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MINIMUM THRUST FOR CORRECTING KEPLERIAN ORBITS WITH
APPLICATION TO INTERPLANETARY GUIDANCE
By Frederick W. Boltz

Ames Research Center

SUMMARY

An analytical investigation has been conducted to determine minimum
thrust requirements for effecting small changes in several parameters of
Keplerian orbits. Impulsive thrust and the approximations of linear perturba-
tion theory have been assumed. The results are generally applicable to essen-
tially two-body planar motion where the natural deviations of the vehicle
flight path from a conic section are sufficiently small.

The first-order thrust requirements obtained in the analysis are pre-
sented in terms of the optimum thrust angle and the minimum derivative of
thrust-produced velocity impulse with respect to the particular orbital param-
eter to be corrected. Minimum thrust requirements are found for correction at
a given point along an orbit of the semimajor axis, the eccentricity, and the
true anomaly or orientation of the line of apsides (argument of pericenter)
within the orbital plane. Minimum thrust requirements are also found for cor-
recting the orbital radius at an arbitrary point and the elapsed flight time
to arrive at that point. In addition, thrust requirements are obtained for
correction at a given point along an orbit of the elapsed flight time to a
second arbitrary point having a fixed value of orbital radius.

A general formulation of the thrust requirements for simultaneous correc-
tion of any pair of the orbital parameters that define the in-plane motion is
presented in terms of the minimum thrust requirements for correction of each
of the parameters separately. Application of this result to the problem of
implicit in-plane guidance during the midcourse and approach phases of inter-
planetary flight is indicated. In particular, it is shown how the minimum-
thrust results obtained in the present analysis may be applied to both fixed
and variable time of arrival as well as fixed radius of pericenter types of
guidance which make use of flight-path deviations from a reference trajectory.

INTRODUCTION

The problem of spacecraft guidance has been the subject of considerable
research in recent years. This research has produced a number of methods for
simplifying the onboard computation of the vehicle velocity correction. These
methods may be generally classified as either implicit or explicit guidance,
depending on whether or not a reference trajectory is used. Explicit guidance
requires numerical integration of the equations of motion but has the advantage
of greater flexibility in regard to off-design conditions. In implicit



guidance, numerical integration is avoided by utilizing a reference trajec-
tory. It is this type of guidance which is of primary interest in the present
analysis. Corrections to the spacecraft velocity are calculated using pertur-
bation expressions evaluated on the reference orbit in conjunction with pro-
jected flight-path deviations from the reference orbit at the terminal point.
The method is based on the assumptions that the velocity corrections are
impulsive and that the variant motion about the reference trajectory is ade-
quately described by linearized equations of motion. If two-body dynamics can
be assumed, the required corrective velocity impulse can be obtained analyt-
ically from parameter perturbation expressions of the type found in refer-
ences 1 through 5. When only a single orbital parameter is to be corrected,
the thrust angle can be selected to minimize the velocity impulse. The opti-
mum use of impulsive thrust to correct the pericenter radius during approach
to a planet has been considered in references 6 and 7. In general, it is pos-
sible to correct three independent orbital parameters or three components of
flight-path deviation from a target point with a single application of thrust.
The problem of finding the required thrust impulse for this type of correction
has been extensively treated in references 8 through 14.

The present investigation is concerned with the derivation of minimum
thrust requirements for single-parameter corrections and with the application
of these results to several types of spacecraft guidance. A general formula-
tion of minimum thrust requirements for correcting any orbital parameter has
been obtained along with specific formulas for a number of parameters of inter-
est. These results were obtained by applying the condition for minima given
in the elementary calculus to general expressions for parameter perturbations
due to impulsive velocity changes. This method is the same as that used in
reference 7 for correcting pericenter radius and provides only first-order
solutions. While the minimum-thrust requirements for correcting some param-
eters (such as period of orbit and pericenter radius) are well known, this is
not the case for other parameters considered in the analysis (such as orbital
radius and flight time to an arbitrary point on the orbit).

With the admission of linearized two-body dynamics the general guidance
correction can be separated into a correction of the plane of motion and an
independent correction of motion within the orbital plane. The in-plane cor-
rection can be generally treated as the correction of two independent orbital
parameters. It is shown in the present analysis how the in-plane corrective
velocity vector can be calculated from minimum thrust requirements for the
various independent parameters. Several different types of midcourse and
approach guidance for use during interplanetary flights considered include
both fixed and variable time of arrival and fixed radius of pericenter (cf.
refs. 11-14).

Along with the assumptions of impulsive thrust and two-body dynamics, it
is assumed in the analysis that the desired changes in the parameters to be
controlled are sufficiently small to justify the use of linear perturbation
theory. In most instances these assumptions provide sufficient accuracy in
the computation of required velocity corrections and are almost a necessity
when analytic solutions are desired.
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NOTATION
semimajor axis of orbit, positive for elliptic orbits, negative for
hyperbolic orbits

semiminor axis of orbit, positive for elliptic orbits, imaginary for
hyperbolic orbits

eccentricity of orbit

eccentric anomaly, positive for ascent (0 < E < w), negative for
descent (-m > E > 0)

hyperbolic anomaly, positive for ascent, negative for descent
semilatus rectum of conic section

general symbol for any orbital parameter of interest
radial distance from central body

time

period of orbit

horizontal component of velocity

circular orbital velocity

vertical component of velocity

resultant velocity relative to inertial coordinates
thrust-produced velocity impulse

flight-path angle relative to local horizontal, positive for ascent,
negative for descent

operator signifying small deviation
operator signifying increment or difference

true anomaly, positive for ascent (0 > 6 > w), negative for descent
(-m <8 <0)

product of universal constant of gravitation and mass of celestial
body

thrust angle relative to local horizontal, positive for thrust vector
increasing vertical component of velocity, negative for thrust
vector decreasing vertical component of velocity
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thrust

thrust

thrust

thrust

thrust

thrust

thrust

angle from

thrust
angl

angle
angle
angle
angle
angle
angle
angle

angle
e from

to

to

to

to

to

to

maximize

minimize

maximize

minimize

maximize

minimize

change
change
change
change
change

change

to maximize change
thrusting point

in semimajor axis or period of orbit
in semimajor axis or period of orbit
in eccentricity
in eccentricity
in true anomaly
in true anomaly

in orbital radius at fixed central

to minimize change in orbital radius at fixed central
thrusting point; also, thrust angle to correct flight
time to fixed point on orbit

thrust angle to maximize change
of true anomaly

thrust angle to maximize change
central angle

thrust angle to minimize change
central angle

thrust angle to maximize change
fixed value of true anomaly

in orbital radius having fixed value

in flight time to traverse fixed

in flight time to traverse fixed

in elapsed flight time to arrive at

angle from pericenter to any point on orbit measured at center of

orbi

t

quantity normalized with local circular orbital velocity, vu/r

value

value

value

value
effe

at apocenter

at pericenter

Subscripts

at orbital position where thrust impulse is to be applied

at orbital position where primary change in orbit is to be

cted



ANALYSIS

Assumptions and Restrictions

It is assumed in the analysis that vehicle thrust produces an impulsive
velocity increment AV, which is added vectorially to the velocity vector of
the vehicle. It is also assumed that small perturbations in the vehicle
motion due to impulsive thrust may be calculated with sufficient accuracy by
means of linearized two-body, point-mass equations of motion. The restric-
tions on orbital conditions in the case of a noncentral force field require
simply that the pefturbations of the vehicle flight path from a conic section
be relatively small. Within the limitation of these restrictions, the linear-
ized two-body orbital relations may also be used as a basis for determining
minimum thrust requirements for effecting small changes in certain orbital
elements or trajectory variables.

One effect of the restriction in size of impulsive thrust is that pertur-
bations of the vehicle motion within and normal to the orbital plane are inde-
pendent. Since thrust directed normal to the orbital plane does not affect
motion within the plane of orbit (to first order), the present analysis is
restricted to in-plane thrusting only and the resulting effects on the in-plane
motion.

The convention of notation used in the present analysis is illustrated in
figure 1, which indicates the geometric parameters of elliptic and hyperbolic
orbits pertinent to the analysis. Parabolic orbits may be considered a spe-
cial case of elliptic orbits in which the semimajor axis, a, is infinitely
large. For hyperbolic orbits a 1is negative but has a positive counterpart
in the semitransverse axis, -a.

In the derivation of analytical expressions that follows, intermediate
steps are often omitted or indicated only briefly. Since in many instances
the auxiliary relations used in the derivation are not given, a short summary
of two-body point-mass relations pertinent to the present analysis is presented
in appendix A. (A more detailed summary is to be found in ref. 2.)

General Formulas for Optimum Correction of Orbital Parameters

Impulsive thrust applied to an orbiting vehicle produces an instantaneous
change in the local velocity vector and related changes in all orbit param-
eters. If P is any parameter of interest, it can be expressed as a function
of the local velocity vector and the orbital radius at the point of thrust
application. Thus, with the velocity vector described by its magnitude and
direction (V;, vy;) or by its horizontal and vertical components (u;, v;),

P = £V, vi, r1) = gluy, vy, 11) (1



The perturbation of P due to a small change in the local velocity vector is
given by

. i - %8 og_
dP = V1 dv; + 1 dy; = Uy duj + T dVl (2)

since the orbital radius at the thrusting point is considered fixed.

The changes in vehicle velocity
due to the application of impulsive
thrust are illustrated in sketch (a).

