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John A. O'Keefe, Co-experimenter

The format of this proposal generally follows that format

suggested in Chapter 3, Section 6 of NHB 8030.1.

Deviations from that format were intentional in order to

stress the proposal feature that the experiment, although

complex, expensive, and dissimilar from earlier cosmic dust

experiments, is currently and successfully performing in two

spacecraft - Pioneers 8 and 9.
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1. Summar

The GSFC Cosmic Dust Experiment proposed for Pioneer F and G

is an improved version of that experiment currently and successfully

performing in Pioneers 8 and 9, and to be launched in Pioneer E.

It is a complex of plasm sensors; acoustical sensors; sensor

controls; and monitor electronics designed to yield data which

Justify a high degree of confidence and commend a high degree of

experimental integrity. The flight portion of the experiment will

measure independently and in coincidence several pbysical

parameters of cosmic dust particles including speed, direction,

energy, and momentum. Its capabilities will provide significant

data on the cosmic dust environment in the asteroidal belt and in

the vicinity of Jupiter.

2. Objectives	 XA.

The objectives of the e xperiment briefly stated are:

1. To measure the cosmic dust flux density in the solar

system;

2. To determine the distribution of cosmic dust concentrations

(if any) in planetary orbits including the asteroids;

3. To determine the radiant, flux density, and speed of

particles in meteor streams; and

4. To perform an in-flight control experiment on the

reliability of the acoustical sensor as a cosmic dust sensor.
_.

3. Background and Justification

Preliminary analyses of data from the cosmic dust experiments

on Pioneers 8 and 9 show large deviations from the cosmic dust
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environment as deduced from earlier measurements. The principal

deviation is in the much lower influx rates or dust concentrations

at 1 A. U.

A cosmic dust experiment in PLowers F and G will provide

data on influx rates in the asteroidal belt and the vicinity of

Jupiter for comparison with near-earth influx rates. This

comparison is crucial to our understanding of the evolution of the

lunar surface (and in fact of the surface of any body such as a

comet or meteorite which lacks an atmosphere). The reason is as

follows: From the study of C, 3He,28Al, some of the isotopes of lie,

etc., it is possible to establish that many stone meteorites have

surfaces which have been accumulating the results of bombardment

by primarr cosmic rays for some tens of millions of years.

Primary cosmic rays are absorbed in something like a meter of

stone. Hence-the erosion rate on meteorites in space must not be

much more aan meters per tens of millions of years. In fact, by

elaboration of this argument, it has been generally agreed that

the erosion rate is not over 5m/million years.

It is tempting to apply these erosion rates to the moon.

There !,a bard rock a few meters down on the min. Presumably the

overall erosion rate is controlled by the rate at which the hard

rock is ground up. Moreover, the upper portion of the lunar

surface is a very fine material. If this is the result of grindl3 g,

then fine particles are needed to explain it. But as soon as we

t
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attempt to apply meteorite erosion rates to the moon, we are asked

whether this is legitimate. Is it not possible that the erosion

rates over most of the orbit of a meteorite are very different

from the erosion rates on the moon, and perhaps much lower?

Thus a calibration nf the meteorite erosion rate in terms of

the erosion rate in the vicinity of the earth is critical. Among

the important conclusions it may be possible to draw from such a

comparison is the conclusion that the whole idea of the lunar

regolith (a term employed by Shoemaker to designate the lunar

soil, carrying the implication that it is the result of a process

of erosion) is a myth. It may be that the fine upper layer of the

moon is volcanic ash.

It was found by the Surveyors that the lunar surface has a

thin layer, about 0.3 mm thick or les3, which is brighter than the

lower layers. With the rates of mierometeorite bombardment now

coming out, it is possible that this is really the whole extent- of

the regolith. In this case, we would understand why it is

brighter than the lower layers, since rocks nearly always get

brighter when ground up.

At present ve know literally nothing experimentally about

meteors which do not intgrsect the earth's orbit. It would be

most helpful to have even a small nwiber of orbits from further

i

out. For instance, are micrcmeteorites the result of grime

operations in the asteroid belt, or are they something thrown off

comets when active? If the former, they should be more common.



