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DESIGN PROCEDURES #OR DOMINANT TYPE SYSTEMS
¥ITli LARGE PARAMETER VARIATIONS

Abstract-fThis report presents design procedures for
fourth-order dominant type systems with large plant
parameter variations. The s-domain specifications of
the system are assumed to be in the form of an accept-
able dominant closed loop pnle region and bounds on
the location of the "far-off" closed loop poles.

The design philosophy is to place compensation zZeros
within the acceptable dominant closed loop pole region
such that the dominant closed loop poles remain within
their prescribed region despite the large variations
in the plant parcmeters. Design procedures are pre-
sented for variation in the plant gain factory only
and for simultaneous variation in the plant gain
factor and the plant poles. Finally, an approxi-
mate procedure is presented which considers simul-
taneous variation in the plant gain factor, the

plant poles and a plunt —ero located on the real

axis in the s-plane. In all cases, the design
procedures are such as to minimize the sensitiviiy

of the system to internal noise.
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CHAPTER I

PROBLEM STATEMENT AND DESIGN PHILOSOPHY

1.1 Statement of the Problem

The problem considered in this document may be
stated as follows: 1). A single input-single output
plant® P(s) has parameters (gain factor, poles and
zerves) which may lie of "slowly" vary within a given
region in the s-plane. 2). The acceptable region of
closed loop poles is specified in the s-plane., This
acceptable region is determined by traunsfoerming the
typical type anmain specifications such as rise time,
over~shoet and settling time into specificaticns on
the location of the dominant poles of the system.
This transformationr of these specifications from the
time domain to the pole-zero domain is considered by
Barber. ' 3). Linear time invariant compensation is
to be chosen to satisfy the above speciiications such

that the effect of internal noise at the plant input

e BN o T nee B o B o B 2

*The term "plant" is used here in the coumonly
accepted sense in the control literature to dennte the
constrained part of the system whose output is vhe
system output.
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is minimized. The pictorial representation of a typi-

cal problem encounte;ed'in;flight contruvl is shown in

" Fig. 1.1,

" 1.2 State of the Art T - ‘ E

Tﬁis problem has been treated in the‘literatufg
However;'therdeéignvtechniques presen;éd héve several
defiéieﬁcies. Théiﬁapping of the region offflant
'paraméter:yafigtion into the acceptable ciosed.lbop
polerregion is approxiégte and is only valid if the
accepfaﬁie closed loop;polejrgéion is reiaéivg;y small

fand wellhremoved'frbm the plant parimeter variation in

* the s-plane. An additional deficienmcy is that the un-

gavdidablé large loop transmission bandwidth involved
in using thes; éesign techniqﬁeé results in a very
unfavorablé h}gh frequency respon;e,to~internal noise .
at‘thé plant input.

A desigun procedure vhich greatly alleviates
these deficiencies is the tbpic'of a recent paper by
Horowitz;h The degignfprocedure presented in tﬁe
present document is essentially-that developed in the
paper by Horﬁwitz, expanded to take into account the
effect of one of the "far;off"'poles. Thus Horowitz
uses a tﬁird order representation in deriving the

dominant poles of the system whereas this treatment

uses a fourth order represéntation. Chapter 1V.also

2,3

3
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considers the additional effect of a drifting zero

on the real axis.

s -

1.3 Design Philosophy : : -

The design procedure presented i“‘fhif,??Pé?ﬁﬁ '

_is based on the dominant pole concept. Compensation

zeroesg are strategically placeé near or ﬁitﬁin the
acceptable .closed loop pole rééidn (See Figuré 1.1).
‘The gain of the system is then determined such that

the closed loop poles remain within the acceptable

" region in the s-plane, despite the large plant para-

meter variations. "Far-off" poles (and zeroes) are
then assigned in suchz;manner as to allow.thejlqop
transmission to decréasé as fast as possible Qithout
violating the system time domain specifications. The
problem of the placement of these "far-off" poles and
ieroes,.excluding‘the nearest "far-off" pole placed on
the real axis, is not cousidered in this paper.

Horowitzu has presented a method for the placement of

these "far-off" poles and zeroes.

1.4 Scope of Work and Terminology

The plant parameter variation and acceptable
dominant clnsed loop pole region are somewhat similar

to those encountered in flight control.

gl




Chapter II considers the probiem of variation
in the plnnt gain only. Plant pole cancellation and
replacement is gnticipated; The plant traunsfer

function P(s) is assumed to be of the form.

-

(1.1)

K

S _s4P
s(s + P + p):

P(s) =

where: k'= gain factor of the plant which may vary
between k . “and k ;
min max :
'Sp and Pp are fixed parameters that determine
the position of the plant poles.
For complex plant poles located a%_oﬁtjwp, Sb’and Pp

are given by

-

-

S, = -20 | (1.2)

(1.3)

+W

o N

The loop transmission Ld(s) is assumed to have the form

kh(32+Sos+Po)  ., knng(s)
ENE) (1.%)

Ly(s) =

2 =
s(s +SLs+P{)(s+P1)‘

where: K = fixed gain added to the system;
S0 and P0 are fixed parameters that determine

the position of the compensation Zeroes;

g
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S* and Pl are fixed parameters that determine
the position of the plant replacement poles;
-P1 is the location of the nearest "far-off"
open loop pole on the real axis.

For complex compensation zeroes located at cztjwz, =

and P0 2re given by

S = -20, 0.35)
T = = (1.6)
0 z z

For plant replacement poles located on the real axis

at T4 and Ty, SL and P* are given by

SL = —(r1+r2) : (1.7)

2 (1.8)

The closed-loop transfer function Td(s) is assumed to

have the form

P Ps Pg P Pe Pp
= 1
T (s) =

2
(32+Srs+Pr)(s+pf1)(s+pf2) Dd(s)

ne

(1.9)

o
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: where: -pf*,'spf  are the positions of the non- i ——

: !' SRS - 1o 2o

- doninant cloaed 1oop poIes which S - T ff_/ s

L

may be real or couplex coﬁ;ugate°

S and P are paraneters that deternine the

£  ous: plant gainuand plant pole varxatlon.; Th& plant

:transfer functlon has the same torm as fh‘Eq.:l‘1 but EAREe
Sp and Pp are new slowly vafying or unknow1 parameters.fju'vr
‘7f{i{ Sznce pIant pole caueellat1on 1s not pract1ca1 here,
*,;the loop tran§m1351on hasﬂthe fcrm;» B ~;-'~:{" P
R ~k§(s,+sbfpd)r; s A;gxnd(s) e
Ld(s) = " 5 ) = 5(3) (1.12)
B .8{s +S. - P _)(3+P & )
N -‘J' *I p)(+1 : I
1Théfclbsed JoppatranSYer function is of the same form"

o as iu Eq. i’9: ) -  - N 7‘>f’ 'g

Lhapter IV cons1ders the - problem ‘of szmultane-

ous'plant gain, p;ant polegand plant,zero,varzat;on. : o S
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The plant transfer function is assumed to be of the

form

P(S) =

where:

K(s+z) (1.13)

5(52+S s+P_) !
p P

-z is the position of the drifting zero on

the real axis.

The loup transmission has the form

La(s)

where:

2 - : .
kh(s +bos+Po)(s+z) . khnd(s)

= (1.1&)
5(52+S s+P_)(s+P_) dd(s)
p b z
—PZ is the position of the fixed pole used to
partially cancel the effect of the driftirg

Zero,

The closed lcop transfer function is

T4(s)

where:

Prpf P, /z (s+z)
1 z

2 = o
(s *brs+Pr)(a+pf1)(s+pcz)

Prpf1pcz/z (s+z)

(1.153)
D,(s)

is the position of the closed 1. op pole
near the drifting zeroc 2z on the real axis;
“Ps is the position of the "far-off" ciosed

loop pole on . the real axis.
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Chapters I1 and II1 are extensions of work by

',
Horowitz W in that the effect of the "far-off" pole P

1
has beeu included while Chapter IV is completely
original.

Appendix .\ presents various convergence proce-
dures for factoring polynomials on a digital computor.

Appendix B presents a gecmetric proof of a design

procedure used in Chapter II.
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CHAPTER 1Z

DESIGN FOR PLANT GAIN VARIATION ONLY

2.1 Plant Pole Cancellation

This chapter treats the case when the plant
pole wvariation is "sufficiently small"” such that
cancellation of the plant poles is valid providing,
of course, that they are not located in the right half
plane.5 A dis:cussion on what constitutes "sufficiently
smali" variatioun in the plaunt poles is given in {4,
The saving in the gain-bandwidth product of the loop
transmission, obtained by cancelling the plant poles
and replacing them with poles nearer the desired
closed loop pole region, may be guite substautial,
especially if the acceptable closed locp pole region

is far removed from the original plant poles.

2.2 Design Philosophy

Tic design philosophy in the case of plant gain
variation only is to first cancel the existing plant

poles and replace them with poles nearer the desired

‘closed loop pole region, These ponles will! be near or

on the boundary of the acceptable cloused loop pole

region at minimum plant gain, k = k . ., Compensation
min



e e

T——

PR —y
«

[ T
i

pog ooy

',uumq pww‘

Zzeroes are then located so that the dominant closed
loop poles lie within the acceptable region despite
the variat” 'ns in plant gain factor k. The problem

is depicted pictorially in Fig. 2.1.

2.3 Design Eguations

The expression for the loop transmission Ld(s)

is from Eq. 1.4

2 .
kh(s +bos+Po) A khnd(s)

= dd(s) (2.1)

L,(s) =
d s(52+SIs+P{)(s+P1)

and the expression for the system transmission Td(s)

is from Eq. 1.9

“rPr Pr , TePr Pry
T.{(s) = = - —
d ; R D (S)
}
(s +Srs+Pr,(s+pfq)(5+pf2) d
1
(2.2)

The characteristic equation of the system is then
= : ) 2
Dd(s) = dd(s}+khnd(s) (2.3)

Equating the zero degree ccefficients in Egq. 2.3 gives

kkp - = pf1pf2Pr (2.4)

11



FIG. 2.1 PROBLEM OF PLANT GAIN VARIATION ONLY
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. Let P;, pf1 and pfzxdenote Pr’ pf1
Also define

and.pfz at k kmin'

Fy R

. %1% {
t . 4 TPt U1,
i k1 = kminh = ———E*———' - (2-5)

[¢]
It is very desirable to minimize the value of Kl,:which

is the system gain necessary to bring the. root loci to

ik

the acceptable region of the dominant closed loop poles.

Also, the high frequency asymptote of.Ld(s) (Eq. 2.1)

besimd Jd

is h1/52, which is-an important factor in determining

)

the effect of internal noise at the plant input.6 lLarge

"
sy

k1 increases the possibility of plant saturation by in-

ternal high frequency noise. The next sectiou deals

with the choice of the parameters in Eq. 2.5 in which

ey B et

the minimization of h1 is the prime objective.

2.4 Choice of Design Parameters to Minimize System
Gain <

ALt b A L it

The choice of the position of the dominant closed
loop poles at k = kmin depends somewhat on the shape of

the acceptable region for the closed loop poles. Let

the position of the dominant closed loop poles at

S BT ATTe TARE TR TR RAR Y TR L

k = k . be denoted by
min

PY, Py = 0X % juwX (2.6)

Note that

vy hiuaad
wmmuz '
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p;‘= ngjz = (o§)2+(w5)2 (Ssee Fig. 2.2) (2.7) ]

i i ), it lad ot

It is desirable to minimize [pX| and thereby PX,

T

since, from Eq. 2,5 this tends to minimize Kk This

1°
implies ‘that pé should be.located on o; very close to
‘the boundary of the acceptable region for the dominant
closed loop poles.

The next problem is to choose the values for
p§1 and p%z, the non-dominant closed loop poles at . ]
k = k . ., These closed loop poles will lie on the
real axis for small values of gain sinceVP1 is assumed
to be on the real axis. The values of p§1 and p?z
- will have to be deteririned from considerations of the

time domain specifications of the system transmission.

They should be chosen as close in as possible, since

from Eq, 2.5, this will tend to minimize k, but if :

1
they are too close to the origin, the system response
can no longer be characterized by the dominant pole

pair. The latter consideration determines the minimum

(b It

" distance (from the origin) of these poles. Hencetorth,
it is assumed that p% and p% are Known,
1 2
The positiouv of the compensation zeroes Z and

Z 1is now considered. Denote the position of the

zeroes Z, Z as

2,2 =0 % ju, (2.8)
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Note that

P = IZI2 = 0§+wi (sec Fig. 2.2) (?.9)
Therefore [Z| should be made as large as possible to
maximize Po which, from Eq. 2.5, will tend to minimize
Kl’ If the variation in plant gain is ver& large, the
dominant closed loop poles will, at k = kmax’ be very
close to the compensation zeroes. This means that
these zeroes must be located near the boundary of the
acceptable closed loop pole region.

2,5 Positioning of Dominant Closed Loop Poles and
Compensation Zeroes

The method used in this paper to fix the
position of the compensation zeroes is the same as
in reference (4). This method is to demand that the
angle of departure of the root locus from the dominant
pole pé for k > kmin be within a prescribed sector,
given in Fig. 2.3 as H1p§H2. The choice of this
sector is somewhat arbitrary but should be fairly
general and easily applied to different acceptable
regions of dominant closed loop poles.

In Fig, 2.3, the angle of departure, wd’ of

the root locus Trom pé is given by

Yy = 180° - (¢1+¢2+9oo-ez) (2.10)

16

3
3
=

:

3
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where: @, = L = P} Pa
1

90¢ = L pipx
= 4 .
&, = <~ Zp}

Solving Eq. 2,10 for GZ gives
6, = ¢d+(¢1+¢2+ 90°)-180° (2.11)

Denote the extreme values of the departure angle

wd’ which lie within the sector H1p3H2, as

wdmin = wd = wdmax (2'12)
The extreme values of ez are then
Ygmin = 90° + ¥ +@o4h . - 180° (2.13)
= [+ a -
8 max = 90° + @1+92+¢dmax 180° . (2.1%)

Tire locus of zero posit .ons, Z, 5, such that SZ is a

constant, is an arc of a circle drawn through the

~3
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‘The proof of this statement is given in Appendix B.

betwéenighe aécs'ci ‘and c2 will taen fnsure. that the

18

points pé,rsé and a third point X on the real axis

det'ined by the eguation

i xpglé 52/2

o (2a5)

‘The design procedgre'is,'then, tO'lbcaté.tQQ
p¢int57X1 and-X2 on theﬁéeal axis correspouding te - . -
aﬁd‘§

meiﬁ Zm&x

~in. Lq. 2. 15§>;Circd1arf&écs;c1 aﬁd 52"

are drawn thrungh the polnts p*l p anﬂ<§%52§§, as -

" shown 13 -;34“2-3., Lo 1ng the compensatmoa :eraes ' o =

gIe of ﬂeparture of’the root lccus from the dcmlnant

poie g; 18 w1thia the apev1f1ed sector H pQ ?.