ST ey The velocity increment associated with
NN N/ A . . .
. the thrust impulse is described by its
y ag, magnitude, AV, and direction, T,

o p referred to the local horizontal. It
is readily seen that, in the 1limit as

4 4 horizontal AV_ goes to 0, changes in the various
components of the velocity vector are

Sketch (a) given by
N

dvy = dV, cos(t - vi)

dv._
dy; = v;~'51n(T - Y1) >
(3)
du; = dvV,. cos 1
dvy; = dV, sin t

Y,

where T - vy; 1is the thrust angle relative to the flight path or velocity
vector. When these differential expressions are substituted into equation (2),
it is found that

B 1 of ..
dP = [%VT-COS(T Y1) + VI 5;;—51n(t yl)]dVT (4a)
or
dp = |28 cos 1 + & sin tlav (4b)
ou] v, T

These equations provide alternate expressions for the derivative dV./dP in
terms of thrust angle relative to the flight path or relative to the horizontal.
This derivative may be used to obtain a first-order estimate of the thrust mag-
nitude, AV., required to change the parameter P an amount AP according to
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The thrust magnitude will be a minimum when the thrust angle, 1, is selected
so as to minimize the derivative. This optimum thrust angle is found by set-
ting the derivative of equation (4a) or (4b) with respect to T equal to O
and solving for <t. If 1, represents the optimum thrust angle, it is found
that

af/av,
tan(r* - v1) = WW (5a)
or
ag/av,
tan Tge T 5§7§ﬁ? (Sb)
from which two values of 1, - y; and of 7, (differing by 180°) are obtained.

The corresponding minimum value of dV_ /dP is obtained by substituting

1, for 1 1in equation (4a) or (4b) with the result that

dv -1/2

* 1 af \?
P - K > 3Y1> :l (6a)
dv

. 5 -1/2
" e

where the plus and minus signs correspond to thrusting in opposite directions.

or

The thrust angle for which the parameter P 1is invariant is found by
setting equation (4a) or (4b) equal to 0 and solving for . If 1

*
o
represents this thrust angle, it is found that
. 2g/3u, 7
an T*o = - m—l— -cot T,

so that, to first order, the thrust angle for no change in a given parameter
is different by 90° from that for maximum change. It should be noted that
for thrust at this angle the parameter does in fact change, but by an amount
proportional to second- or higher-order derivatives.

It follows from the above results that the general linearized expression
for the parameter perturbation (eq. (4)) can also be given, in terms of the
optimum thrust angle and the maximum derivative of the parameter with respect
to the thrust-produced velocity impulse, by



dP
dp = av, dv, cos(t - T,) (8)

%

since, to first order, only the component of thrust in the optimum-thrust
direction contributes to the perturbation.

The first part of the following analysis is concerned with developing
linear perturbation expressions for various parameters of interest. In the
second part minimum thrust requirements are determined for the control of
these parameters.

Perturbation Formulas for Various Orbital Parameters

The perturbative effects of impulsive thrust on various elements or
parameters of an orbit are obtained from the general linearized perturbation
expressions of the previous section and the appropriate two-body relations for
these parameters. The orbit elements considered in the present analysis are
the semimajor axis (or period of orbit), the eccentricity, and the true anom-
aly at the point of thrust application. Perturbations of the orbital radius
at any other point on the orbit and of the elapsed flight time to any other
point are also considered. Perturbations of the semimajor axis and the eccen-
tricity reflect changes in the orbit size and shape. The perturbation of true
anomaly at a given point is equal to the rotation of the line of apsides of
the orbit within the orbital plane.

In the following presentation of perturbation expressions, alternate
forms of the results are given in the case of semimajor axis (or period of
orbit), eccentricity, and true anomaly. These forms differ in the specifica-
tion of thrust angle (either measured with respect to the flight path or the
horizontal) and in the particular component of velocity with which the thrust-
produced velocity differential is normalized. For perturbations of orbital
radius and elapsed flight time, only one form is presented here; the other in
each case is given in appendixes B and C, respectively.

Perturbation of semimajor axis or period of orbit.- The perturbative
effects of impulsive thrust at orbital position (r;, 6;) on the semimajor axis,
a, or the period of orbit, T, are obtained by applying equation (4) to the
two-body relations for these elements given in appendix A. It is found that

.§§-= %-%I = E_jggi_[(l + 2e cos 6] + e2)cos(t - v;)] V%I. (9a)
or
da _ 2 dT _ 2(1 + e cos 6)) [(1 + . . dv.
T =TT - T e cos B1)cos T + e sin 6; sin 1] a
(9b)

The value of a 1is positive for elliptic orbits and negative for hyperbolic
orbits. Both a and da are undefined for parabolic orbits.

8



Perturbation of eccentricity.- The perturbative effect of impulsive
thrust at orbital position (r;, 6;) on the eccentricity of orbit, e, is
obtained by applying equation (4) to the two-body relations for this element
given in appendix A. It is found that

(1 - ez)sin 8, dv

Sin(T - ‘Yl) V]_T

de = [Z(e + cos O1)cos(t - yy) + T+ 6 cos 0]

(10a)

or

dav

de = {[(2 + e cos 6;3)cos 6; + e]Jcos T + (1 + e cos 671)sin 6, sin T} GTE

(10b)
In the case of nearly circular orbits (e » 0) equations (10a) and (10b)
reduce to

de = (2 cos 6; cos T + sin 6; sin T)dV; (10c)

This expression cannot be used directly for perfectly circular orbits, since
the true anomaly is undefined. However, since the change of eccentricity is
the value of eccentricity after thrusting, it is given by

de = /1 - (2 - V)W (10d)

Here V and u are the normalized values of velocity and horizontal component
of velocity after thrusting which, with V; = u; = 1 and y; = 0 (see
sketch (a)), are given by

v /& + (dVT)2 +2dV, cos T

u=1+4 dV} cos T

Thus, for a circular orbit it is found that, to first order,

de = /1 + 3 cos? 1 dV} (10e)

It is interesting to note that this result can also be obtained from
equation (10c), if the value of true anomaly attained at the thrusting point

after the application of thrust is substituted for 6;. With V and u as



given above, this value of true anomaly is readily obtained from the two-body
relation

u -1
Y1 - (2 - V2)u?

cos O

It is found that, to first order,
2 cos T
/1 + 3 cos?

1}

cos 6

with dependence only on thrust angle.

Perturbation of true anomaly.- The perturbative effect of impulsive
thrust at orbital position (r;, 6;) on the true anomaly, 6;, is obtained by
applying equation (4) to the two-body relations for this parameter given in
appendix A. It is found that

2e + (1 + e2) cos 031 dav

de; = - 1 2 sin 87 cos(t - v1) - sin(t - v1) —L

1 e 1 1 1 + e cos 8, 1 \'A

(11a)
or

1 dVT
do; = -3 [(2 + e cos 61)sin 8; cos T - (1L + e cos 87)cos 67 sin 7] T

1

(11b)
This change of true anomaly at the thrusting point is equal to the change of
true anomaly at any other point, since it is due to a slight rotation of the
line of apsides of the orbit within the orbital plane.
Perturbation of orbital radius.- The perturbative effect of impulsive

thrust at orbital position (r;, 1) on the orbital radius at position
(ro, 62) is obtained from the conic relation

1 + e cos 067
I‘2=1‘1< >
1 + e cos 8,

The logarithmic derivative of this expression, with r; constant, gives

dr, <’ cos 9, cos 6, > e sin 6; do, e sin 0, d6;
de -

= - +
ro 1+ e cos 6; 1 + e cos 6, 1+ e cos 6, 1l + e cos 65

(12)

10
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For r; fixed, the differentials de and d8, are given by equations (10) and
(11), respectively, in terms of e, 83, 7, and dV./V;. The differential d6,
can be set equal to d6; or O depending on the particular problem under con-
sideration. If the central angle 6, - 8; 1is considered fixed, then do,

is equal to df; as given by equation (11). In this case equation (12) gives
the perturbation of the orbital radius r, along an inertially fixed radial
line in the orbital plane. If the value of 6, is considered fixed, then

dé, is equal to 0, and equation (12) gives the perturbation of the orbital
radius 71, along a line which, in general, undergoes rotation with thrust so
as to maintain a fixed value of true anomaly, 6,. Since the coefficient of
de, in equation (12) vanishes for 6, equal to 180° or 0, perturbations of
apocenter and pericenter radii can be determined without specification of d6,.

For fixed central angle, 8, - 6;, equation (12) can be expressed as

dr, 1 ‘ .
T, - T+ 6 cos 6, {[2(1 - cos A8) - e sin A6 sin 6;]cos T

dav
+ (1 + e cos 07)sin A9 sin 1} Efl (13a)

and, for fixed true anomaly, 6,5, as

dr2 1

= 2 - s 02
% T+ 6 cos 6, {[2(1 cos ) cos B,) + e sin“ 87 cos 6,]cos T

dv..
+ (1 + e cos 871)sin 8 cos 95} T (13b)

1

Alternate forms of these perturbation expressions in terms of thrust angle
relative to the flight path, tv - y;, are given in appendix B.

Perturbation of elapsed flight time.- The perturbative effect of impul-
sive thrust at orbital position (r;, 6;) on the elapsed time of flight to
position (r,, 6,) is obtained from Kepler's equation expressed as

3
ty, - t; = /%— [E, - E; - e(sin E; - sin E;)]

where E 1is the eccentric anomaly. The logarithmic derivative of this
equation gives

d(t, - t 5
42 - ) 54a  Va¥u [(1 - e cos E,)dE
t, - t 2 a t, - t 2/552

- (1 - e cos E})dE; - (sin E, - sin E;)de] (14)

11



The differentials da and de are given, for r; fixed, by equations (9) and
(10), respectively, in terms of e, 6;, T, and dV;/V;. The remaining differen-
tials, dE; and dE;, are obtained from formulas given in appendix A as

/1 - e? . de .
dE. = <—-51n ej i—_—ez' + dej>, ) = 1,2

j 1 + e cos ej

where de and d6; are given by equations (10) and (11), respectively. The
single unspecified differential, d6,, can be set equal to d6; or to O
depending on whether 6, - 6; or 6, 1is considered fixed. In the former case
the terminal point remains inertially fixed, and in the latter case it does
not. Both constraints are useful in guidance computations as is subsequently
shown,

For fixed central angle, 6, - 6;, equation (14) can be expressed as

d(t, - t /55, 1+ e cos 6 dv
(2 D = APS/“ . X; cos T + Xy sin T L (15)
t, - t t, - t; e 1 2 u;
where
A - B(2 + e cos 67)sin 6,
Xy = T+ ¢ cos 0] + K(1 + e cos 9;)
Xo = B cos 87 + Ke sin 9
with

(2 + e cos O3)sin 6, {2 + e cos O0;)sin 0,

(1 + e cos 65)2 (1 + e cos 087)%

B=(1+ e cos 62)'2 - (1 + e cos 61)'2

For fixed true anomaly, 6,, B is replaced in the above expressions by
B' = -(1 + e cos 6;) 2

These results are valid for both elliptic and hyperbolic orbits, since
Kepler's equation is applicable to any type of orbit. It is only the form of
this equation that need be changed for use in the different cases. This is
simply done by using the identity E = -iH or H = iE (cf. appendix A).

