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THEORY FOR COMPUTING SPAN LOADS AND STABILITY DERIVATIVES 

DUE TO SIDESLIP, YAWING, AND ROLLING FOR WINGS 

IN SUBSONIC COMPRESSIBLE FLOW* 

By M. J. Queijo 

Langley Research Center 

SUMMARY 

A method of computing span loads and some of the resulting aerodynamic derivatives 

for wings in sideslip, yawing, and rolling flight is derived. The method is applicable to 

wings of arbitrary planform, and accounts for compressibility effects . The span-load 

computations require that angle-of-attack span-load distributions be available for the 

wing under consideration_ The theory developed is a consistent approach, based on the 

use of a vortex system, for determining the various wing parameters. 

INTRODUCTION 

The aerodynamic span loads and stability derivatives are important in relation to 

structural integrity and inherent stability of airplanes. The lifting surfaces (wing and 

tail surfaces) generally produce the predominant aerodynamic forces; therefore, much 

effort has been expended in developing methods of predicting the aerodynamics of lifting 

surfaces. Most of this effort, however, has been directed toward determination of aero

dynamic characteristics associated with angle of attack. Aerodynamics associated with 

other aircraft motions (rolling, yawing, pitching, and sideslipping) have been investigated 

to a lesser degree, and generally by somewhat cruder methods. This is particularly true 

for the low-speed regime. For supersonic speeds the nature of the governing equations 

is such that it has been possible to obtain equations for loads and aerodynamic derivatives 

for wings performing various modes of motion. (See refs. 1 to 4, for example.) In cer

tain limiting cases it is possible to use supersonic theory to predict subsonic character

istics_ (See ref. 4, for example.) 

* A preliminary version of the material presented herein was included in a disserta
tion entitled "A Theory and Method of Predicting the Stability Derivatives CZf3' CZr ' 

Cnp ' and CyP for Wings of Arbitrary Planform in Subsonic Flow," offered in partial 

fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering 
MechaniCS, Virginia Polytechnic Institute, Blacksburg, Virginia, June 1963. 
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There are a number of problems associated with attempting to predict aerodynamic 
characteristics of wings performing the possible modes of motion. One problem is that 

of finding an adequate mathematical model for the wing, and the second is that associated 

with solution of the equations which arise from use of the mathematical models. Various 

methods for predicting certain aerodynamic characteristics of unswept wings have been 

developed by a number of investigators, and numerous reports have been published from 

which certain characteristics can be obtained for specific wings. (See refs. 5 and 6, for 

example.) Three general approaches have been used in determining the aerodynamics of 

swept wings. These are: 

(a) Computations based on mathematical models associated with the use of vortices , 

doublets, or other concepts to represent the wing (refs. 7 to 11, for example) . 

(b) Determination of approximate equations based on treating each wing semispan 

as one-half of an unswept wing. The fictitious "unswept" panels are skewed to simulate 

a swept wing (refs. 12 to 15, for example). 

(c) Development of design charts based on tests of a great number of wings with 

various sweep angles, aspect ratios, and taper ratios (ref. 16, for example). 

The first of these approaches is generally difficult and in some cases involves the 

solution of numerous simultaneous equations. For these reasons, only a few aerodynamic 

parameters (primarilY aerodynamic-center pOSition, CLa, and C
Zp

) have been attacked 

--1 

by fairly rigorous methods. The use of high-speed computers to solve many simultaneous 

equations has permitted the numerical solution of equations better defining the wing bound

ary, but solutions generally have been obtained for angle-of-attack loading. 

The second approach has been quite successful in predicting trends, and with some 

modifications has been used to obtain good quantitative results for certain aerodynamic 

characteristics. (See ref. 15, for example.) 

The third approach is adequate for engineering data, provided the available data 

envelop the range of geometriC variables of interest. Unfortunately, the amount of data 

available for some of the wing derivatives is very limited because of the scarcity of 

experimental facilities for determining such derivatives. 

The purpose of the present paper is to examine the problem of wing characteristics 

in subsonic compressible flow and to develop a consistent method for computing these 

characteristics. 

The method developed herein is a new approach for estimating span loads and the 

derivatives C Z(3' C Zr' C Zp' Cnp ' and GyP for wings of arbitrary planform in sub-

sonic compressible flow. It is based on a vortex representation of the wing which was 

first developed by the author for sideslipping wings in incompressible flow (ref. 17). 
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Results are generally applicable to the low angle-of-attack region, where the various wing 

characteristics vary linearly with angle of attack or lift coefficient. 
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SYMBOLS 

aspect ratio, b2/S 

two-dimensional lift-curve slope 

wing span 

wing lift coefficient, L 
.!py2S 
2 

ac 
wing lift-curve slope, ad", per radian 

MX 
rolling-moment coefficient, 

.!py2Sb 
2 

MZ 
yawing-moment coefficient, 

.!py2Sb 
2 

side-force coefficient, 
Fy 

.!py2S 
2 
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Fy 

4 

wing local chord 

wing average chord 

Section lift section lift coefficient, 
.!py2C 
2 

section lift-curve slope, 

three-dimensional section lift-curve slope for wing at angle of attack 

effective three-dimensional section lift-curve slope for rolling wing 

parameter for section lift, per unit lift coefficient 

parameter for incremental section lift due to Sideslip, for a wing at angle of 

attack 

parameter for incremental section lift due to rolling 

parameter for incremental section lift due to yawing, for a wing at angle of 

attack 

wing root chord 

wing tip chord 

spanwise distance from wing root chord to center of rotation of yawing wing 

side force 
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side force associated with a chordwise-bound vortex 

side force associated with quarter-chord-line vortex 

lift 

lift per unit length of chordwise-bound vortex 

lift per unit span of quarter-chord-line vortex 

lift per unit length of quarter-chord-line vortex 

free-stream Mach number 

Mach number of free stream normal to wing quarter-chord line 

rolling moment 

yawing moment 

rate of roll, radians per second 

r yawing angular velocity, radians per second 

s wing area 

u wind velocity in x-direction 

free-stream wind velocity relative to wing center of gravity 

local velocity 

free-stream wind velocity normal to wing quarter-chord line 

v wind velocity in y-direction 

X ,Y longitudinal and spanwise reference axes, with origin at center of gravity 

x,y distances along reference axes 
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Xac chordwise distance between aerodynamic center (a.c.) and moment center 

(or center of gravity, c.g., in flight), positive when c.g. is upstream of a.c. 