When k ‘is much greater than'x the closed

, Cmax min® 7
icop poles will, at k = kK __, be very c}ose to the;i '59 -

cempensation zeroes. Therefore, in order to iasure = — -0

that the root locus remains in ine &cceptable.tegignf
as k approaches kmax’ the angle of entry of the ia”us B
into tnhe complex zero should be checked, The anﬂle of

eutry ¥ . is given by

e -
b, = ﬁ1+32+q3+qL-90°-180° 7 B ‘(Z.ié)'
where: »n, = i -pX Z -
L £
1, = L-PE 2
2 f2
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aq = LPHL
- ox
04 = Lpdz

90° = (Z Z

These angles are shown in Fig. 2.4.

The value KT‘may be computed from Eq. 2.5 once
the zeroes have been leccated. It should be noted that
if kmax is not much greatef than kmin’ the zeroes may

not have to be located within the acceptable closed

1oop pole region.

‘7j2,6 Open Loop Poles of Ldgs!

The last step in the design procedure is te lo-

;;.vgxpression for Dg(s),is

Bg(s) = ay(s)i;ny(s)
Therefure
ag(s) = D3(e)-Ryng(s) o ean

or

v -

. 2 : : 2 L
dd(s) = (s +S;S+P;)(s+p§?){s+p§q)-h,(s *S_s+P ]
. = )

~ {2.18)

19

“cate the open ioop poles of Ld(s). From Eq. 2.3, the .
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e - 2 - ' :
=s{53+(p§1+p;2+b:)s +(p§1p§2+b;(p¥1+p§2)+P;-h1)s

TR AT IR N g e s
%

) +(s;p§ p§'+P:(p§ +P% )-n1§0)} (2.19)
: 1 2 1 t2
- = s(s2+S, s+P, ) (8+P, )  (2.20)
(AR RS AR .

The roots of (52¥S{3+PL) may be complex or real de-

pending on the location of the acceptable closed loop

pole region and the value of K The anticipated root

10

locus, for a design of this type, for the given accept-

P R e

able closed loop pole region, is shown in Fig. 2.5.

2.7 Design Example

The following is au appliéatiou of the design

procedure for gain variation only,.

The design equations are

p* p* p*
f1 f2 r

L s

] Té(s) = 5 -

4 * * ¥*

: (s +S;s+Pr)(s+pf )(s+pf )
3 1 2
2

3

: ,

E kminK(52+sos+Po)

2 L:;(S) =

A

2 .
s(s +FLS+P{)(S+P1)

where Tz(s) aud Lé(s) are the system traunsmission and

loop transmission respectively, at k = kmin’ The

plant transfer function is assumed to be of the form '

3
3
.
1

2 Gl by X 4




K

5—
s(s“+S_s+P_)
P P’

P(s) =

where k, the plant gain factor, may vary fr°m~kmin=1
to kmax=1000. The complex plant‘poles are a§sumea to
be fixed and have been cancelled bytzeroes piaced
neaf them.

The closed loop pole values :p;l and -p%z are
assumed to be -10 and -15 respectiveiy. These choices
for p§1 and pfz are purely arbitrary éthef thah that
they must 1lie go the left of the boundary shewn iu
Fig. é.é.f Ihis'report does not spow how tﬁese values
oprf] andp%2 are obtained but how theAdesign pro-
cedes ounce they are known, The acceptable region fpr
the dominant closed leop poles, as well as othef per~-
tinent quantities for this design example, are shown
in Fig. 2.6.

As a first choice for pézthe.dominént closed

loop pole atrk = kmin’ let

P} = -3+33

since this is close to the minimum value of Pr for this

acceptable dominant closed loop pole region. The angle
of departure of the root locus from the dominant pole

* . . .
P} must be within the sector H1p§H2, i.e.

140° < ;bd' < 230°

i

o

P
E
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E
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The angle of departure of the root locus from the

dominant pole pg is given by

= 1800-(@1+@2+90°-GZ)-

%
[
I

e

where: ¢, = L[-pXx p* ., = Tan™! = 25.40
. £ P ,

. m -1._2_ 7
@, = L-p}zpé = Tan _ 12 = 14,00

Lttt b el A R

8, = LZpX+ lijg o )

From Eqs. 2.13 and 2.14, the values of 6 2 max and

szin,are given by

-90°4+d
] < 90 +¢1+®2

Zmax = Ydma

= 179.4°

zmin = Pauin~90°+®1+%2

i}

‘140°-90°+25.4°+14,00°

89.40

Next, two points on the real axis Xl, X2 are deter-

mined such that

~N
g
]
e

LX,pE =.—=5— = 90°

¥

o T SRR R D T

N
8
’.J.
e
(114

/..sz* = E‘,So

d

: t - . 230°-90°425.4°4+14.0°




ik

fowe atiell

o |

Bl

od

25

Two arcs are now drawn through the boints péxlsé and

P3X255 (See Fig. 2.6). The construction begins by

locating a point on the»real axis that is equidistant

from the points_pg, X ?nd 53‘ Using this point oﬁ the

real axis és the ceuter of a ciécle, circular arcs are

drawn through the points Py X and 53 with a compass.
As a first choice for the position of the

compensation zeroes Z and Z, let

Z,Z = -6t jO.5

This position for the compensation zeroes will tend to

maximize P0 for the circular arcs c1 and 02 shown in

Fig. 2.6. Large P from Eq. 2.5 will mean a smaller

value for k, which is the object of this design
procedure,

The expression for nd(s) is

(s-2)(s+Z)

n,(s)

(s+6+§0.5)(s+6-30.5)

s?4+1284+36.25

The value of K1 may be computed from Eq; 2.5, i.e.

h':k.h=1'h
1 min

P*p* p*
r f1 f2

P
0

8
Geli0)13) _
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From Egs. 2.17 and 2.19, the expressiouAfor dd(s) is

dd(s) = Dg(s)-h]ﬁd(s)

- 2
dd(s) = s{sB+(p§1¢p}2+S;)s +(p§1p§2+s;(p§1+p§2)+Pr-h1)s

+(S;p§1p§2+Pr(p}l+p§2)—h150)}

s{s2(10415+6)8°+(15046(25)+18-74.5)s

+(6(150)+18(25)-12(74.5))]}

5(53+3152+2h3.5s+h5§)

To obtain the open loop poles of Ld(s), this equation
must be factored. Using the methods in Appendix A,
this equation is factored ianto the following open

loop pole=x

LI}

dd(s) s(52+28.hs+168)(s+2.65ji

1]

s(5+2.65)(5+9.00) (s+19.4%4)
from which

P 19.44

1

(s%+8 s+P,) = (8+2.65)(5+9.00)

£

L}

s2411.655423.85

The angle of departure ¢d f the root locus from the

dominant pole pé is
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bg ~ 180°-(2,+&,+90°-9 )
6, = LZpX+ pré |
= 'l‘a.n-1 géi + Tc’:m_1 252 = 39.8°+49,3°

L

= 89.1°

Therefore p , = 180°-(25.4°414.0°+90°-89.1°)
= 139.7°
which is satisfactory since it is very close to the

minimum value of 140°, The angle of enfry of the root

locus into the zeroes is given by Eq. 2.15, i.e.

Ve

a1+a2fa3+au-90°-180°

L-p} Z+ L-pi Z+ LDYZ+ LDYL-270°
1 2

=2Tap_1 ""g+"1‘an'-1 '-'--'g'+Tan-1 i%§é+Tan—1 %42-2wp

7.1°43,2°4+219,8°+130.7°-270°

90.8°

which is satisfactory for this design (see Fig. 2.6).
For this particular placement of the zeroes, an angle
of entry between 20° and 160° would probably be satis-
factory. The approximate root locus for this désign

is shown in Fig. 2.7.

2.8 Improvement iun Desigu Example

The first design could be improved. If the
cdmpensation Zzeroes could be moved further to the
left, it would, from Eq. 2.5, decrease the value of Kl'

With this as the objective, let the second choice for
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pY be Py = -3.5+j2.0

H
5
£
H
&
- E

The angle of departure ﬂd is constrained to be within

the sector H1p§H2 defined by the equation

R g,

it g

[?’ 110° < wd < 230¢°

B ' Quantities pertinent to this design are shown in
25 Fig. 2.8.

E The angles Qi and @2 are

[t | @ = Tan"! 22~ = Tan~10.308 = 17.2°

i 17 6.5 ~ T )

) @ = Tan '—=2— = Tan '10.174 = 9.85°

- 27 11.5 * .

[Cr——

The same method as before will be used to fix the

position of the compensation zeroes. The angle of

L
gi

departure of the root locus from pé is

i by = 1800-(¢1+¢2+900-ez)
E : = 90°-17.2°-9.85°+GZ)
or 8, = 4-62.95°
E Therefore eZmax = 230°-63° = 1./°
, 8 = 110°-63° = 470

Zmin

Again two points on the real axis X1,X2 are determined

such that

LX 83.5°

1Pg

i szpg 23.5°
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Two circular arcs are now dgawr thirough the posivts
£X, p* X, pt a hown in Fig., 2.8,
pd.\ipd and pdxgpd s shown i ig., 2.8

The compensaticn zers posittons sare chosen as

2,7 = -7t
The expression for nd{s) is then

. prd P
nd{ﬁ) = s +14s4+30

The value of h, from Egq. 2.5 is

P*pX p2
K - — 7% {i6.231(i0)715)
1 P = 50
o
= 48.69

This is a reductiocn of about 4 db. from the Kk, of

ihe previous design.

The angle of departure éd of the root locus

from pé, for this position of compeunsation zerces, is

120°. The angle of entry Yo of the root locus iate the

>mpensation zero Z is 84°, Both of these values are

satisfactory for the given acceptable closed loop pole

region (see Fig. 2.8). The reason that the angle of

entry should be checked is as follows: If the compen-

sation Zzeroes were placed in the extreme left hand
corner of the acceptable closed loop pole region, an

angle of entry greater than approximately 80° would

be unsatisfactory. An argle of entry larger than 80°

would probably indicate that the root locus would be

Kt

a';bﬁ',:“ qéﬁﬁiﬁlﬂiﬂ!&ﬂ!hhuua\"ﬂtwr R R

et
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outside the acceptable closed loop pole region for

some value of K between k = k . and kK = k .
: min : max’ -

The expression for ag(s) is fépnd'?roé tq. 2,197
a (s) = s{sj+(10+15+7)52+(13@+7(25)+16.23;48;6§53‘
- +(7(150)+16.23(25)-14(48.69))}
= s{s3+325%+292.584773}

Factoring this equation results in the following ex-

pression for dd(s)

1

a (s) = (s+4.46)(s%+27.75+173)

(s+&.h6}(§;§;k9)(s+18.21)

The root locus for this design is of the same form as

the previous design and is shown in Fig. 2.9, .

2.9 Summary of Design Procedure

The design procedure for variation in plant gain
factor only is summarized below.

i. Cauncel the plant poles.
2. Fix tae position of the dominant closed loop
poles at kK = k__, .

min

3. Determine the values of the "far off" closed
1 —_ -
loop poles at k = kmin’
L, Determine the position of the compeusation

Zerves so that the rooi locus from k = kmi} .
N <
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to k:kmax remains within the acceptable

’n‘v.'/ n “lm ts ' m

closed loop pole regioun.,

5. Solve for the open loop poles of Ld(s)

from Eq. 2.20.

The next chapter in this paper considers var-

kes B o

iation in both the plant poles and plant gain factor,
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CHAPTER III

PROBLEM OF SIMULTANEOUS PLANT GAIN

AND PLANT POLE VARIATION

3.1 Problem Definition

In the c;se where the plant poles vary as well
as the plant gain factor, plant pole caﬂcellafion,is
not feasible. In this case the system,gainvhust be
sufficiently high so that the dominant closed loop
poles remain within their acceptable region despite
the variations in the plant poies. The problem re-
solves 1&to locating the compensation zeroes such that

the system gain necessary to accoumplish thie is minimized.

3.2 Design Equations -

The expressions for the dominant part of the
loop transmission and system transmission given- by

Eqs. 1.12 and 1.9 are repeated below.

() Kh(s%+S_s+P_) kkn(s)
L R) = =
d 8(32+Sps§Pp)(§+P1) dd(§7
Pe Pe Pr Py Pp Pp
T (S) = L = ! 2
a-® D (=)

2
(s +Srs+Pr)(s+pf1)(s+pf2)
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The plant transfer function is of the form
Kk
P(s) = >
s(s +S_s+P_) -
(s%+5 s+p)
The plant gain factor k varies from k = kmin to
h = kma‘ and the plant poles may lie or "slowly vary"

. within the region shown in Fig. 3.1. The character-

istic equatibn of the system Dd(s) from Eq. 2.3 is -

Dd(s) = dd(s)+khnd(s)r
or (52+Srs;Pr)(s+pf1)(s+pf2) = s(sz+Sps+Pp)(s+Pi)

2
+kh(s +Sos+Po)

(3.1)

4 3 | 2 :
s +{S_+p. +p. )8 +(p, P. +S_(P, +P. )+P_)s“+(S p. p
e ft f2 f1 f2 r f1 f2 r r f1 f2

o 3, (s p 2
= { s
+Pr(pf1+pf9))s+Prpflpf2 = 5 +{S +P,)s +(Spp1+Pp+kh)s

- . 7 +(PPP1+khSo)s+thb

(3.2)

Equating the coefficients of Eq. 3.2 yields the follow~

-ing set of equations

br+pf1+pf2 = Sp+P1 : (3.3)

pf1pf2+Sr(pf1+pf2)+Pr = SpP1+Pp+kh (3.4)
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Srpf1pf2+Pr(pf1+pf2) = PpP1+khbo f (3.5)

Prpflpfz = kKP (3.6)

The following substitutiouns in Eqs. 3.4 and 3.5 are

-made
Pf1+p£2 = S_+P,-S , (3.7)
e (3.8)
Pe P, = . : 3.8
fl f2 7 Pr :
tho .

P +5,.(S +P -S )+P = S Py +P vkk {3.9)

SrthO :
T +Pr(Spr1—Sr) = PpP1+kKSO (.3-10)

Define the<following quantites

Ty 2 KhP_ (3.11) i
X% s p.+P +kh : (3.12)
Pl p '
a . :
Y = PP +KhS (3.13)

Equations 3.9 and 3,30 are then

Y _ 3 - _ ) .

