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ABSTRACT 

Sequential decoding of convolutional coded data offers essentially 
e r ror  -free communication at ra tes  within 1/3 of channel capacity, thus 
making it attractive for space and other communication systems. Se­
quential decoding is a sub-optimum decoding technique that sequentially 
estimates transmitted symbols, using an appropriate confidence meas­
ure  or metric. An a posteriori probability metric has been generally 
employed. However, the derivation of this metric, the exact system 
performance, and the operational sensitivity of a sequential decoder to 
the choice of i t s  metric have not been adequately treated. 

This paper determines a sequential decoder's performance and 
metric sensitivity by means of a computer simulation using two 
metrics: 

(1) A log-a-posteriori probability metric, and 

(2) A cross-correlation metric. 

Both metrics a r e  defined, derived, and tabulated for the memory-
less gaussian channel. Simulations of a rate 1/2, constraint-length 32 
coded data system a r e  made using 16 level quantized metrics. When 
good metric and decoder parameters have been found, the decoder's 
computational load, overflow probabilities, and e r r o r  probability a re  
found as a function of channel signal-to-noise ratio, using at least 500 
simulated telemetry frames per data point. It is shown that the cor­
relation metric is inferior to the probability metric by at least 1.5 
decibels and suffers a higher e r r o r  rate. In addition, the correlation 
metric decoder degrades intolerably with 0.5 decibel signal-amplitude 
fluctuations, whereas the probability metric decoder is negligibly 
affected. 
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A COMPARISON OF SEQUENTIAL DECODING METRES 
BY COMPUTER SIMULATION* 

by 

Thomas V. Saliga 


Goddard Space Flight Center 

A branch of communications theory lmown as coding theory has received considerable atten­
tion since the results of C. E. Shannon were published in 1949 (Reference 1). Much effort has been 
and is attracted to coding theory because of the possibility of error-free communications suggested 
by Shannon's "Noisy Coding Theorem." This theorem states that data can be so encoded for trans­
mission over a noisy channel that the probability of a decoding e r r o r  is arbitrarily small, provided 
that the data rate is less than a rate called the channel capacity. The converse of this theorem is 
important in space communications: Channel capacity is the highest data rate at which the prob­
ability of e r r o r  can be made arbitrarily small. 

Achieving maximum data rate in a space communications system through coding is equivalent 
to minimizing the transmitter power and weight and, therefore, the cost of a spacecraft. The dif­
ference between the channel capacity obtained by coding and that of a typical uncoded system is a 
factor of about 20 for acceptable e r r o r  probabilities. The possibility of achieving a 20-times­
improved communications system is obviously stimulating and has led to the study and invention 
of many encoding and decoding schemes. 

In space communications coding, the M-ary block codes at first received considerable atten­
tion (References 2, 3, 4, and 5). However, their limited coding gain, large bandwidth requirements, 
and special synchronization needs kept them from being generally attractive. 

Based upon work by Wozencraft (Reference 6), Fano (Reference 7), and Blustein and Jordan 
(Reference 8), I. M. Jacobs suggested the use of convolutional encoding with sequential decoding 
for space communications (Reference 9). This coding technique offers both large coding gain 
(nearly 10 times) and modest bandwidth requirements. The convolutional encoder is easy to im­
plement and the sequential decoder can be implemented with a small general-purpose computer in 
many applications. 

*Thes i s  submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the 
degree of Master of Science,  1968. 
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Sequential decoding is a sub-optimum decoding technique first studied by Wozencraft (Refer­
ence 6). An elegant algorithm due to Fano (Reference 7) in 1963 has made the decoder reasonably 
easy to implement. This algorithm estimates transmitted symbols as they are received in a serial  
o r  sequential fashion. If an e r r o r  is made, subsequent measurements tend to indicate this fact. 
The algorithm then takes corrective action by backing up and re-estimating the transmitted sym­
bols. It will then continue to estimate symbols until later measurements again indicate a lack of 
confidence. This "estimate, check, re-estimate if  necessary" procedure continues until all re­
ceived symbols have been decoded. Each symbol estimate has a confidence measure associated 
with it. This measure, o r  metric, could be Hamming distance, correlation, o r  an a posteriori 
probability. 

The analytical and simulation work on sequential decoding of binary signals in the literature 
to date has employed an a posteriori probability metric. However, the derivation of this metric 
and the operational sensitivity of a sequential decoder to the choice of a metric have not been 
adequately treated; doubtless because such treatment is a difficult analytical problem. 

~npaiticular: 

(1) The performance specification and optimum parameters for a sequential decoder using 
the probability metric o r  other metric are incomplete; 

(2) 	The advantages o r  disadvantages of using metrics other than the a posteriori probability 
metric a r e  not specified; 

(3) 	The a posteriori probability metric is not derived and tabulated for the space channel; 
and 

(4) 	 The sensitivity of a sequential decoder's performance to amplitude fluctuations and non­
optimum metric parameters is not specified. 

The primary purpose of this paper is to determine the sensitivity of a sequential decoder's per­
formance to the choice of a metric, doing so by means of a computer simulation using two metrics: 

(1) A log-a-posteriori probability metric, and 

(2) A cross-correlation metric. 

In the above process, the sequential decoder's performance is determined, the required metrics 
a r e  derived and tabulated, good metric parameters a r e  found, and the decoder's sensitivity to 
amplitude fluctuations is noted. I 

The selection of the two metrics named is due to the fact that an optimum decoder works equally 
well using either an a posteriori probability o r  a correlation measure as a basis for signal esti­
mation. Since sequential decoding is a sub-optimum procedure, however, it does not necessarily 
follow that it works equally well with either metric. 

The computer simulation encodes pseudorandom binary data into a rate 1/2 convolutional 
code. A binary antipodal modulator-demodulator brackets an additive gaussian noise channel. The 
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sequential decoder's average computational load, e r r o r  probability, and overflow probabilities are 
found for both metrics, after appropriate parameter optimization. Tests are also made to check 
the repeatability of the statistics, and the signal amplitude sensitivity of each metric. 

CONVOLUTIONAL ENCODERS 

A convolutional encoder is a type of sliding-parity check calculator. It was first introduced 
and investigated by Elias (Reference 10). Restricting our attention to digital binary systems, and 
serial binary data sources, we have a simple example of a convolutional encoder in Figure 1. 

Two flip-flops, F, and F,, a r e  connected as CLOCK 
a shift register. Modulo 2 addition gates are D (i)

SERIALconnected to the register in some prescribed qq?%>-. 
+ 

D ( i - 1 )  
+ 

D ( i - 2 )  p ( i )  

OUTPUT 
,NFO 

manner to calculate a parity symbol, P( i). This D (i) 

parity symbol is thus a function of the current 
I i = 1 2 3 4

information bit, D( i ), and the two previous in-
FoR,(:Ti[&,= ' 

formation bits, D( i - 1) and D( i - 2 ) .  The output TYPICAL [ G F : A T m  
switch transmits the two symbols D(i) ,  P(i) dur- Figure 1-Binary convolutional encoder. 
ing the interval of one input information bit. 

Since two symbols are transmitted for each input bit, the encoder may be called a "bandwidth 
expansion = 2" encoder. However, the literature ordinarily uses the reciprocal of this number and 
calls it a rate 1/2 encoder. Thus, by definition, the code vate (R) equals the reciprocal of the num­
ber  of code symbols transmitted for each input information bit. 

Since the parity symbol calculation is based on the current information bit and the two previ­
ous ones, the encoder's "constraint-length" is said to be 3. By definition, the encoder's constvaint­
length (K) is the largest span of information bits over which at least one parity symbol is calcu­
lated. This is simply 1 plus the number of shift-register flip-flops (a connection to the rightmost 
flip-flop implied). 

Note that one of the transmitted symbols is the information bit itself. If one of the 1/R sym­
bols per transmitted bit is the information bit itself, then the code is called a systeinatic code; 
otherwise, the code is called nonsystematic. 

A more generalized convolutional encoder can now be envisioned and is illustrated in Figure 
2. 	 The shift register clock line and interconnections have been deleted for simplicity. The code 
rate, constraint-length, and connections to the modulo 2 adders all a r e  important in determining 
performance of the coded communications system. 

The encoder's connections may readily be described by using a "V" row by "K" column matrix. 
This connection matrix or generatov inatvix (G),  as defined in this paper, is simply a "picture" of 
the connections to the adders that uses the form shown in Figure 2. A binary 1 implies a connec­
tion and a binary 0 implies no connection. Thus the G matrix for the example in Figure 1 
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is: 

0 0 0  

0 0 0  

0 0 0  

0 0 0  

G =  rl O o]
Ll  1 1 

It is apparent that the generator matrix 
completely specifies , the encoder's rate, 
constraint-length, and internal connections. 
The single connection in the first row in the 
above example also indicates that it is a sys-

Figure 2-General ized convolutional encoder. tematic code. The flip-flops a re  assumed to 
have a "0" initial state. 

The particular encoder used in this simulation is described by a two-row 32-column matrix. 
Thus the "bandwidth expansion" is only 2, and each code symbol is a function of 32 information bits. 

IMPORTANT CONVOLUTIONAL CODE PROPERTIES 

There are two important properties of convolutional codes fundamental to their use with a se­
quential decoder: 

a. The tree property, and 

b. The Hamming distance, or correlation properties, of the code's tree. 

The practical problem of terminating the code must also be considered. 

The Tree Property 

Given the code's generator matrix and that 
the flip-flops a r e  initially in the binary zero 
state, then the very first input data bit, D ( l ) ,  

can only give r ise  to one of two possible output 
vectors-"V" output symbols. When the second 
data bit is input to the encoder, then another two 
output vectors are possible. However, these 

two vectors depend on what D ( l )  was. Hence 
this time there are really four total possibili­
ties. It is apparent that the number of possibil­
ities doubles for each new data bit entered into 
the encoder. These possibilities may be shown 
exhaustively, for at least a few bits, using a 
"code tree" diagram. Using the code in Figure 
1 as an example, such a code tree is depicted in 
Figure 3. 

TYPIC 

[D 


-
INDEX OR 

I BIT NUMBER (i) 

Figure 3-Convolutional code tree. 
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Each path through the tree is called a branch, and the junctions of branches a re  called nodes. 
Each of the v(= 2) symbols associated with each data bit is called a node vector. Notice that any 
node vector may be calculated from howing only the current information bit and the previous K - 1 

bits. 