We can guess that meteors tend to follow orbits like comets, but

even this doesn't tell us much about meteor orbits in the asteroid

belt because most comets do not become visible until they get well

inside the asteroid belt.

4. i	 Wa Physics of the Erimentrr ^r rw.r ^^^r^^^^ir

The proposed experiment is shown schematically in Figure 1.

It consists of a front film-grid sensor array and a rear film-grid
sensor array spaced 5 = apart (film plane to film plane), and an
acoustical impact plate upon which the rear film is mounted.

The performance of the sensors depends upon two basic,

measurable phenomena which occur when a hyper velocity particle
impacts upon a surface; the formation of an ionized plasm and

a transfer of momentum.

In conjunction with the following explanation of the

operation of the experiment, refer to Figure 1 and consider three

probable cosmic dust particles types;

(1) A high-energy, hypervelocity particle;

(2) A low-enemy, hypervelocity particle; and

(3) A relatively large high-velocity particle.

As a high-enera, hypervelocity particle enters the front

film sensor, it yields some of its kinetic energy toward the

generation of ionized plasma at the front film. The electrons and

ions are collected on appropriately biased grids and film

resF ^:tively, initiating amplified negative and positive pulses as

shorn. The positive pulse is pulse height enalyzed (P 	 as a

i

a

1
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measure of the particle's kinetic tnergy. As the particle

continues on its path, it yields its remaining energy at the rear

sensor film (and plate), generating a second set of plasms pulses

and an acoustical pulse (if the particle's momentum is sufficient).

PRA is performed on the plasma pulse and a peak pulse height

analysis (PPRA) is perfomed on the acoustical sensor output.

As a low-eaeM hWrvelocity Eaticle enters the front

sensor, it yields all of its kinetic energy at the front film. A

PEA is performed on the positive output signal as a measure of the

particle's kinetic energy. 	 I
As $ re?,atively large hivelocity particle eaters the

experiment, it may pass through the front and rear film sensor

arrays without generating a detectable ionized plasma, but still

impart a measurable impulse to the acoustical sensor. In this

event a PPEA is performed on the acoustical sensor output pulse.

An electronic "clock" registers the time of flight (MF) of

the particle as the time lapse between positive pulses ,front film

and rear film output signals) Which is used to derive the

particle's speed.

The TOW sense, as described, is one of 256 similar sensors

(including 31 control sensors) which comprise that portion of the

promised experiment which measures particle speed and direction.
I

Figure 2 is an exploded schematic view of	 overall experiment,



strip connects to a separate output amplifier. The output signals

from these amp'- +ers are used to ermine the segment in Vhich

an impact occurred. Rhus, keg what front film Segment Vas

penetrated and Vhat rear filar segment was affected by an impact:

one can determine the direction of the incomi^ag particle with

respect to the sensor axis and eventually to the Spacecraft attitude.

The roll ibex pulse f1•om the s	 vill be used to determine

the sun-spacecraft angle at the time of an impact. this readout

Is initiated by an impact event involving the frout film and/or

the rear film and/or the microphone. M= the aWle of the

ineced particle with respect to the sun can readily be

determined.

GEOMEMOF ME	 FT

An exploded view of the front fl is shown in Figure 3. A

nickel grid, the parylene^ ; substrate, and the parylene encapsulatica

serve only as supports for the metal film deposits. The rear film

is a 60A molybdenum sheet cemented to a quartz acoustical sensor

plate. The optical transparency of each of the grids {including

support mesh) is 98.8 percent.

9- M

*A patented product of the Union Carbide Corporation
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The maximum field of view of the experiment is that of the

front film array and is square with a half angle of 60 0 yielding

a 4.5 steradian field. The minimum angular resolution of each TOF

detector is t 270.

=OR QQMr S

An ideal sensor control is one which is exposed to the same

"envircmment" as the active or main sensor. "Ehvironment"

encompasses electrical and magnetic radiation, thermal radiation,

thermal gradients, etc. Controls installed somewhere in the

spacecraft and sheltered from the total environment are

ineffective. The controls used in this experiment are designed to

perform under the same conditions as the main sensor as much as

possible.