P +Sr(Sp+P1 S.)+P . = X (7.14)

vS,

P *Pp(S,+Py=S.) = ¥ (3.15)
r ,
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Considering the eguaticns for X and Y, (Eqgs.

3.12, 3.13), the variation in X, 84X, and the variation

in Y, AY, due to the variation in plant poles only.

i.e., parameters sp and PD, can be expressed as

>
>~
"

P1ASp+éPp (3.16) -

AY AP _ (3.17)

It
o]

The variation in plant-gain factor will be cousidered

later in the design.

3.3 Design Procedure

An oﬁtline of the design procedure thét will be
followed jin this problem is as follows: -
| 1.) Map the aéceptable region for the dou.nant
closed loop poles into the X,Y plane using
Bgs. 3.14 and 5.15 for fixed values of the
parameters v, P] and Sp.
2.) Map the plant pole variation into the 2X,
4Y plane using Egs. 3.16 aud 3.17 for fixed
values of the parameter P].
3.) Compare the two mappings in (1,2) zbove.
If the wapping of the plant pole variation
in the AX, 4Y plane does not fit irto the
interior of the mapping of ;he acceptable

dominant closed loop pole region, the map-

ping of the latter will have to be repeated,

b Gt h i d il “‘ “wﬂ, T

ol il
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using a larger value of vy.
4.) Solve for the values of KK, S, and P

using Egs. 3.11; 3.12 and 3:13, where

the values of X and Y. are obtained from

the positioning of the ﬁépping of the

plant pole variation in the interior ol

the mapping of the dominant closed loop

pole region in the X, Y plane. ) )
The next four sections in this chapter elaborate_oﬁ

these four steps in the designAprocedure.

3.4 Mapping of the Dominant Closed Loop Pole Region

The wmapping of éhe acceptable dominant closed
loop poie region into{the X,Y plane involves the para-
meters vy, P1 and Sp Large y implies large gain, i;e.,
large kh, since Po does not have a large range of
values (See. Eq. 3.11). An approximation for the

value of y ¢an be obtained from Eq. 3.6, i.e.
Y = pp Pg P (3.18)
1 72

The maximum value of Pr can be found from the acceptable
r gion for the dominant closed loop poles. Denoting
the value of the dominant closed 1loop pole by Py =

0 4+Jwgy, the value of Pr is

2 2 2 .
P, = |pgl? = 02l (3.19)

77 TR T T T T TR T TR BTN DT



The values of Py and Py can be roughly approximated
1 2
by considering the boundary for these closed loop poles

shown in Fig, 3.1. These poles will be complex for
large values of system gaim,

P the nearest "far off" open loop pole located

19
on the real axis, should be chosen as close in as

possible, since from Eq. 3.3, this will decrease the

values of pf1 and pf2
tc¢ decrease the wvalue of fixed gain that must be added

which, from Eq. 3.8, will tend

‘to the system., If P1 is chosen too close in, though,
the closed ioop poles pf1>§nd pf2 may lie to the right
of the vertical boundary shown in Fig. 3.1 violating
the specifications of the problem.

> The major préblemiin this mapping operation is
the parameter Sp‘ Denoting the valpe of the plant pole
as p = 5P+pr, the value of Sp is

pf

= - 2
S 20p (3.20)

In the point by point mapping of the écceptable region
for the dominant c¢’.osed loop poles, there is no criteria
for determining what value of Sp to associate with a
particular point on the boundary of the acceptable
dominant closed loop pole region. This dilemma LS re-
solved by considering the following argument: 1If the

dominant closed loop poles are to lie within their




accebtable region despite the variation in the plant
poles, the mapping of the dominant closed loop pole
lregionruan not be highly sensitive to the position
of the plant poles aud hence the value of Sp. The
actual point by point mdpping of the dominant cloused
lopp pole region iuto the X,Y plaace is perfurmed usi.g
gevéra;'diffgrent values of sp for each value of y and
- ?]. These different values of § should include the

minimum and maximum values of Sp for the given region

of plant pole variation as well as values in befween,

A median value of Sp is denoted by S in Fig. 3.2.

pmed
The mapping of the acceptable closed loop pole region.

into the X,Y plane is depicted graphically in Fig. 3.2. -

"o b Lt BB

The wvalues of Ps and Pe ,. the "far off" closed
' 1 2

loop poles, are also of interest in the mapping of the

et

NI

dominant closed loop pole region. The values of pfr and
) 1

'rpf must lie to the lett of the boundary shown in Fig.3.1.
2

For each point on the boundary of the dominant closed

- loop pole region and giveu values of the parameters

Y, P1 and Sp’ the values of Pe and Py may be obtained
1 2

as follows: From Egs. 3.3 and 3.6 .

pf1+pf2 = bp+P1-Sr (3.21) 7 :
P, P, = Y/P (2.22)
f1 f2 r »
Defi 2 s
efine pf1+pf2 S (3.23)

P e DR Ny Y TR TR R RIS DO e R T TR S W e s
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" defining any poiont (%m'&po) on the boundary of ~he

£ .

p. p, =P 3,241} :

f? i2 .f A

Solving Egqs. 3.25 and 3.24 for Pr and Pe s fedsas

i 2

. |

f 2 ; Nl

pf1 = —‘2-1'-4[(5?/2) -é]’f 13.25)
S.  p——y—

p. = 2 - Sf(s./i2)op (3.20)

f2 A i ¢

If the values of pg and p " fall to the right of the
1

.fz | |
vertical boundary shown in Fig. 3.1. ¥, has been placed

too far in. The values of Pe and p,. obtained diring
. 1 ; '

.this mapping operation will unot correspond cxactly with

those in the final design, since the bouandary of the

plant pole variation wiil not, in general, map exactly

onto: the ‘Loundary of the acceptable dominant closed

S i AR T s R e

loecp pole region. Adaitional features of thiz mapping

operation are covered in Section 3.8.

3.5 Mapping of the Plaut Pole Variation

The only parameter in tine mapping of the plant
pole variation into the 4X, LY plane is P, {see Fqgs.
3.16 and 2.17). The value of P, used in the mapping

must be -the same as that used in the mapping of the

2

S e .

dominant closed loop pole region ‘Kygs. 3.14, 3. 5). The

mapping ot the plant pole Vdriatiqn:is_QLplémenued by

plant pule variation., The nowinal values of = and P
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are then Spo = 2Vp0 (3.27)
O R (3.28)
po po’po

Equations 3.16 and 3.17 may then be written as

&X pi(sp-sés)+(9 -F_ ) (3.29)

p po

AY

p](Pp-vpo) (3.30)

The regién of plant pole variaticen is then mapped
point by point into the <X, 4Y plane, as shown in

Fig. 3.3. It should be noted at this point that the
shape and size of the mapping of the plant pele varia-
tion in the X, A4Y plane is not dependent on the choice

of the point (op 'wpo) and hence on the values of 8

o po

ang Péo' Different choices for this point will only
alter ti~ pc-.-"tion of the mapping in the AX, &Y plane.
The units on the . 4X, £4Y axes in the éX,;Y plane must be
tue same as those on the X,Y axes in the mappiug -F
the dominant closed loop pole region in the X;Y plane,
When the mapping of t..e élant pole variation in the

AX, LY plane is transferred to the X,Y plane, its
angular position with respect to the £X, 4Y axes must
be preservea, i.e,, the mapping of the plani pole var-
iation may not be rotated in the \,Y plane. Additioni&
features of this mapping overation are covered in

Se¢tiqn‘9 af this chapter.
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The problem now is to fit the mapping of the

-plant pole variation in the aX, 4Y plane into the

interior of the wmapping of the dominant clensed loop
pole region in the X,Y plaue as thown in Fig. 3.4. If
this fit is not pussible, the mapping of the dominant
closed -loop pole region will pave to be performed for

larger values of vy.

v

3.6 Calculation of the System Gain and the Compensation
Zero Location - .

Once the mapping of the plant pole variation
fits inside the mapping_of the dominant closed ioop
pole region in the X,Y plane, the value of the gystem-
gain kk and.the compensation zero positions, given by
the parameters So and Po,may be computeé. For a linear,
time invariant, minimum-phase sysfem, a value of system
gain KK can always be found such that the mappiug of the
plant pole variationAwill fitrinside the mapping of the
dominant* closed loop pole region in the X,erlane.7
. Figure 3.4 shows the mapping of fhe piant pole
variation fitted inside the mapping of the domina:it
clused loop pole region in the X,Y plane. To solve
for tbhe valueg of kKk, SD and PO, a point 06 the boundary
of the mapping of the plant pole variatien is chosen
where the values of Sp and Pp are Knbwn. In Fig. 3.4,
this point is deioted by A. The values of Sp and Pp at

point A are, from Fig, 3.3 and Eqs. 3.27 aand 3.28,

RS TTTIT T e e TR SRR

Lswin i Ik a 4l divin

i Hdh ke

i
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respectively, Sp and Pp . Denote the ccordinates of
a a :

point A in the X,Y plane as xa and Ya. Since y and Pl

are known for this particular mapping, kK, s, aud P

may be obtained from Eqs. 3.11, 3.12 and 3.13, as

follows:
Kh = X - - .31
xa_spaPI Ppa | (3.31)
P = 1%? ) (3.32)
Y -P P,
« ' a .
Se T TR - (3.33)

The value of kh should be interpretéd as the necessary

value of system gain, i.e. kmihh' The actual value of

added gain to the system is, from Eq. 3.31

Xa-sp PI-P
k = k 2 = (3.34)

min

The choice of the point used to compute the values of
kh, So and Porhas no effect on the values obtained for
these quantities, so long as the point is on or within
the wmapping of the plant pole variation in therx,Y
plane. To prove tais, a second point B is chosen, as
shown in Fig. 3.4. The value of system gain using point

B is, from Eq. 3.31

Kk = X, -S_ P, -P (3.35)

Now 8. and Pp are not known but they can be coumputed
b ‘ b -
using Eqs. 3.29 and 3.30, i.e.
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X = X, -X_ = P, (S_ -S P -p .36
- b a " Py a)+( Py Pa) (3.36)
aY =Y -Y = P.(P_ -~-P .
b-Ya = P1(Py -Pp ) (3.37)
Solving Egqs. 3.36 and 3.37 for S and P results in
' Py Py
Yb—Ya : H
P = P , - .38
P, F, ‘o, (3.38)
X -X_ -(Y -Y_)/P
. b 1
s = 2= b _a +S (3.39)
Pp 1 Pa
Substitution of Egs. 3.38 and 3.29 into kq. 3.35
yields
' Y, -Y ¥y, -Y ‘
: A - a:
Kkh = X, =X, +X + b "a =S P~ =P
b _b ‘a —HF:— P, 1 P] P, L
= X -S pP.-P
a "p, 1 P,

This equation is identical with equation 3.31, which

implies that the value of kkh is not dependent on ihe

i e S s B b i b

point used to compute it. From Egs. 3.32 aud 3.33, the

same statement can be seen to hold for S0 and Po.

3.7 Mathematical Explanation of the Desiegn Prucedure

"This section presents the matheratical justifi-
cation for the design procedure presentad in Section
3.3. Refeﬁring-to Fig. 1.5, the dominant closed loop
poele regions in the s-plane are denoted by C and cC. ‘
The mapping function, which maps the dowinant closed

loop pole region into the X,Y plane, is denoted by T.
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berniote the mapping of the sets C, C for

% i sp = Spierspmin’spmax] by means of Egqs. 3.14 and 3.15,
- ) as Qi i.e. Ty C,C = S; (See Fig. 3.5). Now from
b Egs. 3.14 and 3.15, it is evident that no two pair of

f | points in C,E map into the same point-in Si,vtherefore

. ,Ti is a one-to-one mapping function.> Since every ele-

E 7 _ ment of ?i appears as the¢ image of at least one pair

- - of poin;slin C,E, Ti ma_.s C and Cc onto Si' Now, siice
: é - T, is a zne-to-one mapping function and also maps.C

i

~and E onto Si’ then the inverse mapping function T;’

<o TRETYERL Y

4
Brort

exists and mépE”Si onto C,C in a one-tn-one fashion.

oo

- The unapping of C and c into the X,Y plane for

an infinite number of values of S_ between S . and
7 BY ; P “pmin

RLALUCEE L LU B ULt L S A L
oo SN o
»
\

S . will result in the set shown in Fig. 3.6. Tuis
pmax ) c

set may be represented as

(b L A

hae il Roli
!bllwlm!

s =n S; (3.36)
i=1

Under the assertion that T;1 exists and maps Si onto

C.C in a one-to-one fashion, i.e.,

l -&wmc«’

H -1
. - g . 5.
% 5 T, :8,#C,C for sp spie[ pmin’bpmax] (3.37)
é f it follows that
-t — . -
d . ‘ + 3 .
T] .iﬁlsi*c,c for all spie[spmin,spmaxJ (3.38)

Referring to Fig. 3.7, this means that if the

given variation in X and Y, denoted by the set P, is a

e

l.,.u s ,,...,.B

s OO TART LG AR S T AT
0
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subset of the set S = i§1si’ then fhe inverse mappingr
of P into the s-plane will be contained in the sets

C,E. Letting the set P répresent the mapping of the
plant pole variation, then the solution of Eys. 3.31,
3.32 and 3.33 yield the necessary values of kh, So and

Po to position the set P within the set S which repre-
sents the mapping of the dominant closed loop pole
region, In this manner theAdifficult problem of chonosing
Kk, So and P0 80 as tuv insure that the dominant closed 7
loop poles lie within théir acceptable region in the
s~-plane, is transformed into the less difficult problem
of determining kk, S0 and Po such that the mapping of

%he plant pole variation in the 4X, AY plane may be
fitted inside the mapping of the acceptable dominant

pole region in the X,Y plane,

3.8 Analytic Aspects of the Mapoing of the Dominant
Closcd Loop Pole Region

The relative complexity of Egs. 3.14 and 3.15
require that the actual mapping of the dominant closed
loop pole region be done point by point using a digital
computcr. In this section, the mapping cf curves of
coustant P and curves of conscant S_ in the s-plane

r e oe e » - e r
S --1ﬁ€o'¥ﬁéff;Y plane is examined. Curves of constant P
in the s-plane are shown in Fig. 3.8. The mapping

equations are
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LA P - =
P +sr(sp+pl sr)fpr = X

S.Y E
= +Pr(sp+p‘-sr) =Y

»

Since Pr is to be held constant, Sr must be eliminated

iu these two rjuations. The parameters y, F, and Sp

wili also bé keld constant in these two equations.
Sclving the secdond equation for S vields
Y-PPPI-P

S :
- Ll 4 19 ]
Sp = Y?Pr - P i (3.39)

‘Substitution of Eq. 3.39 into the first equation gives

Y-P P, -P S - Y-P P ~P S_ >

Y r p : _f r ol -
Pr+{Y7pr =F, (s +Py) lv/P, = ; +P_ = X

{(3.%0)

- After considerable algebraic manipulation, Eq. 3.40 may

be placed in the form of

2
2., (s +P])
-(/P P )" {X-y/P_-P - —Bg—-f"}
= {Y-3(s 2 ) (/P +P )} 7 (3.41)
Equation 3.%1 is in the form
“ha(X-h) = (Y-k)? (5.42)

which is the equation of a parabola opening to the left,
whose vertex is at (h,k) with a focal léngth equal to

a,” Relating these quantities to Eq. 3.41, the vertex

prnsasrap isobninai €h. v 1 g rsiet kil Bl MR

(RN O o WA 5, it R AT B Ol A A 3500 e o s
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of t&d‘parabola. ?epreaented by Eq. 3.41, has the follow=-
- ing coordinates-in the X,Y pianei
T o 2
_— : (s_+P,) - - -
- . VI . = 1 .
Xevrers S G
Y = R(SeP )Y /PP ) S (3.45) -
- The focal length of this parabola'is -
| (v/p_-p_)? | L
s a = ———p— 7 ‘ T - (3.b45)

The position of a parabola defined by Eq.'3.hl:is shown

~
-

in the X, Y plane in Fig 3.9. It shoald ‘be noted that

Eq. 3.&1 represents a parabole whose 3115 is parallel -

' ﬁith the x axis in the x Y plane. Th1s is 1nd1cated by

. the absence of any terms of the form- CXY in Eq. 3.41

- with C = constant. : " o=

Curves of’conptaqtka ih;the_s-pl&ne are shown
in Fig. 3.10. Since S_ is to be heid constant, P
must be eliminated in the two ﬁapﬁing equations.