Hamming Distance, or Correlation Properties 

The second important property of a convolutional code is the Hamming distance,* o r  correla­
tion coefficient, between branches of the code's tree. Indeed, it is the increased Hamming dis­
tance, or-equivalently-lower cross-correlation, between different branches in the tree which 
distinguishes a "coded" from an uncoded communications system. Using as an example the tree 
code shown in Figure 3, compare any two branches which differ in at least the first data bit. The 
comparison should be made only over one constraint-length. The uppermost branch and a lower 
one a re  compared below.t 

Branch 1 

Branch 2 

Hamming Distance (1 1 0 1 = 4  

Although the information sequences differ in only one digit, the additional parity checks at and 
beyond that f i r s t  information digit difference do not generally agree. Clearly this condition will 
exist as long as the information digits in the encoder's shift register are different. Thus, making 
the constraint-length large will insure parity disagreements between such branches for a consider­
able penetration into the coding tree. The K = 3 encoder used in this example does not "remember" 
the disagreement in data bit D, when D, is put into the encoder. So the correct and incorrect 
branches will contain identical symbols beyond that point forever after as long as subsequent data 
bits a re  the same. 

As with block codes, when the information sequences differ in a t  least one digit, it is desirable 
to choose the code so as to maximize the minimum Hamming distance between signals. This is 
equivalent to saying that their cross-correlation should be made uniformly as low as possible. An 
"ideal" convolutional encoder, in the author's opinion, can be better understood using a correlation 
description. 

Let cross-correlation between binary sequences A, B of "n" digits each be defined as 

n - 2 weight ( A  eB) 
p(A,  B) = - n 

'The Hamming distance between two binary vectors is equal to the number of digits in'which they differ when compared digit by digit. 
tThroughout this paper, D1 is interchangeable with D(l), Pq with P(4) ,  etc. The dual forms are used to meet the demands of mathe­
matical statement, on the one hand, and of programming language, on the other. 
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OUTPUT BINARY SEQUENCES 

IDEAL CONVOLUTIONAL 
ENCODER -I

SERIAL DATA 

1ST NON-EQUAL 
BITS PRESENTED 
TO ENCODERS 

0 
1 2 3 4 5 6 ----- j j +  1 ---iiTNUMBER 

Figure 4-Cross-correlation of ideal  convolutional codes. 

- ,' 
a 


CORRECT PATH CORRELATION 

BEST -CORRELATED 

I BIT NUMBER 
FIRST NON -EQUAL BITS 

Figure 5 - B r a n c h  correlation of a rate 1/2 code. 

where 

weight ( A  e B ) is equivalent to Hamming 
distance. 

Then 

- 1 5 p(A,  B) 5 1 .  

Now let two "ideal" convolutional encoders re­
ceive exactly the same data bit sequence up to 
the j t h  bit. Let the j th bits put into the two 
encoders be different, and let all subsequent 
data bits be arbitrary. Then their desired 
correlation characteristics a re  shown in Fig­
ure 4. Notice that, when i = j ,  the "different" 
pair of digits a r e  introduced into the encoders 
and their cross-correlation thereafter becomes 
now-increasing for any subsequent data digits. 

Encoder I may be interpreted as a trans­
mitter, and encoder 11as part  of a receiver o r  
decoder estimating what was transmitted. Then 
it is this sustained loss in correlation after bit 
" j "  that can allow a decoder to recognize a 
poor previous data bit estimate and take cor­
rective action. 

To obtain a non-increasing branch cross-
correlation, the code rate must be very small. 
A more practical rate 1/2 code gives inferior, 
but acceptable, correlation characteristics. 
Typical incorrect correlation for the rate 1/2 
code used in these simulations is shown in 
Figure 5. The best-correlated incorrect path 
shown was found by inserting into encoder 11 
those data bits which maximized each node 
correlation. * 

Obtaining generator matrices which minimize the correlation of the best-correlated incorrect 
path is still a topic of research. Matrices for "good" codes have been presented by Bussgang (Ref­
erence ll), Lin and Lyne (Reference 12), and Massey (Reference 13). 

*A better correlated path may exist ,  however, if the constraint of maximizing each node correlation sequentially is not imposed. 
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unable to recover. The causes of this problem will become clear later. However, the important 
points to be made here are how the encoder is flushed and the effects on the code's tree. 

The convolutional encoder is flushed by terminating its input data sequence and inputting some 
known sequence of bits. This known sequence may simply be the all-zeros sequence. Since an en­
coder of constraint-length K has a "memory" of K - 1 previous information bits, the known sequence 
need only have length K - 1 to clear out all "history" of past data. During the interval when the 
known bits are being shifted into the encoder, transmission of the encoder output into the channel 
continues as before. The tail symbols are defined to be those symbols output from the encoder 
during this flush interval. 

If the code rate is l / V ,  then there are V(K - 1) tail symbols. If the code is systematic, then 
one of the symbols is lmown and it is really only necessary (and more efficient) to transmit the 
(V - 1 ) ( K  - 1 ) parity symbols. 

The code t ree  ceases to grow in the flush interval. With each input being known and fixed, 
there is nq alternate path. Thus the node vector associated with the last data bit in the tree ac­
tually has KV symbols. This gives the final bits in the tree the full Hamming-distance benefit of 
at least one constraint-length of parity symbols. Truncating the tail length would tend to increase 
the probability of e r r o r  of the final bits in the tree relative to that of previous bits. 

THE OPTIMUM DECODER 

The optimum receiver or decoder of a data sequence [D(i ), i = 1, 2, . . .] is here defined to 
be some processor which produces an estimated data sequence [6( i ), i = 1, 2, . . .] that is opti­
mum in the sense of minimizing bit e r r o r  probability. That is, 

is minimized. 

Let S( i )  denote the transmitted signal associated with the i t h  data bit, and R( i )  the corres­
ponding received signal. Then it is known that the optimum decoder is one which maximizes the 
a posteriori probability with the given received signals. That is, [6( i )  , i = 1, 2, . . .] is selected 
so that 

is maximized relative to any other choice of the 6 sequence. Using Bayes' Theorem and assuming 
that P[D( i )  = 01 = P [ D ( i )  = 13 = 1/2, then (2) may be rearranged to give the decoder decision func­
tion. Also, from the fact that the a posteriori probabilities are a monotonic increasing function of 
cross-correlation, the optimum decoder's decision function is: Select [S(i ), i = 1, 2, . . .] such 
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that 

1, 2, . '  [ R ( i ) ,  i 1, 2, . .  

is maximum. Then the data digits associated with s(i ) ,  namely 6(i ) ,  a r e  defined by the encoding 
process where 

g( i ) = the encoder output signal associated with the i t h  data bit hypothesis, 

p ( A ,  B) = the cross-correlation between signals A and B, and 

R( i )  = the received signal associated with the i t h  data bit. 

The above decision function may be simply restated in terms of convolutional codes. If a se­
quence of, say, 100 data bits, D( i ) ,is shifted into an encoder, then there will be 100 node vectors, 
S( i ) , transmitted. After being corrupted by additive noise, the received node vectors, R( i ), a r e  
cross-correlated with all possible transmitted sequences, [g( i ) , i = 1, 2, . . . ,1001. The s(i ) 
sequence yielding the largest correlation coefficient is the best signal estimate. The 100 informa­
tion bits which generated [S( i )] ,namely [6(i )] ,a r e  then the estimated data bits. 

Notice, however, that a serious implementation problem results since all 2 loo cross-correlations 
must be performed in search of the largest. Because of this problem, any practical decoder of con­
volutional codes must use sub-optimum techniques. 

Two practical decoding schemes for these codes a r e  threshold decoding and sequential de­
coding. Sequential decoding is the more efficient of the two in the sense of minimizing signal-to­
noise ratio threshold. 

SEQUENTIAL DECODING OF BINARY CODES 

Sequential decoding is an efficient decoding procedure which sequentially investigates paths 
through a t ree  code to make local data bit estimates. Bad estimates are sensed by a sustained 
loss in correlation (or metric value) between a local code generator and the received code a s  the 
decoder attempts to move ahead in the tree. Under control of an algorithm, the "investigation" 
moves back down the code tree, and systematically tr ies to find another t ree  path which does not 
have a sustained low correlation. The sequential decoder therefore attempts to find the highest 
correlated tree branch, like an optimum decoder. It does so, however, without having to investigate 
all possible branches of the code tree. If the noise is not too large, then the number of t ree  paths 
investigated will increase only linearly with the number of bits decoded. 

System Diagram and Decoder Metric 

Since the decoder's "investigation" of the code tree will move back and forth in the tree, some 
form of temporary memory for the received signals and data estimates is implied. A local replica 
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of the convolutional encoder used in the transmitter is necessary for comparing with the received 
signal. A simplified block diagram of a sequential decoding system, illustrating its basic com­
ponents, is shown in Figure 6. 

It is assumed that a sequence of M digits is encoded, transmitted, and received. The elemen­
tary code symbols are correlated in a matched filter, and the symbol correlation coefficients, 
R, ( i ,  I), are  stored in the decoder's memory. Under algorithm control, the locally estimated 
node vector, [ S (  j , I ) ,  1 = 1, 2, . . .,v], is compared with the corresponding received node vector, 
using some appropriate measure. The comparison measure or  metric may be simply the cross-
correlation coefficient, o r  a probability measure. This sequential decoding metric and its effect 
on system performance aye the main topics of this paper. It will be described herein more com­
pletely later. 

The estimated data register is capable of being shifted right or left under algorithm control. 
Shifting right corresponds to advancing into the code tree. When all M digits have been decoded, 
then 6(1) is in the rightmost position and 6(M) in the leftmost position, within the local encoder's 
shift register. 

BINARYD ( i )  CONVOLUTIONAL SYMBOL
ENCODER 

i = l ,  2 . .M AND t )  FILTER 
MODULATOR 5 ( i )  

-

RECEIVED SEQUENCE TEMPORARY MEMORY 

2 . . . . j . . M  

CURRENT 
BIT NUMBER UNDER I l l  . . .  . . . .  L 

I NVEST1GATION 
\
t '  + A &  Rp(j ,  I ) ,  I = 1 ,  . ., VI 

ALGORITHM NODE METRIC METRIC 
CONTROL CALCULATOR TABLE 

P ( j ,  1 )  
h 

D ( j )  LOCAL . . . . . .  
ENCODER 

ESTIMATED 

DATA 'BIT \ L 
ESTIMATED DATA, D ( i ) ,  SHIFT REGISTER MEMORY 

Figure 6-Simplified encoder-sequential decoder  system. 
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The Tree Search Algorithm 

The rules considered here for searching the t ree  paths a r e  known as the Fano Sequential De­
coding Algorithm. A flow diagram for this algorithm is shown in Figure 7. An artifice charac­
terizing this algorithm is the use of a threshold level (T). The decisions to move forward or  back­
ward in the code's t ree  a re  controlled by comparing the accumulated node metric (Accum) with 
this threshold. Accum will also be referred to simply as the branch metric. The flow diagram 
contains two primary loops: a move-forward loop and a search-mode loop. If the signal-to-noise 
ratio is high, then all data hypotheses will be correct, Accum will  be greater than T, and the rules 
in the move-forward loop will be executed repetitively until all bits have been decoded. 

This algorithm depends on the node metric being selected in such a way that when 

(a) all estimated data bits a r e  selected without error ,  the accumulated node metric tends to 
increase in value; and 

(b) 	when one or  more past bit e r ro r s  exist, the accumulated node metric tends to decrease in 
value. 

