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ABSTRACT 

A study was conducted to determine what the parameters of an acoustic liner should 
be to maximize liner damping. This was accomplished by solving the wave equation ex- 
actly for the frequency and damping of low order tangential and radial modes in a lined 
cylindrical cavity. The results, presented as dimensionless frequency and damping for 
each mode plotted in the impedance plane, indicate that a, the acoustic absorption coef- 
ficient, can be used to design a liner provided that the liner real impedance is larger 
than unity. 
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SUMMARY 

A study was conducted to determine what the parameters of an acoustic liner should 
be to maximize liner damping. This was accomplished by solving the wave equation ex- 
actly for the frequency and damping of low order tangential and radial modes in a lined 
cylindrical cavity. The results, presented as dimensionless frequency and damping for 
each mode plotted in the impedance plane, indicate that a!, the acoustic absorption coef- 
ficient, can be used to design a liner provided that the liner real impedance is larger than 
unity. 

1NTRODUCTlON 

Extensive testing at the Lewis Research Center and elsewhere has shown that an ar- 
ray of Helmholtz resonators can, under certain conditions, damp combustion instability 
in rocket engines (refs. 1 and 2). The conditional success of some liners is indicated by 
the lack of correlation between high theoretical absorption coefficient, a!, and liner ef- 
fectiveness as shown in reference 1, page 30, and reference 3. A possible reason for the 
disparity between theory and experiment is that, according to reference 4, the damping of 
acoustic waves in a cavity (combustion chamber) is maximized by maximizing a! only 
under the condition that the wave frequencies are considerably higher than the fundamen- 
tal cavity or chamber resonance frequencies. The results of reference 5, however, in- 
dicate that the liner, if it is to be effective, must absorb frequencies near to the lowest 
resonant frequencies of the chamber. Consequently, it is not clear that maximizing the 
acoustic absorption coefficient, a!, is the proper design objective. 

damping of a liner, the exact solutions for the tangential and radial acoustic modes in a 
closed end (no flow) cylindrical cavity with absorbing walls were obtained. The approach 

To determine what the parameters of an acoustic liner should be to maximize the 



is similar to that presented in reference 6 without the combustion driving and nozzle 
damping. The study presented in reference 6, however, made no attempt to investigate 
what parameter of a liner would maximize the liner damping. To facilitate the use of the 
results by engine designers, the results a re  presented as the normalized frequency and 
damping for each mode as functions of the liner parameter 5, the real part of the acoustic 
impedance (resistance) and x, the imaginary part of the acoustic impedance (reactance). 
The solutions were obtained by the use of a program for calculating complex Bessel func- 
tions reported in reference 7. Since combustion instability only involves the lower order 
resonant modes, only the lower order solutions will be presented. 

THEORY 

The equation for acoustic waves in a cylindrical cavity with closed ends, no mean 
flow, and uniform gas properties is: 

where 

p oscillatory pressure, lbf/ft2 

r radial distance, f t  

z axial distance, f t  

cp azimuthal angle, rad 

c cavity sonic velocity, ft/sec 

t time, sec 

For a transverse mode with no axial dependence and exponential time variation, a solu- 
tion for equation (1) is: 

cos nq exp(iot - kt) (2) 

Bessel function of first kind of order n, n = 0 , l  . . . 
cavity radius, f t  

Jn 

aO 

w angular frequency, rad/sec 
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k temporal damping constant, l/sec 

pn, kn 
P 

Substituting equation (2) into equation (1): 

distribution coefficients resulting from cavity walls that are not infinitely hard 

maximum value of oscillatory pressure, lbf/ft 2 

This expression gives the relation between the oscillation frequency, the decay con- 
stant, and the distribution coefficients. The next step is to solve for the distribution co- 
efficients in terms of the wall resistance and reactance, s and ?1. 

The radial acoustic particle velocity into the wall is: 

radial velocity, ft/sec ur 

gC 

p gas density, lbm/ft 3 

gravitational constant, (lbm/lbf) (ft/sec2) 

Substituting equation (2) into equation (4) and setting n = 1 (first tangential mode) 

For clarity, the quantity (pn + ikn) is redefined, as in reference 7, as Reih, where R 
is the distribution coefficient magnitude and h the distribution coefficient angle. 

Dividing equation (5) into equation (2) and defining q = wao/n-c the following equation re- 
sult s: 
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P J @efi) 
g C  

J ,(Refi) 
Reih - 1  

- 

The quantity Pd(p/gc)urc] is the impedance which can also be expressed as the sum of a 
real and imaginary part, 

where 

rl 

D cavity diameter 

x wavelength 

e, X 

wavelength ratio defined by wao/Irc = D/X 

- -  
normalized resistance and reactance 

By choosing values of R and h, equations (’7) and (8) can be solved for s/7q and %/q. 
Combining equations (3) and (6), it can be shown that 

C 

-- Oa0 - R C O S ( ~ )  
C 

These are the normalized damping rates and resonant oscillation frequencies of the cavity 
for the given values of R and h. Therefore, by specifying R and h, wa,/c, and q 
can be calculated and, from equation (8), and x can be determined. 