12



However, the above results, which do not contain any imaginary terms for cer-
tain values of eccentricity, are independent of the usual restriction on type
of orbit specified.

In the case of parabolic orbits, the factor K in equation (15) is
indeterminate, and a limiting value must be obtained. If this limiting value
is represented by L, it is found that

. 1 62 01 1 5 92 s 01
L = iiT K= - E-[%an 3 - tan 3% <}an 5 - tan 5

In the case of circular orbits, equation (15) reduces to the limiting
value

d(t, - t1) av

1 . .
t, - t; B8 [3 A6 -4 sin AB)cos T + 2(1 - cos AB)sin 1] 7

T

Alternate forms of these perturbation expressions in terms of thrust
angle relative to the flight path, © - y;, are given in appendix C.

Minimum Thrust Requirements for Correction of Various
Orbital Parameters

The minimum thrust requirement as used throughout this report refers to
the optimum thrust angle for correcting a particular orbital parameter and the
minimum derivative of thrust-produced velocity impulse with respect to that
parameter. Such minimum thrust requirements for correcting various parameters
of an orbit are obtained by applying equations (5) and (6) to the appropriate
two-body relations for these parameters. The partial derivatives appearing in
equations (5) and (6) may be obtained from a comparison of equation (4) with
the perturbation expressions for the various parameters given in the previous
section.

In general, there is a particular point along an orbit where the minimum
derivative, dV, /dP, attains an absolute minimum value. This optimum orbital
*

location for parameter correction is found by setting the derivative of
dv, /dP with respect to 6; equal to O and solving for 6;. Such optimum
*

values of 6; are also presented for several of the orbital parameters
considered in the analysis.

As in the previous section, alternate forms of the results are given in
the case of semimajor axis (or period of orbit), eccentricity, and true anom-
aly. 1In the case of orbital radius and elapsed flight time, only one form is
presented here; the other in each case is given in appendixes B and C,
respectively.

Correction of semimajor axis or period of orbit.- If the thrust angle for

maximum change in the semimajor axis (or period of orbit), for a given small

13



amount of thrust, is represented by t,, it is found from equation (5) that

(16a)

It
(e}

tan(t, - v1)

or
e sin 0,

tan y; = T+ e cos ) (16b)

tan T

It is readily seen that this optimum thrust direction is valid regardless of
the amount of thrust applied, since in all cases a maximum change in V; is
desired for a given value of dV.. No change in semimajor axis or period
occurs if the speed, Vi, is unchanged by thrusting; this requires thrust
normal to the flight path or velocity vector for small amounts of thrust.

The minimum dimensionless! derivative of thrust-produced velocity impulse
with respect to semimajor axis or period of orbit is found by substituting
T for <t in equation (9) to obtain

a
dav av
a _Ta_3T _‘a_, 1 - e (17a)
Vi da 2V, dT 2(1 + 2e cos 6; + e2)
or
av av
a _Ta_3T “"Ta_, 1 - e (17b)
V. da ~ 2V, ar - ¢

2/1 + 2e cos 8, + €2

From equation (17b) it is found that the absolute minimum values of
dVTa/da and dVTa/dT occur at a value of 6; equal to 0.

Correction of eccentricity.- If the thrust angle for maximum change in
the eccentricity of orbit, for a given small amount of thrust, is represented
by Tg, it is found from equation (5) that

(1 - e2)sin 8;

tan(Te - Y1) = 2(1 + e cos 61)(e + cos 67) (18a)

or

(1 + e cos 81)sin 83

tan T = (2 + e cos 81)cos 67 + e (18b)

1The differential dV; can be normalized with any convenient speed param-
eter. In this report a variety of such parameters are used for this purpose

including V;, V5, uj, V., etc.
P

14



B

The thrust angle for which the eccentricity is invariant, to first order, is
different from 1, by 90°.

The minimum dimensionless derivative of thrust-produced velocity impulse
with respect to eccentricity is found by substituting 1, for =t in equa-
tion (10) to obtain

1 dv. (1 - e?)sin 0, 2y 1/2
— —L =+ {4(e + cos 61)2 + [ :’ } (19a)

Vy de 1+ e cos 0;
or
dv; -1/2
%—- dee = #{[(2 + e cos 6;)cos 6] + e]2 + (1 + e cos 61)2 sin? 011
1

(19b)

For circular orbits, it can be shown from equation (10e) that 1o is
equal to 0 or 180°; consequently,

e Ay y
de = de ~ ° .S (19¢)

=

From equation (19b) it is found that the absolute minimum value of
dv, /de occurs at 6; equal to 0 or 180° with the absolute maximum value
e

occurring at a value of 6; given by

2

e? cos3 8; + 3e cos? 6; + 3 cos 8] + e(2 - €2) =0

The one real root of this cubic equation for positive values of eccentricity
is

cos 8] = %—[(l - e2)2/3 - 1]

Correction of true anomaly.- If the thrust angle for maximum change in
the true anomaly (i.e., maximum rotation of the line of apsides within the
orbital plane), for a given small amount of thrust, is represented by Tgo it
is found from equation (5) that

2e + (1 + e2)cos 81

tan(tg - v1) = - (20a)

2(1 + e cos,8;1)sin ©

or
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(1 + e cos 8y)cos 6;

tan T, = (20b)

6 (2 + e cos B1)sin 0,

The thrust angle for which the true anomaly is invariant, to first order, is

different from Ty by 90°

The minimum dimensionless derivative of thrust-produced velocity impulse
with respect to true anomaly is found by substituting Ty for T in
equation (11) to obtain

2 -1/2
1 dVTe , 2¢ + (1 + e?)cos 0, '}
- = =+ :
vV, dé; © {% sin® 6y + [ 1 + e cos 6 (21a)
or
dv;
-1

{E_.ag_g = ze[(3 + 2e cos el)sin2 81 + (1 + e cos 61)2] /2 (21b)

1 1

From equation (21b) it is found that the absolute minimum value of
dVTG/del occurs at a value of 6; given by

e? cos3 6] + 3e cos? 87 + (3 + e2)cos 87 + 2e = O

The one real root of this cubic equation for positive values of eccentricity
is

- - e2)2 3 _ - e2)2 6
cos 8= %{;/ﬁ e? //kl e +_%7 . //i e? //(1 e N 97__ ]]

Correction of orbital radius.- The thrust angles resulting in minimum
required thrust for making a correction at a given point (r;, 6;) along an
orQit of the orbital radius at a second point (rp, 6,) are denoted by 1, and
1. , depending on whether 6, - 6; or 6, 1is considered fixed. These opti-
mum thrust angles and corresponding minimum dimensionless derivatives of thrust-
produced velocity impulse with respect to orbital radius are obtained from
equations (5) and (6) with reference to equations (4) and (13). For fixed
central angle, 8, - 8;, it is found that

(1 + e cos 67)sin A8

tan (22)

“r T 2(1 - cos AB) - e sin A® sin 6;

and
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Ty dV 1 + e cos 65

-— Tr=i - Ce e
u; drp //;"' ST e e ) >
[2(1 - cos AB) - e sin 46 sin 81]° + (1 + e cos 61)2 sin? A6
(23a)
or
T, dV 1 + e cos 6
_%_ Tr - + . e !
up, dr, = o — - -
/12(1 - cos A8) - e sin 46 sin 67]%2 + (1 + e cos 0;)2 sin? A@
(23b)
In the case of fixed true anomaly, 85, it is found that
(1 + e cos 61)sin 6] cos 9,
tan 1.' = - (24)
2(1 - cos 8] cos 8,) + e sin? 6; cos 6,
and
2 S
u; dI‘Z
1l + e cos 65
=+
,42(1 - cos 6; cos By)+e sin? 6, cos 62]2+ (1+e cos 61)2 sin? 81 cos? 6o
(25a)
or
r2 Nrp!
Uus drz
1 + e cos 63
= e e ——— e

/{;(1 - cos 0] cos 0;) +e sin 8] cos 6,]%+ (1+e cos 6;)2 sin? p; cos? o,
(25b)

Alternate formulations of these minimum thrust requirements for orbital
radius correction are given in appendix B. Formulas for the special cases of
apocenter-radius and pericenter-radius correction are listed in appendix D.
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Correction of elapsed flight time.- The thrust angles resulting in mini-
mum required thrust for making a correction at a given point (r;, 6;) along
an orbit of the elapsed flight time to a second point (r,, 6,) are denoted by
T+ and t¢', depending on whether 6, - 6; or 6, 1is considered fixed. These
optimum thrust angles and corresponding minimum dimensionless derivatives of
thrust-produced velocity impulse with respect to elapsed flight time are
obtained from equations (5) and (6) with reference to equations (4) and (15).
For fixed central angle, 6, - 8;, it is found that

X5 B cos 67 + Ke sin 6;
tan T = X; A - B(Z + e cos 6;)sin 0, (26)
T+ 6 cos 6; + K(1 + e cos 07)
and
ty - 1t dv; ty, - t; e/(1 + e cos 87)
t (27)

=+
u d(ty - t;) $3/u &% X2

where X;, Xo, A, B, and K are functions of e, 6;, and 9, previously
defined with equation (15). In the case of fixed true anomaly, 6,, the opti-
mum thrust requirements are the same as those above except that B 1is
replaced by B'. For parabolic orbits K is indeterminate and is replaced
by its limiting value, L, given with equation (15). For circular orbits
equations (26) and (27) in the case of fixed central angle reduce to the
limiting forms

can © = 2(1 - cos 8)
t 3 A6 - 4 sin AB

and

t, - t) dv:
t_ = sr0//, _ : 2 4+ oa(1 - 2
Vi e, -t _Ae/ (3 A6 4 sin A8)° + 4(1 cos A8)

with dependence only on the central angle, A6. The thrust requirements for
correction of elapsed flight time with fixed true anomaly at the terminal
point are ambiguous for exactly circular orbits, since the true anomaly is
undefined.

