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A FLIGHT MEASUREMENT OF OPTICAL RADIATION FROM SHOCK-HEATED 

AIR BY USING A TRAILBLAZER IT VEHICLE 

By Lloyd S. Keafer , Jr., and Ernest E. Burcher 

Langley Research Center 

SUMMARY 

A flight measurement of optical radiation from shock-heated air was obtained by 

using a Trailblazer II vehicle. Observations in two spectral bands were made near the 

stagnation point of a high-velocity (6 km/sec) body at extremely high altitudes (80 to 

55 km). The reentry body configuration and the reentry velocity allowed observations of 

nonequilibrium radiation effects not previously measured in flight. Severe truncation and 

collision limiting were experienced. The measurement results were compared to analyt­

ical predictions and previous experiments. 

The experiment results complemented those from Project Fire and those from 

ground-based investigations and can be applied to the problem of reentry heating and to 

the evaluation of the concept of optically detecting and tracking noncooperative reentry 

vehicles. The measurement technique used in this experiment, because of its simplicity, 

may be applicable to other reentry experiments. 

INTRODUCTION 

The shock-heated air in front of a high-velocity reentry vehicle radiates in the 

ultraviolet, in the viSible, and in the near-infrared parts of the optical spectrum. The 

spectral intensities of the various radiating species of dissociated air have been observed 

in ground-based Simulations, and the mechanisms of excitation and decay have been 

studied extensively. Because of their complexity and expense, extensive in-flight exper­

iments have seldom been conducted. The results of a simple flight experiment are 

described in this paper. The objective was to measure stagnation-point radiation at high 

altitudes. Particular emphasis was placed on the ultraviolet part of the optical spectrum 

because its attenuation in the lower atmosphere precluded experimental investigation in 

previous flight programs. 

The payload was accelerated to its reentry velocity by using the five-stage 

Trailblazer II vehicle. The small conically shaped body attained a reentry velocity of 

6 km/sec. The m easurements of the radiation from the shock-heated gas were made at 

altitude s above 55 km. With this body size and shape, reentry velocity, and altitude range , 
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flight data were obtained on nonequilibrium radiation. The effects of truncation (attenua­

tion of the radiation by protrusion of the body into the shock layer) and collision limiting 
were observed. 

This paper describes the radiation measurement system and presents the flight 

data. The results are compared to analytical predictions, and conclusions are drawn 

concerning the spectrum, the overall levels, the degree of truncation, and the degree of 

collision limiting of the nonequilibrium radiation. 
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SYMBOLS 

radius of reentry body, meters 

temperature in shock layer, degrees Kelvin 

particle residence time, seconds 

radiant emittance per unit shock-layer thickness; radiant-energy density, 

watts/meter3 

velocity of reentry body, kilometers/second 

distance shock front stands off from reentry body; standoff distance, meters 

solid angle of monochrometer (see fig. A-3) 

distance from shock front along streamline, meters 

air density in shock layer, kilograms/meter3 

free-stream (ambient) air density, kilograms/meter3 

standard (sea-level) air density, kilograms/meter3 

acceptance angle of radiometer (see fig. A-3) 

CHARACTERISTICS OF SHOCK-WAVE RADIATION 

In every shock layer a zone exists directly behind the shock front where the air 

cannot adjust instantaneously to the new energy conditions and a state of thermal and 
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chemical nonequilibrium exists. Farther back from the shock front a zone exists where 

thermochemical equilibrium is approached. Figure 1 is a schematic representation of 

the thermochemical nonequilibrium and equilibrium zones in a normal shock wave and 

shows the variations of temperature, density, and radiant-energy density as functions of 
distance behind the shock front. 

T ~d P ~_-_-_-_-___ ----,-___ _ 

Radiant­
energy 
density , u 

Shock 
front 

Distance behind shock front 

Nonequilibrium 
zone Equilibrium zone 

Figure L- Radiation zones behind a normal shock front. 

A description is given in reference 1 as follows: "Directly behind the shock front 

very high translational temperatures exist, approaching the values in a perfect gas. The 
density jump across the shock front is initially close to the perfect gas value. Further 

downstream, electronic excitation, vibration, dissociation, ionization, and formation of 

new species take place until the thermochemical equilibrium conditions of the gas are 

finally reached. During these overlapping processes, loss of energy from the transla­

tional mode reduces the translational temperature and the temperature and density 

approach the equilibrium values. The high temperatures existing near the shock front 

cause a strong radiation overshoot, as depicted in the figure. There is an excitation time 

for the radiation to build up to its peak value, believed to be closely related with the time 

required to populate excited electronic states, and then a relaxation (or decay) time for 

the radiation to decay to the equilibrium level." 

This picture of the radiative process was developed from aerodynamic, thermody­

namic, and band-radiation theory, and from the results of many experimental observa­
tions. The experiments, being ground based (for example, shock tubes and ballistic 

ranges), afforded individual control of many parameters, but difficulty was experienced 

in simulating all conditions of reentry flight. In particular, large reentry bodies could 

not be tested for extended periods, and high-altitude (low-density) tests, where nonequi­

librium radiation predominates, are subject to numerous errors. 