Xc x-distance to wing trailing edge 

xc/4 x-distance. to quarter-chord line 

-y spanwise position of centroid of the angle-of-attack span loading 

y radius of gyration of angle-af-attack span loading 

QI angle of attack (or incidence), radians 

(3 sideslip angle, radians 

r y circulation strength related to spanwise position 

r~ circulation strength related to displacement along quarter-chord line 

[) local effective sideslip angle due to yawing, radians 

€ infinitesimal displacement in spanwise direction 

A sweep angle of quarter-chord line, radians 

wing taper ratio, Ct/cr 

distance along the quarter-chord line, measured from wing root chord 

p mass density of air 

Subscripts: 

M compressible flow 

M=O incompressible flow 

p part due to rolling 
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r part due to yawing 

a part due to angle of attack 

(3 part due to sideslip 

A star (*) indicates that the quantity has been nondimensionalized by division 

by b/2; for example, y* =.-:L-/ . 
b 2 

VORTEX SYSTEM 

The vortex system used in this analysis is for essentially a modified lifting-line
theory approach, and is illustrated in figure 1. The system consists of a bound vortex 

along the wing quarter-chord line and a bound-vortex sheet from the quarter-chord line 
to the wing trailing edge. Behind the wing trailing edge, the vortex sheet is in the direc

tion of the airstream. This system was applied to sideslipping wings in reference 17, 

and proved to be quite accurate in predicting the parameter CZ(3 for a wide range of 

wings in subsonic, incompressible flow. An appraisal of th:s vortex system indicated 

that it would be applicable to the estimation of other wing derivatives. 

The vortex system adopted for this study allows the possibility of lift generation by 

the bound vortices, which are: 

(a) The quarter-chord-line vortex, which extends across the entire wing span 

(b) The chordwise-bound vortices, which are parallel to the wing plane of symmetry 

and extend from the wing quarter-chord line to the wing trailing edge. 

The trailing vortex sheet behind the wing is made up of "free" vortices which are 

in the direction of the airstream and hence develop no lift. 

CIRCULATION DISTRIBUTION 

The strength of the chordwise-bound vortices is determined by the gradient of the 

strength distribution of the quarter-chord-line vortex; therefore, the lift distribution of 

the wing can be determined if the vortex strength distribution of the quarter-chord line is 

known and if the wind velocity components are known. The distribution of the wind veloc

ity components relative to the wing can be determined easily for each possible motion of 

the wing. The basic problem in determining wing load distribution, therefore, is that of 

determining the vortex (or circulation) distribution for all wing motions. The three types 

of motion considered in this paper are sideslip, yawing, and rolling. 
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Sideslipping Wing 

The sideslipping wing was studied in reference 17. It was argued therein that the 

circulation distribution in sideslip was essentially the same as that for a wing in zero 

sideslip. Thus zero-sideslip circulation distributions could be used for estimating aero

dynamiC loads and the parameter C
Zf3 

for wings in sideslip. The vortex system for the 

wing in sideslip and the direction of the airflow are shown in figure 2. 

Yawing Wing 

The bound-vortex pattern of the yawing wing is the basic pattern shown in figure 1. 

The trailing-free vortex sheet, however, is curved to match the airflow streamlines 

(fig. 3). An examination of the flow pattern over the wing (fig. 4) shows that there is a 

lateral velocity component resulting from the flow curvature, and that the magnitude of 

the component is a function of position on the wing. The wing therefore can be considered 

to be in sideslip, with the effective sideslip angle varying over the wing. The arguments 

presented with regard to circulation distribution of the wing in sideslip can be carried 

over to the yawing wing . . An assumption of the present theory is that the circulation dis

tribution for a yawing wing is essentially the same as that for a nonyawing wing. 

Rolling Wing 

The problem of circulation distribution for the rolling wing is somewhat different 

from that for the sideslipping and yawing wing. In the case of the rolling wing, the local 

geometriC angle of attack is increased by 

The primary cause of circulation, and hence the circulation itself, is altered by rolling. 

The net circulation of a rolling wing, therefore, is made up of: 

(a) Circulation due to the symmetric angle of attack 

(b) Circulation due to the anti symmetric angle-of-attack distribution associated with 

rolling velocity 

The assumed wing vortex system and the circulation distributions that have been 

discussed form the basis for the present theory for the computation of wing aerodynamic 

characteristics. 
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PRESENTATION OF RESULTS 

General Remarks 

General equations are derived in appendix A for the span loads and certain aerody

namic characteristics associated with sideslipping, yawing, and rolling for wings of arbi

trary planform. These equations are applicable in the low angle-of-attack region, where 

the characteristics vary linearly with angle of attack and lift coefficient. Span loads 

associated with sideslip, yawing, and rolling can be obtained by the methods presented 

herein only if the angle-of-attack span load is known. Such information is available for 

a wide range of wing geometry (ref. 18, for example). The angle-of-attack loading for 
odd-shaped wings can be obtained by application of the horseshoe-vortex method of ref

erences 19 to 22. 

The equations of this paper, for incompressible flow, are derived in appendix A. 

Compressibility effects are derived in appendix B. Some of the pertinent equations are 

summarized in appendix C. 

Many of the equations derived herein involve the spanwise position of the centroid 

and radius of gyration of the angle-of-attack loading of the wing semispan. The centroid 

position for angle-of-attack loadings has been determined for a wide range of wing plan

forms and is readily available in the literature. (See refs. 8, 18, and 21, for example.) 