In general, correction of elapsed flight time with the above minimum
thrust specifications will result in a change in the orbital radius at the
terminal point. However, there is one direction in which thrust will not
change the terminal radius (to first order). This thrust direction is normal
to that required for maximizing the change in orbital radius. Thus, the
thrust angle for correction of elapsed flight time with invariant terminal
radius is either 1,  or Tré, depending on whether 6, - 6; or 6, is
considered fixed. TRese thrust angles can be expressed as
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k.

tan T

To -cot T, (28a)

tan t..!

-cot T.!' (28b)
To

T

where Ty and 7, ' are given by equations (22) and (24), respectively.

When the thrust angles 71, and Tré are substituted for T in
equation (15), it is found that© for fixed central angle, 8, - 81,

(1 - cos AB) - e sin A6 sin 91}2
in? 48
to - ty dVTr t, - tg e /sin * 1 + e cos 6
= +

[0}

uy d(ts - t) Vpa/u A sin A® + 2B(cos 6, - cos 81) + K[2e(sin 65 - sin 87) + (1 + e?)sin 48]

(29a)
and, for fixed true anomaly, 6,,
2(1 - cos 8] cos 63) + e sin? 8] cos 82}2
in2 2 . .-
t, -t dVTr. ty - 1 e /sin“ 6) cos< 8, + [ 1+ e cos 6,
o -+ A . e
uj d{t, - t;) /%3/u A sin 81 cos 6, - 2B'(cos 8, - cos 61) + K[2e + (1 + e?)cos Bo]sin 6,

(29b)

where, again, A, B, B', and K are functions of e, 6;, and 6, previously
defined, with K replaced by its limiting value, L, in the case of parabolic
orbits. For circular orbits equation (29a) reduces to the limiting form

tr, - ty dVTrO Ae/éinz AD + 4(1 - cos Ae)z

= =+

Vi d(t, - t3) 3 A8 sin A8 - 8(1 - cos AB)

with dependence only on the central angle, A8. The derivative expressed by
equation (29b) is 0 for perfectly circular orbits but is meaningless in this
case due to the ambiguity of the true anomaly.

Alternate formulations of these thrust requirements for correction of
elapsed flight time are given in appendix C. Formulas for the special cases
of correction of flight time to apocenter and pericenter are listed in
appendix E.

Thrust Requirements for Simultaneous Correction of
Two Orbital Parameters

In general, it is possible to correct two independent orbital elements
or parameters with a single application of impulsive thrust, since two inde-
pendent scalar quantities are required to define€ the corrective thrust vector
in the orbital plane. The specification of the corrective thrust vector in
terms of the thrust angle, 7, and the thrust magnitude, AV_, is obtained from
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the simultaneous solution of the perturbation expressions for the two param-
eters. Two different formulations for 1 and AV, based on the use of
equations (4) and (8) are developed below.

General formulation of thrust requirements.- Consider two independent
orbital parameters, P, and P,, requiring corrections &Py and §P,. From
equation (4b) it follows that

5131 61)2
AV = -
(3gy1/dug)cos 1 + (3g;/3vg)sin t (3g,/dug)cos 1 + (3gy/dvg)sin 1

where u. and vg are the horizontal and vertical (radial) components of the
vehicle velocity at the time of thrusting. When these two equations are
solved for 1 and AV_, it is found that

og1 g2
au Py - aus 6Py .
tan 1 = 30
382 9g1 (30)
BV §Py - SVE-GPZ
and
ago 381 > <3g2 agl >2
AV = (31)

dg1 dg2 982 981
dug dvg  dug avg

It is to be noted that two values of thrust angle differing by 180° are
obtained from equation (30). The value of 1t corresponding to a positive
value of AV is that for which the sign of (9g; /3u Jcos T + (ag /3vg)sin T
is equal to the sign of 6P The condition for %he two orbital parameters
being independent is that tﬂe denominator in equation (31) is not 0. In gen-
eral, two parameters which are usually independent can become dependent at one
or more points on an orbit. These points are specified by the conditions
under which the denominator of equation (31) is O,

An alternate formulation of the thrust requirement for simultaneous
correction of two independent orbital parameters may be obtained in terms of
optimum thrust angles and minimum derivatives of thrust-produced velocity
impulse with respect to each of the parameters. From equation (8) it follows
that

*] 8Py * §Py

dP;  cos(t - T,,) dP, cos(t - 7*2)
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where Ta, and T, are the optimum thrust angles and dV_ /dP; and
*
1

dv. /dP; are the minimum derivatives. When these two equations are solved
*
2

for T and AVT, it is found that

- AV
AVT*1 cos T, T, cos Ty,
tan 1 = : (32)
A . _ .
VT*2 sin T*l Av.r*1 sin Tu,y
and
2 2
KAVT*> + <AVT*> -2V, AV cos(r, - T, )
1 2 1 2
AV_ = — (33)
* Isin(r* - 1,)
2 1
where
dav
T,
AV = —J sp., j =1, 2
T*j dP. )
J
This thrust requirement can be expressed more concisely as
AVT* - AVT* cos('r*2 - T*l)
2 1
tan(t - T*l) = (34)
Av sin(t - T
SR, - )
and
AV
T*l
AV = (35)

cos(t - T*l)

As before, two values of 1 differing by 180° are obtained from either equa-
tion (32) or equation (34). The value of 1 corresponding to a positive
value of AV_ is that for which |t - T*ll or |t - 7, | is less than 90°.

The condition for the two orbital parameters being independent is that the
optimum thrust directions for correction of the two parameters separately do
not coincide. It is also to be noted that when the required correction in one
of the parameters is 0, the thrust specification is in the direction which, to
first order, does not change this parameter. Thus, the thrust requirement in
this case is different from the minimum thrust requirement for correction of
the other parameter singly.
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Geometric interpretation of results.- A geometric interpretation of the
results obtained above for computing the single velocity impulse required to
correct two different orbital parameters using their minimum thrust require-
ments is obtained from considera-
tion of the vector diagram
presented in sketch (b). As is
indicated in this sketch, the
required velocity impulse may be
resolved into either of two par-
ticular pairs of orthogonal com-
ponents. One of the two components
in each pair is in the thrust
direction required for maximum
change of one of the two param-
eters being corrected. The other
component in each pair, being
orthogonal to the first, has no
effect, to first order, on the
pertinent parameter. Thus, it is
clear that, when the two thrust
directions for maximum thrust
effectiveness in the case of the
two parameters are specified
along with the velocity impulses
AVT* and AVT*2 required in these

Sketch (b) respective directions to correct
each parameter separately, the
velocity vector for simultaneous correction of the two parameters is uniquely
defined.

From sketch (b) it is apparent that the thrust vector for simultaneous
correction of two parameters can be easily obtained graphically from the mini-
mum thrust vectors for correction of the two parameters separately. All that
is required is the erection of perpendiculars to the ends of these minimum
thrust vectors. The intersection of these perpendiculars is the terminus of
the desired single thrust vector correcting both parameters simultaneously.

Also indicated in the vector diagram of sketch (b) is the geometric
basis for the relations expressed in equations (34) and (35). It can easily
be shown that, as is indicated, the angle 1 - T*l between the vectors of

magnitude AV_ and AV, is the same as the angle between the line joining
*
1
the ends of the vectors of magnitude AVT* and AV, and the perpendicular
*
to the vector of magnitude AV_ . With this correspondence in angles the
*

2
relation given by equation (34) is readily obtained.
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RESULTS AND DISCUSSION

Graphical Presentation of Results

Minimum thrust requirements for correcting various orbital parameters
are presented in figures 2 through 8. These results are given in dimension-
less form and can be used for analyzing thrust-perturbed orbital motion
around any celestial body. The formulas comprising the minimum thrust require-
ments (optimum thrust angle and minimum derivative of thrust-produced velocity
impulse with respect to the parameter of interest) are listed in table I for
convenience. These thrust specifications are generally expressed as functions
of the eccentricity of orbit and the true anomaly at the thrusting point.
Values of eccentricity from 0 to » have been considered as well as the full
range of positive values of true anomaly.

Optimum correction of semimajor axis or period.- The minimum thrust
requirements for correcting the semimajor axis of various orbits are presented
in figure 2. They are proportional to those for correcting the period of
orbit. The optimum thrust angle for increasing both the semimajor axis and
the period is equal to the flight-path angle. Thrust in the opposite direc-
tion maximizes the reduction of these parameters. The variation of the flight-
path angle with true anomaly is presented in figure 2(a) for various values
of eccentricity. The extreme values of flight-path angle for elliptic orbits
occur at the two midpoints of orbit (where the orbital radius is equal to the
semimajor axis and the local velocity is equal to the local circular speed).
The variation with true anomaly of the minimum dimensionless derivative? of
thrust-produced velocity impulse with respect to the semimajor axis is pre-
sented in figure 2(b). The corresponding minimum derivative with respect to
the period of orbit is obtained by applying the factor 2/3 to the derivatives
indicated in this figure. It is seen that the minimum local values of these
derivatives occur at pericenter and the maximum at the point of greatest
orbital radius. For elliptic orbits the values of either derivative at
apocenter and pericenter differ by the factor (1 + e)/(1 - e).

Optimum correction of eccentricity.- The minimum thrust requirements for
correcting the eccentricity of various orbits are presented in figure 3. From

2The dimensionless derivative shown in figure 2(b) has been normalized
with the circular orbital speed at pericenter, V. . This dimensionless form

p
is obtained by multiplying equation (17a) by the factor

vy //4 + 2e cos 8; + e?
Ve l1+e

is constant for a given orbit and is the same for all orbits

Since VC

having thg same value of pericenter radius, the orbital position of absolute
minimum thrust for correction of semimajor axis is obtained from figure 2(b)
along with a comparison of minimum thrust requirements for various orbits
having a common pericenter.
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figure 3(a) it is seen that for elliptic orbits the optimum thrust angle for
increasing eccentricity varies from O at pericenter to 180° at apocenter. It
is noted that the variation of t_, with 6; shown for e - 0 is not valid
for exactly circular orbits for wﬁich Te 15 0 or 180° at all points on the
orbit. The optimum thrust direction for parabolic orbits is along the flight
path; for hyperbolic orbits it varies from along the flight path at pericenter
to normal to the flight path at infinite radial distance.