3 
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EXPERIMENT DESIGN 

At the time this flight experiment was conceived, two reentry radiation­

measurement programs were being conducted, Project Fire and Trailblazer. Project 

Fire was designed to investigate the radiant heating problem of large reentry vehicles. 

The Fire flights employed blunt bodies reentering at velocities greater than 10 kIn/sec. 

The radiation observed was mainly from the equilibrium zone (ref. 2). A series of small 

reentry bodies were flown from Wallops Island, Virginia, by using the Trailblazer vehi­

cle. This vehicle (and the supporting program already in operation) appeared to be the 

most convenient and economical means for performing this experiment. The reentry 

bodies used in the Trailblazer program were normally passive and reentered the earth's 

atmosphere at velocities around 6 kIn/sec. Ground-based cameras were used to observe 

the shock-layer radiation from the velocity package. The velocity package (that part of 

the spacecraft that is accelerated to reentry velOCity) consisted of a 12.5-cm spherical 

rocket motor fitted into the aft section of the reentry body under investigation. 

A basic 60 conical body with a 4-cm-diameter hemispherical nose was chosen for 

this investigation. The complete package was 76 cm long and weighed 9 kg. For this 

experiment, the Trailblazer velocity p.ackage had to be outfitted for onboard measurement 
\ 

of the radiation, since ultraviolet radiation is strongly attenuated in transit through the 

lower atmosphere. The payload is finally destroyed during reentry so that the data had 

to be retrieved via telemetry. Part of the experiment consisted of evaluating the perfor­

mance of a lightweight X-band telemetry system which was capable of penetrating the 

plasma blackout sheath during the measurement period (ref. 3). Figure 2 is a sketch of 

the velocity package as designed for this experiment. A discussion of its more important 

design features follows, and a detailed description appears in appendix A. 
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Figure 2.- Velocity package. 
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In order to view only the radiation from the shock-heated gas, and to avoid the 

radiation from ablative products, a nonablative nose-cap material was required. This 
material also had to act as a heat sink to delay its melting (and destruction) so that mea­

surements could be made deeper into the atmosphere. Oxygen-free copper was selected 

for the nose cap itself; farther back, a noncharring ablative coating was used. The radi­
ometer system, which consisted of two broadband sensors in the copper nose cap, detects 

the stagnation-point radiation through two solid light pipes. This arrangement was nec­

essary because of the sizes of the sensors and their inability to withstand a high­
temperature environment. One detector was sensitive primarily in the ultraviolet, the 

other in the infrared; high radiation levels were expected in these two spectral bands, but 
little radiation was expected in the visible region. 

Ballast was added to the velocity package to keep its center of gravity well forward 

for flight stability. The batteries for the radiometer were located in the ballast. The 

encoder, the X-band transmitter, and the antenna were placed in the larger end of the 

body where they were adequately shielded from the heat. 

Temperature measurements of the nose cap were made at several locations with 
thermocouples to study the heat transfer and to monitor the light-pipe and sensor environ­

ments. The temperature and the performance of the telemeter were also monitored. 

Details of the fabrication, environmental testing, and calibration of the measurement sys­

tem are presented in appendix A. 

FLIGHT RESULTS 

The flight was launched from Wallops Island in May 1965. The velocity package 

reached an altitude of 300 km and reentered the atmosphere at a velocity of 6 km/sec. 

The reentry part of the altitude-velocity time history is shown in figure 3. The overall 

data period lasted about 11 seconds and, as expected, the X-band telemetry delayed radio­

frequency blackout until very late in this data period. The telemetry transmitter, how­
ever, operated under reduced power during most of the flight because of a partial failure. 

This partial failure caused some data dropouts, but the measurement instrumentation con­

tinued to function properly throughout the flight. The four channels (numbered 10, 11, 12, 

and 13) of optical radiation data and the three channels (numbered 14, 15, and 16) of tem­

perature data are shown in figure 4. Each of the channels was sampled at the rate of 

45 times per second. Some dropouts occur for only one time frame, while others last for 
as long as 10 frames, thus precluding automatic data reading. The reading is uncertain 

in the order of 0.5 X 10-3 volt, which is the main source of error in reducing the data. 
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Temperature Data 

None of the thermocouple outputs were above the reading noise level prior to 

401 seconds. The thermocouple located at the tip of the nose cap between the two light 

pipes (0.25 cm below the surface of copper) indicated a temperature rise to the melting 

point of copper in the next 5 seconds. The thermocouple located along the side of the 

nose cap and the one located near the optical sensors indicated temperature rises only 

after the blackout period was over. Apparently, the copper nose cap performed well its 

function of delaying nose-cap melting and protecting the optical instrumentation during 

the measurement period. 