RESULTS AND DISCUSSION 

Defining Modes of Oscillation 

Modes of acoustic wave oscillation in cavities a re  generally defined by the values of 
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oao/c that satisfy the condition that ur, the radial velocity at the wall, is zero. For the 
case of nonzero admittance, and, in particular, for s z 1, mode definition becomes quite 
difficult. The approach taken in the present report was to define the modes based on the 
value of R, defined by equation (6). This approach has some justification since, in the 
limit of hard walls (h = Oo, 9 = a), R = oao/c and each mode has a single value of R. 
To determine the behavior of R in the region of interest ("soft wallss"), lines of constant 
R were plotted in the 7 - plane, as shown in figure 1. The Jo Bessel function was 
chosen for illustration. For all of the R values shown in the figure, R at h = 0' is on 
the abscissa 6 = 0); as h is increased, the line spirals in toward the origin until, at 
h = 90°, all values of R intersect the origin. For R = 0. 5, the h = 0' point is at 
X = 3.074, s = 0'. As R is increased, the h = 0' point on the abscissa moves left to- 
ward the origin until, at R s 2.42, the line intersects itself at h = 0' and 90'. Between 
R = 2.42 and 3.05, the lines of constant R cross. An example is R = 2.80 which 
crosses at point A on figure 1, corresponding to h = 3' and 66'. Continuing to increase 
R beyond 3.05 moves the h = 0' point to the left until, at R very close to 3.83, the 

0 h = 0 point is at x = -m. At R exactly equal to 3.83, the h = 0' point is at s = m, 

X = 0. For R > 3.83, the h = 0' point swings to X = +m and again moves to the left 
with increasing values at R. The process continues as R increases, with lines of con- 
stant R crossing within certain ranges. 

- 

- 

- - 

The same results are obtained with J1, J2, etc. , giving rise to a series of curves in 

2.4 
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Figure 1. - Lines of constant distribution coefficient magnitude as function of 
real and imaginary wall impedance. 

5 



I I I I I 
20 40 60 80 100 
Distribution coefficient angle, h, deg 

Figure 2. - Values of distribution coefficient magnitude 
and angle designating mode boundaries. 

the R, h plane defined by the values of R and h at the crossings. Four of these curves 
a re  shown in figure 2. On the Joo - Jol curve, the two points, labeled A, correspond 
to point A on figure 1. These curves in the R - h plane are arbitrarily taken as the 
boundaries of modes. All values of R and h below the Joo - Jol curve are in the Joo 
mode, all values of R and h between the Jl0 - Jll and the Jll - J12 curves are in 
the Jll mode, etc. Thus by defining the value of R and h, we can confine out discus- 
sion to a particular mode. 

Modal Resonant Frequencies and Damping 

Using the previously obtained R-h criterion, the fundamental dimensionless reso- 
nance frequencies and damping of each mode can be calculated as functions of s and 'ii. 
These results are displayed as lines of constant wao/c and kao / e  in the 8,  X plane. 
The results for the Joo mode a re  presented in figures 3(a) and (b). The Joo mode is 
presented first although it has no real physical significance since the fundamental reso- 
nance frequency of a Joo mode for hard walls is 0. 

gion (". 8? ' > '}, all the lines of constant frequency converge, resulting in a zone 

- -  

The lines of constant wao/c in figure 3(a) resemble those of constant R. In the re- 

0 > X > -0.6 
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(a) Constant frequency. (b) Constant damping. 

Figure 3. - Lines of constant frequency and constant damping as function of real and imaginary wall impedance for JOo mode. 

where the resonant frequency is not well defined, that is, small changes in either s or 
X can result in large changes in oao/c. As wao/c is increased to 2.42 and greater, 
the lines of constant frequency intersect in the same manner as lines of constant R in 
figure 1. The interpretation can be made that, in this region, both the Joo and the Jol 
mode have the same resonant frequencies. The results indicate that the resonant fre- 
quency for the mode can be specified readily anywhere in the 8 - X plane except for the 
region already mentioned (8 5 0.8). 

The behavior of the damping for the Joo mode was determined in the same manner 
as the frequency and is shown in figure 3(b). The lines of constant damping begin at the 
origin and spiral clockwise until the corresponding values of R and h on the lines of 
constant kao/c correspond to the upper bound of the mode, where the line is terminated. 
The region of maximum damping, indicated by the cross-hatching, on the figure corre- 
sponds to the upper bound of the mode, and, in addition, corresponds to the region of ill- 
defined frequency of figure 3(a). Thus, both frequency and damping for the mode can be 
specified except for the same cross hatched regions. Although the discussion of the 
damping characteristics of the Joo mode is, by no means, completed, it may be more 
instructive to go on to the next solution of Jo, the Jol mode. 