WITH THRESHOLD, T, = O  
AND ACCUMULATED BRANCH 

METRIC, "ACCUM," = 0 

T 

I I 

CALCULATE NODE METRIC 
FOR THE 2 POS~IBLE ACCUM =A'  

FORWARD PPTHS; D ( j ) = l  
AND D ( j ) = O  

ONE STEP 
COMPARE A '  TO "T" 

CHOOSE 6 ( j )  WHICH 
GAVE LARGER METRIC AND 
ADD METRIC TO "ACCUM" STEP BACK ONE NODEk' 

DOES THE OTHER NODE 
PATH HAVE A LOWERA L  TO "T" 

NO I METRIC? 

I MOVE FORWARD 

4 
COMPLEMENT6 ( j  )

A AND ADD ITS NODE 
METRIC TO ACCUM 

FIRST TIME AT THIS NODE? 

YES 

INCREASE "T" ONE STEP IF 
POSSIBLE SEARCH-MODE LOOP 

MOVE-FORWARD LOOP 

Figure 7-Flow diagram of Fano Sequential Decoding Algorithm. 
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The branch correlation as shown in Figures 4 and 5 can fulfill the above conditions i f  some appro­
priate constant is subtracted from each node correlation. 

Thus, when some previous fi( i )  is in error ,  Accum should become less than T and the algo­
rithm will initiate the search-mode loop. Basically, this loop forces the decoder to try alternate 
tree paths, attempting to find one which has a non-decreasing metric. An important feature of 
this search operation is that the threshold is never lowered until some previous node's accumu­
lated metric, A ' ,  is less than the current threshold. The only way this can happen is for the de­
coder to have searched all possible available tree paths which have an Accum greater than T. 

This search-mode operation is probably best understood through an example. 

Examples of Tree Searching 

If a plot of the accumulated node metric 
(Accum) and threshold (T)  versus the data bit 

--&---
number, ( i ) ,  is made under high signal-to-

STARTINGnoise ratio conditions, it might appear as in 
Figure 8. 

At each new node, the node metric is found DATA BIT NUMBER, i 

by trying 6(i )  = 1 and 0. The larger metric is Figure 8-Typical Accum and T behavior wi th low noise. 


added into Accum and its associated D( i ) is left 

in the local encoder. The smaller metric is discarded; but, if  it were added into Accum, it would 

give the dotted paths shown. The threshold is increased in discrete steps, A, provided Accum still 

exceeds the new threshold. Since the signal-to-noise ratio is high, no e r r o r s  in estimating D( i ) 


occur and Accum continues to increase. Only the move-forward loop of the algorithm is then 

utilized. 


With lower signal-to-noise ratios, occasional data bit estimates a re  in e r ror  and the search-
mode loop of the algorithm must be employed to correct them. An example of decoder operation 
when a single bit e r r o r  occurs follows. 

Referring to Figure 9a, let bits 1 and 2 be hypothesized correctly, and let the noise sufficiently 
corrupt the received node vector associated with bit 3 so that the larger of two node metrics be­
longs with the incorrect data bit. Then, as shown in Figure 9a, the decoder moves forward through 
steps 1, 2, 3, and 4. However, when investigating bit 5, it finds that the largest forward Accum 
violates the current threshold; that is, (Accum < T). This causes loop 2 of the algorithm to be 
executed. The decoder now backs down the t ree  to the previous node, namely bit 4. After con­
firming Accum is still > T, it investigates the lower metric path-labeled 6. The Accum on this 
lower path also violates the threshold, returning decoder control to the search-mode loop. The 
decoder again backs up one bit. As shown in Figure 9b, the Accum at bit 3 is above the threshold, 
so that lower node metric path, labeled 7, is investigated and compared to the threshold. It also 
violates the threshold, returning decoder control to the search-mode loop. 
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t The decoder now "looks back'' from node 
1ST 

I 
INCORRECT BIT HYPOTHESIS 3 to the Accum of node 2. As seen in Figure 

ACCUM 9b, that node Accum violates the threshold. 
METRIC The threshold is then lowered one step while 

staying at node 3, and decoder control given to 

2F=--- the "look forward" loop.-
L - .. 1 I 1 1 ,  

1s-itT
The decoder now retraces all of its pre­

( a )  3 4 5 6 

BIT NUMBER vious move-forward steps as shown in Figure 
9c by paths 8, 9, 10. The thing that is differ­t ent is the lower threshold. The threshold i s  

Prevented from increasing by the question 
MI '!Firsttime at this node?" in the algorithm. 

Again the search-mode loop backs up the in-
L- L - 1  1 vestigation to bit number 4 and forces investi­

(b) 1 2 3 4 5 6 gation of the complement path, labeled 11. 
BIT NUMBER 

Since path 11 is above the threshold, the de­

8 coder looks forward on the largest path, labeled 
12. When path 12 violates threshold, the search-
mode loop backs up investigation to bit 3 and 
path 13. The move-forward loop then investi­

( c )  1 2 3 4 5 6 gates paths 13, 14, 15 and further. At bit 6, the 

4 BIT NUMBER decoder recognizes both that it is the first 
time at that node, and that a threshold increase 
is possible. T is then increased one step. 

Move-forward operation continues until the 
1 accumulated node metric, Accum, again violates 

( d )  1 2 3 4 5 
BIT NUMBER 

6 the threshold, or, of course, until the last data 
bit is received. 

Figure 9-Sequential decoder operation analysis with The question "First time at  this node?" 
bit  hypothesis 3 in i t ia l ly  in  error. appears to be formidable, since a large mem­

ory of past investigations is implied. Indeed, 
i f  it were not for the ingenious use of a particular Accum and T relationship, it would be difficult 
to implement. Actually it is necessary only to ask the question "Is the previous node's Accum 
smaller than the current threshold plus a threshold step?" If the answer is "No," -and T could 
otherwise be increased, then the present node must have been investigated previously or a thresh­
old separation exceeding one step could not exist. 

Characterization of Decoder Performance 
An important decoder performance measure for any data system is the bit e r r o r  probability 

versus system parameters. Since a sequential decoder attempts to detect and correct errors,  it 
is more appropriate to say "undetected bit e r r o r  probability." If D i ,  i = 1, 2, . , .,is the encoder's 
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input data sequence and Gi, i = 1, 2, . . . , is the decoded output data sequence, then define the 
bit error probability as 

p,i, ( E )  = P,(E) = P(D, # S i )  for any i . 

The encoder is periodically flushed and reset. Each such interval comprises a frame of data. 
Thus another e r r o r  measure of interest is the frame e r r o r  probability. The frame error p o b a ­
bility is defined as 

P F r a m e ( e )  = P, ( E )  = P(one o r  more bit e r ro r s  i n  a frame) 

A s  shown earlier, under "Examples of Tree Searching," the decoder algorithm must perform 
a search whenever bit estimates a re  initially in error.  A period of high channel noise may require 
a large amount of searching, and hence a large amount of computer time. It is therefore important 
to characterize the computational behavior of the decoder as a function of signal-to-noise ratio. 

Define a decoder computation as the sequence of operations necessary to complete one search-
mode loop o r  one move-forward loop in the decoding algorithm. Then knowing how many compu­
tations a decoder must perform to decode some received signal gives proportional measure for 
decoding time and telling how ''hard" the decoder is working. 

In particular, it is desirable to find the probability distribution associated with the number of 
decoder computations (C). Define a frame as the signal sequence transmitted between encoder 
resets. This frame is to include the tail symbols transmitted by the encoder as it is flushed and 
then reset. The most useful computation distribution is that which gives the fraction of frames 
requiring more than L computations. That is, 

P(C > L )  = f (SNR,  system parameters) 

where 

c = the number of computations required to decode a sequence of data, and 
L = a variable limit. 

If a decoder is allowed to make no more than "L" computations because of time limitations, 
etc., when attempting to decode a sequence of data, "L" i s  called the overflow limit. Then P(C > L) 
i s  the overflow distribution. It is desirable to characterize the average computational load of the 
decoder as 

-
C, = EO (computations per bit)

"d 

where 
-
c, = average number of decoder computations per received bit, 
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E(C) = expected value of c, and 

nd = total number of data bits received. 

In this paper, the three decoder characteristics mentioned will  be used to describe the de­
coder, and thus the system performance. Again they are: 

(1) undetected bit, P, ( E ) ,  and frame, P, ( E ) ,  e r r o r  probability; 

(2) overflow distribution = P ( C >  L) ;  and 

(3) average computations per received bit = e,. 

THE LOG-A-POSTERIORI PROBABILITY METRIC 

During sequential decoding on a continuous, binary-symbol communications channel, each re­
ceived symbol has two weightings attached to it. One weight is a measure of how confident we are  
that a binary 1 was transmitted. Similarly, the other weight is a measure of how confident we a r e  
that a binary 0 was transmitted. If the weights a r e  proportional to the symbol's matched-filter 
correlation voltage, then the decoder is said to be using a "correlation metric.'' Another measure, 
however, is one where the weightings a r e  proportional to the probability that a 1 o r  0 was sent, 
given the correlation voltage. This is called an ''a posteriori probability metric" and variations of 
it are among the best known for use in sequential decoding. 

We shall now describe and tabulate the log-a-posteriori probability (LAP) metric as used in 
the simulations. 

The LAP metric is described assuming a typical binary PCM space communications channel. 
Because the metric depends on the particular channel assumptions made, the system model and 
channel transition probabilities a re  defined previous to the description and tabulation of the metric. 

The Channel Model 

The mathematical model of the communications channel assumed is shown in Figure 10. For 
each data symbol, Di, entering the encoder, V binary symbols a r e  transmitted. The transmitter 
sends plus o r  minus 6 volts for a 1 or  0 symbol respectively. The modulation power is then 
S watts. Additive noise, n ( t ) ,  has N o  watts/Hz single-sided power spectral density. A gain-
controlled amplifier in the receiver maintains a constant signal amplitude into the filter. The 
matched filter is sampled at the end of a symbol period, giving a correlation voltage, Ci j .  Be­
cause the AGC amplifier estimates the amplitude of S( t ) rather than r (  t ), the mean value of Ci is 
some essentially constant positive o r  negative value. 