Optical Data 

Telemetry channels 10 and 11 read the output of the ultraviolet radiometer, while 

channels 12 and 13 read the output of the infrared radiometer. The attenuation was 

adjusted so that channel 10 was 20 times more sensitive than channel 11; similarly, 

channel 12 was 17 times more sensitive than channel 13. The end of the usable data 

period occurred when the telemetry channels saturated, nominally at 20 mY. The data 

period for the infrared radiometer (channels 12 and 13 combined) lasts less than 3 sec­

onds, ending around 398.3 seconds. The data period for the ultraviolet radiometer (chan­

nels 10 and 11 combined), however, lasted almost 4 seconds longer. For this added time 

the slope of the voltage curve is smaller, except at 402 seconds, where the curve abruptly 

jumps to the telemetry saturation level. Possible deleterious effects responsible for this 

anomalous action are discussed subsequently. The small fluctuations in the data (beyond 

what can reasonably be assigned to reading error) are probably caused by the body spin 

and coning motions which move the stagnation point off the geometric center line away 

from the light pipes. (Body motions were not measured.) Because of the anomalies 

caused by telemetry dropouts, body motions, and the action of channel 11 beyond 

398.5 seconds, the data have been faired, and only the period from approximately 396 to 

398 seconds is considered in subsequent comparisons to analytic predictions and other 

measurements. 

Reduction of Optical Data 

All field calibrations during the prelaunch period satisfactorily repeated (within 

±5 percent) the initial field calibration which was made immediately after the laboratory 

calibrations. The primary (laboratory) calibrations used to reduce the data are shown 

in figures 5 to 8. The calibration of the solid angles of acceptance (fig. 5) and the cali-

bration of the absolute spectral response (fig. 6) were done simultaneously by using 

intense sources, a special diffusing element, and a standard thermopile. The spectrum 

for the nonequilibrium radiation antiCipated for the flight conditions is discussed in 
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appendix B and is shown in figure 7. This spectrum was used with figure 6 to derive the 

calibration curves (fig. 8) for the two radiometers in their respective spectral bands. 

The dashed-line parts of these curves represent radiation levels anticipated in flight 
which could not be produced in the laboratory. (Details of the calibration procedure are 

given in appendix A.) By using these calibration curves the measured voltages from fig­
ure 4 were converted to shock-layer radiances in watts/meter2-steradian in the two spec­

tral bands. Since very little radiation was expected in the region of the overlap of two 

radiometers and in the region outside their combined spectral band, the two radiances 

were summed directly to obtain the total radiance. These results are plotted in figure 9 

and are discussed and compared to analytic predictions and to other measurements in the 

subsequent section. 

DISCUSSION OF RESULTS 

As described previously, the density and temperature conditions of the shock layer 

give rise to vibrational excitation, dissociation, and ionization of the gas, and to the for­

mation of various radiating species. In the nonequilibrium zone the density and tempera­
ture conditions change rapidly with distance from the shock front (fig. 1), and the radia­

tion profile also shows rapid changes. In the equilibrium zone farther back from the 

shock front the conditions stabilize, and the radiation becomes nearly constant with dis­

tance from the shock front. 

In order to compare the flight results to analytical predictions and other observa­
tions, the relative contribution from the two zones must be determined. Normal shock­

wave theory predicts that the equilibrium radiation will have a larger ultraviolet com­

ponent and will predominate at free-stream densities representative of altitudes below 

30 km (refs. 4 to 7). At the lower densities (altitudes above 42 km) the nonequilibrium 

radiation should predominate. Furthermore, aerodynamic theory predicts that at the high 

altitudes a nonblunt body will protrude into the bow shock layer far enough to truncate 

effectively the whole equilibrium zone. Calculated predictions of the equilibrium radia­

tion are given in appendix B. A comparison of the calculated predictions (spectrum and 

nontruncated level) to the flight results supports the thesis that equilibrium radiation is 
negligible for the low-density conditions experienced throughout the whole measurement 

period. 

In order to make the comparison of the flight results to nonequilibrium radiation 

predicted by theory and other observations, the following approach was taken: 

(1) Derive an anticipated spectrum from theory and experimental observations. 

Compare the contributions in the two spectral bands. 
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(2) Calculate the total radiation predicted from the complete nonequilibrium 

reaction zone (that is, no truncation) of a normal shock wave for the conditions of free­

stream density and velocity experienced in flight. 

(3) Estimate the radiant-energy density profile in the nonequilibrium zone for a 

normal shock wave and for a bow shock wave along the stagnation streamline. 

(4) Calculate the attenuating effects of truncation of the nonequilibrium zone by the 

effective protrusion of the body into the shock layer. 

(5) Estimate the effects of collision limiting. 

Nonequilibrium Spectrum 

The spectrum of the nonequilibrium radiation for the conditions of this flight was 

difficult to predict because of incomplete theory and lack of experimental measurements. 

Only an estimate of the spectrum could be made by using the few data available (mainly 

from refs. 8 and 9). The method and rationale used for this estimate are given in appen­

dix B. This anticipated spectrum (fig. 7) was used initially to reduce the flight data. 

Maximum radiation is predicted in two broad spectral regions, one between 0.25 JJ.m and 

0.45 JJ.m and the other between 0.55 JJ.m and 0.95 JJ.m. Minimum radiation is predicted in 

the main part of the visible spectrum. The two radiometers exhibit good response in the 

spectral regions where maximum radiation is expected. 