The present theory appears to be the only one in the literature in which the radius of gyra

tion occurs as a factor in determining aerodynamic characteristics. It was necessary, 

therefore, to compute the radius of gyration y* for use in this paper. The values were 

determined by plotting the product f-~Cl )(y*)2 against y* for a large number of wings 
\cCL 

and performing a mechanical integration to obtain :y* by use of the following equation: 

(1) 

A total of 160 such integrations were performed to obtain the desired coverage of wing 

planforms. Values of y* and of :y* are plotted in figures 5 and 6 as functions of 

sweep, aspect ratio, and taper ratio for use in this paper and for general information. 

Data for the span loads were obtained from reference 18. 

Span-Load Distributions 

The span-load equations derived in this paper are applicable for the determination 

of the incremental load due to Sideslip, yawing, or rolling velocity of a wing for which the 
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span load in symmetric flight is known. The span-load equations are summarized in 

appendix C. Equations (C1) to (C3) are very general and should be used if the sweep 

angle varies across the wing span. In such instances it may not be possible to find in 

the literature the corresponding angle-of-attack loading of the wing. In these instances, 
as noted previously, the angle-of-attack loading can be determined in a straightforward 

manner (solution of simultaneous algebraic equations) by the method of reference 19, 20, 
or 21. 

If sweep is constant across the span, equations (C4) to (C6) are applicable and more 

convenient. In these cases the angle-of-attack span-load distribution can be obtained 
from a number of sources, such as reference 18. 

Most of the theoretical angle-of-attack span-load distributions available in the 

literature have been determined by use of the Weissinger method. It is of interest and 

significance that angle-of-attack span loadings determined by the use of horseshoe vor

tices (as in ref. 19 or 20) will closely approximate loadings from the Weissinger method 
if a minimum of about 20 horseshoe vortices are used to represent the wing. (See 

ref. 19.) The horseshoe-vortex method is applicable for representing wings having dis

continuities in sweep distribution (for example, M- or W-wings), where the applicability 

of the Weissinger method is doubtful. This horseshoe-vortex method was used in refer

ence 22 to determine the span loads of some M- and W-wings, and can be used for wings 

of arbitrary planform. The system of horseshoe vortices was also used in reference 17 

to obtain the loads on Sideslipping wings. In such a case, the loads are obtained from 
either a mechanical integration or from summing terms of a series expansion (ref. 17). 

Aerodynamic Coefficients 

The equations derived for the various aerodynamic coefficients are presented in 

appendix C. Equations (C7) to (Cll) are very general and are applicable to wings of 

arbitrary planform. If sweep is constant across the semispan, and if the chord is a 

linear function of spanwise position, equations (C12) to (C16) are applicable and 

convenient. 

Equations (C12) to (C16) have been used to construct a series of figures from which 

numerical values of the various coefficients for a Mach number of zero can be obtained 

as a function of wing geometry. The effect of Mach number can be obtained through use 

of equations (C12) to (C16). The parameters for a Mach number of zero are presented 

in the following figures: Cl{3/C L in figure 7; Clr/CL in figure 8; Clp in figure 9; 

CYp/CL in figure 10; and Cnp/C L in figure 11. 

10 
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DISCUSSION OF RESULTS 

Sideslipping Wing 

The span load due to sideslip can be computed by equation (C1) or (C4). No other 

method appears to be available for estimating these loads. Experimental data are also 

almost nonexistent, except for the sideslip data given in reference 23 for a wing in incom

pressible flow. As shown in reference 17, these data compared well with the 

incompressible-flow equation of the present theory. 

The rolling-moment parameter associated with Sideslip for a trapezoidal wing in 

compressible flow is given by equation (C12), repeated here for convenience: 

C

l 

t ( ~ 1 3 - 61-A ~=-- +y* tan A ---- +0.05 
CL 2 A(1 + A) A 1 + A 

The analysis of reference 17 shows that this equation is quite accurate for wings in 

incompressible flow. 

(2) 

Very little theoretical work has been done to determine compressibility effects on 

the derivatives investigated in this paper. The Prandtl-Glauert transformation is appli

cable for symmetric flow, but there are a number of fundamental questions regarding its 

application if the flow about the wing is not symmetric. The Prandtl-Glauert transforma

tion can be applied either as a change in section lift-curve slope or as a change in wing 

geometry in symmetric flow. In unsymmetric flow, a geometric change in accordance 

with the Prandtl-Glauert transformation results in a distorted wing shape - that is, the 

transformed wing semispans are different from each other. This basic problem of appli

cation can be avoided, as was done in reference 14, by assuming that each wing semispan 

is one-half of a wing in symmetric flow. The compressibility corrections are then 

applied to each wing semispan and the loads of each semispan are used to obtain the wing 

characteristics. 

A somewhat simpler approach was used in reference 24, where the author simply 

chose to modify the section lift-curve slope as if the actual wing were in symmetric flow. 

It does not appear possible to obtain a direct evaluation of the estimated compres

sibility effects on the values of Cl{3/C L for an isolated wing, since high-speed data are 
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generally obtained for wing-fuselage combinations. However, wing-fuselage data would 

be expected to have about the same trends as wing-alone data. Figure 12 shows experi

mental compressibility effects for several wing-body combinations and compares the 

results with those predicted by the wing-alone theory of reference 14 and by equation (2) 
of the present paper. The data and theories all show an increase in the magnitude of 

Cl
f3
/C L with increase in Mach number. The effect on wing-fuselage data is somewhat 

smaller than that predicted by the wing-alone theories. Reference 14 suggests an empir

ical method for accounting for the fuselage. However, as pointed out in that reference, 
additional effort is required to define more precisely the effects of the fuselage on 

Clf3/CL' 
Yawing Wing 

The span loads due to yawing can be determined from equations (C2) and (C5). The 

author could find no other theory or experimental results to compare with these equations. 