Indices I'i" and ' I  j "  denote the j t h  symbol associated with the i t h  data bit. The correlation, 

ci ,is a continuous random variable because of the additive gaussian noise. 
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Given each ci j ,  the metric is found by hypothesizing a 1or 0 as being transmitted. Let 2 de­
note this hypothesis. The symbol metrics, Mc (: I Ci j )  ,are then summed by the decoder to 
compute a branch metric. It is im­
practical to use continuous values in a OUTPUT SYMBOLS 

digital machine, so the c i j  correla- Xij; j = l ,  . . .,V 

tions are usually digitized. Using more 
I U U  SAMPLE AT 

than about 16 levels (4-bit A to D) gains t = t i j  + Tr 

little in system performance (Refer­
ence 14). The quantized correlations, 

SYMBOL METRICS 
Qij ,  are then used to find the quan- FOR USE BY DECODER 

tized metric, M(: I Q~j )  . 
L 

Channel Conditional Probabilities IDEAL METHOD 

The symbol's correlation voltage, Figure 10-Communications system model. 

ci,, will have a gaussian probability 
density, since the receiver's amplifier and filter a r e  linear devices. The mean to standard 
deviation ratio of c i j  may be shown to be (see Appendix A) 

where 

p = mean value of C i j  , 
cr = standard deviation of cij ,  

S = modulation power in watts, 

Ts = duration of binary symbol in sec, and 

No = noise density of n ( t )  in watts per Hz. 

If x i  is a binary 1, then p is some positive voltage. When xi is a 0, then p i s  the same volt­
age but negative. Let the gain-controlled amplifier adjust this voltage magnitude to 1volt. Then 
the conditional densities of Ci are 

and 

P ( C i j  I xi, = 0) = Normal (5) 
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The Sequential Decoder's LAP Metric 

A sequential decoder is basically a conditional probability computer. In its algorithmic search 
for the correct path or branch in the coding tree, it computes the probability that the hypothesized 
symbols, Gij ,  could have been transmitted given the received Ci j .  This conditional branch prob­
ability is 

where 

Si  = the binary symbols hypothesized by the decoder for this branch, 

K = the number of information bits shifted into the encoder to generate the branch, 

v = the number of encoder symbols transmitted per  input information bit, and 

ci = the received symbol correlation voltages. 

To simplify notation, let the jii and Ci sequences in Equation 6 be replaced by Sn and C, re­
spectively. The "n" subscript represents a one-dimensional serial ordering of the sequences and 
furthermore implies n = KV. Using the same notation, Xn represents the actual transmitted se­
quence of KV binary symbols. The conditional branch probability using hypothesized symbols is thus 

The probability in Equation 7 is the hypothesized "a posteriori branch probability." It is a 
measure of how confident we a r e  that ?, = Xn. For V 2 2, K large, and the noise not too high, we 
expect P ( i n  I C,) to be near unity only if  ?, = X n  . Otherwise, it should be small for "good" con­
volutional codes. An optimum decoder selects ?,, so as to maximize this probability. 

The a posteriori branch probability for true transmitted sequence, Xn,  may be found using 
Bayes' Theorem: 

Since the channel model has no memory from symbol to symbol, the symbol probabilities a r e  
independent. Thus the sequence conditional probability in Equation 8 may be expressed as the 
product of the symbol probabilities: 
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Now the P(x,) is just the branch probability. Each branch is a priori  equi-probable with ran­
dom data, and there a re  2K unique branches in an n(= KV) symbol code tree. So 

P(X,) = 2-K . (10) 

To simplify implementation of the decoder, an additive measure of probability is desirable. 
The logarithm (base = 2) of P(x, I c,) allows this without disturbing the monotonic nature of the 
conditional probability. Note that very small branch probabilities become large negative numbers. 

Combining Equations 8, 9, and 10, taking the logarithm, and using the double subscript symbol 
indexing gives 

" 
log2 P(X, 1 C,) = -K + 7x l o g  

P(Cij I X i j )  

i = l  j - 1  p(Ci j )  

Of course, the actual xi sequence is not known and it is the task o the oy-xum decoder to 
hypothesize these symbols, Si j ,  so as to maximize this probability. Thus substituting in G i  and 
letting K = KV/V so i t  may be combined in the summation gives 

Symbol LAP Metric 

L Y 

Node LAP Metric 
Y 

Branch LAP Metric 

Thus the decoder computes each symbol log-a-posteriori probability metric and sums them 
over a node (= v symbols). Information bit hypotheses a re  based on this node metric. The sum 
of the node metrics then forms the branch LAP metric (= Accum). 

The quantity 

as in Equation 11, is called the mutual information between x and C, and the quantity l / V  is the 
convolutional code rate. The channel conditional probabilities, p(C I 2 = 1) and p(C I 2 = O), have 
been obtained earlier, under the heading of the same name. 

Define 
P(C I* 4 I(a,  c) (12)log, -
P(C> 
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and the continuous symbol LAP metric Mc (.^ I Ci j )  , then it follows that 

1
= Mc (2 I Ci j )  I (2, Ci j )  - v . (13) 

It is clear from Equation 13 that it is necessary only to evaluate I (2 ,  C) for the channel and 
then the symbol metric, Mc, may be found for any code rate by simply subtracting l /V .  

The Continuous, Gaussian-Channel Metric 

The symbol LAP metric, Mc ( X  I C i  j ) ,  is a continuous function of C. As  noted earlier, it is 
easier to implement when digitized to as few bits as possible. However, it is useful to compare 
the continuous metric to the quantized metric to see how closely the latter approximates the former. 

Define x o  to mean .̂  = 0 and x1 to mean 2 = 1, then, using Equation 12 

For random data and linear parity check codes, it is generally true that p ( x 0 )  = p ( x l )  = 1/2. 
so 

Likewise, 

Using the conditional densities in Equations 4 and 5, 

= 1 - log2  {w [-34 1) . 
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Similarly, 

I ( x o ,  C )  = 1 - log, EXP + 7+ 11 . (17){ [ "'I 
Since I (xo ,  C) = I (xl,- c) it is really nec­

essary only to calculate l ( x l ,  c). With I-L = 1 
volt, then u = (~ST~/N,)-~/~(from Equation 3, 
and finally 

I ( x l ,  C )  = 1 - log, rEXP (- 4 C r  + 11 . (18)
ST:)


L -I 

Figure 11 is a plot of Equation 18 for ST~/N, 
values useful for v = 2 and 4 codes. 

- L J  

Figure 1 1  -Continuous symbol metric for several
The Quantized, Gaussian-Channel Metric STS /No ratios. 

As shown in Figure 10, an A to D conversion of a symbol correlation, C, gives rise to a num­
ber, Q, representing one of a set  of 16 quantiles of C. The quantized symbol LAP metric is defined 
on Q as follows: 

This is similar to Equation 11, but is a ratio of quantile probabilities rather than densities. A 
result analogous to Equation 14 can be readily obtained: 

where 
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and 

t 1  if xi = x 1  

p(xi) = {
- 1  if xi = xo 

Finally, 

Before calculation can proceed, there is one practical question that must be answered: Over 
what range of C should the quantization levels be distributed? 

The optimum level assignment to make is 
difficult to arr ive at, since an exact cost func­
tion on the decoder's performance is not known. 
The assignments selected for this paper were 
chosen to give a goodapproximation to the con­
tinuous metric over all C where p(C)  was non­
negligible. It is known from previous simula­
tions that the level assignments a r e  not critical. 
Figure 12 summarizes the assumptions made. 
Note that the level assignments a re  a function 
of nand hence of the particular symbol SNR 
selected. The ordinary A-D converter con­
straint of equi-spaced quantization intervals is 
assumed. 

Table 1 lists the quantized mutual informa-
Figure 12--C2uantile assignment nomograph. tion, I (X = l, Q ) ,  for four symbol SNR's. Using 

Equation 21, the LAP metric can easily be 
found, given the code rate. 

The symbol SNR's, STs/N,, in Table 1 have been selected esepcially for rate 1/2 and 1/4 codes. 
Defining the E,,,/N, decoding thresholds as 3 db and 2 db for rate 1/2 and 1/4 codes respectively, 
we list the corresponding symbol SNR's below: 

Threshold Threshold +3 db 

I I 1 


code rate{;: db 
-4 db -1 db 

~ 
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Table 1 

Quantized Mutual Information, I (x = 1, Q),  Tabulation.* 

Quantile 
Number 

STs/No = -4 db 
P = 1, 

u = 1.121 

STs/N, = -1 db 
P = 1, 

u = 0.793 

STs/No= 0 db 
P = 1, 

u = 0.707 

STS/No = +3 db 
P = 1, 

u = 0.501 

1 0.201 0.311 0.358 0.539 

2 0.510 0.702 0.767 0.925 

3 0.712 0.881 0.923 0.989 

4 0.835 0.954 0.975 0.998 

5 0.908 0.983 0.992 0.999 

6 0.948 0.993 0.996 1.000 

7 0.972 0.998 0.999 1.000 

8 0.989 0.999 1.oo 1.000 

9 - 0.23 -0.40 -0.47 -0.87 
10 -0.80 - 1.42 - 1.75 -3.31 

11 - 1.47 -2.66 - 3.26 -6.06 
12 -2.21 -4.00 -4.88 - 8.88 
13 - 3.01 -5.39 -6.54 -11.70 
14 -3.84 -6.79 - 8.21 - 14.53 
15 -4.69 -8.21 -9.89 - 17.35 
16 -6.04 - 10.17 - 12.12 -20.71 

*See Figure 12 for quantile assignments. 

Since most operational telemeters normally operate above the threshold of the system, SNR's 
3 db above threshold a re  also given. 

Comparison of Continuous and Quantized Metrics 

If the quantized metric is superimposed on the continuous metric, as in Figure 13, it is ap­
parent that the quantized metric is a good stepwise approximation to the continuous metric.* 
Should a quantized metric be desired with different SNR's, etc., one could readily use a graphical 
approximatioa to the continuous metric. 

Typical Branch LAP Metric Behavior 

To get a feel for the behavior of the LAP metric, an example is given here. The branch LAP 
metric associated with the correct path and best-correlated incorrect path for &e rate 1/2 code 

*Metric and mutual Information are used interchangeably, s ince  their only difference is the addend -1/V. 
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Figure 13-Comparison of the continuous and 
quantized LAP metrics. 

L CORRECT -BRANCH METRIC 
5 -

BIT NUMBER 

u 
ci

I­w 

5 


--15 

----20 

Figure 14-Typical LAP branch metric behavior. 

' shown in Figure 5 is shown in Figure 14. It is assumed that C "happens" to be very close to + p  

o r  -p so that 

and 

These values include the addend - l / V  = - 1/2. Notice that the sum of two symbol metrics forms 
a node metric and the sum of the node metrics comprises a branch metric. 

Notice further that the correct branch tends to have an increasing metric and incorrect 
branches tend to have a rapidly decreasing metric. Thus the LAP metric fulfills the metric con­
ditions mentioned earlier, under "The Tree Search Algorithm." 

THE CROSS-CORRELATION METRIC 

The optimum decoder, as mentioned earlier, under the heading of the same name, requires 
that the largest correlated tree branch be se1,ected as the best estimate of the transmitted sequence. 



It was noted that the branch a posteriori probability w a s  a non-decreasing function of the branch 
cross-correlation function. Furthermore, since correlation is a linear process, a branch correla­
tion coefficient could be found as the sum of the symbol correlation coefficients, giving the de­
sirable additive property for any selected decoding metric. Thus it seems natural to consider 
cross-correlation as a candidate for a sequential decoding metric. 