The ratio of the sensor outputs is the only indicator of the relative spectrum of the 

measured radiation that can be obtained with only two broadband measurements. The 

measurements showed that the ratio of the ultraviolet radiation to infrared radiation was 

about 1. This ratio agrees with the predicted spectrum (which was based primarily on 

shock-tube data), so no further refinement of the spectrum was made. Alternately, the 

ratio disagrees with the postulate that nonequilibrium radiation, like equilibrium radia­

tion, has a very large ultraviolet component. Since the total radiation (ultraviolet plus 

infrared) does not exceed that predicted by theory (as is shown subsequently), the con­

clusion that the ultraviolet radiation is not unduly large represents the accomplishment 

of the experiment's objective. Because in this experiment no evidence was found that the 

magnitude of the ultraviolet radiation from the shock layer at high altitudes is unusually 

large, any assessment of the concept of using this part of the optical spectrum for high­

altitude detection of noncooperative reentering vehicles by high-altitude aerospacecraft 

must take this negative result into consideration. 

Total Nonequilibrium Radiation 

The theory and other experimental measurements (refs. 1 and 8) indicate that an 

integration of the radiant-energy density over the entire thickness of the nanequilibrium 

15 
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zone yields a constant value of radiant emittance for a constant velocity. The radiance, 

that is, radiant emittance per unit solid angle, is then independent of body shape and size 

and of the free-stream density. This unusual result applies for conditions when binary 

collisions predominate and when the bow shock wave can be approximated by a one­

dimensional normal shock wave. The value predicted (ref. 1, fig. 18) for a flight velocity 

of 6 km/sec is 4.8 x 103 W/m2-sr. The flight data, instead of indicating the constant 

value predicted, show a rapid increase in radiance with time (and free-stream density), 

and the maximum value obtained at the end of the infrared radiometer's data period is a 

factor of 20 less than the predicted constant value. Apparently, the bow shock conditions 

were not proper for experiencing this phenomenon during any part of the flight. 

Truncation 

Radiation profiles. - Figure 10 illustrates the relative size of the body, light pipes, 

and bow shock wave. Also illustrated in figure 10 are the radiant-energy density pro­

files along the stagnation streamline for a bow shock wave and a normal shock wave under 

the same conditions of ambient density and velocity. The differences observed are attrib­

utable to different velocity histories of the particles behind the shock front. Along the 
stagnation streamline the particle velocity relative to the shock front drops rapidly from 

maximum at the shock front to near zero at the body. A view along this line shows the 

nonequilibrium and equilibrium zones. For nonstagnation-point streamlines the particle 

velOCity does not fall so rapidly and the radiation profile approaches that of a normal 

shock wave. Because of the curvature of these streamlines a view from a radiometer 
intersects only a fraction of the nonequilibrium zone and misses completely (truncates) 

the equilibrium zone. A quantitative evaluation of this effect cannot be made without a 

complete flow analysis, but a blunt body is expected to show less truncation than a pointed 

body. A pointed body effectively protrudes farther into the shock layer. 

As the free-stream density decreases, the relative size of the nonequilibrium zone 

increases. (The density and temperature conditions change, and the excitation and relax­

ation processes in the gas last longer.) Consequently, the normal truncation in a bow 

shock increases to the point where the radiation peak is not reached in the bow region of 

the body but occurs farther downstream. 

Truncation calculations.- Calculations of the predicted degree of truncation for the 

flight conditions require a knowledge of the following conditions: 

16 

(1) The standoff distances of the bow shock wave for the particular body shape and 

size 

(2) The increase in size of the nonequilibrium zone with decreaSing density 

(3) The radiation profile in the bow region 
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A calculation was made by using the shock-standoff-distance theory of references 10 and 

11, and the nonequilibrium-zone model of reference 9. (The calculated nonequilibrium 

shock-standoff distance for the flight conditions varied from 1.1 to 2 times that for the 

equilibrium case. The distance along a streamline to peak radiation is assumed to be 

the same as that for a normal shock wave.) No flow analysiS was attempted for deter­

mining the streamlines and for evaluating the profile segments viewed by the radiom­

eters. Instead a model was assumed in which the radiation profile follows a straight 

rise from the shock front to the point of peak radiation, and in which the radiometers 

view a segment behind the shock front the length of which is equal to the nonequilibrium 

shock-standoff distance. The result of this calculation is shown in figure 11, and is 

labeled "normal shock-wave model." Shock-layer radiation theories commonly use free­

stream density and velocity as basic parameters. Since velocity is practically constant 

for this flight, the measurements and predictions shown in figure 11 have been plotted 

against free-stream density. 

Another calculation was made for nonequilibrium radiation, which accounted for the 

differences in particle velocities behind the shock front between normal and bow shock 

waves. In the bow shock wave the particle residence time was calculated by using the 

relation t:::::: o~r In (1 -~) from reference 12 (V called V s in ref. 12). The calcula­

tion applied to the stagnation streamline and assumed that the radiometer viewed the first 

three-quarters of this streamline, that is, .5. = 0.75. The result is also shown in fig-
6 

ure 11 and is labeled ''bow shock-wave model." In the absence of a knowledge of the flow 

streamlines, these two models serve to bound the analytically predicted truncation of 
nonequilibrium radiation. 