The derivative obtained for the yawing wing is Cl r' For a trapezoidal wing in 

compressible flow it is given by 

Clr = G(l + tan2A) _ .J!.. ~ tan A +.J!!J.1 - \)~(y*)2 +(!. ~ tan A _ tan
2
A)(y*)2 

CL ~ 2A 1 + \ 4A2\1 + \ J A 1 + \ 2 

t 3 tan A 9(1 - \)~ -* ~tan A 3 1 - ~ * -* 3x:c 9 + - - Y + -- - - -- xacY + + ---=-----=-
2A(1 + \) A2(1 + \)2 2 A 1 + 2A(1 + \) 4A2(1 + \)2 

(3) 

Although this derivative is important in determining the dynamic lateral stability of air

craft, there is little published information on theoretical or experimental values of Cl . 
r 

Some incompressible-flow information is available from references 5 and 12. However, 

reference 5 is applicable only to unswept wings. Figure 13 shows comparisons of experi

mental data (incompressible flow) with the theory of reference 12 and with equation (3) of 

the present paper. Both theories fit the data equally well. 
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Reference 24 and equation (3) both predict an increase in Clrl CL with increase 

in Mach number, as shown in figure 14, but no experimental data are available for 

comparison. 

Rolling Wing 

The equation for additional load due to rolling velocity is, for a trapezoidal wing in 

compressible flow, 

rrA (4) 

2 + 

This type of loading is amenable to solution by the Weissinger method (ref. 25). Com

parisons of span load due to rolling as obtained by equation (4) and from reference 25 are 

shown in figure 15. The agreement between the two theories is quite good for incompres

sible flow. 

The span load distribution can be used to obtain the parameters CZp ' CYP' and 

Cnp' and these are given by the equations 

Cy 
--p = y*tan A 
CL 

(5) 

(6) 

(7) 

Comparisons between equation (5) and experimental results for CZp are shown in 

figure 16. Generally there is good agreement between experiment and equation (5), par

ticularly at low aspect ratios. 
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The derivative Cy generally has no effect on the dynamic lateral stability of an 
p 

airplane and therefore is not important in itself. However, its value is of importance in 

transforming certain of the other derivatives to various systems of axes. The basic ref

erence for theoretical values of this parameter in incompressible flow is reference 12. 

Theoretical and experimental results from reference 12 and values from equation (6) are 

shown in figure 17. Both theories generally underestimate this parameter. The present 

theory indicates no effect of compressibility on Cy p/C L , whereas reference 24 indicates 

that CYp/C L decreases with Mach number. There appear to be no available data to 

substantiate either theory. 

The wing contribution to Cnp is important with regard to dynamic stability of 

airplanes. Several methods have been developed for predicting this derivative in incom

pressible flow. These methods are compared with each other and with experimental data 

in figure 18. Equation (7) indicates no compressibility effects on Cnp/CL, whereas the 

theory of reference 24 indicates a decrease with increasing Mach number. However, 

there appear to be no experimental data available for determining compressibility effects 

on Cnp/C L . 

CONCLUDING REMARKS 

A theory and method are developed for computing span loads due to sideslip, yawing, 

and rolling for wings in subsonic compressible flow. The method is applicable to wings 

of any planform, provided the angle-of-attack load distribution is known. Such informa

tion is available in the literature for a wide variety of wing planforms, or can be obtained 

by straightforward methods. The span load (or circulation) distribution is used to deter

mine the stability derivatives due to Sideslip, yawing, and rolling. Derivatives estimated 

by the method are compared with other theories and experimental results where available 

and applicable. It is not possible at this time to evaluate the present theory relative to 

others because of the limited amount of data available - particularly with respect to the 

derivatives associated with yawing and rolling. 

Langley Research Center, 
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National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., July 8, 1968, 

126-13-01-50-23. 
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APPENDIX A 

DERIVATION OF EQUATIONS FOR INCOMPRESSIBLE FLOW 

The vortex system used in this analysis includes a bound vortex along the quarter

chord line , a bound vortex sheet from the wing quarter-chord line to the wing trailing 

edge, and free vortices (along streamlines) behind the wing. Interaction of the relative 

wind with the bound vortices produces forces and moments. Equations for these forces 

and moments are derived in the following sections. In the derivations, reference is made 

to the right wing semispan unless otherwise noted. 

Sideslipping Wing 

The equations for span load and rolling moment for wings in sideslip were derived 

in reference 17. A few of the equations are included here for completeness and because 

they are required for the compressible-flow development. 

The incremental loading due to sideslip is given by 

(A1) 

and is anti symmetric over the wing. The resulting rolling-moment parameter is 

~CCl C d--
l 1 cc cC ~ = -!S (~) tan A - ~ c* L Ciy*dy* + 0.05 

CL 2 0 \cCL Ci 4 dy* 
(A2) 

where the term 0.05 is a correction obtained in reference 17. 

For wings with straight leading and trailing edges the sweep angle is constant and 

c* can be expressed as a function of wing span: 

c* = 4 ' ~ _ (1 _ A)yJ 
A(l + A) r J (A3) 

Equation (A1) therefore can be written as 

(A4) 
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APPENDIX A 

and equation (A2) can be written as 

Cl S.l~CC ) s.1~ jd(:~l) ~ = _ tan A ~ y*dy* + 3 1 _ (1 _ \)y* ~ L (1 y*dy* + 0.05 (A5) 
CL 2 0 cC L (1 2A(1 + \) 0 dy* 

Equation (A5) can be integrated, with the result 

C
l

(3 = _.!I 3 + y* (tan A _ '§"l...::.2:)~ + 0.05 
CL 2~ A1+\~ 

(A6) 

Yawing Wing 

The analysis of the yawing wing follows closely that of the wing in sideslip (given in 

ref. 17) but is more complex because the airflow velocity and direction relative to the 

vortices are functions of both the spanwise and the chordwise position on the wing. 