For a correlation metric to be compatible with the Fano algorithm, the metric associated with 
the correct branch must tend to increase, and all incorrect branch metrics must tend to decrease. 
To accomplish this, a constant number must be subtracted from each correlation coefficient. The 
linear nature of the correlation process is left undisturbed. 

In the following sections, the correlation metric is defined and derived. Simple bounds for 
the magnitude of the additive constant a re  found. However, because of the complex decoder sta­
tistical behavior, the optimum value must be found by simulation. 

Channel Model and Definitions 

The same channel mode as employed for the LAP metric and shown in Figure 10 is assumed 
here. The transforms shown in Figure 10 a r e  all that is changed. However, to distinguish be­
tween the LAP metric and the correlation metric, the following definitions a re  used: 

M C ~ 
(2 I c,,) = 	The continuous symbol correlation metric for the symbol hypothesis, 2, given 
the received symbol correlation, Cij .  

MC(G 1 Q i  j )  = 	The quantized symbol correlation metric for the symbol hypothesis, 2, given 
that the symbol correlation, Cij ,  was in the Q t h  quantile. 

As before, the analog-to-digital converter assigns the correlation voltage to one of 16 quan­
tiles, o r  levels. A s  was done with the LAP metric, the continuous correlation metric will be de­
rived first and then the practical problem of quantizing it will be treated. 

Correlation Metric Deviation 

If the decoder receives KV symbols of the received signal, r( t ), and cross-correlates them 
with a locally hypothesized signal, C( t ), then the cross-correlation associated with this KV symbol 
code branch is: 

- 1t + KVTs 

Branch Correlation, C, ~ s^(t) r(t) dt 

t 0  

where 

t o  = some starting time, and 

K = the number of information bits shifted into the encoder in the interval under consideration, 
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v = the reciprocal of the code rate, and 

T~ = the duration of a symbol in sec. 

Now let +p and - p be the mean values of the symbol correlations, Ci j ,  when a 1 or  0 is transmitted, 
respectively. Furthermore, let E ( t )  take on the following values defined as the modulation process: 

If 2 = 1, then G ( t )  = +l;and 

If 2 = 0, then C ( t )  = -1. 

It follows from Equation 24 that if 2 = x over the entire Kv symbol branch, then 

E(C,) = KVp (26) 

where E ( c ~ )denotes mathematical expectation. On the other hand, if  one o r  more data bit e r ro r s  
have been made, then 2 = x perhaps only for half of the KV symbols. In this case, it follows that 

To make the branch correlation behavior compatible with the Fano algorithm requirement, a 
constant will be subtracted from C,. Let this constant be some fraction of the average branch cor­
relation, Kvp, and define this fraction to be the correlation metric bias, p. Thus 

nBranch C o r r e l a t i o n  M e t r i c  = C, - pKVp (28) 

where 

c, = the branch correlation as defined in Equation 24, and 

B = the correlation metric bias. 

The symbol correlation metric, based upon Equation 28, will now be found and then some 
bounds on p established. 

It follows from Equations 24 and 28 that 

t o  +Ts t 0 + 2 T s  

Branch C o r r e l a t i o n  Metr ic  = I, C ( t )  r ( t ) d t  + I
t o + T s  

G(t)  r ( t ) d t  + ... 

where ŝ , denotes the estimated symbol associated with the m t h  received symbol on the KV symbol 
branch. 
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Let cmdenote the symbol correlation: 

tO+mTS 

cm 4 J r(t) dt . 
t o +  (m- 1)Ts 

Then 

Branch Correlation Metric = (ElCl-pp)+ ( g 2 C Z  -pp) + * * *  + (cKvCKv-fip). (31) 

NOW, changing to the double subscript notation where denotes the information bit number and 
Ifj" the associated symbol number, Equation 31 becomes 

Branch Correlation Metric = p i jcij7%)' 
i = 1  , = I  + 
Symbol Correlation Metric 


Node Correlatxn Metric 


Since Si  is constrained to j ;  by Equation 25, it follows that the continuous symbol correlation 
metric is 

(33) 

Thus Equation 32 may be rewritten as 

K V 

Branch Correlation Metric = 77,MCc (2 1 C i j )  (34) 
i = 1  j = 1  

Bounds on the Metric Bias 

One obvious upper bound for the bias, p, is unity. In this case, the average metric for the 
correct branch is zero. However, the Fano algorithm requires that the correct branch tend to be 
increasing. This result  follows directly from Equations 33 and 34. 

Average Branch Correlation Metric (correct branch) = 

= KV [E(c)- &]when 2 = x 

= KVp( 1 - f i )  

= 0 when P = 1 .  
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A simple lower bound for p follows from the fact that the Fano algorithm requires that all in­
correct paths tend to decrease, and from the fact that the average branch cross-correlation for a 
convolutional code is no lower than zero. Thus: 

Average Branch Correlation Metric (incorrect branch) = 

for G # x for KV/2 of the symbols, and 

Average Branch Metric = -KV,B,u ,  

and this is 20 for p 5 0. Therefore, some strict, but wide, bounds for ,B are: 0 < ,R < 1. For a rate 
1/2 code, the correlation of incorrect branches is considerably above zero and so we might expect 
reasonable values of p to be near 1. 

The Quantized Correlation Metric I 
For practical reasons, noted previously, it 

is necessary to quantize the symbol metric. 
For a good simulation comparison, the quantile SYMBOL 

METRIC 

3 +  

2 i MC, ( c  = 1 l C )  ,I’ 

WITH P = 0.8 \,’ 
I 
/ 

assignments have been taken identical to those 
made for the LAP metric as shown in Figure 12. 
Using a stepwise linear approximation to the 

continuous metric in Equation 33, we get the 
plot in Figure 15. A mean value, p,  of one volt 

I 

- I 3  

I I 

-; - 1  
f 

2 3 
is assumed, and the bias shown as 0.8. The SYMBOL CORRELATION 
metric for the alternate hypothesis, G = 0, is c (vo l ts )  

simplythe mirror  image of that for 2 = 1. That 
is, 

M ( i = O I C )  = M ( s =  11-C). -3 
/

/ 

THE RATE 1/2 CODE SIMULATIONS Figure 15-Continuous and quantized correlation metrics. 

Because of the statistical complexity of the sequential decoder, it is necessary to  resor t  
to simulation techniques to compare accurately the relative meri ts  of decoding metrics. But, 
with any simulation of a complex system, there will be a number of parameters for  which 
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optimum values are not known. It is then necessary to  select parameters which are "reason­
able" from a practical standpoint or have been shown to be r'good'' from previous work. This 
is the case for the encoder generator matrix and code rate selected. However, inadequak 
information was available regarding the Fano algorithm threshold spacing. So it was neces­
sary and feasible to search for a "good" spacing. In addition, it was necessary to find a 
"good" correlation metric bias. 

A rate 1/2 convolutional code, as opposed to a lower rate code, was  selected for the simula­
tions for a number of reasons: 

1. 	 Current interest in the field centers on the use of a rate 1/2 code because of its modest 
bandwidth requirements and substantial coding gain, 

2. 	 The disadvantages of a non-optimum decoder metric should be most pronounced with a 
high-rate code, and 

3. The computer execution time is lower. 

Before the simulation results a re  presented, the basic communications system model is de- 1 
scribed and a synopsis of parameters given. In addition, criteria for "goodness" of performance 
a re  defined. The choice of r'goOd" decoder parameters is then based on these criteria. 

The Simulation Model 

The system model used for the simulations is shown in Figure 16. A constraint-length 32, 
rate 1/2 convolutional encoder accepts random binary data and feeds coded symbols to the channel 
modulator. The computer simulation actually uses a pseudorandom binary data source. A frame 
consists of 224 information bits and 479 binary symbols. 

An idealized additive, white, gaussian noise channel is assumed, and the symbol matched fil­
te r  has perfect synchronization. Thus the symbol correlation voltage, Ci ,will have a gaussian 
density with a mean of +1volt when xi = 1and a mean of - 1volt when xi = 0. It is a simple 
matter for the computer to simulate the channel/matched-filter combination by simply directly 
synthesizing the cij .  The additive gaussian noise samples a re  generated by adding 12 samples 
from a uniform number generator and appropriately normalizing. The latter generator employs 
Hutchinson's method (Reference 15). The gaussian samples have been extensively tested for  in­
dependence and normality out to 3.5 standard deviations. 

The quantization of the symbol correlations follows exactly the model given for the LAP metric 
earlier, under "The Quantized, Gaussian-Channel Metric.'' 

The simplified model of the sequential decoder in Figure 16 is shown with somewhat more 
memory than actually required for a frame. The decoder starts once the Q memory is filled with 
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Figure 16-Rate 1/2 coded data system model. 

a frame, and stops computation when either bit 224 is decoded with a metric greater than current 
threshold or the number of computations exceeds an overflow limit. Once a frame is deooded, the 
data, f i i ,  a r e  searched for errors .  The number of bit e r ro r s  and the number of computations re­
quired for each frame are  recorded for performance evaluation. 

Synopsis of System Parameters 

Encoder: 

Type: Convolutional, systematic, rate 1/2, constraint-length = 32 

0000 0000 0000 0000 0000 0000
G = K y z y  

0101 1001 0111 0001 1101 1110 000011101 


Initial State: all zeros 

PCM Format: 

Number of information bits per frame = 224 

Number of symbols per  frame = 479 

Tail: (binary zero encoder input, parity only out) = 31 
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Channel and Matched Filter: 

System SNR Parameter: E,/N, = energy per bit/noise power density averaged over a frame 

Symbol Correlation Mean: + 1v if x = 1, - 1V if x = 0 

Symbol Correlation Standard Deviation: oc = 479 

Synchronization and Filtering Losses: None 

Decoder: 

Algorithm: Modified Fano Algorithm (see Appendix B) 

Symbol Metrics: 

1. 	Log-a-Posteriori Probability Metric at 0 db STs/N, (see the earlier section dealing 
with this type of metric) 

2. 	 Biased Correlation Metric,'P = 0.9 (see the preceding section, "The Cross-Correlation 
Metric") 

Threshold Spacing (IDELTA): 

1. With LAP Metric: = 4 X max. node metric 

2. With Correlation Metric: = 1 X max. node metric 

Number of Symbol Correlation Quantiles: 16  (see earlier heading, "The Quantized, Gaussian-
Channel Metric") 

Tail Symbol Treatment: The node metric pair for the last frame information bit is calculated 
using that node and the entire tail. The local bit estimates, G i ,  a re  forced to be zero for cal­
culating the tail metric. 

"Goodness" of Performance Criteria 

Most of the system parameters have been defined and fixed. Only the decoder threshold spac­
ing and correlation metric bias parameters a re  unspecified. These parameters a re  to be selected 
to give ''good" performance, which here means minimizing the average computations per bit and 
the undetected e r r o r  probability. It is not generally true, however, that both can be simultaneously 
minimized. 