A prediction based on other observations was possible only by extrapolating their 

results to lower densities and by scaling for body size and velocity. The ballistic-range 

data from reference 1, adjusted by this method, is also shown in figure 11. 

Agreement of the predicted and measured values is good in the region where the 
free-stream denSity ratio is 10-4, but not as good for lower densities because the slopes 

of the curves are considerably different. The two truncation models predict the radiation 

to be roughly proportional to free-stream density to the second power in the region of the 

measurements, with diminishing dependence at higher densities. The ballistic-range 
measurements show a similar trend. (Without truncation there is no predicted depen­

dence of nonequilibrium radiation on free-stream density, and the equilibrium radiation 
varies with density to approximately the one and seven-tenths power.) The flight mea­

surements, however, show that the radiation is proportional to free-stream density to 

greater than the third power, which indicates an additional density-dependent process. 
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Collision Limiting 

At low densities the particles become too sparse to produce a sufficient number of 

collisions to maintain the population of excited particles against the drainage by radiation. 

This effect is called collision limiting, and it effectively changes the truncation process 

by changing the radiation profile. This collision limiting is expected, first, to reduce the 

peak value of the radiation profile and, second, to change the shape of the profile. 

Because experimental measurements have been unable to separate these two changes in 

the profile, the results are usually reported only as collision-limiting factors, which vary 

fr om 1 where the effect is nonexistent to 0 where the effect completely stops all radiation. 

The measurements of reference 1 indicate collision-limiting factors should be less 

than 1 for density ratios of less than 2 x 10- 5. The empirical data from Project Fire 

were used, in a manner similar to that described in reference 2, to predict actual 

collision-limiting factors for this flight. By using these factors to modify the bow shock­

wave truncation in figure 11, better agreement is obtained between prediction and experi­

ment, that is, the slopes of the curves are more nearly equal. When the shock-standoff 

distances and the nonequilibrium-zone sizes used in the truncation calculations are 

assumed to be reasonably accurate, this experiment indicates that collision limiting for 

this flight is more severe and continues to higher densities than predicted. 

Accuracy and Anomalies 

The radiometric calibrations repeated within 5 percent, and the overall uncertainty 

in the measurements was estimated to be less than 25 percent in the data period from 

apprOximately 396 to 398 seconds. This accuracy was judged to be adequate for the 

dynamiC range of the radiation and the objectives of the experiment. However, the 

experimental results could be more useful if the ultraviolet radiometer (channel 11) data 

obtained during the 398- to 402-second period were valid. These data were not included 

in the preceding discussion because of the rapid slope change around 398 seconds and the 

abrupt saturation at 402 seconds. The data, however, may represent real shock-layer 

radiation changes. When the extrapolation in the calibration curves is assumed to be 

valid (see appendix A), the validity of these data revolves around the question of light-pipe 

melting and the resultant deleterious effects of self-radiation and transmission losses. 

The measured radiation did not seem to include an added component due to thermal 

radiation of the light pipes themselves because the surrounding copper was not hot, and 

very likely the quartz light pipes were not hot, and the radiation from melting quartz 

would be considerably less than the values measured. (See section entitled "Environ­

mental Testing" in appendix A.) However, the shock-layer radiation transmitted through 

the light pipes could be attenuated Significantly by a suffiCiently thick layer of melted 

quartz. The abrupt loss of such a molten layer could account for the sudden rise in the 
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output of the ultraviolet radiometer at 402 seconds. Accurate simulation of this effect is 

not pOSSible, so that the question remains unresolved. Because of the Simplicity of the 
measurement technique used in this flight, it may be applicable to other reentry experi­

ments for which more accurate simulation of the environment and the performance of the 

light pipes may be desirable. 

SUMMARY OF RESULTS 

This experiment provided a look at the stagnation-point radiation from a reentry 

body at extremely high altitudes. The reentry body configuration and the reentry velocity 

allowed observations of nonequilibrium radiation effects not previously measured in 

flight. The experiment results, therefore, complemented those from Project Fire and 

those from ground-based investigations and can be applied to the problem of reentry 

heating and to the evaluation of the concept of optically detecting and tracking noncooper­

ative reentry vehicles. The following general conclusions may be drawn: 

1. The measurements verify the overall shock-layer radiation levels predicted by 

nonequilibrium theory. 

2. In the stagnation region the contribution that the ultraviolet makes to the total 

radiation is not large. 

3. For nonblunt bodies the truncation of the radiation by projection of the body into 

the shock layer is within the bounds of the analytical predictions for free-stream density 

ratios greater than 10-4. 

4. Radiation limiting caused by the sparSity of binary collisions at high altitudes 

(low densities) appears to be at least as Significant as that predicted by theory and other 

measurements. 

5. The measurement technique used, because of its simplicity, may be applicable 

to other reentry experiments. 