The results on figure 4(a) are similar to those presented in figure 3(a), however, the 

- 

- -  

The lines of constant frequency and damping are presented on figures 4(a) and (b). 
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Figure 4. - Lines of constant frequency and constant damping as function of real and imaginary wall impedance for Jol mode. 

resonant frequency of the Jol mode in the lbnit of hard walls is not zero. The line rep- 
resenting "ao /c = 3.83 continues upwards, representing the resonant frequency of the 
Jol or first radial mode for hard walls. In the limit of large 8, as the reactance, x, 
becomes negative, the line of constant frequency for values less than 3.83 fall to the left, 
that is, the resonant frequency decreases. If there is a positive wall impedance, X > 0, 
the Jol resonant frequency becomes greater than 3.83. This result confirms the ex- 
perimental and theoretical approximation results of reference 9. In the same manner as 
figure 3(a), there is a region of poor definition in the frequency where the lines of con- 
stant "ao /c converge. 

The lines of constant damping for the Jol mode are  presented in figure 4@). The 
results are quite different from those of figure 3(b) and show lines of damping that are ap- 
proximately closed concentric curves except for the cross-hatched area. If the high 
damping in the cross-hatched area can, for the moment, be disregarded, the results may 
be interpreted as defining zones of maximum damping in the region of s = 1, = 0. For 
comparison, lines of constant CY, the absorption coefficient, are plotted in the impedance 
plane and are shown in figure 5. The absorption coefficient, a, which maximizes in the 
same region, 8 = 1, x = 0, is an appropriate design criterion, since maximizing CY 

would maximize the true damping. 

- 

8 



Constant 
absorption 
coefficient, 

a 

2.0- 

.8 

1.6- 
a- 
V c m 
-3 a 

.E 1.2- - - 
z - 
m a 
e 

.8- 

a 4  - 33 -. 4 0 
Imaginary wall impedance, X 

Figure 5. - Lines of constant absorption 
coefficient as funct ion of real and 
imaginary wall impedance. 

It is important, however, to investigate any advantage in designing a liner for the re- 
gion of maximum damping indicated by the cross-hatched area. Consider the Jol mode 
for 5 less than unity with x = -2; if the liner tuning could be gradually improved so as  
to make % less negative, the resonant frequency would gradually decrease as per fig- 
ure 4(a) until the common line representing all the frequencies was reached. 

As ?i approaches -0.4 from the left, the damping, according to 4(b), sharply in- 
creases at the cross-hatched region. The frequency, however, as per figure 4(a), is 
near the common line and the system is now operating in the regime where both the Joo 
and Jol modes have the same frequency. Any system, given a situation where it can 
resonate at the same frequency with two widely different damping rates will appear to de- 
cay at the lower damping rate since the higher damping wave will not be evident. In the 
case under discussion, the system will decay at the lower damping rate corresponding to 
the Joo mode. In addition, the oscillatory pressure profile will generally shift to that 
corresponding to the mode that has the lower damping. Consequently, it does not appear 
that any advantage could be gained by designing for the cross-hatched region of damping. 
If, therefore, the cross-hatched region were disregarded in designing a liner, a could 
properly be used for the first radial mode, provided that the values of s were maintained 
above unity, and away from the cross-hatched region. 

The next system to be investigated was the Jlo or first tangential mode. A plot of 
the lines of constant frequency in the 5 - ?i plane is shown in figure S(a). The results 
appear to be similar to those presented in figure 4(a). In this case, however, the reso- 
nant frequency corresponding to the first tangential mode with "hard wallsTt (0 w), is 
1.84. In addition, the effects of positive and negative impedance on the resonant fre- 
quency in the region of large s are consistent with those of figure 4(a). The region cor- 
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Figure 6. - Lines of constant frequency and constant damping as function of 
real and imaginary wall impedance for J l 0  mode. 
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Figure 7. - Lines of constant frequency and constant damping as function of 
real and imaginary wall impedance for J1l mode. 
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responding to ill-defined resonant frequency is an area in the same position as that region 
for the Jo modes. 

The lines of constant damping for the Jl0 mode are shown on figure 6(b). The re- 
sults resemble those for the Joo mode as shown in figure 3(b) with the region of maxi- 
mum damping in the same position. Following the same approach as with the Jo modes, 
the discussion of the Jll mode is now in order. The frequency and damping results for 
the Jll mode a re  presented in figures 7(a) and (b). The frequency in the limit of = co 
for this mode is 5.33 corresponding to the first tangential-first radial mode with "hard 
walls. f t  The damping for the Jll mode is, with the exception of the cross-hatched area, 
a set of closed curves of lines of constant damping with the maximum values in the 5 N 1, 
X - 0 area. 

Continuing both the Jo and J1 solutions, a set of figures for both the frequency and 
damping can be obtained. In all of the cases, the lines of constant damping will  be closed 
curves with the exception of the cross-hatched region which is common to all the modes. 
This cross-hatched region can be regarded as the operating point at which modes can 
readily be altered at constant frequency. Given a system with a driver with finite band- 
width, operation anywhere in the region < 1, % < 0 will encourage the system to 
switch to the lower damping mode. 

- 

CONCLUDING, REMARKS 

The conclusion that one can come to with regard to the results presented is that a! 

can be used to design a liner which will damp low order transverse cylindrical modes 
provided that the real impedance is maintained at values greater than unity. Operating at 
a value less than unity with negative imaginary impedance may result in the damping of 
one mode and the appearance of another. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, October 9, 1968, 
128- 3 1-06-05-22. 
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