Furthermore, since exact cost functions a r e  not known for the e r ro r  probability or  for the 
average computational load, optimum parameter selection cannot be made. It is usually true that 
undetected e r ro r s  a r e  serious and that it is acceptable to increase the computational load some­
what if  the e r ro r  probability can be substantially reduced. 

Thus the simple rule used fo r  Ilgood" parameter selection was to select those parameters 
which tend to minimize the average computations per bit while giving an acceptable e r ro r  probability. 
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The LAP Metric Simulation Results 

Using the log-a-posteriori symbol metric in the sequential decoder, a threshold spacing search 
was first made at an E.IN, of 3.0 decibels. Each data point is based on a run of 250 frames. Each 
run used the same "noise" and data derived from the pseudorandom number generator. Hence 
relative performance should be accurate. These results a r e  shown in Figure 17, which plots the 
average computational load, E,, versus a normalized spacing. A broad minimum exists from 
a,, = 3 to A,, = 9. 

Since no bit e r r o r s  occurred in any of these runs, a A,, = 4 was selected for these simulations, 
primarily on the basis of minimizing cB. 

1 2 3 4 5 6 7 	 8 9 10 
a 

~~NORMALIZED SPACING,np =MAXIMUM NODE 

Figure 17-Decoder computational load versus 
threshold spacing. 

LWWtK B W U N U l  

Figure 18-Average computational load versus E,/N,. 

Computer runs of 500 frames each were 
then made to determine decoding statistics ver­
sus  E,/N,. A number of additional runs with dif­
ferent pseudorandom data and noise were made 
to ascertain the repeatability of the statistics 
and to check some anomalous behavior. 

Figure 18 plots the average computations 
per bit verus E,/N,. For comparison, some 
basic sequential decoding bounds are also in­
dicated. The decoder must, of course, make at 
least one computation for  each received bit, 
giving the CB lower bound. It is well known that 
-
C, must approach infinity when the system is 
approaching operation at one-half channel ca­
pacity (Reference 16). This corresponds to an 
E,/N, of 1.4 decibels for the "very noisy," con­
tinuous channel. 

A better indicator of a sequential decoder's 
performance is its so-called buffer overflow 
probability. It is here defined as the probability 
that the number of decoder computations, C, re­
quired to decode one frame of data exceeds some 
limit, L. It is desired to find this probability as 
a function of signal-to-noise ratio. That is, 

P(C > L )  = func (L ,  E,/N,) . 

It has been shown that this distribution is of the 
Pareto type (References 17 and 18). That is, 

P ( C > L )  - L-a 
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where u is the Pareto exponent. These simula- 1 


tion results tend to bear this out. Figure 19 

plots the relative frequency of overflow. The 

ordinate is labeled with P(C > L) to emphasize 

that it is an estimated probability. io-' r 


-To help determine the integrity of the re- -t 
A

sults, additional 500 frame runs were made at V 
v 

c n  
most of the E$N~ratios treated. This accounts 
for the double set of points associated with the 10-2 r 

curves. It can be seen that, over the range of 
the curves plotted, the repeatability was such 
that E $ N ~  differences of 0.2 db. or better could 
be resolved. 

The peculiar break in the 4 decibel curve 
cannot be explained. Subsequent results indicate 
that it is dependent on the A" selected. 

-

3 x  io2 id 3 x  id io4  3 x  104 
OVERFLOW LIMIT ( L )  

Figure 19-Decoder overflow distributions 
w i t h  the LAP metric.  

At 3.0 decibels, 1500 frames were run to extend the curve meaningfully below 6(C > L) = .01. 
The results indicate another break in the curve giving a lower Pareto exponent for large L. This 
tends to indicate that all the curves may break at higher L. 

By definition, the communications system threshold is that EB/No ratio for which the Pareto 
exponent, a ,  is equal to unity in the 6 ( C  > L)distributions. For these simulations, system threshold 
occurs at about 2.4 decibels. 

So few bit e r ro r s  occurred in these runs that it is difficult to make a good point estimate of 
the e r ror  probability. Table 2 summarizes the e r ror  results. These results will be compared 
with several theoretical bounds. The bounds assume an a 2 1, an "average" rate 1/2 convolutional 

Table 2 

Er ro r  Summary for LAP Metric. 
-

E,/% 
(db) 

No. of 
Frames Run 

No. of 
Frames with 2 1Erro r  

Total No. 
of Bit E r r o r s  

P, ( E )  Point 
Estimate 

(224 bits/frame) 

2 .o 1000 19 8.5 i o d 5  
2.5 1500 8 2.4 

3 .O 1500 10 3.0 10-~  

3.5 500 0 -< i  10-5 

4 .O 1000 I 6 2.7 

4.5 1000 1 6 2.7 
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code, and a LAP metric decoder with a large overflow limit. The frame er ror  probability is: 

where: 

nd = the number of data bits per frame of data, 

k = the constraint length of a systematic ra te  1/2 code, 

and for this case: 

pF(�) 5 224 2-16  :3 . 4  10-3 

At 2.5 db. E,/N,, 

F F ( e )  = 3/1500 = 2 . 0  x 

The bit e r ror  probability bound is: 

P , ( E )  5 6 x 2-16 2 9.1 x 

and the actual bit e r ror  probability (at 2.5 db.) 
was: 

e , ( � )  = 2 . 4  1 0 - ~  

Considering the limited number of samples 
involved and the possibility of poor encoder 
connections, the agreement between the theo­
retical bound and these results is considered 
excellent. 

The Correlation Metric Simulation Results 

With the normalized threshold spacing, AT, 
held at a trial value of 1.5 and an E$N, of 4.0 -2 

k.. 

1- 1- - 110-5 

decibels, a search for a good correlation metric 0.85 0.90 0.95 

bias, p, was made. The results a r e  plotted in 
CORRELATION METRIC BIAS, f3 

'Figure 20. As with the LAP metric parameter Figure PO-Correlation metric bias search results. 
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search, each data point is based on a run of 250 
frames, with each run using the same pseudo­
random noise and data sequences. The average 18 -
number of computations per decoded bit, e,, 

-rises sharply with p > 0.9, while the bit e r ror  16 

probability, P, iE )  ,tends to level off. However , 
14 - y 10-2the decreasing frame er ror  probability tends to 

indicate that the e r ror  probability is actually a 12 - w 

continuously decreasing function of p. For 
these simulations, a p = 0.90 was selected. lu" 1 0 - 10-3 

A search was next made for a good thresh­
old spacing, Aq. It is desirable to optimizep 
andAq simultaneously, but it is not clear that 
they may be independently optimized. The An 
finally selected differs little from the An = 1.5 
employed in the p search. Thus no further 
searching appeared warranted. Figure 21 plots 
the run-averaged decoder computations per bit , 
-c,, and the frame er ror  probability versus 
normalized threshold spacing for a 4.0 decibel 
E,/N, ratio. In this case, both the e r ror  proba­
bility and computational load a r e  minimized at  
A = 1. Since additional data were later availa­
-7)


ble for A,, = 1, the e r ror  probability shown is 

for a 1000-frame run. 

8 ­

6 - - 10-4 

4 1 
t 

0	Tl 1 l l I I I I I I I I l I 1 l l I l I ~ I I II l l a l l  
30 1 2 

NORMALIZED THRESHOLD SPACING, 

A = SPACING 
17 MAXIMUM NODE METRIC 

Figure 21-Decoder spacing search for the 
correlation metric. 

With parameters p = 0.9 and A,, = 1 selected, runs were made at  various E$N, ratios to de­
termine the e,, P ( C  > L)  ,and P( E ) statistics. It was found that the variances of 6(C > L )  point esti­
mates were somewhat greater than for the equivalent LAP metric statistics for 500-frame runs. 
Thus all statistics were based on at least 1000-frame runs. 

Figure 22 plots e, versus EB/No, and shows a rapid increase in CB for E,/N, under 4.5 decibels. 
A s  before, the basic sequential decoding lower bounds a re  shown as dashed lines. 

The corresponding overflow distributions a re  shown in Figure 23. To test  the repeatability of 
the results, a second 1000-frame run was made at 4.5 db. The repeatability appears sufficient to 
resolve the curves to within a 0.2 db E,/N,. A definite curvature is observable in the 5.0 and 6.0 
db distributions, suggesting an undesirably low Pareto exponent for large L. 

As with the LAP metric simulations, so few undetected bit e r ro r s  occurred in these runs 
that it is difficult to make a good point estimate of the e r ror  probabilities. Table 3 summarizes 
the e r ror  data for the correlation metric simulation runs. Point estimates of the frame and bit 
e r ror  probabilities are shown, and serve as reasonable "order of magnitude" estimates. 
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Figure 23-Decoder overflow distributions wi th  the 
correlation metric. 

Table 3 

Figure 22-Average computational load versus E,/N, 
for the correlation metric. 

Error  Summary for Correlation Metric. 

No. of 

3.5 

4 .O 

4.5 

5 .O 

6 .O 

No. of Total No. 
Frames Run Frames with 2 1Error  of Bit E r ro r s  

1000 10 89 

1000 1 1 7  

2000 0 0 

loco 0 0 

1000 0 0 
--

p, ( � 1  
Point Estimate 

4 

7.6 

<2.3 x 

<5 x 10-6 

<5 x 10-

PERFORMANCE COMPARISON OF DECODER METRES 

The purpose of this chapter is to demonstrate quantitatively, using the simulation results, the 
sensitivity of a sequential decoder to the choice of a metric. This is done by comparing appropri­
ate decoder performance parameters when using the LAP metric with a decoder using a cross-
correlation metric. A correlation metric gives optimum results in an ideal decoder, a fact which 
motivates the choice of this metric. Also, the performance of the sequential decoder is of interest 
in itself, since little experimental data have been published to date. The LAP metric and 
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correlation metric decoders are compared on the basis of their computational and error-rate 
behavior at signal to noise ratios near threshold. In addition, the relative sensitivity of the two 
metrics to variations in the input signal amplitude is noted. Other study areas of interest related 
to sequential decoding are also mentioned. 

Comparison by Decoder Computational Behavior 

For some data users,  deletion of data caused by decoder overflow is just as serious as bit 
errors.  To others, occasional data deletions are acceptable provided the error  rate in the remain­
ing data is very small. Indeed, the er ror  probability can be made very small with convolutional 
coding by choosing the constraint-length large. The 32-bit constraint-length encoder in these sim­
ulations gave a P, ( E )  2 3 X 10 -'. If it was increased to 52 bits, then a p, ( E )  2 3 X I O m 8  could be 
expected. Thus, from a data user's standpoint, the overflow o r  deletion rate is the main limitation 
on system performance. 