The total wind velocity at any point on the wing (see fig. 4) is given by 

1 
V l = r(D - y)-

cos 0 

The components parallel and normal to the wing plane of symmetry are 

u = -Vl cos 0 = -r(D - y) 

and 

v = -Vl sin 0 = -r(D - y)tan 0 = -rx 

(A7) 

(AS) 

(A9) 

For the right span of the wing, the component of velocity normal to the wing quarter-chord 

line is given by 

VN = -u cos A - v sin A 

or, with substitution of equations (AS) and (A9), 

VN = r(D - y)cos A + rXc/4 sin A (A10) 
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APPENDIX A 

If the velocity at the wing center of gravity is denoted by V, then 

V = rD 

and equation (AlO) can be expressed as 

VN = (V - ry)cos A + rXc/4 sin A (All) 

The lift per unit length of the quarter-chord-line vortex is given by 

(A12) 

As discussed previously, a basic assumption of this analysis is that the circulation 

distribution is that due to angle-of-attack loading, and is not altered by yawing. The lift 

per unit length of the quarter-chord-line vortex therefore is given by 

(A13) 

Similarly, the lift per unit span is given by 

A unit length of quarter-chord-line vortex covers a span equal to cos A, so that 

l~ = ly cos A. Using this equality, and noting that VN = V cos A for the angle-of-attack 

case, it can be shown that 

This simply indicates that in computing span loads the same circulation is used whether 

one deals with the free stream and the spanwise direction or with the quarter-chord line 

and the velocity normal to the quarter-chord line. Equation (A13) therefore can be 

written, per unit length of quarter-chord-line vortex: 

17 



APPENDIX A 

or, per unit span of the vortex: 

VN ( ) l =p--r y cos A. ya 
(A15) 

From equation (A14) it can be shown that 

(A16) 

Substituting equations (All) and (A16) into equation (A15) results in 

1 ~ ~ ~CCl)_ ly = - P (V - ry) + rXc/4 tan A V -_- cCL 2 cCL a 
(A17) 

per unit span. 

The lift of each chordwise-bound vortex must be found through an integration, since 

the lateral velocity varies along the length of the vortex. The lift is given by 

or, with substitution of equations (A9) and (A16) , 

d~CCl) 
1 - SXC/4 \CC L a 

l2 = -- prVcCL x dx 
2 Xc dy 

(A18) 

The local section load coefficient is given by 

or using equations (A17) and (A18) and normalizing with respect to the semispan gives 

d!.CCl ) 
(

ccl ) (1 rb * rb * ta A) ~CCl) rX6/4 rb * \~ a dx* 
cC L a,r = \ - 2V Y + 2V xc/4 n V::C L a - Jx~ 2V x dy* 

(A19) 
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Since d(_~CZ) !dY* is not a function of x, the integral of equation (A19) can be evalu\CCL Ci 

ated easily, and equation (A19) becomes 

The incremental load parameter due to yawing is given by 

Similarly, for the left wing semispan, 

In general, the rolling-moment parameter for a wing is given by 

(A23) 

The rolling-moment parameter due to yawing is given by 

C
z 

1 Sl ~ ceZ ~ ---.!: = -- y*dy* 
CL 4 -1 esc rb 

L 2V: 

(A24) 

Considerations of symmetry and the use of equations (A21) and (A22) with equation (A24) 

result in 

(A25) 

19 
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Equation (A25) is perfectly general and somewhat complex for an arbitrary wing. If the 

wing leading and trailing edges are straight, however, some simplification is possible. 

In this case (see fig. 3), 

and 

3 
x* = x*/ - - c* c c 4 4 

Substituting these relations into equation (A25) results in 

(CC l )j 
c* 3 - 3 9 d VCL a 

+ _@(y*-y*\tanA--x*--CJY*dY* 
2 ~ ) 2 ac 16 J dy* 

(A26) 

Integration of equation (A26) is very lengthy and tedious. The solution of equa

tion (A26) is given by 

lr 1 9 tan A 1 - .\ 27 1 - .\ - 2 3 1 - .\ 1 - 2 
C ~ ()J t ~ - = -(1 + tan2A) - -- + -- --- (y*) + - -- tan A - - tan2A (y*) 
C L 2 2A 1 +.\ 4A 2 1 + .\ A 1 + .\ 2 

3 tan A 9(1 - .\) -* tan A 3 1 - .\ x* -* ac 9 ~ ~ ~ ~ 
3x* 

+ 2A(1 +.\) - A2(1 + .\)2 Y + -2- - A 1 +.\ acY 
+ 2A(1 +.\) + 4A2(1 + .\)2 

(A27) 

Rolling Wing 

In the analysis of the rolling wing the additional local angle of attack due to rolling 

must be considered. This additional local angle gives rise to an incremental circulation 

and therefore an incremental lift. Thus the net lift at any spanwise position is given by 

20 
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(A28) 

This can also be expressed as 

(A29) 

where (cla)p and (cla)a are the local three-dimensional section lift-curve slopes in 

rolling flight and at angle of attack, respectively. As a first approximation, it is assumed 

that the local lift-curve slope is equal to the lift-curve slope of the wing semispan. With 

this assumption, 

(A30) 

The additional lift due to rolling is antisymmetric over the wing; therefore, the effective 

lift-curve slope of the wing semispan in roll is apprOXimately the lift-curve slope of a 

wing having the geometry (A and A) of the wing semispan. A convenient and accurate 

expression for wing lift-curve slope in incompressible flow is (from ref. 14) 

(A31) 

Therefore, for the wing in roll the lift-curve slope is given approximately by 

A 

) 
"2 ao 

(CLa p = 1/2 

2 + ~ A )2 + J 
~2 cos A J 
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or, if ao assumes its theoretical value of 27T, 

(CLa)p = -------'-7T'-A---
1
-/-

2 

~2C~SS +~ 
(A32) 

2 + 

Using relations (A30), (A31), and (A32) with equation (A29) results in 

1/2 

1 + _2 _+ =-[(2_C_~S-=-A_) 2_+---,~~ pb y* 
CL 2V 

(A33) 

Since the lift coefficient given by equation (A33) is all associated with the angle-of-attack 

type of loading, it can be directly related to circulation through equation (A16), so that 

(A34) 

It is now necessary to consider forces and moments due to interaction of the veloc

ity components with the vortex system having the circulation distribution given by equa

tion (A34). The velocity components are the rectilinear velocity V and the velocity 

(normal to the wing plane) py. 

