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THE MAXIMUM NUMBER OF BINARY

COLLISIONS FOR THREE RELATIVISTIC POIN'; PARTICLES

ABSTRACT

As a step toward understanding relativistic rescattering sing-

ularities we examine n max , the maximum number of binary colli-

sions allowed by special relativity among three particles with zero-

range forces. We find that for three equal-mass particles nmax = 3

but for three particles with masses m l = m3 = 1 and m2 m = 1,

nmax 
decreases wi*,h increasing total energy, W , and finally attains

the value of four when W > 1/m.
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THE MAXIMUM NUMBER OF BINARY

COLLISIONS FOR THREE RELATIVISTIC POINT PARTICLES

Since the kernals of the exact non -relativistic integral equations for the

three-paticle T-matrix have singularities whenever rescattering for point par-

ticles with zero -range forces is allowed by energy and momentum conservation, h]

one expects similar singularities in an exact relativistic formulation. As a

step toward understanding these singularities, we examine here 
nmax , 

the max-

imum number of binary collisions among three such particles allowed by special

relativity, as a function of the total energy and the masses of the three particles.

Three algebraic results concerning nmax are obtained and two cases are examined

numerically.

NOTATION AND EQUATIONS

Let W be the total energy in the three -particle center of momentum (C.O.M.)

system. Let &)i = energy of particles j and k in their C.O.M. system and let pi
	

G^

be their relative momentum in this system. qi is the momentum of the i th par-

ticle in the three particle C.O.M. system. Let cos 6i = - P i - qi , where qi is the

momentum of the i th particle in the C.O.M. system of particles j and k. p i = q•

E ' ) G. Doolen, Phys. Rev. 166, 1651 (1968)
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Here i, j, k are cyclic and assume the values 1, 2 or 3. m i is the mass of the

ith particle. The hat, ^, indicates a unit vector. Using the invariant dot products

of four-vectors, one can show [2J

that

cos © =	 1	
[(W2 

+mi +m2+m3 -c,3) c,,3 (W2 . m3)(m i . m2) -- 2(Ar,:2	 (1)
3 4 W r^,3p3g3 	J

f3 (' 3 , ai)

and

1	 [(W2 +mi + m2 +m3 r,. i) (,2_(W2 . ml)(ms m2) _. 2^3^1 J 	(2 )cos d 1 = ----	 J
4Wc,-1plg1

fl(c' 1 ' "3)

We assume that the maximum number of relativistic binary collisions

is attained by the same initial configuration as the non-relativistic case; namely

collinear scatterings in which two particles collide with almost zero relative

momentum and in which this pair of particles is approaching the third particle.

The particle with the lowest mass then scatters back-and-forth between the two

heavier ones until all three particles are diverging from each other.

Consider the cas.; in which the lowest mass particle, 3, scatters back-and-

forth between the heavier particles, 1 and 2. In each binary collision, the relative

momentum of the two particles involved changes sign in their C.O.M. system:

pi (N) = - p i (N + 1) . The number in parentheses is the number of collisions that

[2 'Equation (1) is the some as Eq. (31) of G.C. Wick, Annals of Phys. 18 65 (1962).
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have occured. Hence cos t^,, whose magnitude is one, also changes sign. Using

this fact along with (1) and (2), we obtain

1(')	 W 2 + mi } m2 +m3_^'3(N°1) ` (W2 - m32)(mi -m2)'c^.2(N 1)	 i (N 1) (3)

and	 r^13(N) - ( 3 (N-- 1) .	 (4)

Eqs. (3) and (4) relate the variables before a collision between particles

1 and 2 to the variables afterwards.

Similarly,

3(N+1) = W 2 ^M2 +m2 +ms	 C,) (N) -- (W2.. mi)(m3---m2)/w2(N) " ^'3( N )	 (5)

and

(4j1(N +1) - wl (N)
	

(G)

relate the variables before a collision between particles 2 and 3 to the variabies

afterwards.

In the initial configuration, particles (1) and (3) are directed toward the

center of mass. In the final configuration they are directed away from it. Hence

qi and q3 both change sign sometime during the collision sequence.

Choosing the unit vector i as indicated in Fig. I, we see that a necessary and

sufficient condition for no further scattering is

P 3 = 1	 (7)

and

(g)
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1 2	 3	
In the initial configuration, p3 = i , p l = i , q l

i
H

(0)	 and q3 = -i. Hence cos	 and cos e3=1
(I)

initially.(2)+
Since qi = - i and q 3 = i in the final configuration,

(3)

(4) cos B i = - 1 and cos 61 3 = + 1 there also.	 (9)

Fig. I-Schematic Representa-
tion of Three Point Particles	 After about half of the collisions have occured,After each Collision in a Par-
ticular Scattering Sequence

(See Text)	 cos y , and cos 63 change sign due to the change in

direction of q, and q3. We now note the sequence of collisions illustrated in Fig. l

which is used below to obtain algebraic results. The two adjacent arrows indicate

the momentum of the two particles in their center-of -momentum system. The

third arrow represents the momentum of the other particle in the three-particle

'	 center-of-momentum system. The particles are ordered 1, 2, 3 along the axis whose

positive direction is indicated by the unit vector, i . In the initial state, particles

1 and 2, are on a collision rourse with negligible relative momentum.