Langley Research Center, 

National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 9, 1968, 

125-24-01-11-23. 
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APPENDIX A 

MEASUREMENT SYSTEM 

This appendix presents some detailed information on the fabrication, environmental 

testing, and calibration of the measurement system. This information should aid in the 

understanding of the experiment results , as well as in the evaluation of this simple and 

compact radiometric method as a possible technique for other applications in severe 

environmental conditions similar to that of reentry. 

Figure A-l shows a cutaway diagram of the radiometer. The radiometer was 

designed as an integral part of the reentry nose cap. The stagnation-point radiation was 

transmitted by solid fused-quartz light pipes to two sensors. One sensor was a silicon 

planar photodevice sensitive to the infrared radiation; the other sensor was an antimony­

cesium photoemissive diode sensitive to the ultraviolet radiation. Their response times 

were better than adequate for the purpose. Appropriate electrical networks , including a 

direct-current amplifier, were used to match the sensors to the encoder (input impedance 

is 1000 ohms; input levels are from 0.5 mV to 20.0 mY). In order to increase the 

dynamic range of the measurements, the signals from each sensor were fed into two 

encoder channels with different sensitivities where they were sampled 45 times per 

second. 

Fabrication 

Electrolytic tough-pitch oxygen-free copper was used for the nose cap which was 

polished to a finish with less than 2 microinch root-mean-square roughness. The l-mm­

diameter light-pipe holes were drilled 60 mm through the copper nose cap by using air­

craft extension-type drills with very accurate and sharp cutting edges. Precise aline­

ment and controls were required to insure that the drilling did not deviate from the 

intended path. The light-pipe holes pass from the copper through a glass-filled phenolic 

block, which required the same drilling preCision. 

The glass-filled phenolic block was press fitted to the copper nose cap. A nylon 

collet-type chuck secured the light pipes in the phenolic block. The fused-quartz light 

pipe was selected and fitted to the individual nominal l-mm holes with a minimum clear­

ance, estimated to be less than 0.0025 mm. The light pipes were removed, cut to length, 

polished on both ends, and the part to be clamped by the collet was aluminized to prevent 

light leakage to the collet. Before final assembly, all parts were cleaned thoroughly so 

that no foreign agents could wet the sides of the light pipes and , thereby, reduce their 

transmittance. (Care was always taken to prevent dust, mOisture , and so forth from 

affecting the pipes .) 
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APPENDIX A 

The silicon (infrared) detector was 2 mm in diameter and 1. 5 cm long and its sen­
sitive area measured 0.6 mm by 0.7 mm. The photoemissive (ultraviolet) detector was 

vacuum-packed in a stainless-steel shell 2.85 cm in diameter by 4.45 cm long with a 

sapphire window. The sensitive area of the detector was 10 mm in diameter. The light 

pipes were positioned so that the radiation covering their acceptance angles filled the 

sensitive areas of the detectors to minimize sensitivity shifts. The spectral transmis­

sion and acceptance angles of the light pipes and the spectral response of the sensors 

were checked before and after installation to insure that the performance did not 

deteriorate. 

Two platinum-platinum-10-percent-rhodium No. 30 thermocouples (00 to 17600 C), 

measured the temperature of the copper nose cap. One thermocouple, 0.25 cm from the 

stagnation point, monitored the temperature in the vicinity of the light-pipe surfaces; 

another, 6 cm from the tip of the nose cap, monitored the heat-transfer rate. Both ther­

mocouples were installed with metal sheaths and were silver-soldered in place. 

The matching amplifier was assembled in a package, 2.5 cm in diameter by 1.6 cm 

in height. Final adjustments were made for the zero and gain, and for the unit sealed 

and attached directly to the ultraviolet sensor. 

A photograph of the radiometer parts before assembly is shown in figure A-2. 

Calibration 

The radiometer was calibrated for absolute spectral response, solid-angle response, 

and linearity by using the setup sketched in figure A-3. Spectral calibration for the ultra­

violet sensor covered a range from 0.25 Jlm to 0.60 Jlm when using a high-intensity mer­

cury lamp as a source. (See graph of spectrum in fig. A-4.) The strong lines in the mer­

cury spectrum were used as points of wavelength calibration. The infrared sensor was 

calibrated from 0.5 Jlm to 1. 2 Jlm by using a standard tungsten source. Since the tungsten 

source was a continuum, wavelength calibration points at O.l-Jlm interval were used. 

Both ultraviolet and infrared monochrometers were set for 100 A bandwidth for the spec­

tral calibrations. Although the spectral irradiances of the lamps were known, the com­

plete calibration system responses were not known; therefore, a standard thermopile was 

used to measure the energy in each spectral bandwidth. The sensitive area of the ther­

mopile was placed at the same point as the light pipes and viewed the same radiating sur­

face. Since the acceptance angles of the radiometers were greater than the solid angle of 

the monochrometer, a diffuser was inserted in the output of the monochrometer to fill the 

radiometer field. 