Defining
=S, ' (3.46)
and solving the second wapping equation for P_ yields

Y Y2 Spy ..;
P—i—i«/;AZ A o (3'47)

Substitution of Eq. 3.47 intuv the first mapping equa-

tion gives>

i

PR

b e & Ak

v md A
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. 2 Sy
== e mt g X
X, x2S v A
AT Jua? A S (3.48) -

Aftgr;pgdh algebraic manipulation, this equation may

be put in the>folloﬁing form = T - 7
2T . - z “' ) . : - - 2 -
o S 4P, L L2 : s 5 Y(A=S.)
2 o opttiy oy X7 2 o , 2.2 r’ .
X -xY( SA )+ ——-‘S%A,-A ZébAPX+Y(§.p-+PI‘)fA S_+ w_srf‘ - = 0
. N - o~ - ’_7 ’ (3-“’9)
N s - F : . g
73Thi§'equat§pn,now is “in the form of
;; N 2 ) Yz i o - :., .o F i’ 7
© --aXT+2bXY+cY +2dX+2eY+f =0 - (3.50)
with . oo e
a_' =:1 e
S_+P
- - B ;
b=-2 (57)
. r -
) 1
c=4iz7

which is of the form of a second degree eqﬁation;ih a

_rotated system of,coprdinates.a The type of second

degree equation which Eq. 3.50 represents can be: deter-

mined by examinirg the coefficients a, b and ¢, From

Eq. 3.50
2 i N S +p1 2 . 1
b -ac = {-f( S A )} = i S A
r - r
2.2 2 . . :
= b SLAT{6,+P, )75 A - (3.51)




_—

T R R DRI it s,

)

" 7
o c

Equation 3.51 can ke put in the form

A b Wi TR i rva s

It can be showng that the following relationships exist

between the coefficients of £q. 3.50 and the type of

-second deétee equation;

b2 - ac < 0 + an ellipse

b - ac = 0 » a parabola

- N b - ac > 0 + a hyperbola

- ys? A {(s +A) -5 A}

or hszA {s +S_A+A } IR © (3.52)

Now if A is greater %han ?ero;'so is Eq. 3. 52 i.e,,

thAz(SifSrA+A2) >0 T (3.53)

4since S ‘is always greater than zero (clocsed luop poles

in 1eft hand‘plane) For A to be greater than  zero,

S P

p’ Pi and Sr'must sat1sfy the following

P, >‘sr-sp' - _ f'(B,Sh)_

- The parameter Sp is> negative if the plant poles lie in

the right half plane. Therefore £q. 3.54L can be
whitten~as
o o . N i pu :
P1>sr+|sp! for sp<o , (3.55)
This equation is certainly satisfied for most feedback
cuitrol systems, Curves of coustant S, in the s-plane

therefore map as hyperbolas in the X,Y pl#dne under the
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-1 -
.8 = Tan 11(0

mapping equations 3.14 and 3.15., The position of a
hyperbola defined by Eq. 3.49 in the X,Y plane is
shown in Fig. 3.11.

The angle which the major axis of the hyper-
bola is rotated from tue X axis in the X,Y plane is
given by8

\ 2 2
a) £+ o/(c-a)”+hb” 1 -

_1f(VhsrA-1) tJ(V&SrA—I)2+{(A+Sr)/(SrA)j2
Tan
A+Sr }
”(SA)
r

1}

(3.57)

To obtain an insight on the magnitude of the angle o,
the following values are assigned to the parameters in
Eq. 3.57 which are typical for the design example in
Chapter II and the design example thac will be con-

sidered iun this chapter

S = 10 S =2
r p

P.l = 30 A 22

Substitution of these quantities into lq. 3.57 gives

QO

- Tag"~! (Y880-1) = J(V880-1)2+(32/220)2 1
- (...33) J
220

Tan™ " 13.81 = 85.86°
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For the range of parameters concidered in this paper,
a good approximation to Eq. 3.57 is
2S A

r

T (3.58)
r

§ = ’I‘;rm“1
The sign in Eq. 3.57 may be arbitrarily chosen to muke
8 pusitive.

The only octher two parameters in the mapping
of the dominant closed loop pole region areAP1,the
"far-off" pole on the real axis, and y defined by Eqg.
3.11. The qualitative effects of these parameters gun
the mapping of the dominant closed loop pole region are
shown in Figs. 3.13 and 3.14, The dominant closed loop
pole region used for this investigation is shown in
Fig. 3.12. From inspection of Figs. 3.13 and 3.14, it
is seen that increasing the value of v both increases
the relative size cf the mapping of the dovminant closed
loop pole region and its coordinates in the X,Y planc.
Increasing the value of P] merely increases the cocrdin-
ates of the mapping in the X,Y plane. Figure 3,15
illustrates the variation in the "far-off" closed loop
poles, pf1 and pf2,during the mapping of dominant closed
loop region into the X,Y plane. These "far-off" noles
are obtained using Eqs. 3.25 and 3.20 and the procedure

outlined in Section 4 during the mapping operation,
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- in Fig. 3.16. fThe mapping equations with P_ egual to

"~ a constant are - R o<

SO : - 0

wbere S ° ‘and P. define an arbitrary point 0_ +jw_ -
B po po o B . " v po po
on the boundary of the plant pole veriation in the .

'-S—plaée. ? S '; . z .—1 .- . .

i

f?I(sp-sp )+pp=pp ‘ ; s (3.58)

o o =

~AY

I

';'Pl(Pp'Ppo)'f,°§n5ta9§ = S .(?;29)

The mdpplng of curves' of constant Pp in the s-plane’

ilnto tha X Y plane is shown in Flg. 3. 17. 7

< L C@rqu;of;constépt,PptihAthe s~plane are shown

. | 65
3.9 Ana;ztic Aspects of the Happzng of the Plant Pole
Variation ) R . : .
- As vath mapping df the dominant closed loop
. - pole reg1on, the napplug of the plant pole varxat1on\
(Eqs. 3. 29, 3 30) is most easiﬂy accomplished by i
.mapping- polnt by p01ut us1ng a ﬂlg1ta1 computor. In:,5
: .?fthis sectlon,‘the mapplng of curves of cééstant Pp 4 !."*-
) ,fconstant Sptaﬁd ??nstanf>wf1n the s—piane 1nto “the o
AX, & planei 1§A 1n§estzg&téd '5; f-~; g ?"l AR
. » The mappxng equat1ons arelk? = - )
- Gglaxjf‘éiﬁéb-; Pi(?p—Pf ) f h f  *:5 - —
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Curveg of constant Sp in the s—plane‘are shown
.in Fig. 3;18. Eliminating Pp in the two mappihg
equa;ions yields
. 2 B . ’
oY = P1AX-P1(bp-ap°)\ (3.60) ;

Equation 3.60 is in the form : _ =
AY = m 4X+b ' (3.61)

which is the equation of a straight line in the iX,uY

plane with slope m and AY intercept b where

-— - . 7 : - 2 3 S A
m=P, ; b= —P](Sp—bpo)

st Bhabdd o

The mapping of .curves of constant Sp in the s-plane

into the 4X,AY plane is shown in Fig. 3.19.

Curves of constant g are shown in Fig. 3.20. ’ %

A poiat on the w=uw

1 line is deéfined as-3+jw], The
mapping equations are
AX = P.AS_+4P *
"p P
= Pli»20+20' )+(02+w$—32 —wz ) ‘(3.62) .
Py : Py Py .
AY = P1uPp
2 2 2 2 .
=P (c At R O ) 7 (3.63)

Since @, is to be neld constarnt, g must be eliminated

in Egs. 3.62 and 3.63. Solving equation 3.63 for g yields

iY . .2 2 .2 -
o == J/P + Jp Yoy =) (3.64)

1 o o
Substitution of Eq. 3.64 into Eq. 3.62 gives
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FIG, 3.18 CURVES OF CONSTANT SP Ajd

"IN THE S-PLANE.
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FIG. 3.19 MAPPING OF CURVES OF CONSTANT S,
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FIG. 3.21 MAPPING OF CURVES OF CONSTANT «
IN THE S- PLANE iNTO THE AX-AY PLANE
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. iY 2 2 2 ay
AX = -2P1{tJ/P1+opo+wpo-w]-cpo}+ 3 (3.65)

Rearranging £q. 3.65 gives

2
1

2
2 2AxAY (AaY)
(AX) - P———+ 5

1 P1

2, 2
~4p AX+bAY(c_ -P,)-4P - =0
1UP + ( po 1) 1 (wpo w )

0

(3.66)
This equation is now in the form of Eq. 3.50, the form
of a second degree equation in a rotated system of
coordinates, The form of this second degree equation
may be determined by examiningrthe first three coeffic-

ients, a, b, and ¢ of Eq. 3.66. For Eq. 3.66

2 2 2
and b~ -ac = YPT-YPT = 0

According to the conditions previously stated, equation
3.66 represents.a parabola in a rotated system of
coordinates.

The angle which the axis of the parabola makes
with the 4X axis in the AX,AY plane is given by Eq. 3.56

which is

. 2 2
5 - Tan_1{(c_a)iJég_§l*+4b Y

_&{(VP?—1)xJ(VP?-1)2+h/P$

—2/P1

Tan

Tah_1P (3.67)

19
H

&
P!
1

[




aane BN b T e I T

]
i

~

»
b atind LR

ot

| e

[N ey e e ey

ity

e

| b

where the sign on the radical has been chosen to make
§ positive.

Unlike the mapping equations developed for the
dominant closed loop pole region, equation 3.66 is not
overly complex and a transformation may be made that
will eliminate the AXAY term in Eq. 3.66. The trans-
formation equations which will transform Eq. 3.66 into

the following form
» 2 2 ’
a'(AX')"+c' (AYF)+2d'AX' +2e'AY ' +f = O (3.68)

where the primes indicate quantities referred to the

rotated system of covordinates are

a' = ac0526+2bsin60059+csin26 (3.69)
. 2 , . 2

c' = asin 8-2bsinfcosd+csin 6 : (3.70)

d' = dcosbf +esing (3.71)

e' = =dsind +ecosh (3.72)

The trigonmetric functions may be expressed as follows

1 1

cosf = T = - (3.73)
v 1+Tan"6 J1+P?
sing = Tand = ! (3.74)
J1+Tan28 J1+P?
The new coefficients a', ¢', d' aud e' are

71



| eeprer]

[
I
i
{
[
[
[
E

72

2
(2/v )P, (yp3)p?
, 1 1751 1771
al = = - 5 + 3 =0 (3.75)
1+P 1+P 1+P
1 1
1
pf (2/P1)P Up P2 41
1 1
14P] 1+P] 1+P] P}
-2p,0 ) ZPI(GPO'P1) -ZPf
d! = + = (3c77)
J1+Pf J1+P$ J1+Pf
2p%g 2(c_ -pP,) 20 (P2+1)-2P
iTp P, 1 po 1 1
el = o . = (3.78)
J1+P? J1+P$ J1+P?

Equation 3.68 with a'=0 is of the following form

et (AY1)%42d' 80X 426 'AY +F = O (3.79)

which may be put in the form of

2
et 2 2d!',,., f (e
(8Y1+57)" = (06X g5y - éa'%') (3.80)

From Eq. 3.42, this equation represents a parabola in

4X',4Y' system of coordiunates with its center at

2
. f (er1)
AX = - 337 * Zarc (5.81)
AY' = et /e (3.82)
and focal length a of
d'
= e g )
a iy (3.83)
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In most feedback control systems, P1 is much

greater than unity. Therefore the following approxi-

maztions can be used for the coefficients c', d' and e':
P?+1
et = T , (3.84)
2
P
1
2P?7 -
d' = - ———— = - 2P, A (3.85)
J1+P$

20 (1+PZ)-2P
P, 1 1 -

e' = =2(0 P,-1) (3.86)
,\/1+P2 Fo
1 N

The approximation to Eq. 3.80 is then

(ayre2(o_ p;-1)}% = 4p {ax'4P (02 —w®)s —— )
p, 1 1 1 M1

The position of the parabolas defined by Eq. 3.87 in
the A4X,4Y plane is shown in Fig. 3.21. From Eg. 3.87
and Fig. 3.21, it is seen that the AY' ccordinate of
the center of the parabola in the AX',AY' rotated

coordinate system is not dependent on the parameter W .