The interaction of the velocity V '.'lith the quarter-chord-line vortex results in a 

wing rolling moment given by 

S
b/2 

MX = - pVryy dy 
-b/2 

(A35) 

or using equation (A34), nondimensionalizing, and taking the derivative with respect to 

pb/2V gives 
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From the definition of y* in equation (1), it is seen that 

C - 1 rrA ('1*)2 
lp - -"2 ~ 2 ~ 1/2 2+( A )+4 

2 cos A 

(A36) 

Next the interaction of the rolling velocity py with the vortex system is consid

ered. This velocity is normal to the wing vortex plane. Since flow through the vortex 

sheet is not permitted, only the interaction of the additional velocity py with the 

quarter-chord-line vortex and the extreme wing-tip chordwise-bound vortices need be 

considered. 

The force caused by interaction of py with a chordwise-bound vortex is given by 

or, with substitution from equation (A16), 

~Cl) d--
3 eCL a 

(fy) 1 ="8 PPyVccC L dy dy 

This force is in the wing (or vortex) plane and is in the y-direction (perpendicular to the 

chordwise-bound vortices). One approach to evaluating this force for the wing-tip vorti

ces is to perform the integration 

~CCl ) d-
b/2 eC L a 

~ (fy) 1 = 2 S ~ pCPyVcCL d dy 
(b/2)-E Y 

23 
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or 

This equation can be evaluated by parts, with the result 

YC(~Cl) [{~~) Jb/2 
cCL Q' ~CC )l 

~ec~ ~(b/2)-E 
Sb/2 (CCl) ( dC) - -- c + y- dy 

(b/2)-€ eCL Q' dy 

Since all the functions involved in this equation are regular and well-behaved in the indi

cated limits, it is apparent that A(;y)t will approach zero as € approaches zero. 

Therefore, from the analysis made in this paper, the wing-tip vortices will contribute no 

resultant force or moment due to rolling velocity - that is, A (fy) 1 = O. 

The next possibility to consider is the interaction of the rolling-velocity components 

with the circulation on the quarter-chord line. The associated force is in the wing plane 

and is perpendicular to the quarter-chord line. The magnitude of the force is 

per unit of vortex length. This force results in a side force which can be written as 

Fy = Vp pb y*ry tan A 
2V 

per unit of span. A resulting side-force coefficient is given by 

Sb/2 Fy 
Cy = dy 

-b/2 1. PV2S . 2 

Using equations (A34) and (A38) with (A39) and retaining up to first-order terms in 

pb/2V results in 
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APPENDIX A 

Cy = CL -_- L y*tan A dy* Sl ~CCl) b 
o cCL (lI 2V 

The coefficient of side force due to rolling is found to be 

which integrates to 

--p = tan A -_ - y*dy* Cy Sl(CCl ) 

CL 0 cCL (lI 

Cy 
--p = y*tan A 
CL 

(A40) 

The force given by equation (A37) also results in a yawing moment which is given by 

Sb/2 (. )( fyh 
MZ = x /4 sm A - Y cos A -- dy 

-b/2 c cos A 

or, proceeding as before to form the yawing-moment coefficient, 

Integration of this equation results in 

(A41) 
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COMPRESSIBILITY EFFECTS 

The effects of compressibility on the span loads and derivatives can be estimated by 

proper treatment of the local span load. As a first approximation, the load coefficient at 

a particular spanwise position is assumed to increase in direct proportion to the total 

wing lift coefficient. At a constant angle of attack, therefore, 

(CL)M _ 

(c L) M=O -
(B1) 

Note that this assumption indicates no effect of compressibility on the center of pressure 

of the span load. 

A convenient equation for wing lift-curve slope, given in reference 14, is 

(B2) 

Combining equations (B1) and (B2) and letting ao assume its theoretical value of 27T 

results in 

Equation (B3) can be used to modify the local span load and resulting derivatives to 

account for Mach number effects. 

Sideslipping Wing 

(B3) 

Reference 17 shows that for a Sideslipping wing at an angle of attack in incompres

sible flow the local span-load parameter is given by 
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-.J 

(
CCl) (CC ) (cel) 
T ~," = or ,,(I + ~ tan A) _ !l. c*~ d 7 " 

4 dy* 

The Mach number perpendicular to the wing quarter-chord line is given by 

MN = M cos(A - (3) 

Combining equations (B3), (B4), and (B5) results in 

(

Cc
l
\ 2 + ~~) 2 J

1

/

2 

c) = cos A + 4 

M,{3,CL 2 + ~co~ At~ _ M
2
cos

2
(A _,J }1/2 (C;rt(1 + ~ tan A) -t c*~ d(:tL ~ +4 ~* 

The span-load increment due to sideslip is found by differentiating equation (B6) with respect to {3 and ignoring 

higher order terms in {3 (letting (3 approach zero). The result is 

[ 

2 ~1/2 
2 + _A_ + 4 cCl 

(~Cl) = (cos A) (c~ I) tan A _ !l. c* d( T )" 
c{3 M fI 2 J 1/2 \ C CL 4 dy* 

2 + ~co~ ,J (I - M
2

COS2A) + J 
[ 

2 Il1/
2
} 

+ C~r)" A2M2(tan A)~ + (co~ A) + ~ 

}

2 
2 1/2 2 1/2 

[(co~ A) (I - M
2

COs
2A) + ~0 + [(co~ A) (I - M

2
cos

2A)+ ~ 

(B4) 

(B5) 

(B6) 

(B7) 
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~ It should be noted that for zero sideslip, equation (B3) reduces to 

~ 2 t2 
(Cl)M,a= 2+~) +4 

(C l) a ~ 2 ~172 
2 + L~co~ A) (1 - M

2cos2A) + ~ 
(BS) 

Using relation (BS) with equation (B7) and dividing through by total lift coefficient results in 

dLCCL\ A2M2tan A 

\cCr)M a [cc!..\ / ~ ~ 1/2 ~- CCl~ = (~CU tan A - ~ c* dy*' + ~CJM,Q ~( )2 2 ~1 2 2 + ~(~)2 _ A2M2 + 4 
cC

