selection of geometry to be used in the rendezvous 
mission. As the flexibility of the guidance system is 
increased, more and more flight geometry profiles 
are available to the mission planners. 

If the target satellite has an active propulsion 
capability, then trade-offs between the target and 
pursuit vehicle propulsion budget are possible. An 
example of this can be found in the mainstream Apollo 
lunar landing mission in which the lunar module will 
rendezvous with the command and service module 
after descending to the lunar surface and completing 
the required experiments. The CSM will perform 
orbital trim maneuvers to keep the LM rendezvous 
ascent geometry planar. The CSM can also perform 
limited LM rescue maneuvers if the LM fails to 
achieve rendezvous. 

Mission objectives and many other factors influ­
ence the selection of flight profiles and modes of 
operation to be used in performing a rendezvous 
mission. 
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TABLE II. FEATURES OF RENDEZVOUS 
MISSION PLANNING 

LAUNCH VEHICLE PERFORMANCE 
CAPABILITY 

LAUNCH PROBABIliTY 

SYSTEMS LIFETIME IN ORBIT 

ORBITAL TRACKING CAPABIliTY 

TERMINAL RENDEZVOUS HARDWARE 
(OPTICAL OR RADAR) 

FliGHT CREW TRAINING 

LAUNCH VEHICLE GUIDANCE SYSTEM 
CAPABILITY AND FLEXIBILITY 

TARGET SATELliTE CAPABIliTY 
(PASSIVE OR ACTIVE) 

MISSION OBJECTIVES AND OTHER 
CONSIDERA TIONS 

CONCLUS IONS 

This -paper discussed the overall progress made 
lily the Aero-Astrodynamics Laboratory's Guidance 
Branch in the area of rendezvous techniques, which 
encompass orbital mechanics, trajectory shaping, 
profile selection, guidance compatibility, and the 
generation of targeting data. Hopefully, the reader 
will become more aware of the factors that have to 
be considered before selecting a final flight plan 
for any particular rendezvous mission. The data 
presented on the AAP-4 mission are to be treated 
as preliminary and used only as a means of com­
paris on for the different flight profiles considered 
to achieve rendezvous. 
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UNITS OF MEASURE 

In a prepared statement presented on August 5, 1965, to the 
U. S. House of Representatives Science and Astronautics Committee 
(chaired by George P. Miller of California), the position of the 
National Aeronautics and Space Administration on Units of Measure 
was stated by Dr. AlfredJ. Eggers, Deputy Associate Administrator, 
Office of Advanced Research and Technology: 

"In January of this year NASA directed that the international 
system of units should be considered the preferred system of units, 
and should be employed by the research centers as the primary 
system in all reports and publications of a technical nature, except 
where such use would reduce the usefulness of the report to the 
primary recipients. During the conversion period the use of cus­
tomary units in parentheses following the SI units is permissible, 
but the parenthetical usageofconvent~onal units will be discontinued 
as soon as it is judged that the normal users of the reports would 
not be particularly inconvenienced by the exclusive use of SI units. " 

The International System of Units (SI Units) has been adopted 
by the U. S. National Bureau of Standards (see NBS Technical News 
Bulletin, Vol. 48, No.4, April 1964). 

The International System of Units is defined in NASA SP-7012, 
"The International System of Units, Physical Constants, and 
Conversion Factors," which is available from the U. S. Government 
Printin,g Office, Washington, D. C. 20402. 

SI Units are used preferentially in this series of research re­
ports in accordance with NASA policy and following the practice of 
the National Bureau of Standards. 