The only other parameter in the manpiag of the

5 T e,

plant pole variation is P‘. The qualitative effect of
P1 or tae mapping of the plant pole variatior is shown

in Fig. 3.23. The plant pole variation used in the

i i i & R R
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FIG. 3,22 PLANT POLE VARIATION REGION
USED TO ILLUSTRAQTE THE EFFECT OF F ON

THE MAPPING INTO THE AX-AY PLANE
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FIG. 3.23 MAPPING OF THE PLANT POLE
VARIATION REGION AS A FUNCTION OF THE

OPEN LOOP POLE F
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lgop psles witkin their acceptakbls region 2t k = k

mapn; % 35 shown in Fig, 3.22., From tig. 3.23, it is

§§s¢;ved thbt the size of the mapping of the plant

pole variatiunrxﬁbreases with increasing Ry Since

° Ane Y1

the s¢ze of the mappxnr of the uoquaqt closed loop

'Dole revlun 13 not hlguly scns1h1w€ to P, (see Fig.

1

. 3 3.1 h}._it‘ CVETY meortant To crana P, in as far as

1

3 10 Tne Lffect of Plant den “a—vat7on‘en thelxsign

A'Q :' - It is pasaxbie that the doalnan.; losed loop

pqles may lze 1th1n th:lr aCﬂeptnbic‘vevxoa for k= k

and vet\mov1 Gut:ld& Lue acc~p shle :egiég'far Kk .

i ire 3. 2& 111u= >e§,tu§sfpg55fﬁility; This un-

idesirable'poséibility,éah be érediéted by-cunsidering

’tne ar. gie of deparfure of tﬁe root locus from the domi-

-nant c;osed 1oop pole at 'S kmiq and tbe angle;of

BLTY Qf tb» root 1 s into the compensation zeroes.

This is”iﬁé p,ocedure usex by PorOW1tz in his- paper.

‘;1Figure 3;23 illustrates ths dowinant slosed

min®

" For a givewn plant psle vaéiation,lthe dnminantrclosed

loap puldSHEOP h = }mlﬂ may 1~e dryhhore an a boundary
such as the‘n3u:damv ABCD ahown’in'Fig.iq.ZS. It-is

L

. usuilly sufficientice check the angle of departure of

the vuci lecus for a few points arcund the boundary at
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FIG. 3.24 POSSIBLE EFFECT OF GAIN VARIATION ON
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To outline the procedure, consider dominant

closed loop poles at B and B for k = k . and "far-off"
closed loop poles at -pf] and —pf2 for k = kmin; De-
fine the following angles
LBB = 90° ' (3.90)
L—prB = a, (3-91)
L-ps B = ¢, (3.92)
2
LZB = & (3.93)
LZB = ¥ (3.94)

The angle of departure of the root locus ﬁd from the

-~

dominant closed loop pole located at B is then

éd = 180°—(a1+a2+90°f@1-92) (3.95)}

It is relatively easy to ascertain for a particular
mapping what angles of departure may lead to an un-
satisféctory desigu, For exawmple, for a dominant closed
loop pole located at point B in Fig. 3.25, an angle cf
departure wd of -10° would probably be unsatisfactory.
If there is still some doubt whether the root
locus remains within the acceptable region for a parti-
cular dominant closed loop pole bocation, the augle of

entry of the root locus into the compeunsation zeroes
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can be checked. As before consider dominant closed
loop poles located 2t B and B and define the following

angles

L ZZ = 90° (3.96)
LBZ =8, (3.97)
LBz =8, (3.98)
L ~pe Z =6, (3.99)
f1 3
v ~pp 2 =8, (3.100)
2

The angle of entry of the root locus $e to the cbmplex
zero Z fof dominant closed loop poles located at B and

B is then

bo = 8,48 ,+04+6,-90°-180° (3.101)

As stated for the angle of departure criteria, it should

be relatively easy to determine for a given mapping
whatvangles of entry are acceptable. Considering the
case again for dominant closed loop poles located at
B and B, if the root locus had an angle of departure
from B of -10° and an angle of entry to thc compensa-
tivon zero Z of +10°, this would probably confirm that
the root locus is outside the dominant closed losp

pole region for some value of k > kmin'
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If such a situation arises in the design, the
procedure is to increase the value of aaded gain h
until all angles of departure ana entry are satis-
factory. The object, of course, is to obtain a design

with the least amount of system gain kk.

3.11 Design Example

A design example is presented in this section
based on the previous desigu procedure. The region of
plant pole variation, acceptable dominant closed loop
pole region and boundairy for the "far-off" closed loop
poles are shown in Fig. 3.26. The acceptable dominant
closed 1loop bole region is the same as used in the
desigu example of Chapter II. The plant pole variation
is essentially the same asrused by Horowitz.h The
boundary for the "far-off" closed loop poles has been
arbitrarily chosen as shown in Fig. 3.26.

Following the design procedure outlined in
Section 3 of this Chapter, the¢ dominant closed loop
pole region is mapped into the X,Y plane with parameter
Pq, vy and Sp.

After several computor runs, values for P1 and

vy of 30 and 20,000 respectively were used for the first

design., The value of 30 for P, was chosen because this

1

value placeg the "far-off" closed ioop poles very near

the boundary shown in Fig. 3.26, Using E . 3.1& with
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FIG. 3,26 S-DOMAIN SPECIFICATIONS FOR THME
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= ;f = +15-j10, a value of approx-
1 2 )
imately 19,000 for y is obtained which is quite close

P = 60 and Pe
to the value used in the first design. The value of
Pr for this‘approximation was found from the acceptable
dominant closed loop pole region while the wvalues of
pf1 and pf2 were estimated from the knowledge of the
anticipated root locus.r The wvalues of Sp used were
-0, 2 and 10 which correspoﬁd to the minimum, median
and maximum possible values of Sp for the plant pole
variation shown in Fig. 3.26. As auticipated the
mapping of dominant closed lobp pcle region is not
highly sensitive to the value of Sp at this large
value of Y. The mapping of the dominant closed loop
pole region for these parameter values is shown in
Eig. 3.27.

The wmapping of the plant pole variation for
various values of P1 including P1=30 is shown in
Fig. 3.28.

It should be emphasized that the only practical
means of performing these mapping operations is on a
digital computor. On such a machine, the mapbing of
the dominant closed loop pole region may be easily per-
formed for many different combinations of y and ?1.
The same values of P1 are then used in the mapping of

the plant pole variation. Once the mappings have been

plotted, it is not difficult to choose a minimum value

4 il b

i L BN SRt BT A



FIG. 3.27 MAPFING OF THE DOMINANT CLOSED LOOP
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FIG. 3.28 MAPPING OF THE PLANT POLE

VARIATION FOR ThE DESIGN EXAMPLE
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of P1 such that the "far-off" closed loop poles are at
the vertical boundary shown in Fig. 3.26 and a value
of y such that the mapping of the plant pole varia-
tion may be fitted inside the mapping of the dominant
closed loop pole region for the same value of P,.

The wmapping of the dominant closed lcop pole
region with the mapping of the plant pole variation
placed inside it.is shown in Fig. 3.29. Since the
mapping of the plant pole variation does not quite fit
inside the mapping of the dominant closed loop pole
region, a slightly larger value of y may have to be used,

‘The values of kK, S0 and P0 are solved for
using Eqs. 3.31, 3.32 and 3.33 and point A in Fig. 3.29,

At point A

Xa = 800 Ya = 5450

and from Fig. 3.26, at point A

) = -6 P = 10
a

For vy = 2000 and P, = 30, kK, So and P0 are

1

kKK = X_-S_ P, ,-P
a2 Py ! Pa

800-(-6)(30)-10 = 970

Ya-PpaP1

0 kK

5450-10(30)
970

= 5.32
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FiG, 3.29 CALCULATION OF SYSTEM GAIN AND
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_ Y 20000 _ . -
Po = %K = —§$6_ = 20,061

Solving for the position of the compensation zeroes

yields
SO = —Zc,z
SO
- aZ = '_—2- = -2.66

4w =P -ai = /20.61-5.32

The position of the compensation zeroes Z, Z 1is then

Z,2 = -2.66 £ 3j3.60

The actual closed loop poles for this choice
of system gain and compensation zero position are
found by determining the roots of the chararieristic
equation 1+Ld(s) = O where Ld(s) is given by Eg. 1.12
for points around the houndary of the plant pole
variation. The convergence procednres in Appendix A
were used to factor the resulting fourth orderbpoly—
nomial. The results of this operation are shown in
Fig. 3.30 (Irial 1). The points A,B,C and D corres-
pona with those in Fig. 3.26. From Fig. 3.30, it is

seen that the dominant closed loopy poles lie outside
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thieir acceptahkle region Tor plant poles located at
poinﬁ;B,ﬁ} The closest approaci. of the "far-efft"
closed loop poles alsc occurs when the plaut pu;es are
at points B,g'whicb is -6.498: 7326.395. ¥or all other
points used in thé dominant root test, the "far-off"”
closed loop polesiweré well t: the left of the
established boundary shown in Fig. 3.26.

In an attempt to place the dominant closed idap
poles within their acceptable region, the position of
the mapping of the plant pole variation within the
mapping of the dominant closedloop pole region was
slightly altered as shown in Fig. 3.29. For this new
position and using tne new coordinates for poiut A,
the values of system gain and compensation zero

position are
kKK = 1045 Z,Z = -2.46 = j3.62

The results of this trial are shown in Fig. 3.30 (Trial
2). The deminant closed loop poles are still. outside
their acceptable region when the plant poles lie at
points B, B. The closest approach of the "far-nff"
closed loop poles is -7.019 £ j27.57% when the plant
poles ar~ at points B,ﬁ. Therefore the dominan . closed

loop pole region must be mapped into the X,Y plane

usiung a larger value of y. The manping of the nlant
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pole variation for P1 = 30 in the 46X, 4Y plane
remains unchanged.

Figure 3.31 shows the mapping of the dominant
closed loop pole region for vy = 22000 with the mapping
of the plant pole variation fitted within the interior.

Using poiht A 8gain gives the following
kk = 1165 Z,Z2 = -2.432 £ j3.608

From Fig. 3.32, this value of gainr and compensation

zero position place the dominant closed loop poles within
their acceptable region for all plant pole positions,
The closest approach of the "far-off" closed loop

poles occurs again when the plant poles are at B,E

and is -7.513 £ j29.661,

From inepection of Figs. 3.22 aand 3.23,1it is
noted that tne mapping of the plant pole variation is
quite sensitive to the value of P1 and that the size
of the mapping of the plant pole variation decreases

with decreasing P Therefore it may be possible to

1°
place the dominant clused loop poles within their
acceptable region at a slightly smaller value of system
gain KK if the valuerof P1 is decreased, This will
also place the "far-off" closed lcop poles closer in.
Figure 3.335 s1ows the results of vsing a value cf P1

= 28 and the same of gain and zeroc position as for

Trial 2 with v = 20000. - The savinz in gain between
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FiG. 3.32 DOMINANT ROOT TEST FOR ¥§=22000

AND P, =30

RK=1165 Z=-2.50 +73.56

o e

DOMINANT CLOSE
LOOPR POLE
REGION \

P sy

s, iy
Coovn




A IR I LU g BB e e e 4 TR A

I v BRI B R 12 9! O AP

R—N

O3

FiIG.3.33 ODOMINANT ROOT TEST FOR ¢ = 20000

AND R =28
RK= 1045 Z=-2.44+53.62
OOMINANT CLOSED G

L00P POLE
REGION 1

+
5
>

]
-+

'
M
E o
J
Uyt
1}
>
[
£0~
)
"n




ok

kK = 1045 and kK = 1165 is approximately 1 db, The
closest approach of the "far-off" closed loop poles
is -6.324 + j28.355 with the plant poles at B,B.
This design is probably satisfactory since the 2
closed loop poles lie to the left of the boundary
shown in Fig. 3.26 forrall but three other plant
pole positions near point B used in the root test.

From Figs. 3.29 and 3.31, it is noted that the
mapping of the plant.pole variation need not fit
completely inside the mapping of the dominant closed
loop pole region for all values off%)in order for the
dominant closed loop pcles to lie within their acceptable
region, The requirement that must be satisfied is :
that the mapping of S = S in the 4X,AY plane must
fit inside the mapping of t;e dominant closed loop
pole region for Sp = Spi. From Fig. 3.31, the ‘line
segment AB corresponds té Sp = -6 which is completely
within the mapping of the dominant closed loop pole
region for Sp = -6, The line segment CcD corresponds
to Sp = 10 which is completely within the mapping of
the dominant closed loop pole region fcr S_ = 10,

So for in the design example, the problemn of

variation in the plant gain factor has not been

considered. The actual value of gain which must be

added to the system is giveu by Eq. 3.34. TFor the
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design of P, = 28, Z,Z = -2,46 £+ j3.62 and kK = 1045,
the value is 10&5/kmin. If the plant gain variation
is assumed to be

k . =1s Kk < 1000 = k
min max

the compensation networks must have a gain of at least
1045. At k = k __.» the system gain is 1.ou5x1o6 and
for this large value of gain, the dominant closed loop
poles are essentially at the position of the compensa-
tion zeroes. Using the method outlined in Section 10
of this chapter, the angles of departure of the root
locus for dominant closed loop poles located at points

A, B, C and D in Fig. 3.33 were computed. The results

were as follows:

Point A: $d = =140
B: $d = 69°
C: &d = 64o
D: P, = 133°

These values are certainly satisfactory for the accept-
abie dominant closed loop pole region shown in Fig.

3.33. Therefore the design is complete.

3.12 Summary

The desigu procedure for gain and plant pole
variation is summarized below.
1.) Map the acceptable dominant closed loop

prole region into the X,Y plane using



2,)

3.)
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Eqs. 3.14 and 3.15 with parameters vy,

P

1 and Sp. Map the plant pole varia-

tion into the 4X, AY plane using Egs,
3.16 and 3.17 with parameter P,.

Determine the value of y and P, such

1
that the "far-off" closed loop poles

just satisfy the minimum damping factor
specifications for the problem and the
mapping of the plant pole variation in the
AX,AY plane can be fitted into the inter-
ior of the mapping of the dominant closed
loop pole region in the X,Y plane.

Solve for the wvalues of Kk, S0 and Po
using Eqs. 3.11, 3.12 and 3.13 which
determine the value of svstem gain and
the compensation zero position,

Check the design by determining the actual
closed loop poles for plant poles lying on
the boundary of the plant pole variation.‘
This is accomplished by determining the
roots of 1+Ld(s) = 0. Check the final
design for plant gain variation by using
the method outlined un Section 10 of this

chapter.

. ‘*‘“Wi .

SL R




This design procedure which includes the effect

of the "far-off" pole P, has several advantages over

1
the third order system considered by Horowitz.l4 Using
the third order approximation, the "far-off" closed loop
poles can not be positioned so that the damping factor
specifications are just satisfied. This results in
a waste of system gain since the "far-off" open lcop
pole must then be placed sufficiently "far-off" so
that its effect on the dominant closed loop poles is
negligible., In the fourth order approximation, the
effect of this "far-off" pole is considered on both
the mapping of the dominant closed loop pole region and
plant pole variation and can be used to determine a
more econowical design.