The variation with true anomaly of the minimum dimensionless derivative
of thrust-produced velocity impulse with respect to the eccentricity is pre-
sented in figure 3(b). It is seen that the minimum local value of this deriv-
ative for elliptic and parabolic orbits occurs at pericenter with the maximum
local value occurring at or near the midpoints of the orbit. For hyperbolic
orbits the derivative tends toward 0 as the orbital radius tends toward infin-
ity. In the case of nearly circular orbits the absolute value of
(1/ve )(dVTe/de) varies from about 0.5 at apocenter and pericenter to about

1.0 at the midpoints of orbit. This derivative has a constant value of 0.5
at all points for exactly circular orbits.

Optimum correction of true anomaly.- The minimum thrust requirements for
correcting the true anomaly (i.e., for slight rotation of the line of apsides
within the orbital plane) are presented in figure 4. From figure 4(a) it is
seen that the optimum thrust angle for increase of true anomaly varies from
-90° at pericenter to 0 at the latus rectum and is rather insensitive to varia-
tions in eccentricity in this region. 1In the true anomaly range beyond 90°
the optimum thrust angle increases to 90° at apocenter for elliptic orbits
and returns to 0 as the radial distance becomes infinitely large for
hyperbolic orbits.

The variation with true anomaly of the minimum dimensionless derivative
of thrust-produced velocity impulse with respect to true anomaly is presented
in figure 4(b). For elliptic orbits the minimum value of this derivative
occurs at or near the midpoint of the orbit with a local maximum occurring at
both apocenter and pericenter. For parabolic and hyperbolic orbits the
absolute value of this derivative decreases monotonically with increasing
absolute value of true anomaly at the thrusting point.

Optimum correction of orbital radius.- The minimum thrust requirements
for correcting apocenter or pericenter radius are presented in figure 5. The
optimum thrust direction for correcting either of these radii (fig. 5(a))
varies from the horizontal to the vertical as the point of thrust application
moves toward the point of orbital radius correction from the opposite point on
the orbit. Good approximations of the optimum thrust directions in the two
cases are available along certain portions of the orbit. When 1r;/r, << 1
the optimum thrust direction for correcting apocenter radius is near?y along
the flight path, and when r;/r_ >> 1 the optimum thrust direction for correct-
ing pericenter radius is nearly horizontal (cf. appendix D, eqs. (D5) and

(D6)).

The variation with thrusting-point true anomaly, 6;, of the minimum
dimensionless derivative of thrust-produced velocity impulse with respect to
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apocenter or pericenter radius is presented in figure 5(b). In both cases
this derivative decreases monotonically with increasing angular separation
between the thrusting and correcting points and attains an absolute minimum
at the opposite point on the orbit.

The minimum thrust requirements for correcting orbital radii at the apses
are special cases of the minimum thrust specifications for correcting any
orbital radius, ro. These general results for correcting orbital radius are
given by equations (22) and (23) for fixed central angle, 6, - 6;, between
the thrusting and correction points, and by equations (24) and (25) for fixed
true anomaly, 65, at the correction point. The thrust requirements obtained
from these expressions are the same when the orbital radius to be corrected is
at one of the apses.

It can be shown from equation (22) that the optimum thrust direction for
correcting orbital radius at fixed central angle from the thrusting point
varies from the horizontal to a direction normal to the flight path as the
central angle is reduced from its maximum value to 0. The thrust point loca-
tion on the orbit for the absolute minimum thrust requirement, however, does
not generally occur at maximum angular separation from the orbital radius to
be corrected, as is the case for correcting the apses. This optimum thrust
point location, in terms of the optimum central angle, 8, - 81*, is presented
in figure 6 as a function of the true anomaly of the orbital radius to be
corrected, 6,. In general, the point of minimum required thrust along the
orbit is disposed toward apocenter from the nadir of the correction point
(i.e., point of maximum angular separation where 6, - 8; = 180°). In the
case of parabolic and hyperbolic orbits the optimum thrust point is located at
infinite radial distance.

The abrupt change in location of the minimum thrust point indicated in
figure 6 at the higher values of eccentricity can be explained in terms of the
locations of the thrusting and correction points relative to the midpoints of
orbit. It is found in all cases that the minimum thrust point moves toward
pericenter as the point of orbital radius correction approaches apocenter. At
some value of 6, the absolute values of 6;* and 6, are equal as indicated
in figure 6. When this equality occurs in the inner part of the orbit as
delineated by the minor axis (i.e., with r; = 15 < a), there is a smooth
progression of the minimum thrust point toward pericenter as the absolute
value of 6, increases. When this equality occurs in the outer part of the
orbit (i.e., with r; = r5, > a), the minimum thrust point suddenly shifts
toward pericenter as the absolute value of 6, increases. This effect is
shown in the curves for the higher values of eccentricity in figure 6. It is
indicated that simultaneous midpoint locations of the minimum thrust and cor-
rection points occur for an orbit of eccentricity about 0.7.

The absolute minimum thrust specifications for correction of orbital
radius presented in figure 7 were obtained from equations (22) and (23) using
the optimum values of 6; indicated in figure 6. In figure 7(a) the optimum
thrust angle results reflect the discontinuous changes in optimum thrust point
location shown in figure 6. The effects of these changes in the location of
the optimum thrust point are less apparent in the minimum velocity impulse
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derivative results shown in figure 7(b). The primary effect is that the
curves level off rather abruptly at the higher values of eccentricity.

For correction of orbital radius at fixed true anomaly, the optimum
thrust angle is 0 when the location of the thrust point is at either apsis.
From equation (25) it is found that the absolute minimum thrust requirement
occurs at one or the other apsis, depending on whether the point of orbital
radius correction is on the inner or the outer half of the ‘orbit. For correct-
ing orbital radii on the inmner half (r, < a), the optimum thrust location is
at apocenter, and for correcting orbital radii on the outer half (r; > a) the
optimum thrust location is at pericenter. Absolute minimum values of the vel-
ocity impulse derivative given by equation (25) and based on apocenter or peri-
center location of the thrust point are indicated by the dashed curves in
figure 7(b). It is noted that the values of this minimum derivative for cor-
rection of apocenter or pericenter radius are the same as those presented for
the case of fixed central angle.

Correction of elapsed flight time.- Thrust requirements for correcting
the elapsed flight time to pericenter are presented in figures 8 and 9. The
results presented in figure 8 are minimum thrust requirements for correcting
flight time with no constraint on pericenter radius, and those in figure 9
are thrust requirements for correcting flight time with fixed orbital radius
at the terminal point. In both cases two different thrust specifications are
shown for the constraints of fixed central angle, 6, - 63, and fixed true
anomaly, 65, at the terminal point.

In figure 8 are shown the variation with thrusting point true anomaly,
61, of both the optimum thrust angles, 7, and t4', and the corresponding min-
imum dimensionless derivatives of thrust-produced velocity impulse with res-
pect to elapsed flight time to pericenter. It is clear from figure 8(a) that
the optimum thrust directions in the two cases tend toward and normal to the
flight-path direction independent of eccentricity as the thrusting point
approaches pericenter. There is seen to be less variation of the thrust angle
1, Wwith eccentricity than of the thrust angle +t.'. It is shown that the two
thrust angles tend toward the same values for the higher values of eccentricity
as the angular separation and, therefore, the radial distance from pericenter
increase. From figure 8(b) it is seen that the minimum dimensionless deriva-
tives tend toward unity and O for thrust at angles 1+ and t¢', respectively,
as pericenter is approached. As for the optimum thrust angle, there is less
variation of the minimum derivative with eccentricity for thrust at angle 1
than for thrust at angle rt¢'. It is apparent that the two derivatives tend
toward the same values for the higher values of eccentricity as the distance
from pericenter increases.

Somewhat similar effects are to be seen in the results presented in
figure 9 for correction of the elapsed flight time to pericenter under the
constraint of fixed pericenter radius. In this case the thrust angles 1.

o

and 1,' are equal and both differ by 90° from the values of 7, given in

figure 5(a). Although the dimensionless derivatives also tend tBward unity
as pericenter is approached under the constraint of fixed c¢entral angle, they
tend toward finite values other than 0 under the constraint of fixed true
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anomaly at the terminal point. However, as in the results of figure 8 the
dimensionless derivatives for the two different terminal constraints tend
toward the same values as the angular separation from pericenter increases.

Application of Minimum-Thrust Results to Interplanetary Guidance

The guidance problems considered here occur during interplanetary
missions when the spacecraft has not been precisely injected into the planned
transfer orbit, and subsequent flight-path corrections are needed. It is con-
venient to separate guidance for such missions into a midcourse phase and an
approach phase depending on whether the vehicle is outside or inside the
sphere of influence of the target planet. When the guidance is based on the
use of a reference trajectory, it is termed implicit guidance in contrast to
explicit guidance for which no reference trajectory is required.

During the midcourse phase flight-path corrections are made to ensure
that the spacecraft is on a collision course with the target planet or a point
slightly removed from the planet. Both fixed and variable time of arrival
guidance have been considered for this purpose (e.g., see refs. 8-14). In the
case of implicit guidance there is little difference in the guidance computa-
tions whether the time of planet intercept is considered fixed or variable.

In either case it is necessary to know the flight-path deviations from the
reference trajectory at or near the terminal point.

During the approach phase final corrections of the vehicle flight path
are made prior to actual interception of the target planet. Along with cor-
rection of the orbital plane, control of the time and/or location of peri-
center in a planetocentric frame of reference will usually be required. For
this purpose a form of fixed radius of pericenter guidance, based on the in-
plane pericenter deviations from a reference trajectory, may be used. As is
the case whenever impulsive thrust corrections are applied, three elements or
parameters of the orbit can be corrected with each application of thrust.

The manner in which the minimum thrust results of the present analysis
apply to several specific types of implicit guidance during the midcourse and
approach phases of interplanetary flight is next described. In both phases
only the in-plane components of the total required thrust correction are con-
sidered, since the out-of-plane corrections controlling the plane of orbit are
generally independent of the in-plane corrections and can be treated sepa-
rately. It is assumed that navigation information is available as to the in-
plane flight-path deviations of the uncorrected spacecraft orbit from the
reference trajectory at the terminal point. A summary of the guidance
computations outlined in this section is presented in table II.