The overflow rate is dependent upon the decoder overflow limit selected. This in turn depends 
upon the speed advantage of the decoder relative to the input bit rate, buffer size, etc. Overflow 
comparisons will be made using a normalized overflow limit, L ~ .Define 

L - Actual Decoder Overflow Limit , 

L n  = "d The Number of Bits per Frame 

This limit, L ~ ,may be interpreted a s  the 
decoder speed advantage relative to the input 
bit-rate. 

Now, by using the overflow distributions of 
the preceding section, "The Rate 1/2 Code Sim­
ulation," and using L" = 3, 10, 30, and 100, the 
plots in Figures 24 and 25 can be found. The ordi­
nate labeled (overflow) is identical to p(C > L) 
previously plotted, with the caret signifying 
experimental point-estimated probabilities. 

A number of observations may be made. 
First, for any specified L~ and overflow proba­
bility, the LAP metric decoder can tolerate a 
1.5 decibel to 2.5 decibel lower E,/N, ratio than 
can the correlation metric decoder. In addition, 
for overflow probabilities under ,the trend 
of the results indicates the correlation metric 
decoder may be inferior to the LAP metric Figure 24-Decoder overflow probability versus E$N, 
decoder by more than 3 decibels. for moderate overflow l imits .  

35 



Y 

(j 

I 

Figure 26-�,/N0 threshold for 0.5% deletions versus 
normalized overflow limit. 
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value of %/No ,and from the preceding section, "The Rate 1/2 Code Simulation," it can be estab­
lished that for the LAP metric a rate 1/2 coded data system gives good performance to within 1/3 
of channel capacity on the gaussian channel. 

Comparison by Decoder Error Probability 

As noted earlier,  so few bit e r ro r s  occurred in the simulations that good point estimates of 
e r ror  probability could not be made. In addition, from a theoretical and practical viewpoint the 
e r ror  probability can be readily reduced by increasing the code's constraint-length. Thus the 
main purpose of this section is to compare the LAP and correlation metrics' relative e r ror  
probability performance, although both could be made acceptably small. 

The e r ror  results in the preceding section, "The Rate 1/2 Code Simulation," a r e  based upon 
an overflow limit, L,, of 134. It was observed that a substantial fraction of the incorrectly de­
coded frames also required many more computations than the typical correctly decoded frame. 
Therefore, reducing the overflow limit from 134 will also reduce the e r ror  probabilities observed 
(while increasing deletion rate). None the less,  the relative error-rate performance should be the 
same for any L,. 

Table 4 compares the bit e r ror  probability estimates for the simulations. 

Table 4 

Comparison of LAP and Correlation Metr ic  Bit Error Probability Results. 

LAP Correlation 
E,/%

(db) No. Frames in Error  'B ( E )  No. Frames in Error 

2 .o 8.5 x10-5  -
2.5 2.4 x 1 0 - 5  -
3.O 3.0 x 1 0 - 5  -
3.5 <LO 10-5 10 

4 .O 2.7 x l o - '  1 

4.5 2.7 10-5 0 

5 .O - 0 

6 .O - 0 

From this table, several observations can be made. First, the correlation metric again gives 
inferior performance relative to the LAP metric. Second, at 4.0 decibels and higher, both metrics 
gave similar e r ror  rates, considering that only 1 or no frame e r ro r s  occurred. 
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If the bit e r ro r  probabilities a r e  compared at E,/N, ratios that give about the same computa- I 
tional load, then the correlation metric still gives higher e r ro r  rates. For example, at 3.5 db,-

2 11for the correlation metric; at 2.0 db., > 11for the LAP metric. Yet the bit e r r o r  rate 
is nearly five times higher for the correlation metric. 

It appears that the correlation metric decoder does not discard incorrect t ree  paths as fast as 
the LAP metric. It therefore tends to search farther into the t ree  on incorrect paths. This cor­
respondingly increases the chances of making e r ro r s  by clearing out all history of past e r ro r s  in 
the local encoder's shift register. 

Sensitivity of Decoder Metrics to Signal Amplitude Fluctuations 

Although the simulation model assumed that the signal amplitude at the receiver was held con­
stant, any practical system must consider the consequences of amplitude fluctuations. Time has 
not permitted detailed investigation of these effects and related problems, but with the aid of past 
results and two additional computer runs, the relative sensitivity of the LAP and correlation 
metrics to amplitude fluctuations can be found. 

One type of amplitude fluctuation typical of an AGC receiver is considered: Let the symbol 
matched-filter output due to signal alone, namely + p or  - p, be a random variable in time. Let the 
magnitude, p, have a probability density function: P(p) = Normal (mean = 1, up = 0.06). Further­
more, let p be slowly changing. More precisely, if 4(7)  is the autocorrelation function of p, then 
let 

and 

where Ts is the duration of a transmitted symbol. Thus, over a duration of several constraint-
lengths, p may be considered essentially constant. 

The above model will cause typical amplitude deviations of about 0.5 decibels from the mean 
(-6 percent voltage change) and is representative of a good AGC system working with a noisy 
signal. 

A signal amplitude increase o r  decrease over a period of many bits is equivalent to a decrease 
o r  increase, respectively, of the correlation metric bias, P .  It follows from Equation 33 that, if  the 
received signal is changed by a factor of (1+ e ) ,  the new equivalent bias, P'  ,is: 

P' = P - E . 

However, the correlation metric decoder's performance as a function of P has already been shown 
in Figure 20 for an EB/N, of 4.0 db. It follows that over a span of bits in which the signal amplitude 



is low by 6percent,the probability of e r ror  will 
increase by about two orders of magnitude. In 
addition, when the signal amplitude is high by 
6 percent, the average computations per bit 
more than triple. 

I t  follows that the correlation metric is  un­
satisfactory for a practical system. 

To help determine the sensitivityof the LAP 
metric to slow amplitude fluctuations, two addi ­
tional computer runs, of 500 frames each, were 
made. In one run, the received-signal-plus­
noise voltage was made high by 6 percent rela­
tive to the LAP-metric optimized values (shown 
previously in Figure 12). Similarly, the other 
run was made with the signal low by 6 percent. 
The overflow distributions of these two runs a r e  
compared with aprevious run with optimum pa­
rameters in Figure 28. In all three runs the 
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s ,  = 3.16 
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= 3.09 

E,/N, = 3.0 db and 
500 frames/run 

OVERFLOW LIMIT ( L )  

Figure 28-LAP metric signal amplitude sensitivity tests. 

same pseudorandom noise and data sequences were used, so their relative performance should be 
accurate. All  three runs gave virtually the same overflow distributions, although the average com­
putational load did increase moderately for the two mismatched amplitude runs. Apparently no de­
terioration of the bit e r r o r  probability occurred. No e r rors  occurred in the two mismatched am­
plitude runs, while four bit e r r o r s  did occur in one frame of the optimized signal level run. These 
a re  inadequate data, however, to indicate any trend. None the less, it is clear that the LAP metric 
is far less sensitive to signal amplitude fluctuations than is the correlation metric. Furthermore, 
for slow amplitude fluctuations of 6 percent or less, the performance degradation is negligible. 

Additional Studies 

Obviously, a more complete signal-amplitude sensitivity, e r r o r  probability, and overflow 
specification is desirable for a practical system. It would also be useful and interesting to in­
vestigate more thoroughly the effect of Aq on the break in the overflow distributions. The LAP 
metric in these simulations was optimized at an E,/N, of 3.0 db. Investigating the effect on the 
Pareto exponent of continuously matching the metric to the channel SNR would be useful. 

The slowly changing signal amplitude treated above implies burst-type noise. A sequential de­
coder is especially sensitive to (large) burst noise. One way of combatting this problem is to use 
extensive symbol scrambling-descrambling to "spread out'' the bursts. However, as noted by 
Jacobs (Reference 18) and others, it may be more efficient and effective to combine algebraic burst­
error-correlation coding with sequential decoding to handle this problem. Investigation of these 
techniques promises not only diminished burst-noise sensitivity but also communications closer 
to channel capacity. 
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The primary purpose of this paper has been to determine the sensitivity of a sequential de­
coder's performance to the choice of a metric. The computer simulations of a rate 1/2 code have 
shown the log-a-posteriori probability (LAP) metric to be superior to a correlation metric in every 
way. In particular: 

1. 	 For a specified overflow probability, the correlation meter decoder required a 1.5 to 2.5 
decibel higher signal-to-noise ratio than the LAP metric decoder; 

2. 	For a given computational load (near threshold), the correlation metric decoder had an er­
ror  rate nearly 5 times as high; and 

3. 	 When subjected to a slowly varying signal amplitude (rtO.5 db), the correlation metric de­
coder gave an unacceptably high e r ro r  rate or  computational load; whereas the LAP metric 
decoder was negligibly degraded. 

Although the optimum decoder functions equally well with a probability or correlation decision 
metric, it is clear that a sequential decoder's performance is quite sensitive to the choice of its 
metric. 

Another purpose of this paper has been the determination of good system parameters and the 
resulting system performance. These results a r e  contained in the last two sections, "The Rate 
1/2 Code Simulations" and "Peformance Comparison of Decoder Metrics." Some important con­
clusions made for the LAP metric system are: 

1. 	A rate 1/2 coded data system gives good performance to within 1/3 of channel capacity on 
the gaussian channel, 

2. 	 The decoder overflow probability is the primary system signal-to-noise ratio limitation, 
and 

3. 	 Choosing a decoder overflow limit greater than 100 times the number of bits per  frame 
gains a negligible reduction in signal-to-noise ratio threshold. 

The author wishes to express his gratutide to Mr. G. Badagliacca for his extensive computer 
programming assistance, without which the large simulation program and detailed investigations 
would still be incomplete. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, June  28, 1968 
125-23-02-76-5 1 
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Appendix A 

Statistics at  Output of a PCM Matched Filter 

It is well known that a matched filter and a cross-correlator give identical output signal to 
noise ratios when the correlator's local signal is a replica of the transmitted waveform. For this 
derivation, a synchronous subcarrier, PCM signal source is assumed. In addition, a white, ad­
ditive gaussian noise channel and a loss-less symbol correlator are assumed. Figure A-1 is a 
diagram of the communications system model. A loss-less, linear R F  modem is assumed but is 
not shown explicitly. It is not necessary to include the subcarrier modem, since it does not affect 
the results. However, it is included just to emphasize this point. 

The following definitions apply to this appendix as well as to the body of the paper: 

X( t ) = The ser ia l  NRZ-PCM binary digit source signal; 

f = the subcarrier clock, which is synchronous with x( t ); 

NRZ-PCM 4-m , r:, 
BINARY SOURCE . , 

VOLTS 
- O  / SAMPLE 

f, 
SUBCARRIER 

DEMODULATOR 

v 


SYMBOL MATCHED FILTER 

Figure Al-Signal, channel, and matched-filter models. 
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Ts = duration of a binary symbol, x, in seconds; 

s = the signal power in watts; 

n( t ) = the additive channeI noise; it is stationary, white, and gaussian with spectral density 
No watts per Hz, and has zero mean; 

G = the integrator's gain constant in sec: 1 ; and 

c = the symbol correlation voltage at t 2 T S ,  in volts. 