The next chapter considers the additional
effect of a drifting zero on the real axis on the

design procedure.
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CHAPTER 1V

PROBLEM OF SIMULTANEOUS PLANT GAIN,

POLE AND ZERO VARIATION

4.1 Problem Definition

This chapter presents an approximate design
procedure for handling the added problem of a drifting
zero on the real axis. This zero can be considered to
be part of a plant with a transfer function P(s),

givea by

k{(s+z)

P

(&.1)

where -z is the position of the drifting zero on the

real axis, Typically this zero on the real axis'is

close to the origin and hence to the dominant closed

loop poles, and has an appreciable ffect on the position
of the dowinant closed loop poles. The problem is

then to choose the compensation zero position and the
value of system gain such that the dominant closed

loop poles lie within their acceptable region despite
variations in the plant zero, parameter 2z, and in the
plant poles, parameters Sp and Pp. The problem is

shown in Fig. 4.1,
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Figure 4.2 illustrates the eftect on the domi-
nant closed loop poles for Pz=2 and z=3; it is similar
to the effect of lag compensation., Figure 4.3 is for
Pz=2 and z=1 which has aun effect similar to lead com-
pensation. These two figures, then, illustrate the
effect on the dominant closed loop poles of a zero
drifting from -1 to -3 when an open loop pole of Ld(s)
is placed at -2. As seen from Fig. 4.2, the system
designed according to the procedure in Chapter III is
not adequate to handle this zero variation on the real
axis, siace the dominant closed loop poles lie outside
their acceptable region. The aominant closed loop poles
could be forced into their acceptable region by using a
larger value of system gain. However, this may result
in a waste of system gain. Horowitz presents a method9
to determine whether a design for a given region of
plant pole variation is adequate to handle the effect
of a drifting zero on the real axis for a specified di-~
pole (closed loop pole-zero) separation. The presence
of the pole-zerv pair on the real axis may intfluence
the choeice of the compensation zero position., The
design procedurc presented in this chapter takes into
account the zero variation in determining the position

cf the compensation zeroces,
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4.4 Design Equations

In considering this problem, it does mt take
long to determine that the drifting zero added to the
plant pole variation, complicates the design procedure
to:a considerable extent. The dominant loop trans-
mission must now be designed to take into account two
independent types of variation, i.,e., zero variation
along the real axis and plant pole variation in the
complex plane. Because of this, the nearest "far-off"
open loop I', is omitted from Ld(s) to retain a fourth
order representation for the system. The expression for

Ld(S) is from Eq. 1.14

2 . /
kh(s +Sos+Po)(s+z) 4 khng(s)

L.(s) = = -
d s(sz+Sps+Pp)(s+Pz) dyls)
(403)
The expression for Td(s) is from Eq. 1.15
P P p, /z(s+z) P P, P, /2(s+2)
T (S) = 3 L z = D]( ?
d \ S
(s +Srs+Pr)(s+pcz)(s+pf ) d
1
(4.4)

The real axis root locus for this systzm for the ex-
treme positions of the drifting zero is shown in Fig.
Lok,

The mapping equations for this type of system

are derived in the same mauner as in Chapter III. The
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FIG. 4.4 REAL AXIS ROOT LOCUS FOR A FOURTH

ORDER SYSTEM WITH AR DRIFTING ZERO ON

THE REAL AXIS
Lyw = RK(s'+S,s+R)(s+y) , kK>O
S(s -oS,S*f.)(S-*PS)

CASE 1

JY%
CASE 2
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characteristic equation of the system is, from Eg. 2.3

Dd(s) = dd(6)+khnd(s)

(52+Srs+Pr)(s+pc )(s+pf1) = s(52+Sps+Pp)(s+Pz)+
Z

. 2
ku(s +Sos+P0)(s+4)
or
su+(S + ; )83+( +S _( + )+P )52+
rtPr “Pg Pg Pg r\Pg *Pc r
1 Zz 1 "=z 1 z

(Pr(pf1+pc )+S.Py P, )S+P P P =
z z 1

1 z

A

. 2
s ﬂPz+Sp+kh)83+(PzSp+Pp+kh(So+z))s +(PZP +kh(Po+Soz))s

P

+kKP°z (4-5)

Equating the coefficients in Eq. 4.5 yields the follow-

ing set of equations

Sr+pf1+Pcz = Pz+Sp+kh (4.6)
~ - ]
pf-lpcz+br(pf1+pcz)+Pr = PzSp+Pp+kh(So+z) (4.7)
P .
— )
r(pf +P, )+Srpf P, = Psz+kh(Po+Soz, (4.8)
1 z 1 "z .
Prpf1pcz = khP =z (u.9)




For the problem cousidered in Chapter III, the
paramcters relating to the non-dominant closed loop
peles on the left hand side of these quations were
eliminated by substitution. 1In this case a slightly

different approach is used. Define

ne>

U= P_+S_+kk (4.10)
z p
v & KhP z (4.11)
oA : , .
X = PzSp+Pp+kh(So+z) (4.12)
¢y
Y & Psz+kK(Po+Soz) (4.13)

The mapping equations for the dominant closed loop —ole

region are then

U = br+pf1+pCZ ' (%.14)
V = P pe P, (4.15)
1 z '
X = pp P, +S.(pp +P, )+P_ (k.16)
1 Z 1 z
Y = Pr(pf]+pcz)+srpf1pcz (4.17)

The total variation in X, AX.and the total variation in
Y, &Y, due to the variation in plant poles, i,e. para-
meters 5p and Pp and the variation in the zero v are

given by

i
2
2
=3
£
2
i
Ed
£
i
3
=




AX

PZASP+APp+khAz _ (4.18)

AY

PzAPp+khSqu (4.19)

Since kh and So are not apriori known, the first

approximations to «X aud 4AY are taken to be

-y pse] ey SN Py

"

- 4.20
§ AX PZASP+APP ( )

~

J
LY T PAP_ (%.21)

These equations are now identical to the mapping equa-

. .

tions 3.16 and 3.17 in Chapter III.

4

4,5 Design Procedure

RN

An outline of the design procedure that will be

Yo o wk

followed in this problem is as follows:

1.) Map the acceptable dominant closed loop

—

pole region into the U,V plane using Egs.

-

4,14 and 4.15 for fixed values of Ps and p_ .
1 Z

’\'\
.
S

Map the acceptable dominant closed loop

!

pole region into the X,Y plaue using Eqgs.

4,16 and 4.17 for the same fixed values of

famm

Pg and P, -
1 z
3.) Map the plant pole variation into the
4X,AY plane using Egs. 4.20 and 4.21 for

fixed values of Pz'

- 4.) Compare the two mappings in (2.3) above.

L If the plant pele variation in the 4X,.Y

ot

|




5.)

6.)
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plane does mt fit within the interior of

the mapping of the dominant closed loop

' pole region in the X,Y plane, then the

dominant closed loop pole regi n will have
to be mapped into botu the U,V plane and
X,Y plane using a larger value of pf1.
Solve for the values of kb, S, and P
using Egqs. 4.10-~4.13 where the values of
U,V are obtained from the mapping of the
dominant closed loop pole region in the U,V
plane and the values of X and Y are obtained
from the positioning of the mapping of the
plant pole variation within the interior
of' the mapping of the dominant closed loop
pole regiovn in the X,Y plane.

Determine the additional variation ot the
mapping of the plant pole variation in the
X,Y plane by using Eqs. 4.18 and 4.19 and
the values of kk and S_ obtaiued in (5).
If this additional variation can not be
accommodated within the interior of the
mapping of the dominant closed loop peoele
region in the X,Y plaue, then the dominant
closed loop pole region must be mapped into

both the U,V plane and X,Y plane using a

larger value of pf',
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The next five sectiuvns of this chapter elaborate on

these steps in the design procedure,

4,6 Mapping of the Dominaut Closed Loop Pole Region
Into the U,V Plane

The design procedure begins by mapping the
dominant closed loop pole region iuto the U,V plane

with parameters p. and p_ using Eq. .14 and 4.15.
1 z
The parameter Pe » which is the "far-off"
1

closed loop pole on the real axis, plays the same part
as the parameter vy = tho did in the design proucedure
of Chapter III, i.e., large pf1 implies large Kkh.

This can be ascertained from Eq. 4.6 since the para-

meters Sr’ P, - PZ and Sp de not have a large variation.
z

The other parameter in this uwapping operation

is P, the closed loop pole near the drifting zervo.
z
As an approeoximation to the value of P in- the mapping
z
operation, it is assigned values that include the mini-

mum and maximum vaiues of the zero z as wall as inter-
mediate values, In practice, this approximation can be

improved by performing the mapping operations for P, =
‘z

+62 where 61 and ¢, are the esti-

Z +6, and P, =2 2

max 1
A

mated dipole separations when the zero is at its maximum

min

and minimum positions respectively. The mapping of the
dominant closed loop pele region ianto the U,V plaue using

Egs. 4,14 and 4.15 is shown in Fig. 4.5.




Wit ——“y Sugiang

-«-:w_nl'-%

At b,

FiG. 4,5 MAPPING OF THE DOMINANT CLOSED
iLOOP POLE REGION IN THE S-FLANE |NTO
THE U-V PLANE

MAPPING EQUATIONS

ue= Sn,*f?f' "'Pcy

V = 6'- ﬂi f‘zf
PARAMETERS [, Pe,,
o v
S- PLANE U-V PLANE

e, © ft; MIN -

P

OOMINANT CLOSED
LOOP POLE
REGION

£




Mg s

'™

[re—.

hy

Woiars

10

SrL

R,

eargs

ot reldenmn gy

RPN

LI

1S

From {ig. 4.5 desote the wmapping of the domisant

2loced itowp polce regiovn into the L.V plane oy
Q, Ior p = I A . The mapping of the
i B Fe_ . FTmin’ “max- pping
2 2i
desmitiant clou<ed ilocp pole vegion into tue U,V plans
for ali vaiues of pP._ = pe_.€.2 . 2 * is shown in
< zi mir v o1X

Fig. 4.6. 7Tue uunshaded region shuwn in Fig. 4.6, de-

sred v the set (&, <can be written as

(]
'..«
<
t
17
.
'-J
o
w
lev)
[\&
Jome
14
e}
0
oy
ol
C
o]
'..Iv
-
o]
o'
[
th
4
el
[
w
jal
m
o
5]
e}
f
[
-
<
[*Y
F-I
<
o]
[/ .
Q
o)

ment uzed in Section 7 of Chapter {Il. An arbitrury

peiant in & will be used later tou seive for the reguired

]

vaiuw= 2f svstem gain KKk and T , P ynich deteramine

!
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1« rang S

=

N

Pe P P =V {4.24)
: f1 Czmin ©1 !
‘ Now consider another poimt defined by Sr and Pr
. 2 2
! mapped into the U,V plane for P, = P, for the
z zZmax
same fixed value of Pg » i.e.
1
S_ +p,. +p = U {(3.25)
oo F2 $1 Czmax -
. P = V (4.25)
¢ e ) bf!pczmax 2 2
! If the mapping definad by Egs. 4.23, 4.24 and Egs. :
: - S 7 : 7 .
i 4.25, 4.26 are tov have st least one point in common, -
e , the following coaditions must be satiszfied:

st

i 1 27 1 2 )
PR 3 ,
g
or 5 =B = p -5 {4.27)

i i B ®zmexz  “zmin

{

%f £y P ’

i v = ZHax - {2&.28)

. »
j 2 zmin
B z { existo,

Thercfcre in. order to imwsure that the se

there must eiriavy two poinis convained in the accéptable

T e
Lt a4

gowlnant lnsed loo ole region defined by 5, 2
T PP g1 Yy e 0 Fo

§—, - - S 1 3
;o zad S, P respsctively suca that kqs. 4.27 anu
. ] 2 -
4,28 are satisfied. These egustions sct a limi: on the

i

{

§ I

wmaxiwuw a3llowable vacistion in p  aand hence z in the
. - V ) ) bz -
mapoing opation. Thesy restrictions &re nol uverly

“h
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?
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If the zero variation is largs compared to the
acceptable dominant closed loop pole region and Eqs.
4,27 and 4.28 are not satisfied, the design procedure
presented in this chapier would have to be modified to
obtain a desig-.

The effect of the parameter pcz for fixed pfl

on the mapping of the dominant closed loop pole region

into the U,V plane is shown in Fig. 4.7. The acceptable

‘dominant closed loop pole regiouvn used in this aud sub-

sequent mappings in this chapter is the same as that
used in the design examples in Chapters II and III and
is shown in Fig. 3.26 and in the root tests of Chapter
IXI,

The effect of the parameter n»n at fixed P.

f1 z

on tte mepping of the dominant closed loop pole
regiou into the U,V plane is shown in Fig. 4.8.

».7 Mapping of the Dominant Ciosed Loop Ponle Region
Into X,Y Plane

The mapping of the dominant closed loop pole
regiecn into the X,Y plene is accomplished using Egs.
4,16 and 4.17 with the same values of p, and p_

: ) 1

V4

tnat were used in tne mappiug in the previous section.
This wapping operation is shown in Fig. 4.3. As in
Chapter III, the mapping of the plant pole variatsion

will be fitted inside this mapping to solve for the

values of kK, So and Po.

TV
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FIG. %4.T THE EFFECT OF THE PARAMETER ﬂ,’ON
THE MAFPPING OF THE DOMINANT CLOSED L20OP
POLE REGION INTO THE U-V PLANE
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FIG. 4.9 MAPPING OF THE DOMINANT CLOSED
LOOP POLE REGION IN THE S-PLANE INTO
THE X-‘.’ pLANE

MAPPING EQUATIONS
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The eff2ct of the parameter P, for fixed Pe
: 'z 1
on the mapping of the dominant closed loop pole region

‘nto the X,Y plane is shown in Fig. 4.10. The effect
of the parameter Pe for fixed p, on this same mapping

1 z
is shown in Fig. 4.11,

4.8 Mapping of the Plant Pole Variation Into the
AX,AY Plane

The napping of the plant pole variation into
the AX,AY 27 . s zccomplished using Egs. 4.20 and
.21, Since -arse equations are identical in form as
those in Caapter III, they will not be investigated in
detail here, This mappiang operation ounly considers
the variation in the plant poles. The variation in the
zero on the real axis will be taken into account later
in the design. The variation in plant gain may be
handled in the same manner as outlined in Chapter III.

The parameter Pz,Ache open loop pole placed
near the driftiang zero, occurs in the same manner in
Eags. %.20 and 4,21 as P1 did iu the mapping of the plant
pole variation in Chater 1II.