Midcourse guidance.- During the midcourse phase of interplanetary flight
the spacecraft is between the spheres of influence of the launch and target
planets. For this phase of flight the spacecraft motion relative to the Sun
is essentially two-body planar motion so that the first-order minimum thrust
relationships of the present analysis are suitable in connection with linear
guidance about a reference trajectory. This guidance may be such as to resuit
in interception of the target planet at the reference intercept time (fixed
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time of arrival) or at some time before or after the reference intercept time
(variable time of arrival) depending on the particular constraints to be
satisfied. Both cases are considered below.

The general situation prior to midcourse guidance action is illustrated
in figure 10 which shows the orbits of the spacecraft and the planet in the
vicinity of the planned intercept point. Interception of the target planet
is designed to occur at time t, with the planet at position P,. The uncor-
rected flight path of the spacecraft is radially displaced a distance drsp
from the design intercept point and crosses the radial line through this point
at a time different by 6t, from the design value. In fixed time of arrival
guidance the in-plane flight path corrections required are precisely these
deviations from the reference trajectory at the terminal point. The direction
and magnitude of the in-plane velocity impulse required to correct the flight
path, in terms of the end-point deviations, are obtained from equations (34)

and (35) expressed as

AVTt - AVTr cos(rt - Tr) AVTrO
tan - = - = + tan(t, - T 36
(v - 1) AV sin(rg - 1) AV (v ro) (36)

T r
AVT = AVTr/cos(T - T,) (37)

where, since d(t, - t;) = dt,,
dv
dVTr dVTt Tro
AVTr T dr, 612, Ath - “HE;‘StZ’ AvTro - T §%2

The optimum thrust angles 71, and 1+ are given in the text by equations (22)
and (26) and the minimum derivatives dVTr/drz and dVTt/dtZ by equations (23)
and (27). The derivative dvTr /dt, 1s given by equation (29a) with the
thrust angle Tro different £rom 1, by 90°. 1In all cases the thrust angles
and derivatives are evaluated on the reference trajectory.

In variable time of arrival guidance about a reference orbit, intercep-
tion of the target planet can occur at any point along its orbit in the vicin-
ity of the nominal intercept point. Such a point is represented in figure 10
by P,' separated from the nominal intercept point, P,, by the central angle
86,. The in-plane components of orbit deviation from planet interception at
point P,' can be expressed in terms of the components of deviation from
interception at point P, approximately as

'= 81y - rp(tan yg - tan y,)66;

61‘2

T u (38)
Sty = Sty - 2 <1 - —b-> 86,
Ub us
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where vyg, ug and yvp, up are nominal values of flight-path angle and hori-
zontal component of velocity for the spacecraft and planet, respectively, at
the nominal intercept time, t,. With substitution of these adjusted values of
ér, and 8t, in the thrust vector computation above, the required in-plane
corrective velocity impulse is obtained for interception of the target planet
at point P,'. It is assumed in this procedure that the optimum thrust angles
and minimum derivatives in the computation are invariant, to first order, for
small values of 66,. The computation reduces to the fixed-time-of-arrival
result when &6, is O.

For given values of the components of deviation, ér, and 8t,, from planet
interception at the nominal or design intercept point, P,, there is a partic-
ular value of 88, at each point along the uncorrected vehicle flight path
for which the magnitude of the in-plane corrective velocity impulse for planet
interception is a minimum. This value of &6, 1is obtained, after introduc-
tion of equation (38) into equation (37), by setting the derivative of AV,
with respect to 66, equal to O and solving for 66,. It is found that

dvt dVT

r t
[D, - Dy cos(ty - T¢)] I, §ro + [Dy - D cos(ty - 7¢)] I Sty
86, = ————— e e e —
Dr2 + th - 2DrDt cos (14 T¢)
(39)
where

v,
Dr = 1, (tan Yo ~ tan yb) I,

oo Ty . Uy, dVTt

t T ouy, Tu. ) dt,

U Us 2

The in-plane thrust requirements (magnitude and direction of velocity impulse)
for the minimum-thrust maneuver are obtained by simply inserting this value
of 86, into the expressions for &r,' and 6t,' and substituting these
adjusted terminal point deviations for &6r, and 8t, 1in equations (36) and
(37).

Approach guidance.- During the approach phase of interplanetary flight
the spacecraft is within the sphere of influence of the target planet. Here
the vehicle motion relative to the planet is adequately defined by the two-
body equations of motion, and minimum thrust relationships derived from these
two-body equations can be used in connection with linear guidance about a
reference trajectory. The type of implicit guidance obtained is essentially
the same as that given for the midcourse phase except that additional
simplification is possible.

Various forms of implicit guidance have been considered in the literature
for the approach phase. These include fixed time of arrival guidance wherein
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the spacecraft is constrained to pass through the reference terminal point
(usually pericenter of the reference trajectory) at the design arrival time.
In this case corrective thrust computations are identical to those already
described for this form of guidance in the midcourse phase. Although the
pericenter radius is mnot explicitly controlled with this type of guidance, the
deviation of pericenter radius from its reference value will usually be small,
and the time of pericenter passage will not differ greatly from the reference

arrival time.

When explicit control of the pericenter radius is desired, some form of
fixed radius of pericenter guidance is used. Along with the constraint on
pericenter radius a second constraint must be imposed to uniquely define the
in-plane corrective thrust vector. Three such secondary constraints which
merit consideration are: (1) minimum corrective thrust, (2) fixed time of
pericenter passage, and (3) fixed location of pericenter. The computation of
in-plane corrective velocity impulse vectors for approach guidance with these
constraints is indicated below.

The general situation prior to approach guidance action is illustrated in
figure 11 which shows the in-plane deviation of the uncorrected flight path of
the spacecraft from the reference trajectory. Pericenter of the uncorfected
orbit has components of deviation d&r. and 66 from the reference locdation
along with an error, &8t_, in the time  of perigenter passage. From equation (8)
corrections to these pegicenter parameters due to a velocity impulse at
angle t of magnitude AV_ can be expressed as

\
1
s _ I\’ cos(t - Trp)
p = v /&
p
AVT cos(t - Te)
*%p T Tav,,/de, > (40)
o - AV cos(T - Ttﬁ) ) AV, cos(t - T%ﬁ?

. o cos(rré - Ttﬁ) J
p

where the optimum thrust angles, t,.', t¢', and Tgs are given by equations (D6),
(E3), and (20), respectively, and the minimum derivatives dVTrv/drp,

. P
dVTt'/dtP’ and dvre/del by equations (D10), (ES5), and (21). 1In the alternate
expression for 6tp the thrust angle Tr; is different from Tr' by 90°,
and the derivative dV.  /dt is obtained from equation (E8).

ro P

It is possible to correct any pair of the three pericenter parameters
expressed in equation (40) with a single application of impulsive thrust. The
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thrust requirements for such a correction are obtained by solving simultan-
eously the pertinent pair of equations for =t and AV._ with the result given
in the form of equations (34) and (35). In the following three cases of
approach guidance considered, one of the two parameters being corrected in
each case is the pericenter radius. The other parameter being corrected or
the secondary constraint imposed in each instance is one of the three listed
above.

For approach guidance which corrects the pericenter radius deviation with
minimum thrust, the direction and magnitude of the in-plane corrective veloc-
ity impulse are given by

T
P
av. ,
T
= = —FP
AV, AVTré o s,

In this case the time of pericenter passage and the angular position of peri-
center after thrusting will generally differ from the reference values. These
differences are readily computed by introducing the above values of 1 and

AV, into equations (40) and adding the resulting changes in tp and ep to
the initial errors.

For approach guidance which corrects the deviations in pericenter radius
and time of pericenter passage, the direction and magnitude of the in-plane
corrective velocity impulse are given by

AV - AVp COS(Tté - t,.') dVgr  dr th
o

Tté p Tp p
tan(t - T,') = - = -cot (1! - T4!)
AV sin - dt dv 8 r
P T S (Te) “r,) p Nept 8% P P
AVTr. dVTr' St
AV - p _ p P
T cos(t - T_1) dr_ cos(t - 1,.')
T p T
p p

In this case the angular position of pericenter after thrusting will generally
differ from the reference value. This difference is readily computed using
equations (40) and the initial error in orbit orientation.

For approach guidance which corrects the location of pericenter in the
plane of orbit, the direction and magnitude of the in-plane corrective
velocity impulse are given by
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6 p 6 T Ty drp 60
] — - - -
tan(T - Trp) - AV’['I,' Sil’l(Te - Trl) - del dvTr' Grp cot (Te Tré)
P
MV v, .
AV = P -2 P
T cos(T - T,.') drP cos(t - Tr')
p P

In this case the time of pericenter passage will generally differ from the
reference value. This difference is readily computed using equations (40) and
the initial error in tp'

SUMMARY OF RESULTS

From a first-order analysis of the Keplerian-Newtonian equations of
motion, expressions have been developed that give the minimum thrust require-
ments for effecting small changes in certain elements or parameters of two-
body orbits. The thrust requirements are presented in terms of the optimum
thrust angle and the derivative of the thrust-produced velocity impulse with
respect to the orbital parameter to be corrected. A summary of such thrust
specifications for single parameter correction is presented in table I.

The optimum thrust angles for correction of various orbital parameters
are invariant, to first order, with the amount of thrust applied. For correct-
ing either the semimajor axis or the period of orbit, the optimum thrust direc-
tion is along the flight path at all points along the orbit for all values of
eccentricity. For correcting the eccentricity of elliptic orbits, the optimum
thrust direction is along the flight path at apocenter and pericenter. At
other points along elliptic orbits optimum-angle thrust for correction of
eccentricity tends toward the flight-path direction as the value of eccentric-
ity increases to 1 (parabolic orbit). A minimum amount of optimum-angle
thrust is required at pericenter for correcting either the eccentricity or the
orbital period. 1In the case of correcting true anomaly or rotating the line
of apsides of an orbit, the absolute value of the optimum thrust angle varies
from 90° at apocenter and pericenter to 0 on the semilatus rectum. For small
amounts of rotation, a minimum amount of optimum-angle thrust is required near
the midpoints of the orbit. To first order, the optimum thrust angle for mini-
mizing the change in any parameter is different by 90° from the optimum thrust
angle for maximizing the change in that parameter.