A simplified diagram of the overall experiment and of the

position of the sensor controls is shown in Figure 4. The upper

left segment of the front film-grid array and the upper right

segment of the rear film-grid array are used &.s controls for the

ionization sensors. An epoxy resin coating ccvers the control

grids and films, isolating them from the products of ionization

caused by impacts upon their area (i.e., electrons and ions

generated by hypervelocity impacts upon the epoxy cannot be

collected upon the grids or films).	 The resin coat does not,
i

however, constitute a shield from electrical or magnetic radiation.

(Thermal noise is not an important factor in ionization sensors.)

F
E
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A microphone control is shown in the lower right corner of the rear

plate. It is unique in that it is a "live microphone" attached to a separate

impact plate having one-fifteenth the effective area of the main microphone

plate. Thus the control is truly exposed to the same environment as the

main microphone, including impacts by cosmic dust, and one would expect an

approximate ratio of 1:15 between impacts on the control and impact: on

the main microphone sensor.

As was mentioned earlier sang the objectives of the experiment, the

1
	 acoustical sensors are designed to perform an in-flight study on the reliabil-

3	 ity of the microphone as a cosmic dust sensor, in addition to their performing

as an impact sensor for these particular missions.

CALIBRATIONS

Extensive calibrations have been performed on the sensor using a 2-Mev

electrostatic accelerator. Unfortunately, the particles used for calibration

have been limited to high-density, hard spheres of iron (10 -13 gm < mass < 10-9gm)

and to velocities merely approaching the low end of the meteoroid velocity

spectrum (2 km/sec - 10 km/sec). Accordingly, when considering the sensitivities

of the sensors as derived from these calibrations, one must consider the pos-

sible latent discrepancies which may become manifest in subsequent measure-

ments in space when the sensors are exposed to projectiles of diverse density,

structure, composition, and higher velocities.

The threshold sensitivity of the front film to laboratory projectiles 	 . .

(PHA) is 0.6 erg. Time of flight is registered for laboratory particles

having kinetic energies of 1.0 erg or greater. The experiment is design-

limited to particles having velocities ranging from 2 to 72 km/sec.
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The threshold sensitivity of the acoustical sensor is 2x10
-5
 dyne-sec

(including deceleration by the front film).

Hypervelocity particles passing through the front film are decelerated

in inverse proportion to their kinetic energy (for a velocity range of

2-10 km/sec). For particles having the minimum energy required to exhibit

time of flight (1.0 erg), the deceleration is 40 percent. Deceleration

drops to 5 percent for particles having 10 ergs.

Inflight calibration will be provided and initiated by ground command.

Two different formats of simulated data pulses are alternately presented by

the experiment to the input of each of the amplifier systems to check the

condition of the electronics and the plasma sensors. Two formats alternately

provide a high and a low amplitude pulse to monitor the lower and upper

sensitivities of the amplifiers. Front film pulses and rear film pulses are

appropriately spaced and in proper sequence to monitor the TOF electronics

and solar aspect electronics. All accumulators advance with in flight

calibration.

In addition to the electronic monitors, the in-flight calibration

provides a check on the physical condition of the plasma sensors. The posi-

tive pulse to the front and rear film amplifiers is also impressed upon the

film. Due to capacitative cross-talk between the film and its corresponding

grid, the large calibration pulse is amplified sufficiently in the grid

amplifier also to be displayed in read-out. Admittedly * the same cross-talk

will appear for plasma current pulses resulting from impacts by high energy

particles also, but only for those plasma pulses corresponding to the

extreme energy range of the sensors.
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EXPERIMENT ELECTRONICS

A block diagram of the proposed experiment is shown in Figure 5.

The positive-going pulse from each "A" film strip is amplified and fed

into a threshold one-shot. The output pulse performs three functions

as shown: (1) its identification is impressed directly upon the storage

register; (2) it passes through the NOR gate and initiates the TOF measure-

went; (3) it is gated back to the threshold one-shot to inhibit any other

film pulse until the measurement has been completed. An inhibit signal

to the other three films is necessary to avoid capacitative cross-talk

for high-energy impact signals. As shown, the "A" film is pulse-height

analyzed and injected into the storage register.