The mapping of the plant pole variation into
the AX,AY plane using Egs. 4.20 and 4.27 is shown in
Fig, 4,12 for va~ious values of P,. The plant pole
variation used in this mapping is ideuatical to that
used in Chapter III and is shown iu Fig. 3.26. Ae in

Chapter III, the units on this mapping in the AX,AY
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FIG. 4,10 THE EFFECT OF THE PARAMETER
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FIG. 4.1 THE EFFECT OF THE PARAMETER ﬁ‘

ON THE MAPPING OF THE DOMINANT CLOSED

LOOP POLE REGION INTO THE X~Y PLANE
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FIG. 4.12 MAFPPING OF THE PLANT POLE
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plane must be the same as those used in the mapping of
the dominant closed loop pole region in the X,Y plane,
The mappings of the plant pole variation for Pz=2 and
comparable units as those used 1n the mapping of the
dominant closed loop pole region into the X,Y plane

are also shown in Fig. 4.12,

4.9 Calculation of System Gain and Compensation Zero

Locatiuvn

Once the mappings o9& the dominant closed loop
pole region are obtained, an attempt is made to fit
the mapping of the plant pole variation in the £LX,4Y
plane into the interior of the mapping of the dominan:
clesed loop pole region in the X,Y plane as showa ia
Fig. 4.13. 1If this is not possible, then :he mapping
of tke dominant closed loop pocle region must be per-

formed at higher saiues of Pey- The mapping of the

" plant pole variation in the AX,AY niane 1s unchanged

since Pz is assumed to be fixed at the beginning of the
design. Once the mapping of the plant pole variation
- L4
can be fitted inside the mapping ¢f the dominant closed
loop pole region in the X,Y plane, the value of system
gain Kk and So’ PO, tne parameters that determine the
compensation <ero position, can b¢ determined.

The first step in solving for Kh, SO anc Po is
to choose au arbitrary point within the set Q oi the

mapping ol the dominant closed loop pole region in the
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U,V planc, Denqté this point by "O" and the values
of U and V at this point as U and V .

At point A in Fig. 4. 13, denote the values of .

X and Y as S ¥ P X, ard Y, respectxvely.:

.
Sp‘ ) Pﬂ upar pa’

—Since'Pz is also krown, kK cau be found from Eq. k.10 77:

l.e., i o -

kR = U -P_-S ,7 : (&.29)
This’leaves Eqé. L.11, 4.12 and 4.13 to solve for P
and So‘ The-vﬁiue of 2z is ai;o an unknbﬁn. This value
of 2z is needed to compute the added varzatxon in the
= mapping of the plant pole var1ation in the X,Y plane

(Eqs.fk.-s, 4.19). The effect of the zero varzation
on the design is considered in the next section.

Using Eq. 4.11 to eliminate z in Eq. 4.12 and

4,13 yields

~Xa:f,pzspa+PP£ka(SP+V0/th01 ' (4.30)
= P KK S A , ol ‘
Y, = Pzppa+kh(po+5640/k§po; ‘ . 7 (;.31)

Solving for P in these two equations yields the follow-
ing third order equau1on for P

(Psz Ya)Po vu(xa pzwp Pp P 2

?3+ a + - 2& a - 9 3 =
© kh : (kK) (kK)
(4.32)

H
3
;
:

i
E:
3
i
3
E
3
3
3
E
;
3
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Now Eq. 4.32 must have at least one real root
which is the one §f interest., - Note that P can not ke
~3gative oGr complex since Pd is relatad to the magnitude
of the cowmpensation zero.n Ounce Po has been 0b£ained,

S, can be found by solving Eq. 4.30 for S,» i.e.,

xa_Pibp -p

‘Sb = kk VkKP (l"’-33)

4,10 Effect of the Zer: Variation on_ the Design

The design is not complete once these values
have been obtained sihce,the zero variation Az in
Eqs. 4.18 and 4.19 was neglected in the mapping of the

rplant pole variation into the AX,AY plane., This added

variation in the mapping of the plant pole variation is

takeun into account in the X,Y plane by considering that
the covordinates of any point on the mapping of the

plantvpole variation in the X,Y plane could change by

-as much as

BX, = khhz  (b4.34)

LY, = kKS Az (4.35)

where sz and AYz is the change iu any point on the
mapping of tle plant pole variation.in the X,Y plane

due to the variation in the drifting zero only. The

_~2ero variation Az is computed as follows: From Eq.

k.11, the nominal value of z denoted by 2, 1is

LB AL b i < 4

TSV

’
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o
This is the value of z when the mapping of the plant

pole variation in the X,Y plane is in its original

position. {The position usad in the previous section to

compute kX, S and Po)’ The nominal value of z,,zo.A

will lie somewhere in the interval {zm 2

in’ "max

" of the values of Pc, used in the mapping operations.

The positive change in the coordinates of any point

] because

on the mapping of the planf pole variation in the X,Y

. plane is
Ax; = kK(z_, -z ) = +kKis (4.37)
AY, = khS (2 -z ) = +kKS iz (4.38)

whereas the negative change is

E

Ax; -z ) = -kKiz (4.39)

5Y] = KKS _(z_, -z ) = -kKS Az (4.40)

This variation is shown in Fig. 4.13. NMNote that &x;

is not necessarily equal to Ax; since z_ may lie

anywhere in thbe iuterval [z . .z ] This added
yw terval [ min'® “max? *. is

variation is taken into account by considering the

changes in the points A, B, C and I) on the boundary

of the mapping of the plant pole variation in the X,Y

(b8 R bt
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plane as shown in Fig. 4.13. The maximum possible
plant variation is the figure A'A'B'C'C'D' where the
primes indicate the new positions of the points A, B,
etc. If this added variation can not be fifted within
the interior of the mapping of the dominant closed loop.
pole region in the X,Yiplane, then, the dominant closed
loop pole region must be mapped inte the U,V and X,Y
planes usiﬁg a_larger value of Pfy- The mappiung of the
plant polé variation into the AX,AY plane }emaiﬁs un-
changed as long as Pz is unchanged.

The désign should be checked when the total
variation can nearly be fitted within the mapping of
the-dominant closediloop pole region in the X,Y plane
since this is an approximate design procedure. The
assumption that pf1 remains constant as the douwinant
closed loop poles vary is only approxima€ely true.

The mapping of the dominant closed loop poles at fixed
Pfy essentially determines the minimum value that pf1
aftaiqs when the actual closed loop poles éfe bbtﬁined
by factoring 1+L4(s) = 0. The mapping of the dominant
closed loop pole region in Chapter III at constant

Y = kKP0 was completely valid since kK and Po'are

fixed if the gain variation is neglected,

4.11 Summary
Unlike the design procedure developed in Chapter

III, the design procedure developed here is approximate,.
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Thq_assumption that pge, remains fixed as the dominant
closed loop poles vary is notﬁstrlctly valid. For
systems with large plant parawmeter variations, this
approximation should léad tc an acceptable design since
large gain implies a large value of Pr, and thus its
effect on the dominant closed loop pales wiil be slight.
The major difficulty encountered in this problem
was determining what_effect the zero variation had on
the mapping of the plant pole variation (Eqs. 4.18 and
4.19). From these equations, the values of kK and So
were needed tp map the plant pole variation into the
AX,AY plane exactly but this mapping itself was needed
to solve for kK and So’ This difficulty was‘overcome
by first considering the effect of the plant pole
variation alone aud then checking to determine if this
design was adequate to handle the added zero variation,
The effect ofrthe zero variation oo the mapping of the
dominant closed loop pole region was taken into-account

by the parameter P,
z

4,12 Design Example

The design example presented here has the same
S-domain specifications as the design example in Chapter
IIT (Fig. 3.26) with these two exceptions: The added
zero variation along the real axis, i.e. z <z:.z

min max

where z =1 and 2__ =3, The effect of the "far-off"
min . mEX

S RV R RTINS T (TP

E
£
3
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pole P, is neglected in order to retain a fourth order
representation for the syastem.

The first step in the design is to choose a
fixed value of pf1' Ia this design procedure, it is
difficult to obtain an approximation for the value of
pf‘,that should be used. Obviously le is going to be

rzlatively far-removed from the acceptable dominant

civsed loop pole region for large parameter variations.

B o B T T B B

‘Also the time domain specificatious for the problem
will probably dictate some minimum value of Pf, (see
Fig. 4.1). A value of 40 for pp, was chosen as the
first estimate, Figures 4.14 and 4,15 illustrate the
mapping of the dominant closed loop pole reginn in the
U,V and X,Y plane respgctively for Pr, = Lo, 1Imu
and z

#ddition, the dipole separations for z s b

max 1’

62,have been estimated at 0.3 and 0.05 respectively

min’

(See Section 4.6). Only the mappings for the maximum
and minimum values of p.  are shown in Fig. bh.14
since the set Q is completely defined by these two

mappings.

A value of Pz=2 will be used since this is mid-

way between the extreme zero positions and is the value
used to illusrtrate the effect of zero variation on the
dominant closed loop poles (Figs. 4.2 and 4.3). The
mapping of the plant pole variation for Pz=2 int» the

AX,AY plane is available in Fig. 4.12,

PR G G ey ey DAAME NN UM BREE MM VRN e




FIG. 4.14 MAPPING OF THE DOMINANT CLOSED

LOCP POLE REGION INTO THE WU-V PLANE
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FiG. 4.18 CALCULATION OF THE SYSTRM AND

COMPENSATION EERO POSITION FOR 7&’ = 40
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Pigure 4,15 shows the mapping ol the plaat
pvle variation for Pz=2 within the mapping of the
dominant closed loop pole region for pf1=ho and pc,

= 0.95, 2 and 3.3. At poirt A in bVig. 4.15

Xa = K20 Y = 2025

From Fig. 3.26 at poiut A

From Fig. 4.14, point "0' in the set ( is arbitrarily

chosen to have the coordianates
3] = 51 \Y% = Z
) o 2100

Using PZ=2, the value of kh can he obtzined from kg,

Using Eg. 4.32, the third order equation tor i is

18]
S 5 -Y V (X -y S {2 ) 2
. (1 zj P a> . o\ ta Ty Ty lp ) ) v
] i 2 “ a 0
Pl T P 2 T ¢
© (kv )~ (kh )
= (2(10)-2025) 2  zloclhz20-2(-¢j-10),  (2100)7 _
55 0 ey R v (oo &
(55) (55
.'5 2

i(;.)}’lﬂt’()jpu““!i()(} = O

«©
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Factoring the one real positive root of interest using

the convergence procedures in Appendix A yields

The position of.the compensation zernes is

P
"o

= 27.85

S, is obtained from Eq. 4.33,

420-2(-6)-10- -

2100

6.31

35

55

27.83)

=3.105.

= %/18.20

can now bLe checked to

adequate for the zero variation.

of 2z, z ,is found from Eq. 4.36,

Zz -

Lo

_ K-

2100

c kRKP
o

55(27.85)

= I&.Zéé

determine if 1t is
The nominal value

i.e,

.1'370

The positive variztioa in the mapping of the plent pole

variagion

and 4,38,

in

1,

the X, Y plane is found from Egs.

L.37
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ki\Su(zmaxfzo)

55(6.31)(1.63) = +566

The negative variation is found from Eqs. 4.39 and

4,40, i.e. ) ]
sz = kh(zmin-zo) = 55(1.00-1.37) ]
= - 20.4%
AY = RhS (2 . -z )
A 4] min [¢]

55{6.31){-0.37) = -128.5

This added variation is .taken into account by consider-

ing the change in the coordinates of points A, B, C and

D in tne X,Y plane as shown in Fig. 4.15. Since this

added variation cau not be completely accommodated

within the wmapping of the dominant closed loop poie

_region, the design is probably not adequate. Using .

these values of kh, So and Po’ the actual closed loop
poles were found for the boundary of the plant pole

variation shown in Fig. 3.2€ by determining the roots

of 1+Ld(s)=0. The results are shown in Fig. 4.16

which confirms that the design is inadequate.
As a check on the design procedure. the posi-
tion of the compensation zeroes was arbitrarily moved

to

Z,Z = -3.75 £ jh.25

oyl Byt
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in an attempt to force the dominaut clused loop poles
into their accep?able region, The result usiug the
same value of gain as before is shewn in Fig. 4.17
which indicates that this compensation zero'position
does not gield a satiSfactory design either. This
~implies that the mappings must be perforﬁed using-a
larger walue nf pr.

The next value chosen for Py Wwas 56. The
- 1 ,

mapping of the dominant closed loop pole region into the-

U,V plane aid X,Y plane for Fhis value of pf1 is shown
in Figs. 4.18 and 4.19 respeqtiQely. -The same value of
Pz=2 was used so the mapping of the plant pole varia;
tion in the 4X,AY plaue is unchanged. The mapping of
the plaat pole variation fitted within the interior of
the mapp;ng of the dominant closed loop pole region in

the X,Y plane is also shown in Fig. 4.19. At point A

in Fig. 4.19

The point "0" in tue set o from Fig. 4.18 is arbitrarily

chosen as

U . )
o = 61 v V_ = 2650

[0

Using P =2, the value of kh from iy, 4,29 is 65, Using

Fq. 4.32, the third order equation for P is
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FiG. 4.18 MAPPING OF THE DOMINANT CLOSED LOOP
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3 2 )
Po - 38,18 Po + 331 Po - 1663 =0

The real root of interest is

PITINNIRR

P07= 28.53

Tobat v it e 0 bR S

S, from Eq. 4.33 is

ek M4

S =6,68
o
The position of the compeusation zerces is

-3.34

2]
1

* 4.17

&
i

The nominal value of z, z_, from Eq. 4.36 is
z = 1.43

The added variation in the mapping of the plant pole

variation is found using Eqs. 4.37 - 4.40, i.e.

+

AXZ = +102 AXz = -28 ;
: -
AYZ = +682 AYz = -186.5 :

This additional variation is also shown in Fig. ’.19.
The additional variation can be easily accommodated - :

within the mapping of the dominant closed loop pile

Ml

rggion. The actual closed loop poles for this viilue

of' system gain and compensation zero position arec shown
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in Fig. 4,20, The design is more than adequate to handle
the plant pole and zero variation. The difference be-
tween the gain of this design and the previous design

is approximately 1,7 db.

For this particular design, a system gainrof
less than 65 would probably be adequate, This could
be verified by using a value of pf1 = 45 for the design
procedure. This would result in a system gain of 60.
Further reduction in system gain may be possible by
varying the value of PZ, the open loop polé used to
partially cancel the effect of the drifting zero.