The optimum thrust direction for maximum change in the orbital radius at
a given point along an orbit varies from the horizontal at the nadir point on
the orbit to a direction normal to the flight path at the given point. The
amount of optimum-angle thrust required in correcting the orbital radius at a
given point along the orbit increases from a minimum at some point on the
opposite side of the orbit (which is generally disposed toward apocenter from
the nadir point) to a maximum (infinite value) at the point of desired radius
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change. The thrust direction required in correcting the elapsed flight time
to a given point along an orbit is normal to the thrust direction required in
maximizing the orbital radius change at this point. The thrust magnitude
required in correcting the elapsed flight time to a given point (as a percent
of the value of orbital velocity at the given point) tends toward the
percentage change in elapsed flight time as the given point is approached.

In general, it is possible to correct two independent parameters of a
given orbit with a single application of impulsive thrust. The thrust
requirements for such a correction can be formulated in terms of the minimum
thrust requirements for correcting each parameter separately. These results
are found to have application to the problem of spacecraft guidance during
interplanetary flight. The application has specific relevance to implicit
guidance within the plane of orbit and is essentially the same whether the
spacecraft is in the intermediate stage of its flight or is in the final stage
within the sphere of influence of the target planet. In either case naviga-
tion information is required of the in-plane deviations of the projected
vehicle flight path from a design or reference trajectory at the terminal
point. For midcourse guidance these terminal-point deviations consist of the
differences in orbital radius and elapsed flight time from reference values
at the desired point of planet interception. This desired point of intercep-
tion can be any point along the orbit of the planet in the vicinity of the
nominal or design intercept point. For approach guidance, after penetration
of the sphere of influence of the target planet, the terminal-point deviations
consist of the differences from reference values in pericenter location or in
pericenter radius and time of pericenter passage. A summary of in-plane
guidance computations based on use of the minimum-thrust results of the
present analysis is given in table II.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Aug. 21, 1968
125-17-05-14-00-21
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APPENDIX A

SUMMARY OF USEFUL KEPLERIAN-NEWTONIAN RELATIONS FOR TWO-BODY MOTION
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APPENDIX B
ALTERNATE FORMULAS FOR CORRECTING ORBITAL RADIUS

The following expressions are alternates to equations (13) and (22)
through (25) for thrust requirements for correcting orbital radius r,. These
results are obtained using V,; and y; as dependent variables defining the
spacecraft velocity vector at the thrusting point with the thrust angle,

T - Y1, specified relative to the flight path. The results consist of thrust
specifications for both arbitrary and optimum angles of thrust. The general
expression of these results is given by equations (4a), (5a), and (6a) when
the terminal point constraint on 6, is specified (either d6, = d6; or

d62 = O).

For correcting orbital radius at a fixed central angle, 6, - 64,

Yi_drz _ 2(1 - cos A8) cos(t - )
Ty, dV, 1 + e cos 0, Y1

(1 + e?)sin A0 + 2e(sin 62 - sin 0;)
(1 + e cos 8,)(1 + e cos 97)

sin(t - v7) (B1)

(1 + e2)sin A8 + 2e(sin 6, - sin 8;)

tan(ry - y1) = —— 2(1 - cos AB)(1 + e cos 67) (B2)
Ty dVTr 1 + e cos 6,
V] dr,
1 dr2 /// , (1 + e?)sin A8 + 2e(sin 6, - sin 6,)7?
4(1 - cos 48)° + [ 1+ e cos 0;
(B3)
For correcting orbital radius at fixed true anomaly, 65,
Vv, dr, 2(1 - cos 87 cos 65)
—_— = '~
TH dVT, 1l + e cos 6, cos (t Y1)
[(1 + e)cos 6, + 2e]sin 6
sin(t' - v;) (B4)

T (1 ¥ ecos 8,)(1 + e cos 97)
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[(1 + e?)cos 6, + 2e]sin 6
tan(t, - y1) = - (B5)
2(1 - cos 81 cos 6,)(1 + e cos 07)

1+ e cos 63

//F ) [(I + e2)cos 6, + 2e]sin 6,32
4(1 - cos 87 cos 85) *'{ 1 + e cos 03 }-

(B6)

— = %
V; drp
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APPENDIX C
ALTERNATE FORMULAS FOR CORRECTING ELAPSED FLIGHT TIME

The following expressions are alternates to equations (15) and (26)
through (29) for correcting elapsed flight time t, - t;. As in appendix B
the results are obtained using V; and y; as dependent variables defining the
spacecraft velocity vector at the thrusting point with the thrust angle,

T - Y1, specified relative to the flight path. Again the results consist of
thrust specifications for both arbitrary and optimum angles of thrust as given
in general form by equations (4a), (5a), and (6a) when the terminal point
constraint on 6, 1is specified (either d6, = d6; or do, = 0).

Vi d(ty - t1) vp3/u

t; - t3 L P [Y; cos(t - y1) + Yp sin(t - v;)]  (CL)

where

2B .
Y, =J - o sin 01

2
A sin 67 - B[Z + l—%—g— cos elj

Y2 = - 1 + e cos 8,
(2 + e cos B3)sin 6, {2 + e cos 061)sin 6

A = -

(1 + e cos 6,)2 (1 + e cos 6;)2
-2 -2
B = (1 + e cos 05) - (1 + e cos 07)

3(1 + 2e cos 6] + e?) t, - t; 2A(e + cos 67)

J = -

1 - e2 Vpg/u 1 - e?
In the case of parabolic orbits J is replaced by its limiting value defined
by

1im J = 2L(1 + cos 61)
e>1

where L is given in the text with equation (15).
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The minimum thrust requirements for correcting elapsed flight time to
traverse a fixed central angle with optimum-angle thrust are given by

Yo Ae sin 6; - B[2e + (1 + e?)cos 6;]

tan(ty - vp) = Y, " (2B sin 6; - Je) (1L + e cos 87) (€2)
t -t dv. e(ty - t1)/vp3/u
L (C3)

= +
Vi d(ty - ti1) N Vv vy
Y1 + Y2

For correcting elapsed flight time to arrive at a fixed true anomaly,
85, B is replaced in the above expressions by B' where

B' = -(1 + e cos 0;)"2

As is indicated in the text, thrust at angle 1, or Tré will correct

T
0
the elapsed flight time to a given terminal point on the orbit without chang-
ing the orbital radius at the terminal point to first order. In the one case
(ty_ ) the terminal point is at a fixed central angle, 6, - 6;, while in the
o}

other case (Tr') the terminal point is at a fixed true anomaly, 6,. When

o . . . .
these thrust angles are inserted in equation (Cl), it is found that

tr-t; dVTr0

Vi d(ta-t,)

t2-t)

vp3/u

2A(1-cos A8)sin 8+ ég-(l+2e cos 6;+e2) (cos B,-cos 6;)+J[(1+e?)sin AB+2e(sin By-sin 8;)]

//4(1—cos 408)2(1l+e cos 8))2+[1+e?)sin A6+2e(sin 8,-sin 8;)

= %

(C4)

ta-t dvTr'

Vi d(ta-ty)

ta-t)

- _/p3/u

= 1
2A(l-cos B); cos 63)sin 8+ 22

//4(1-cos 81 cos 85)2(l+e cos 8)2+[(1+e?)cos 8y+2e]? sin? 8,

[(1+e2)cos 63-(1+2e cos B1+e2)cos 81]-J[(1+e?)cos 85+2e]sin 8

(C5)

where A, B, B', and J are defined above.
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APPENDIX D

FORMULAS FOR CORRECTING APOCENTER OR PERICENTER RADIUS

The following expressions are special cases (65 = m, 0) of the general
thrust requirements for orbital radius correction presented in the text and in
appendix B. These thrust specifications for correction of apocenter and peri-
center radii are independent of the terminal point constraint on 6, due to
the insensitivity of orbital radius at 8, = 7 or O to small changes in #6,.

For thrust at arbitrary angle there are obtained from equation (13)

vV, dr, 2(1 + cos 8;) - e sin? 91
;;'dVT = - T+ 6 cos 6] cos T + sin 67 sin v (D1)
Vp dr, 2(1 - cos 01) + e sin? 8,
Er'dVT = — T+ 6 cos 6] cos T - sin 6; sin T (D2)
and from equation (B1)
Vi dra 2(1 + cos 67) (1 - e)sin 8,
o T cos (T - Y1) * T o3 5 sin(t - v,) (D3)
Vi drp 2(1 - cos 87) (1 + e)sin 0,
;;'dvT - I+e cos(t - Y1) -~ T35 cos 61 sin(t - v,) (D4)

Optimum thrust angles for correcting apocenter or pericenter radius are
obtained from equation (24) as

(1 + e cos 67)sin 6, tan v,
tan T ' = = (D5)
a 2(1 + cos 67) - e sin? 81 1- (rl/ra)2
(1 + e cos 9;)sin 6, tan vy,
tan T ' = - = (D6)
™ 2(1 - cos 6;) + e sin2 §; 1 - (rl/rp)2
and from equation (B5) as
(1 - )2 sin 6, tan vy, o)
tan(g.' - y.) = = D7
a 1 2(1 + cos 87)(1 + e cos 07) (ra/rl)zseCZYl -1
can (e ) (1 + e)2 sin 63 ' tan v,
an Trp T Y1) T T 3 Cos 6,)(1 + e cos 8;) (D8)

(rp/rl)zseczy1 -1
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Minimum dimensionless derivatives of thrust-produced velocity impulse
with respect to apocenter and pericenter radii are obtained from equation (25b)

as

zi Tra . 1 + e cos 9
Va drg J [2(1 + cos 681) - e sinZ 0112 + (1 + e cos 6,)2 sin2 6,
(D9)
dv
T Tp! 1 + e cos 6
._p rp = =+ '
Vp 41 J[2(1 - cos 68)) + e sin? 87]2 + (1 + e cos 6;)2 sin2 8,
(D10)
and from equation (B6) as
T, dvTr' (1 -¢e)(1+ e cos 8])
e 2= s (D11)
1 dry /41 + cos 81)%2(1 + e cos 081)2 + (1 - e)? sin? 0,
T dVTr, (1 +e)(1 + e cos 6;)
v B (D12)
V1 drp //4(1 - cos 67)%(1 + e cos 61)2 + (1 + e)2 sin? o,
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APPENDIX E
FORMULAS FOR CORRECTING FLIGHT TIME TO APOCENTER OR PERICENTER

The following expressions are special cases (6, = m, 0) of the general
thrust requirements for elapsed flight time correction presented in the text
and in appendix C. 1In obtaining these expressions the constraint of fixed
true anomaly at the terminal point, 6,, has been imposed. For the sake of
brevity, in each instance a single formula is presented that is valid for both
cases of terminal point location. It is understood that the subscript 2 is
to be replaced by the subscript a when the terminal point is apocenter and
by the subscript p when the terminal point is pericenter.