L
i3 M \cCrjM,a _A_ _ A2M + 4 \COS A 

cos A 

The rolling-moment parameter due to sideslip is (from ref. 17) (B9) 

Cli3 = _.! r1[ cCl J 
C

L 
2 Jo ~CLf3} y*dy* + 0.05 

or, using equation (B9), 

li3 1 1 cCl d -=--C 

(
c ~ ~CCl) _ = __ 3 C L M 
C

L 
M 2 SO (ECJM,Q tan A -"4 c* dy* ,a1y*dy* + 0.05 

_.!S1(CCl) A2M2tanA y*dy* 

2 0 \CCL M a l1/2 r 2 ll/2} 

, [(co~ f/ -A2M2 + 4J l + [(co~ ti) -A2M2 + ~ 
(B10) 

-- - - -- ------- --- - --- ---- - ---- -- --- -------- -----
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The correction factor 0.05, as discussed in reference 17, is independent of aspect ratio or sweep angle. Since com

pressibility effects can be related to geometric changes by the Prandtl-Glauert relations, and since geometry has no 

effect on the factor 0.05, it would appear that the factor is not a function of Mach number. 

Performing the integration as was done for the incompressible-flow case yields (for a trapezoidal wing) 

(c ~ ~ ~ ~ l{3 1 3 - 6 1 - A 
C

L 
M = -"2 A(l + A) + y* tan A - A 1 + A 

1 -* A2M2 tan A 
+O.05- 2 y 1/2[ ----------- 1/2} 

~co~ S -A2M2 + j L + ~co~ S -A2M2 + ~ 
Comparison of this equation with equation (A6) shows that 

A2M2tan A 

1/2) 

~co~ J -A2M2 + J )2 +[(co~ AY -A2M2 + J 
Yawing Wing 

(Bll) 

The span load for a yawing wing in compressible flow can be determined in a manner analogous to that for the 

sideslip case. In yawing flight, however, the effective Mach number varies across the wing span. The velocity nor

mal to the wing quarter-chord line is given by equation (All), and the corresponding Mach number is 

MN = Mtos A - ;~ (y*cos A - x~/4 sin A~ (B12) 
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o Using equations (B3) and (B12) with equation (A20) results in 

~ cClJ = 
\CC~)M,r,a 

t 1/) L (;CC
l 

) 2 d-

2 + ~coh) + j 0 -*~* -X~/4 tan A~ (~)a -~~~X~/4Y - (x~)J :~~ ~ 

{ 

2 }1/2 
2 + A2 _ A2 M2~os A _ rb (y*cos A - X~/4 sin Ay + 4 

cos2A cos2A [2V,' ~ 

(B13) 

Differentiating equation (B13) with respect to rb/2V, letting rb/2V approach zero, and proceeding as in the side
slip case, results in the following span-load parameter: 

(CCcc~) = (-y* + x~/4 tan A) (~Cl) _ .!~X* )2 _ (x*)jd~~~)M,a 
L 2V cCL M 2 c/4 c 

M ,a 

+ ~~Cl \ A2M2 (-y* + x~/4 tan A) 
\CCJM a f( 1/2 r 1/2} 

, Gco~ At -A2M2 + ~ L2 + ~co~ At -A2M2 + ~ 
(B14) 

The rolling-moment parameter due to yawing is found by substituting equation (B14) into equation (A24) and per

forming the integrations in the same manner as was done in the incompressible case. The result is found to be 
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...... 

-----------------

(CZr~ U1(1 t 2A) 9tanA1-\ 27(1-\)J(~)2 (31-\t A 1t 2~(-*)2 - =- +an - --+--- Y +---an --an y 
CL M 2 2A 1 + \ 4A2 1 + \ A 1 + \ 2 

+ - y + -- - --- x y + + t3 tan A 9(1 - \) ~ -* (tan A 3 1 - \~ :+< -* 3x:c __ ....;...9 __ 
2A(1 + \) A2(1 + \)2 2 A 1 + \ ac 2A(1 + \) 4A2(1 + \)2 

+ A2M2 _(y*)2tan2A + (Y*t (1 + tan2A) + x:cy*tan A 

2 It ]1/2{ 1/2} 
~CO~ S -A2M2 + J 2 + ~"co~ At -A2M2 + ~ . 

Comparison of this equation with equation (A27) shows that 

(CZr\ = (CZr\ + A2M2 - (y*)2tan2A + (y*)2 (1 + tan2A) + x=cy*tan A 

\CL-; M \CL) M=O 2 1/2 r It 1/2} 
~CO~ S -A2M2 + j t + ~CO~ Af -A2M2 + j 

Rolling Wing 

In compressible flow, equation (A28) becomes 

~ (cz)M,~l 
h) M,a,p = (cl) M,aC (cz) M,aJ 

(B15) 

(B16) 
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The compressibility correction to (CZ)M,P is based on the aspect ratio of a wing semi

span, as discussed previously; therefore, from equation (B2), 

and 

(B17) 

It can be shown that equation (B16) becomes 

(B18) 

In rolling flow the velocity perpendicular to the wing quarter-chord line is given by 

and the corresponding Mach number is 
1/2 

MN = M~os2A + (~~ t (Y')~ (B19) 

Substituting equation (B19) into (B18), differentiating with respect to pb/2V, and letting 

pb/2V approach zero results in the span-load parameter 
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The circulation for the rolling wing in compressible flow is found by use of equa

tions (A16), (B18), and (B19), and is 

(B20) 

Substitution of equation (B20) into (A35), nondimensionalizing, taking the derivative with 

respect to pb/2V, and letting pb/2V approach zero results in the rolling-moment 

parameter 

(B21) 

Performing the integration results in 

(B22) 

Comparison of equations (A36) and (B22) shows that 

(B23) 

The side force due to rolling is found through use of equations (A38), (A39), and 

(B20), and is (for pb/2V approaching zero) 

Cy 
--p = y*tan A 
CL 

(B24) 
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Comparison of equations (B24) and (A40) indicates that there is no compressibility effect 
on the parameter Cy p / C Lo Similarly, it can be shown that there is no compressibility 

effect on the parameter Cnp/CLo 
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APPENDIX C 