The size of the source (diffuser) was controlled by an iris assembly, and the rela­
tive response of the radiometer was plotted against the solid angle (computed from the 

known geometry of the system). These results are given in figure 5. The higher 
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APPENDIX A 

response at small 8,.olid angles exhibited by the ultraviolet radiometer is typical for a 

photoemissive cathode, as is the plateau in the response after the cathode is completely 

covered. (The light pipes were checked and found to be responsive to larger solid angles 

than allowed by the radiometer geometry.) From the plot, the equivalent acceptance 

angle of the ultraviolet radiometer was estimated to be 1. 5 sr. The lower response at 

the small solid angles exhibited by the infrared radiometer was caused by the offcenter 

positioning of the sensitive element. This positioning also caused a less rapid leveling 

at large solid angles. From the plot, the equivalent acceptance angle of the infrared 

radiometer was estimated to be 1. 6 sr. 

The absolute spectral-response curves are given in figure 6. The average response 

over the spectral band of each radiometer was obtained by averaging the point-by-point 

products of the absolute spectral-response curves and the anticipated spectrum. (See 

fig. 7.) The calibration constants obtained thus apply for light levels of the same magni­

tude as the calibrating levels. Since the calibrating levels were low, the zeroth order of 

the monochromator was used to provide sufficient light to check the linearity of the 
radiometers to much higher levels. Neutral density filters were used to reduce the light 

levels in several steps down to the level used in the spectral calibration to provide the 

necessary absolute reference. These results are shown in figure A-5; the same curves 

converted from neutral density to irradiance are shown in figure "S. 

Much difficulty was experienced in calibrating the neutral density filters in the 
ultraviolet band. Screen filters could not be stacked without complex fringing problems; 

and inconel filters varied sharply with wavelength and made it impossible to evaluate 

accurately the contributions of the strong spectral lines in the calibrating source. Since 

the electrical components of the ultraviolet radiometer, including the photoemissive 

detector, are basically linear over a wide operating range, it was concluded that, beyond 

a neutral density of 0.5, the error in the calibration is greater than the nonlinearity of the 

radiometer. The calibration curve was drawn accordingly. The infrared radiometer is 

characteristically nonlinear; therefore, a best fit to the calibration points was used. 

The dashed-line parts of the curves represent the extrapolation of the curves to 

levels anticipated in flight that were greater than those available for calibration. The 

points of absolute spectral calibration chosen for referencing these curves to an irradi­

ance scale were taken near the maximum spectral calibration levels. Neutral density 
was then converted to watts/meter2 to produce the calibration curve shown in figure S. 

Immediately after completing the laboratory calibration, a field calibrator, 
employing a small tungsten lamp (see fig. A-6) was used to record the output from the 

sensors for a specified lamp current. These records were then used as a standard for 
final calibrations after assembly to the launch vehicle. The field calibration device uti­

lized the same neutral denSity filters for the linearity checks as were used in the 
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laboratory calibration. The spectral response was checked by using color filters cen­

tered at 0.52 fJ.m for the ultraviolet channel and 0.93 fJ.m for the infrared channel. 

Environmental Testing 

All components were tested for the anticipated environmental conditions. In addi­

tion, some special testing was done. The light pipes were tested for thermal shock and 

for transmission at elevated temperatures. The thermal-shock tests used larger speci­

mens than the light pipes and were considered conservative because the larger pieces 

were more likely to fracture under thermal shock. A piece of fused quartz (0.5 mm by 

20.0 mm by 50.0 mm) was immersed in liquid nitrogen (-1960 C) and then into molten 
copper (10820 C). Neither this piece nor pieces as large as 6.4 mm in diameter by 

100.0 mm long fractured. Additional thermal tests on the windows were conducted in 

the electric arc facilities (2 W/cm2) and the ceramic-heated jet (300 W/ cm2) at the 

Langley Research Center where the only damage that occurred was due to sand blasting 

by particles in the ceramic heater. In the clean electric arc facilities the evidence indi­

cated that the quartz did not reach the molten state. 

The transmission of the light pipes with melting exposed surfaces was simulated 

by measuring the spectral transmission against temperature of two 1. 5-mm-thick-quartz 

plates sandwiching a thermocouple. As the temperature indicated by the thermocouple 

was raised from room temperature to 16500 C by heating with a torch, the transmission 

was monitored by using a monochrometer and a photometer. Surface melting began when 

the thermocouple indicated approximately 14000 C. The average decrease in transmis­

sion over the ultraviolet band was in the order of 50 percent at the highest temperature. 

The change in transmission at the longer wavelengths was much less. With the intense 

source used for the test, there was no indication of an error contribution from the self­

radiation of the quartz at its temperature. 

The matching amplifier required temperature compensating components which were 

aged and cycled by testing this unit separately from 00 C to 500 C. The drift in output 

was less than 1 m V, and the linearity change with temperature was negligible. 

The environmental tests were performed on two radiometer sY3tems (flight and 

backup) after they were assembled and calibrated. A list of test specifications is given 

in table A-I. After the environmental tests were performed, the radiometer was recali­

brated and showed no change. 
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TABLE A-I.- ENVIRONMENTAL SPECIFICATIONS 

Type of test 

Steady-state acceleration: 

Positive: 

Level, g units. 

Duration, min . 

Attachment 

Negative (exit): 

Level, g units. 

Duration, min. 

Shock: 

Positive only: 

Level, g units. 