Positive-going pulses from the "B" film pass through a similar, but

separate, electronic path with the exception that the pulse is used to

stop the TOF clock. If no "B" film pulse follows an "A" film pulse, the

TOF register goes to the full (63 bits) state and remains full until another

event occurs.

Negative-going pulses from each of the "A" and "B" grids are amplified

via separate units and ID-registered as shown.

The output signal from the crystal sensor (microphone) as it responds

to impacts is in the form of a ringing sinusoidal wave which increases to

a maximum and then decays. After amplification in a tuned amplifier, the

peak signal amplitude is used to: (1) advance the microphone accumulate;

(2) start the register reset (readout of register data); and (3) record the

amplitude of the impulse imparted to the microphone sensor plate.
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Pulses from the control microphone (not shown in the block diagram)

follow a similar, but separate, electronic course with the following

exceptions: (1) no PHA is performed; and (2) they do not trigger the

register reset.

OTHER PERTINENT EXPERIMENT INFORMATION

The weight of the flight unit is 4k pounds.

The volume of the flight unit is 400 cubic inches in the form of a

cube V x 8" x 8". The front face of the unit is V x 8".

500 milliwatts of power are required for the experiment.

Four seven-bit words are requested for the experiment. Readout should

be complete every 30 seconds at the highest spacecraft bit rate.

Only one command is required to perform in-flight calibration.

No data storage is required.

The present state of development is as follows: a prototype and a

"flight unit" of the proposed instrument is "on the shelf" as surplus

equipment from the Pioneer C, D, and E series. Experiments in the laboratory

on the GSFC cosmic dust simulator are being conducted in an effort to further

optimize the unit for use in future flights.

A preferred location for the instrument is in the equator of the space-

craft with the experiment sensor axes perpendicular to the spacecraft spin

axis. The pointing accuracy required is f 30.

There are no essential supporting experiments. Desirable supporting

experiments are plasma studies; energetic particles studies; and magnetic

fields experiments.
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5. Da^duction and A;nnaaWis.

A basic program for the analysis of data from the experiment has been

written in the sense that the proposed experiment is essentially a sequal

to that flown in earlier Pioneers.

The practical and theoretical applications of the data to our under-

standing of the solar system will be performed principally by Dr. John

O'Keefe.
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1. WORK PLAN

The duties and responsibilities of personnel involved in this experi-

ment are specified:

Otto E. Berg, as principal investigator, "sums the responsibilities

of that position as specified in NAB 8030.1A; April, 1967; Section III -

Mr. Berg is currently principal investigator on a cosmic dust experiment

In Pioneers C. D, and E. He has served as project scientist on three

Aerobes rockets in the past. He is currently in charge of a 2-million-

volt electrostatic dust particle facility at Goddard. He has a Bachelors

Degree in physics and chemistry from Concordia College, Moorhead, Minn.

Dr. John A. O'Keefe, jointly assumes the responsibility of data

reduction and the practical and theoretical applications of the data to

our understanding of the solar system.

1.:

Dr. O'Keefe is the assistant chief of the Theoretical Division at

the Goddard Space Flight Center. He holds a Ph.D in astronomy from

the University of Chicago. His experience is best expressed by his publi-

cations which includes; a book on Tektites (1963); co-author of a book

on The Nature of the Lunar Surface; and almost a hundred papers on

Geodesy, Seleiblogy, and the physical theory of tektite formation.

2. COST PLAN

As stated, the proposed experiment is essentially ready for flight

model fabrication. A prototype model and one flight unit are surplus

i- -
units from the Pioneer C, D, and E missions.

Proposed optimisation	 erimeuts on these units are continuing and

should require 3 man months each of a professional and a technicicn.
	

1

The fabrication and testing costs of each instrument for Pione¢r F
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and G should not exceed 90 K.

There are no anticipated major expenditures for laboratory equipment.

3. FACILITIES

A 2-million volt Electrostatic Dust Particle Facility exists at

GSFC. A major modification of this unit will be coup leted in January 1969.

It will be capable of accelerating spheres of a mass range of 10"10_10-15

grams to velocities of 1 - 80 km/sec.

The new modification will increase the capability of the facility to

select exclusively particles of a desired velocity and/or charge.

1

.,
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