For thrust at arbitrary angle there is obtained from equation (15)

vV, d(t, - t3) 1+ e cos 6, {{(2 + e cos 81)sin @, ?3/u

tr -t dv_ - (1 - e2) e(l + e cos 67) to - t)

+ 3(1 + e cos 61)}cos !

e(l + sin? 6,) - cos 6; /3
+[ p/u + 3e sin 0; [sin T'}'

e(l + e cos 97) to -t
(E1)
and from equation (Cl)
A d(t, - 1 + 2 s B, + e 2 sin ©
1 (tz2 - t1) ) /o3 /1 e cos 0, in 0,
ty - ) dVTI e(ts - ty) 1 - e2 1 + e cos 6,
3e(ty - t1) cos 03
+ ———17:§::———]COS(T - Yl) " T+ e cos 0] sin(t - Yl)}-
p>/u
(E2)

Optimum thrust angles for correcting elapsed flight time to apocenter or
pericenter are obtained from equations (26) and (C2) as
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e(l + sin? 8;) - cos 8) + 3e2(1 + e cos 8;)sin 6;(tz - t;)/Vp3/u

tan 1

E3
(2 + e cos 8;)sin 6; + 3e(l + e cos 91)2(t2 - t1)/r’p3/u ( )

(1 - e?)cos 6,

tan(t,' -~ v,) = -
t
2 ! 2(1 + e cos 8, + e2)sin 8; + 3e(l + 2e cos 8] + e2)(1 + e cos 6,)(ty - t;)/vp3/u

(E4)
Minimum dimensionless derivatives of thrust-produced velocity impulse

with respect to elapsed flight time to apocenter or pericenter are obtained
from equations (27) and (C3) as

ta-ty dvrté
Vo d(ty-tg)

e(l-ez)

l+e cos 63
=+ (E5)

E2+e cos 61)sin 8, /3/11 lé(1+51n2 61)-cos 81 [, 2
+3e(1+e cos 68)) P +3e2 sin 6,
I+e cos 8, to-t; Y[ 1ve cos 61 to-t)
ty -t d"rtz- e(ty - t1)//p3/u
Vi d(t, - ty1) 5 2
/fl + 2e cos 6) + e ]T 2 sin 6 3e(ty - tl):] cos? o,
+ +
1 - &2 1+ e cos 6 /p3/u (1 + e cos 61)2

(E6)

The corresponding dimensionless derivatives for thrust in the direction
that, to first order, does not change the orbital radius at the terminal point
(t = Tré) are obtained from equation (29b) as

t, - t1
a
f -t dv, 1+e ] /[2(1 + cos 681) - e sin? 6;]2 + (1 + e cos 67)2 sin? o,
a ! o + l1-e {'9_3
Va d(t, - t) 2 ( + cos 6 - e sin? 61> t, -t
= + 3(1 - €) ——— sin 8,
e\ 1 +e cos 8 /P/U
(E7)
1-efp "B 2 .12 2 cin2
dv — = /[2(1 - cos 9;) + e sin® 8;]° + (1 + e cos 8;)% sin® 6;
t. -t T, /3
P o _,l+e Yp°/u
vp d(tp h tl) 2 1 - cos 8] + e sin? 91> tp -t
= + 3(1 + ) ~——— sin 0,
e 1 + e cos 6; ‘/1;3/—U
(E8)
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and from equation (CS5) as

//;EI>+ cos 81)2(1 +

e cos 63)2 + (1 - e)* sin? 6,

+ cos 6; - e

sin? 91} t

2
2
e

‘

1l + e cos

a-t
5 + 3(1 - ) ———sin 6,
1 /p3/u

(E9)

/;(1 —' cos 91)2(1 +

ta -t
e e AV B
a” 'l o _, . P
V1 d(t, - t1) 1+ 2ecos 6 +e
1l +e
t -t
-t dVTr' £ ___
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TABLE I.- THRUST

SPECIFICATIONS FOR CORRECTION OF ORBITAL
PARAMETERS SINGLY

Thrust angle

Velocity impulse derivative

Minimum thrust

Parameter Constraint R R . ?
Function Equation Function Equation point on orbit
dV.ra r Vg
Semimajor axis, a, Minimum tan(t_-vy) (16a) T dTa (17a) Pericenter
or thrust 1 1
period of orbit, T dv av
T2 T 1.
tan 1,- (eb) (9= = v = (17b)
P p
av
T
Eccentricity, e Minimum tan(r,-v1) (18a) il,— dee (19a) Pericenter
. thrust 1 (for e < 1)
dv,
tan e (18b) L= (19b) Infinity
1 (for e > 1)
dvy
True anomaly, 6, Minimum tan('re-yl) (20a) ‘lf—ﬁ—e— (21a) Near midpoint
thrust 18 (for e < 1)
v,
tan T, (20b) le_l # (21b) Infinity
(for e > 1)
Tz dV,
Orbital radius, ry Minimum tan('rr-yl) (B2) V—Fl (B3) 180° > 6, > 68, + 180°
thrust, ! 2 (for 8, < 0)
8 - 8, = t.
2 1 = cons - dVTr ] . .
tan T, (22) T e (23a) —180(f;rele< 320; 180
22
T2 dVTr 25
W T, (23b)
o) | @) o (86)
Minimum tan(r_ '-v) BS v Apocenter
thrust, T Vi drp (for ry < a)
6, = const, rs Vg
tan T {24) o I, {252) (;zilciztfra)
Ty dVTI'_
o {25b)
ty - t) dvT‘t
Elapsed flight Minimum tan{t_-v1) 2) | —V— 577~ (€3)
time, ty - t; thrust, t i d{ez - 1)
82 - 8; = const. t; -ty dVr;
tan Ty (26) = TR T (27)
e | ey, |t @)
Minimum tan(t _1-yy c2), | —— N
thrust, t B=8B' V1 dita - t1) B = B!
0, = const. tg - t dVr{
tan ! 26 —_— 27
Tt Tl e TCPa To A
¢ ta -4 dVTro )
r, = const., tan(ty_-v;) --- —~— I
8, - 61 = const. ° V1 itz t1)
ta -ty dVTI‘O
tan Tro (28a) U—l-— m (29a)
(et ty -t dvTrc" ©s)
ry = const., tan(t,' -y.) --- —~— T
8, = const. o 'l V1 dtz - t1)
tan ' (28b) H‘_L (29b)
T, u) d(tz - t1)
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TABLE II.- APPLICATION OF MINIMUM THRUST RESULTS TO IN-PLANE INTERPLANETARY GUIDANCE

Source of quantities used in guidance
computations
Guidance
Type objectives Orbital parameter Direction and magnitude Minimum
.Of or corrections required : of : . Optimum thrust angle and thrust
guidance trajectory corrective velocity impulse minimum velocity impulse fo produced
constraints single aramete)xi ¢ P i T velocity
g P orrection impulse
derivative
AV, /aV, v, v,
Fixed Planet Terminal point t=r_+tan! | —t T |1 from| &V = =L ér, L from
. . . P sin{t, - 1..) r Tr = dry dr,
time of | interception deviations, 613 t T eq. (22)
: . € . (23
arrival | at time t, and §t, - cot(r, - Tr):| eq. (23)
4 oV, av, W,
= —T =t
< av Sos(r -7 T f;:m AVre o Sty 3t from
5 eq. (26) eq. (27)
2 o
8| variable Planet STy’ = 81y Same Same oV = d_r 373 Same
o | time of | interception wrp(tan y. - tan y.)88 as as r 2 as
arrival at time 2 s Yp/0%2 above above above
near tj clVTt
6ty' = 6ty e = g 8t
T, Uy i
o (1-5) see
b Ys
Planet Same as above, Same Same Same Same
i interception 88, from eq. (39) as as as as
! with minimum above above above above
thrust
dVTrI" vy
Fixed Pericenter Pericenter radius T = Tr' T from W, o= —d—Gr e from
radius radius deviation, 6rp P P rp 1-p P Tp
of control with eq. (D6) eq. (D10)
; b AV = AV,
pericenter minimum T T or eq. (D12)
thrust
RENIEEN Wt | dvey
Fixed values Pericenter T= Ty o+ tan~! Y AR D) Ty, from | &V, . = —dr_E . Ir from
of pericenter deviations, P t Tp e (06) rp P P P
radius and 6rp and th , . - eq. (D10)
° time of - eotty' - 1p il or eq. (D12)
= pericenter P P
I passage AV [\ dvr, s
el s ty' from|aVg.r = — R &t B £rom
8 T cos(r - 141) t, Tt,  dt p t
& P cq. (E3) ?
&( : eq. (E5)
< or eq. (E6)
s ) _1[ AVTe/AVTrI') . dve dVTrr', :
ixe ericenter T =7t1_"'+ tan —_— 1! TOom | AV ' = ——2 s - TOm
location of deviations, p sin(rg - 1.1) erp (06) P dr P Tp
pericenter §r_ and Gep q- eq. (D10)
p - cot(ry - Tr]'j or eq. (D12)
AVTT. dvTe dvTe
= —P =
BEITT Canacy Te fgg‘; N =gor %% @y from
P q- eq. (21)
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