ALGEBRAIC RESULTS

1.) If m l = mz = m3, nmax = 3 independent of the total energy W.

Proof: Using Equations (3) - (6), one obtains w i (3) = G 3 (0) 	 and

cc 3 (3)= ^ 2 (0).

Substituting this into (1), one finds

cos 0 1 (3) _ - co s ^3 (0) .	 (10)
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Now the initial conditions p 3(0) = i and 43 (0) _ - i imply that cos ,-3 (0) _ - 1

by definition. Hence (10) implies cos y 1 (3) = - p, - qi = 1. If we can show that

4i(3) _ - i, then p, will equal - i. (This means that particles 2 and .3 would be

diverging because of their orde.- in Fig. 1 so that the fourth collision could not

occur.)

In the equal mass case,

2X

Cos (' (2) _	
3( )	 ( 0 2(0) - a 2 (0)I .	 (11)

3	 4Wc"3p3g3

Since &-3(2),'4Wa;3p3 g 3 is always positive, the sign of cos 7' 3(2) is determined

by the relative size of p3(0) and p i(0) . Our initial conditions specify that p3(0)

is negligible. Hence cos = 3(2) < 0 and since cos " 3(2)	 = 1, co s -3(2)

14OW p3 (2) = i because if p3(2) _ - i, then particles 1 and 2 would be divergiL

and since particles 2 and 3 are diverging after their recent collision, there «you

be no further collisions. However, cos 6 3(2) _ - 1 and p3 (2) _ - i imply that

43 = - i, i.e. particle 3 would be moving toward the C.O.M. of particles 1 and 2

causing another collision to occur which contradicts the previous sc ,itence.

Now cos 6 3 (2) _ - 1 and p3 (2) = i imply q3 (2) = i . q3 (2) = i implies that

43(2) = i. This is true because if the Lorentz boost from the two -particle

C.O.M. to the three-particle C.O.M. caused q3 (2) to equal - i, it would also

cause the two -particle C.O.M. system to move in the - i direction violating

the restriction of the three-particle C.O.M., namely ( :, i + q2 ) + q3 = 0.
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Hence q3 ( 2) = i and the C.O.M. of particles 1 aiu: 2 moves in the opposite

direction (to the left in Fig. 1). Since the C.O.M. motion of particles 1 and 2 is

not affected by cola _ _ on 3 and since particle 1 is moving to the left faster than

this C .O.M., q l(3) _ - i. ql(3) _ - i implies that the two-particle C .O.M. sys-

tem of particles 2 and 3 is moving to the right. Hence ql ( 3) _ - i. Q.E.D.

2.) If m i = m3 > m2' nmax = 4 when W > mi lm2 	.

A full proof requires the solution of a fourth order equation in W2.

Since such a solution is too lengthy to produce here, we only note that- if ct=3 (0)

(m2 + ml )2 and W = mi ,/ m2 , then ^3 (4) _ (m2 + ml )2 . This says that if the initial

relative momentum of particles i and 2 is zero, then after four transformations

using Eq. (3) - (6) their relative momentum will again be zero so that no more

collisions occur. The solution of the fourth order equation is necessary to show

that for a small but finite initial relative momentum, the particle will be diverging	 -

after four collisions. To show that four collisions are always possible, merely

note that it is true non -relativistic ally. ^l^

3.) If ml = m2 < m3 , nmex = 4 independent of W.

To show this is true, note that it is true non-relativistic ally Ell where

the particles are diverging after four collisions. T:Ien note that ce 2(4) increases

as W2 increases so that the relative momentum of the diverging particles 1 and

2 increases also.
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Because no simple analytic form for nmax could be found for the relativistic

case, the above procedure was programmed on an IBM-360. In Fig. 2, the nmax

obtained from the program is plotted as a function of log, 0 W for masses

corresponding to an electron and two nucleons. W is expressed in units of the

nucleon mass. In the non-relativistic limit, 95 collisions are allowed. When the

kinetic energy in the center-of-mass system reaches about 130 kev, only 94

collisions are allowed. n max continues to drop rapidly until about W = 3 where

the curve begins to flatten out. Not until W > 1836.4 is the asymptotic limit of

nmax = 4 attained. The same plot is presented for masses corresponding to a

pion and two nucleons. Here n max = 4 is attained when W > 1 , in 17 = 6.72.

It is interesting to note that as the total energy increases, any complications

due to the number of binary rescatterings of three unequal mass particles will

decrease. In particular, one would expect their relativistic scattering amplitude

to reach its asymptotic form sooner than the non-relativistic amplitude if part:,-le

production processes did not enter.

Although it would be useful to have a simple analytic form for n max as a func-

tion of W and the three masses, such a solution was not found. As an example of

the way the complexity of nmax increases, one can show that nmax = 5 when

1 >W2 > 1+4m- 2m2 -2m3—m4 + 1-8m+12m2 +24m3 +6m4 - 24ms-20m6+8m7+ m8

72 	 —m2
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Here m 1 = m s = 1 and m = m,. As n max increases the order of the polynomial

to he solved also increases so that analytic solutions might not even exist.
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