As can be anticipated from the root test shown
in Fig. 4.20, the variation in plant gain will not
result in the dominant closed loop poles leaving their
acceptable region. Using the procedure presented in
Chapter III to check the angle of departure of the
dominant closed loop poles for the root test shown

in Fig. 4.20 confirms this,
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CHAPTER V

CONCLUSIONS — . S

The design»grocédures presénted;iﬁ this paper

are for fourth order systems with largé variaticns in
" the plant parameters (gain factor, polhs%andjzeroes).
Extension of these design procedures to & fifth order

system would be difficult since the mapping equqtidns

woulid be very cumbersome.

Two possibilities for additionalVWOrk“in_this
area are presentéd in this chapter which would be a
significant improvement over the design procedurés
developed in this paper. |

The first of these is a computor design routiné.
An initial gueés would be made as to the compensation
zero location at a fixed value of system gain. By
examining the resulting dominant cvlosed loop poles aund
possibly using a gradient technique, one could determine
in what direction the compensation zeroes should be
moved to place the dominant closed loop poles within
their acceptable region. This is complicated by the
fact that the necessary value of system gain is aiso
unknown since for small values of system gain, a design

is impossible for any compensation zero location,

e s
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Analytic expressions for the bouandary of the plant pnls
variation and nﬁégaccep&able dominant <losed 1oopppolg
region wouldrprubably be requiréd,

The second possibility in this probiem, would
be an attempt to ohtain an aualvuic solutioq tfor the
compensacrion zeco location and‘necessary value of
sysvem géin go place the dominant closed loop poles
within a given regioﬁ in the s;plaue for » given region
of planf pﬂié variétion.‘ Intuipively, one wouid think
that thére is a unique,va]ﬁe'ofnsystem giin ard compen-
sation_zero 160a£ion such that the cloéed loop poles
lic withia their acceptable region and the system gain
iarminimized. Unfﬁrtunateiy, a solution in closed.
form apﬁeébs tq_be,Veryvdifficult to obtain in even
trivial sases. Analytic expressiouns for the boundary
of the plént pole variation and iiiec acceptable dow inant
closed loop pole.region would certainly be reguired in

this design procedure,

'
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APPENDIX A
POLYNOMIAL FACTORING

AL Statement_ofrProblem

In many investigations of—feedpaqkﬁcontbolx
systems, polynomials;of rather high degree must bé
factoredf in the analysis‘of,feedback control sys-
tems, cthe éppraxiﬁate location of the rootrs in the
complex plané are often known. The prbblem usually is
one of determining if the roots lie within an acceptablet
region despite variations inrgain and/or plént para-—
meters. The polvunomial considered in this appendix
is of fifth order. A proceaure is first developed for
extracting one real root from this polyhomial. The
resulting fourth order polynomic~s is theu factored
into ;he product of two quadratics using iin's
method.! This method is applicable whether tﬁe fourth
vrder polynomial has real or complex roots. A method

~is then presented for extracting two real roots from &
Tourth order polynomial. The nomenclature is rhosen
to aid in the programming of tﬁese procedures on a
digital computor. The convergence of any of tﬁese

methads is not guaranteed.



A.2 Extraction of One Real Rocot From A Fifth Order
Polynomial

The fiftb order polynomial ic
SSawistiwastawisZawisiws  (a.1)

The coefficients W1, W2,/etc., are considefed to ber
real in ail cases.’

This procedure is baséd on the fact that an
approximation to the real root is given by the quotient
W5/Whk. An improvement on this approximation caa be
made after oné long division triai by considering the
binomiai term in the last subtraction process.1 With

this in wmind define
v(J) = W5/wi J=1 only (a.2)

where: V(J) = J* approximation to the real root. The

long division operation is shown below,.

*AI(J)s +A2(4ls +A3(J)s+AL ()
H
s+V(J) |53+W1su+h25 +WIsZWhs W5

S5+V(J)sb
{(¥1-v(J)}s*sw2s”

"L¥J viq);s +{wtyja) _v? (J‘}s
{w2~w1v(J)+v (J)}s +w3s

(w2-W1v(3) +v2(0)} s [Wav () -W1vi(4) +v3(3)} s
{w3-w2v(J)+w1v2(J)-v3(J)}52+was

¥
2
i
i
H
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{kg-W2VLﬁ+W1v2Ln-v§an52+{w3vgﬂ7wzvggg+w1v3gy-vhﬁn}s
{wh-W3v(J)+w2v2(J)-W1v3(J)+v“(J)}s+ws

{wh-w3v(J)+w2v2(J)-wav3(J)+V“(J)}s

+ {W&VLU-UBVz(J)bWZVB(J);WIVh(J}+V§(J)}

{w5-wyv(J)+wgv2(J);w2§3(J)+w1V“(J)-VS(J)}

The remainder term is the test for convergence. Let

¥

W”—W4V(J)+K3V2(J)-WZVB(J)+HIV4(J)—VB(J) (A.3)
If X is not sufficiently small, then the next triél

divisor V(J+1) is given by

V(J+1) = , 2w5 7 . (a.%)
Wh-w3v(J)+W2vT(J)-W1V_(J)+V (J)

The coefficients of the fourth order polynomial

arve given by

A1{J) = Wi1=V(J) (%£.5
A2{J) = WZ-K!V(J)+V2(J) (A.6)
- a oy 12 Ty vy ~
A3(J) = W3-w2v(J)+W1vS(J)-v7(J) (A.7)
| P AR i -~ - 2 3 z‘ IS
Ab(S) = WhA-W3V(J)+WavT(J)-w1vZ(J)+V (J) (A.3)

The iteration procedure is continued until the
value of X is sufficiently small or until a sufficient

number of trials have been made.

sy ine
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A.3 Liun's Method

This method is essentially the same as the pre-
vious procedure except the trial divisor is a quadra-

tic term. Let the fourth order pelynomial he given by

3

¥
s +Als +A252+A3$+Ah (A.9)

Define

B1(1I)=A3/A2; B2(I)=A4/A2 I=1 cnly (A.10a, 10b)
where: B1(I), B2{I) = coefficieuts of I® trial quadratic

The trial divisor in the long division operation is

given by

52+B1(I)S+B2(I) (A.11)

Performing the long division operation results in the
following
2
s“+C1(I)s+C2(1)
2 ; 4 3 2
s“+B1(I)s+B2(I) |s +A1s”+A2s " +A3s+AL

33+B1(I)53+B2(I)s2
{AI-B1(I)}53+{A2-82(I)}52+A33

{A1-BID) K +{ AT1B1@-81 2(1} $52+{ A1B2(1)-BDB2(I)!s
{A2-B2(T)-A1B1(I}+B12(1)} s%+{A3-a1B2(1)

+B1(I)B2(I)}s+Ak
{A2-82(1)-A1B1(I)+B12(1)}52+{A2B1(I)-

B1{T)B2(I)-A181%(1)+B1°(I)}s
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+{A232L1)-522(I)-A1B1(1) sz1)+52(1)31211)}
{A3-A1B2(1)+2B1(1)B2(I)-A281(1)+A1B12(I)

~B17(1)} s+{Ak-A2B2(1)+B27(I)+A1B1(1)B2(1)

-r2(1)B1%(1)}

The two remainder terms are the test for coenvergence,

Let

x=A3-A182(I)+zn1(I)Bz(l)-A231(1)+A1B12(I)-B13(1)

(A.12)

Y = Ah-A232(1)+B22(I)+A131(1)32(1)-32(1)B12(1)

{A.13)

If X and Y are not sufficiently small, then the co-

efficients of the next trial quadratic divisor are given

by
B1(I+1) A3—A1B2(I)+B1(IlB2(§l (A.14)
A2-B2(I)-A1B1(I)+B1°(1)
B2(I+1) = ab (A.15)

Az-Bz(I)-A1B1(I)+B12(I),

The coefficients of the remaining quadratic are

A1-B1(I) ‘ (A.16)

c1(1)

c2(1) Az-Bz(I)-AaB1(I)+B12(I) (A.17)
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The iteratioun procedure is continued until the
values of both X aud Y are sufficiently small or a
sufficient number of trials have been performed.

A4 Extraction of Two Real Roots From z Fourth Order

Polvnomiai

This method is applicable when it is known that
the fourth order polynomial has at least two real roots,
The fourth order polynomial is given by

stea153+4252 443544k

"As with the fifth order polynomial, define

H]

v(J) AL /A3 J=1 only (a.18)

where: V(J) Jt approximation to the real root

The long division operation results in

Y

+D1(J)s“+02(J)s+D3(J)
2D

s+V(J) Is +A180+A25" +A3s+AL

S

L=y IV

sh+V(l)s3
{AT-V(J)}53+A2$2

§A1-V(J)}53+{A1V(J)-VZ(J)}52
{A2-A1V(J)+V2(J)}52+A35

[A2-A1V(0)+V2 (3)} 524 {A2V(J)=A1V2(J)+V3 ()} s
{A3-A2v(J)+A1v2(J)-V3(J)}s+Ah

{AB-AZV(J);A1V2(J)-V3(J)}s;{ABV(J)—AZVZ(J)

+A1v3(J)-v“(J)}
{Ah-Ajv(J)+A2v2(J)-A1v3(J)+vh(Jn
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The remainder term is again the test for convergence,

i.e., let
2 3 4
X = AL-A3V(J)+A2VE(J)=-01V7(J)+V 7 (J) (A.19)
If X is not sufficiently s .all, the next trial
divisor is

Al

vier) = A3-A2V(J)+A1V3(3)-V2 ()

(A.20)

The coefficients of the third order polynomial are

D1(J) = AT1-V(J) . j (A.21).
n2(J) = A2-A1V(J)+V2(J) (A.22)
D3(J) =

A3-42V(3)+A1V2(J)-V3(J) (A.23)

After the first real root is obtained with a sufficient
degree of accuracy, the second real root is ex' =c:icd
from the remaining third degree equation. Let the

third order polynomial be defined by

s34+C18%4C25+C3 (A.24)

Define

u(I) c3/cz2 I=1 only (A.25)

where: U{I) 1™ approximation to real root.

The long division operation results in

BT TRy N A SR
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52+B15+B2
s+U(I) 53+C152+025+CB

SB+U(I)92
{CI-U(I)}82+C25

{01—U(I)L§2+{C1U(i)-U2§1)fs
{c2-C1U(I)+0P@)]} s+C3

{C2~C1U(T)+U (1)} s+{c2u(1)=-C1U3(T)+U3 (1)}
{03-c2U(1)+C1U2(I)-U3(1)}

The test for convergence is
X = CB-C2U(I)+C1U2(I)-U3(I) (A.26)

The next trial divisor, if X is not sufficiently small,
is

U(I+1) = c3 (A.27)

c2-c1u(1)+U% (1)

The coefficients of the quadratic equation are

B1 (1) C1-U(1) (A.28)

B2(I) = c2-C1U(I)+U>(I) (A.29)

In some cases convergence fails in the case of extracting
cne real root from a third order polynomial., In this
case convergeace cau sometimes be obtained by extracting
a guadratic from the third order polynomial.

Define the third order polynomial as



o mmeinttn

s2+C18°4+C254C3 (A.30)
Also define

D1(I) = cz2/ct; D2(1) = c3/C1 I=1 only (A.31a,
A.31b)

where: D1(I}), D2(I) = coefficients of the I% trial
quadratic, |
The trial divisor in the long division operation is
given by
52+D1(I)s+D2(I) (A.32)
The long division operation results in the following:

s+V(1)
2 ) 2
s"+D1(I)s+D2(I) | s +C18“4+C2s+C3

s2+D1(I)s%+D2(1) s
{c1-D1(I)}52+{c2-D2(I)}s+03

;{C1-D1(I)}sz+{C1D1(I)-D12(I)}s
+{C1D1(1)-D1(1)D2(1)}

{C2-D2(I)-C1D1(I)+D12(1)} s

+{C3-C1D1(I)+D1(I)D2(1)}
The two remainder terms are a test for convergence. Let

X = £2-D2(1)-c1D1(1)+D13(1) a.33)

Y = €3-C1D1(I)+D1(T1)D2(I) (1.34)

If X and Y are not sufficiently small, then
the coefficients of the next trial quadratic are given

by

B ity s d ke Bavien ke E Bt i s

al e,



D1(L+1) = %%f%%%%%— (A.35)
, C .
D2(1=1) = ET:B%TET_ : (4.36)

The real root is

s = -V(I) = -(C1-p1(I)) (A.37)

A,5 Conclusion
The factoring procedures presented in this
appendix may be used for fifth, fourth or third

order polynomials possessing either real or complex

roots or both. It should be stated again that the

convergence of ncne of these procedures is guaranteed,



APPENDIX B

ANGLE CONTRIBUTION THEOREM

B.1 Statement of Problem

Tois appéndtx preSeﬁté'a éébmet;ic proof o}
the statemeut in Chapter ]I regardlne the angle contiri-
bution of two zeroes xu a complex polo 1ocated in the”
s-plane, The statement to be proved is us;follows:
The angle contribut;bn gpe,£§'t§o cnﬁjugaﬁé ze?oes #o
a complex pole is a éonstant ifbfhé’iéroeg aﬁ§floqai9d
on a ci}cular arc drawn thfough_ﬁhe compiéx gblerah& 
its conjugate and a third point Xhénhthe real axis

defined by the equation
/ * = . (‘c‘
LXpd ez/z ‘B_a)

where: pé is the complex pole

SZ is the angle contribution due to the zeroes

B.2 Geometric Proof

The geometric proof ewseutvially shows that if
the compensation zeroes are located on a circular arc
through the points péxﬁg, th angle cnntribufion Sz is
a constant independent of the position of the zeroes
on the circular arc and that E£q. B.1 is satisficd,

The proof is shown in Fig. B.1.
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The _proosf begins by defiaing

ad = o .‘:pé

@1 = L Zpé
@2 = L Zp}

to prove tihat

@1 -l-q)z = 2Q
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(B.2)

(B.3)

(B.4)

(B.5)

from Fig. B.1, it is noted that the inscribcd angles

*Z2 D% xNp* *Z Dk - int i c
depd, pdhpd, and pdlpd all intercept the same circular

arc pésg. Therelfore from 2 basic theorem in plane

1 .
geometry, the following can be stated

t PYEPY = Y2m p,p;
L deEZ; = 12m 9d§5
L PREPY = ¥2m p,p¥
where: 1/2 m pdgé = one-half of the measure
¢ircular arc péSé
Als¢ from Fig. B.1,
A péZpé = @1+¢2
. piXp* = 2
L pd.\pti a
L p¥lpy = ¢1+¢2
Therefore
¢ -.@ = 23

(B.6)

{(B.7)

{B.8)

ofi the
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