Because the noise is additive and the filter is linear, the signal and noise effects on c may be 
found separately and superposition applied. 

Signal Only 

If n( t ) = 0, then c is deterministic for each x. From the model in Figure A-1, it is clear that, 
for the 2-cycles-per-symbol subcarrier shown o r  any "n"-cycles-per-symbol PCM subcarrier, 
"e" at the integrator input will always be of the same form. (n = 1, 2, 3, . . .). Thus 

Noise Only 

The autocorrelation function of white, gaussian noise will be needed in the derivation below. 
It is well known that the autocorrelation function and the power spectral density are a Fourier 
Transform pair. Therefore 

(A-3) 

where 

4 ( ~ )  the autocorrelation function of some random signal, and= 

P( f )  = the power spectral density of the random signal. 
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+(7)is here defined as 

4 ( ~ )= E [ n ( t )  n ( t  - T ) ]  , (-4-4) 

where 

n( t ) is the random signal and E( ) denotes mathematical expectation over an ensemble. 

The autocorrelation function of n( t )  may be found from Equation A-3, since P( f )  = No is known. 
Thus 

(A-5) 

where 6( t )  is the Dirac delta function. 

Now it is desired to calculate the probability density function for the "noise alone" matched-
filter output. The effects of the subcarrier multiplier will first be considered. 

The effect of the subcarrier multiplier on n ( t )  can be found formally, using the convolution 
theorem. However, it can be simply observed that, since the multiplier multiplies only by +1 and 
- 1 and n( t ) is an infinite bandwidth signal, the amplitude statistics of e, the product, a r e  unchanged. 
The power spectral density, N,, is also unchanged. The noise time-sequence output from the multi­
plier, n '  ( t ) ,  is not n ( t ) ,  but its amplitude statistics and power spectrum a r e  unchanged. 

The effects of the integrator may now be treated. Since the integrator is a linear summation 
device and the input noise, n '  ( t  ), has gaussian amplitude probability density, then the output, C, 

must also be gaussian. Knowing the mean and variance of C will then completely specify its 
statistics, 

Define c, = the matched-filter output with noise alone, n '  ( t ) ,  as input. Then 

mean (cn) n E(c,)= 

and, since the expectation is computed over an ensemble, 



T 

where E( ) = mathematical expectation over an ensemble of events. The variance of C, is, by 
definition, 

VAR(C,) = E[(c, -mean ,;J 

= E(Cf)  

here, and 

The integrals may be combined provided the integrand parameters a r e  made distinct. So 

VAR c, E Fz1’6’n ( u )  n ( t )  du d t1 
= cz 6’6’E[n(u)  n ( t ) ]  du d t  , 

but, from Equations A-4 and A-5, 

NO 
E [ n ( t ) n ( t - ~ ) ]  = 2 s ( 7 )  

Then 

VAR(C,) = G 2  [’[’No 8 ( t  - u ) d u d t  

(A-7) 
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Filter Output Statistics With Signal and Noise 

With combined signal and noise entering the matched filter, then 

mean (C) = mean ( s i g n a l )  + mean (no i se )  

G JSTS for x = 1 (A-8) 

= {-C 6 T S  for x = o (A-9) 

The density of C is of course gaussian with variance given by (A-7). A useful additional result is 
the mean to standard deviation ratio of c: 

(A-10) 

where 

p l  = mean of C, given x = 1, and 

c = standard deviation of C = [VAR(C)]l / * .  
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Appendix B 

The Sequential Decoder Computer Subroutine 

To complete the definition of the sequential decoder algorithm actually used in the simulations, 
a listing of the FORTRAN N sequential decoder subroutine is given here. Most of the program is 
self-explanatory except for some of the FORTRAN variable and array names. The routine was 
written to handle rate 1/2, 1/3, or  1/4 codes with up to 1024 bits per data frame. In the following 
definitions, references will be made to Figure 16 as the decoder model. 

LDATA = the number of bits per  frame. 

N = the number of transmitted symbols per encoder input bit. 

LFRAME = the number of nodes, of IV symbols each, in a frame of data. This includes the 
tail symbols. 

IQ = the received symbol memory array. It is the Q array shown in Figure 16. 

IOFLOW = the overflow limit se t  for the move-forward and e r ro r  loops. 

ITAPS = the array describing the encoder generator matrix. It is composed of 0 and 1's. 

KSRL = the equivalent of the temporary data-storage shift register in Figure 16. 


IP = the bit number o r  current node "pointer." 


XHAT = the estimated data bit equivalent to G i  in Figure 16. 


ACCUM = the accumulated node metric. 


T = the running threshold. 


IDELTA = the threshold spacing increment. 


Programming KSRL to perform as a shift register in FORTRAN is inefficient. Instead, an 
appropriate 32-bit window is established in KSRL for the local encoder by indexing alone. Hence 
the use of the following: 

INDEX = LFRAME - IP + 1. 

Thus KSRL (LFRAME) contains the first data bit hypothesis, etc. 

The program listing is given in Figure B-1. 
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1 

1 
C 
C 
C 

C 
C 
C 

62 

C 
C 
C 
C 

1 
C 
C 
C 
C 

4 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

999 

C 
C 
C 
C 

14 

C 

SUBROUTINE SEQDEC (LDATA, LFRAME, IV, IDELTA, IOFLOW, ITAPS, KSRL, 

KRAP, LOOP 1, LOOP 2, IQ, ICZERO, ICONE, LAMBDA) 

C O M M O N  IP 

C O M M O N  LFRAME 

INTEGER XHAT, T 

DIMENSION 1 Q  (1024, 4), KSRL (1024), ITAPS (4, 32), 


METRIC (1024, 21, LAMBDA (16, 2 )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE FOLLOWING SETS UP THE DECODER AT THE BEGINNING OF A FRAME 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IP = 1 
T = O  
IACCUM = 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
KSRL IS THE LOCAL WORKING REGISTER, 1024 BIT FIXED LENGTH 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DO62 I = 1,1024 
KSRL ( I )  = 0 
LOOP 1 = 0 
LOOP 2 = 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE DECODER I S  N O W  READY TO SEARCH FORWARD ON FIRST BRANCH 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

INDEX = LFRAME- IP + 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
DATA BITS IN KSRL ARE ACCESSED FOR METRIC LOOK UP BY INDEXING 
THROUGH KSRL 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
KSRL ( INDEX) = 0 

IF (IP .GT. LFRAME) GO TO 500 

CALL NODMET (IP, I Q ,  KSRL, IV, ITAPS, LAMBDA, ICZERO, ICONE, LFRAME) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE 	 NODMET SUBROUTINE PERFORMS THE FOLLOWING FUNCTIONS 

( A )  GENERATES THE LOCAL CODE FOR EITHER HYPOTHESIS 
( B )  BASED ON EACH SYMBOL QUANTILE IN I Q  AND THE LOCAL CODE 

IT ACCESSES THE LAP METRIC IN LAMBDA 
( C )  EACH OF THE I V  SYMBOL METRICS ARE THEN ADDED TO GIVE 
THE NODE METRIC 

( D )  THE NODE METRIC FOR EACH BIT HYPOTHESIS IS THEN OUTPUT, 
NAMELY ICONE AND ICZERO 

(E)  WHEN IP = LAST DATA BIT, THE METRIC FOR IT  AND THE 
ENTIRE TAIL IS USED 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IF (ICZERO .GT. ICONE) GO TO 999 
XHAT = 1 
NODVAL = ICONE 
METRIC (IP, 1 )  = ICONE 
METRIC (IP, 2 )  = ICZERO 
GO TO 14 
XHAT = 0 
NODVAL = ICZERO 
METRIC ( I P ,  1) = ICZERO 
METRIC (IP, 2 )  = ICONE 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE PATH WITH THE LARGEST METRIC IS COMPARED TO THRESHOLD 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IACFWD = IACCUM + NODVAL 
IF (IACFWD - T)  2, 2, 3 

F igure  B1-Program l i s t i n g  ( 1  of 2). 
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C 
C 
C 

C 

C 
C 
C 

C 
C 
C 
C 

C 
C 

3 
200 

20 

2 
201 

17 

8 

10 

39 

40 

41 
42 

69 

500 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS I S  THE NORMAL MOVE FORWARD UP DATE PATH 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LOOP 1 = LOOP 1 + 1 

IF  (LOOP 1.GT.IOFLOW) GO TO 69 

KSRL ( INDEX)  = XHAT 

IACCUM = IACFWD 

I P  = I P  + 1 

THE NEXT CARD PREVENTS TIGHTENING OF T WHEN IN THE E R R O R  MODE 

IF ( ( IACCUM-NODVAL) .GT. (T  + IDELTA)) GO TO 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE FOLLOWING CARDS TIGHTEN T BY DELTA 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IF  ( IACCUM .GT. (T + IDELTA)) GO TO 20 

GO TO 1 

T = T + IDELTA 

GO TO 1 


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THE FOLLOWING I S  THE THRESHOLD VIOLATED LOOP 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LOOP 2 = LOOP 2 + 1 
IF (LOOP2.GT. IOFLOW) GOT0 69 
IPBK = IP-1 
IF (IPBK) 17, 17, 8 
T = T - IDELTA 
GO TO 1 
IACCBK = IACCUM - METRIC ( I  PBK, 1 ) 
IF (IACCBK - T) 17, 17, 10 
I P  = IPBK 
IACCUM = IACCBK 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS FORCES THE CODER DOWN THE ALTERNATE PATH I N  THE TREE 
IF WE BACKED DOWN VIA THE HIGHEST METRIC PATH 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
IF (METRIC ( I P , l )  - METRIC ( I P ,  2 ) )  2, 39, 39 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THESE NEXT FIVE CARDS COMPLEMENT KSRL ( INDEX)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
INDEX = LFRAME - IP + 1 

IF (KSRL ( INDEX))  40, 40, 41 

KSRL ( INDEX)  = 1 

GO TO 42 

KSRL ( INDEX)  = 0 

XHAT = KSRL ( INDEX) 

NODVAL = METRIC (IP, 2 )  

METRIC ( IP, 1 ) = NODVAL 

NEXT CARD PREVENTS SEARCHING DOWN OTHER METRIC PATH REPEATEDLY 

IF THE NODE METRIC PAIR ARE EQUAL 

METRIC (IP, 2 )  = 1000 

GO TO 14 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS ENDS THE SEQUENTIAL ALGORITHM. THERE ARE 3 EXIT PATHS 

FROM THE ALGOR. THE NORMAL EXIT I S  STATMNT 1 .  THE OVERFLOW EXITS 

ARE STATMNTS 200, 201 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
KRAP = 1 
RETURN 
KRAP = 0 
RETURN 
END 

Figure B1-Program listing (2 of 2). 
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