SUMMARY OF EQUATIONS 

General Equations for Additional Local Span Loading 

Sideslipping wing: 

d ~CCl ) A2M2tan A _ _ } 
cC cc 1/2 3 L M,a _l_ 1/2 2 (~\ = (~Cl) tan A - 4 c' dy' + ~CJM,a ~)2 j f ~f-L) _ A2M2 + J ~CLiJ) M \!,C

L 
M,a (~ _ A2M2 + 4 2 + \C08 A J 

'cos A 

(Cl) 
Yawing wing: 

( 

ec ) ~cel ) 
CC lrb = (-y* + X~/4 tan A) ~~Cl) _ .!~x* )2 _ ~x*)~d\CCL M,a 

L 2V eCL M 2 \ c/4 C 
M ,a 

+ (~Cl \ A2M2 (-y* + x~/4 tan A) 
\CC~)M a It 1/2 r t2l 

' ~OO:S _A2M2+j t+~CO~S -A2
M2

+ J J 
(C2) 

Rolling wing: 

) 
1TAy* eC l cCl __ _ 

?c pb \ - (ECL M,a \1 f-L)L< A2~2 + 4 
\ 2V)M,a 2 + 4\008 A 

(C3) 
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0) Equations for Additional Local Span Loading for Swept Wings 

Sideslipping wing: ~ 8 - ee 

~ eel ~ ~eel ) 3 G 3 d cC l M Q! -- = -- tan A - 1 - (1 - .>t)y* ' 
cC L {3 M eCL M,a A(l + .>t) dy* 

f. eCl ) 

+ ,eCL M a It ]1/2 r" 2 J1/21 ' ~co~S -A
2M2+ J L2+~CO~A) -A

2
M

2
+ J j 

A2M2tan A 

Yawing wing: 

(~CCC~\ = _ {Y* -~ y* -dtan A -x~Jtan'::\ (~el) 
~ L 2~)M j eCL M,a 

~ecl ) 
2 G J{3 (-*) 3 * 9 ~ ~~ d\CCL M a - 1 - (1 - .>t)y* - Y - y* tan A - - x - 1 - (1 - .>t)y* , 

A(l + .>t) 2 2 ae 4A(1 + .>t) dy* 

Rolling wing: 

~ CCl) _A2M2&* - [(y* -d tan A - x~~tan ~ 
+ -C { } 

e L M,a 2 1/2 2 1/2 

~co~ A) - A2M2 + ~ 2 + ~co~ A) - A2M2 + j 

~ee ) ~A cel _ _l y* 1/2 

(c Pb) - eCL M,a 2 + G.(~)2 _ A2M2 + J 
2V M L4 \COS A 4 J 

(C4) 

(C5) 

(C6) 
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General Equations for Aerodynamic Derivatives 

Sideslipping wing: 

1 d-V 1 eC l 1/2 ~ ~eL\ l 11 ~ A2M
2
tan A y*dy* ~i ' -~ 1 (;~8M'. tan. -t " '~Y' M'·Y'dy' + 005 -., 0 (;;CL M,. ~,:, A)' -A'M' + r t + ~,o~ A)'- A'M' + j } (C7) 

Yawing wing: 

(~~t ,%f ~Y' -x;/4 tan')(;~8M'. +~~X;/4)' - (X;)r~)M+'dY' 

Rolling wing: 

1
1 

1 ce
l 

2 y*-x~/4tanA 
+- - A M2 y*dy* 

, 0 ~'CJM'. ~,o~ S -A'M' + r {, + ~,o~ .)' - A'M' +r} 
(C8) 

(C'pk -% ~ ( F" r r' (,~~L (y<)'dy' 
2 + 1 -L.. _ A M + 4 Ja 

4 cos A 4 

(C9) 

CYp = 11 (eel) tan Ay*dy* 
CL \~CL M,O! a 

(CIa) 

np =..!. eCl * C 11 CL , 0 ('C~)M,J'/4 tan. - y.) y'dy' (Cll) 
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~ 
00 Equations for Aerodynamic Derivatives of Swept Wings 

Sideslipping wing: 

~ A2M2tan A .. - - -- 1/2} 
C

Z

(3 - -.!~ 3 + y* (tan A - ! i : ~) + 0.05 - ~ y* U)2 ~1/2 { ~(:~)2 _ A2M2 + J 
C - 2 A(l + A) \ LA- _ A 2M2 + 4 2 + cos A J 

L \cos A 

Yawing wing: 
(C12) 

C ~ 2- 1 CL - '2(1 + tan2A) 9 1 - :\. t A 27 ~1 - :\.)J( -*) 2 ---- an +--- y 
2A 1 + :\. 4A2 1 + :\. 

(
3 1 - :\. t A tan2A~ (-*) 2 ~3 tan A 9(1 - :\.) ~-* (tan A 3 1 - ~ * -* + --- an - -- y + - - y + -- - --- x Y 
A1+:\. 2 2A(1+:\.) A2(1+:\.)2 2 A1+ ac 

3x~c 9 A2M2 -(y*)2tan2A + (Y'*) 2 (1 +tan2A) +x~cy*tanA 
+ 2A(1 +:\.) + 4A2(1 + :\.)2 + -2 ~ 2 j1/2{ ~ 2 j1/2} 

(~) - A 2M2 + 4 2 + (~) - A 2M2 + 4 
cos A \-COS A 

(C13) 
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Rolling wing: 

-~---. . -----.-.-

C
l 

- 1(-*)2 p--"2 Y rrA 

2 + ~ A )2 _ A 2M2 J 1/2 

L\2COSA -4-+J 

C
yp = y*tan A 

CL 

~~ ~ _~ ~Y*) 2 + ~Y*) 2 _ (Y*) ~tan2A + x~cy*tan j 

(C14) 

(C15) 
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Figure 18.- Theoretical and experimental variat ions of Cnp with CL fo r several represen tative wings in incompressible flow. 
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