Duration, msec 
Shape 

No. of shocks 

Vibration: 

32 

Frequency range, Hz 

Level, g vector 

Sweep speed, octaves/min 

Sweep setting, deg/min . 
Duration, sec 

Sinusoidal (normal): 

First frequency band, Hz . 

Level, g vector . 

Second frequency band, Hz 

Level, g vector. 
Third frequency band, Hz 

Level, g vector. 

Sweep speed, octaves/min 

Sweep setting, deg/ min . 

Duration, s ec 

Sinusoidal (narrow band): 

Frequency band, Hz. 

Level, g vector 

Sweep setting, deg/ min . 

Duration, sec 

Random: 
Frequency band, Hz 

Level, spectral density, g2/ Hz . 

Level, g rms 

Duration, sec 

Thrust direction 

150 

3 

Test specifications 

Normal and transverse 

15 

3 

Nose toward center of centrifuge, mounting To simulate attachment to 38.1-cm 
to apply thrust through empty 38.1-cm solid-rocket motor with inert 

solid-rocket motor with inert loaded loaded 12.5-cm solid-rocket 

12.5-cm solid-rocket motor in place motor in place 

42 

3 

90 

5 to 10 
Square (approx.) 

2 

20 to 2000 

±1 
4 

90 

96 

20 to 200 

±1 

200 to 500 

±3 
500 to 2000 

±5.5 
4 

90 

96 

550 to 560 

±15 
18 (180 x 0. 1) 

18 

20 to 200 

0.036 

8.5 

96 

-

20 to 2000 

±1 
4 

90 

96 

20 to 200 

±1 
200 to 500 

±3 
500 to 2000 

±2.5 
4 

90 

96 

550 to 650 

±2.5 
18 (180 x 0.1) 

18 

20 to 2000 

0.018 

6 
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APPENDIX B 

RADIA TION PREDICTIONS 

Equilibrium Radiation 

The radiation from the equilibrium zone of a shock wave in air comes from several 

species, the contributions of which vary with the density and temperature in the shock 

layer. Aerodynamic charts and tables are available (ref. 4) from which these quantities 

can be obtained for various altitude-velocity histories. The corresponding equilibrium­

species composition is also well-known. Unfortunately, because quantitative determina­

tion of the emittance from each species is difficult, empirical parameters are used. An 

empirical rule (which approximates the average results from the theories of refs. 5 to 7) 

states that the total equilibrium radiant emittance per unit shock-layer thickness varies 

as the shock denSity to the one and three-tenths power and the shock temperature to the 

twelfth power. If the velocity is constant, the emittance varies with density to the one 

and seven-tenths power. The· corresponding spectral distribution as a function of density 

is practically constant. Figure B-1 shows the predicted spectrum for the flight velocity 

at an altitude of 35 km. For a first approximation of the equilibrium radiation for the 

flight, a constant velocity of 6 km/sec is assumed, and the corresponding relation used 

for the radiant emittance per unit shock-layer thickness is u = 103(p/Po)1.7. Then the 

total radiant emittance from the shock layer is predicted by assuming an optically thin 

gas and by multiplying the radiant emittance per unit shock-layer thickness by the thick­

ness of the complete shock layer. This thickness, the shock-standoff distance, is a func­

tion of the altitude-velocity history and the size of the body (refs. 10 and 11). For a small 

spherical body with a velocity of 6 km/sec, the shock-standoff distance is approximated by 

6 = 0.75r Poo. 
P 

Values of the total radiant emittance calculated by this method are an order of mag­

nitude below those measured in the flight and exhibit a weaker density dependence than do 

the flight data. Furthermore, there was no evidence in the flight data of the sizable ultra-

I violet component predicted by equilibrium theory. Therefore, the equilibrium radiation 

i . was negligible for this flight measurement. 

Nonequilibrium Radiation Spectrum 

The literature provided very little information on the nonequilibrium radiation spec­

trum to expect from this flight. In using the available data, it was difficult to know when 

it applied to the flight case. Some reasons for this difficulty are as follows: 
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(1) Normalizing the data at the peaks gives trouble because in shock tubes these 
peaks are caused by impurities not experienced in flight. 

(2) The strong radiation at 0.8 J.1.m to 0.9 J.1.m is evident at a velocity of 10 lan/sec, 
but is expected to be less pronounced at lower velocities. 

(3) Determining what is scatter and what is real data cannot be done with such 

small quantities of data representing such large ranges of experimental conditions. 

The available data (mainly from refs. 8 and 9) are plotted in figure B- 2. The curve 

defining the trend of the data is, at best, a rather crude estimate and is the one used 

to reduce the flight data. This curve was also shown in figure 7. The check on the 
spectrum (ratio of ultraviolet to infrared) indicated that it was not grossly in error. 

The spectrum was later compared to the recently available Project Fire data (ref. 13). 

The Fire data exhibited a similar overall spectrum at the very high altitudes, and showed 

some of the line and narrow-band features. However, the large disparity in the body 

sizes and the reentry velocities of the two experiments precluded use of the Fire data to 

refine the spectral estimate for this flight. 
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