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SOLUTIONS OF BLUNT-BODY STAGNATION-REGION FLOWS 

WITH NONGRAY EMISSION AND ABSORPTION OF RADIATION BY 

A TIME-ASYMPTOTIC TECHNIQUE 

By Linwood B. Callis 
Langley Research Center 

SUMMARY 

A second- order time- asymptotic solution to radiation- coupled stagnation- region 
flows is presented. The solution is applied to the hypervelocity flow over blunt vehicles 
of inviscid, nonconducting, equilibrium air, emitting and absorbing nongray radiation. 
Velocities, nose radii, and altitudes covered by the analysis a r e  sufficient to bracket 
reentry trajectories of current interest. Radiative heat-transfer ra tes  for the range of 
interest and typical profiles of pressure,  density, enthalpy, temperature, and velocity a r e  
shown. The nature of the time-asymptotic solution is discussed and it is shown to be a 
feasible means of achieving second-order accurate solutions to radiation- coupled shock- 
layer flows. 

Step-function models of the absorption coefficient a r e  used in order to evaluate the 
divergence of the radiation flux vector. 
effect variations in the spectral complexity of the step model absorption coefficients used 
in the analysis will have on the thermodynamic and flow profiles of interest and on the 
nongray radiative heat-transfer rates. In this connection use is made of consistent model 
absorption coefficients having one to nine spectral steps with free-free, free-bound 
(including atomic line transitions), and molecular transitions taken into account. Rela- 
tively simple models of the absorption coefficient can be used with no significant loss of 
accuracy. An existing correlation for the cooling factor, the ratio of the radiation heat- 
transfer rate to the adiabatic radiation heat-transfer rate, is extended to larger veloc- 
ities than heretofore considered. 

An analysis is carried out to determine what 

INTRODUCTION 

During the past decade, problems involving radiation-coupled flow fields have 
received the attention of numerous investigators. It has been amply demonstrated (refs. 1 
to 4) that the inclusion of the emission and absorption of radiation in stagnation flow-field 
analyses may significantly alter both the flow-field structure and the heat-transfer ra tes  
typically expected from radiationless solutions. For  blunted vehicles entering the earth 's  



atmosphere, these effects manifest themselves at velocities in excess of 9 km/sec; this 
makes necessary the consideration of the coupling existing between the radiation trans- 
port equations and the fluid-dynamic equations governing the flow. The problem posed by 
such a consideration is extremely difficult since the solution is governed by a set of non- 
linear, partial, integro-differential equations. Furthermore, the integral t e rms  involve 
complicated functions of wavelength and spatial coordinates; therefore, tedious numerical 
integration is necessary. 

The most general approaches to the problem to date a r e  typified by the solutions of 
Howe and Viegas (ref. l), Hoshizaki and Wilson (ref. 2), and Olstad (ref. 3). The solu- 
tions in references 1 and 2 a r e  similar in that both consider the flow field to be totally 
viscous and conducting and both consider injection of foreign species as well as energy 
transport by diffusion. Howe and Viegas (ref. l), assuming similarity, reduce their 
governing equations to a set  of ordinary differential equations which a r e  solved by stan- 
dard techniques. The absorption coefficient is considered to be gray. Hoshizaki and 
Wilson (ref. 2) maintain variations in the body tangent direction. 
solved by finite-difference techniques with the velocity and species concentration profiles 
determined from an integral solution to the species continuity equation and the momentum 
equation. The analysis is for a nongray gas. Olstad (ref. 3) uses a Poincar6-Lighthill- 
Kuo singular perturbation technique to obtain stagnation region solutions for an inviscid, 
nonconducting gas with a nongray absorption coefficient. This solution involves expan- 
sions in te rms  of the radiation cooling parameter 46 ,~  and is valid for 4 6 , ~  << 1. 

The energy equation is 

The purpose of the present analysis is threefold. The f i rs t  is to point out that time- 
asymptotic techniques a r e  a practical means of solving nonadiabatic radiation-coupled 
flow fields. The techniques discussed herein have been used to generate radiation- 
coupled stagnation-line solutions, including emission and absorption of nongray radiation, 
and hopefully they will be applicable to the analysis of the full flow field. This particular 
approach was adopted as it seemed to offer a direct solution to the problem at hand with 
a minimum number of restrictive assumptions and computational difficulties. This 
advantage results in large part  from the hyperbolic nature of the governing set  of partial 
differential equations when cast  in their unsteady form. Moretti and Abbett (ref. 5) have 
demonstrated that radiationless calculations can be carried on in the entire flow field 
with few of the usually attendant problems of convergence, stability, or sensitivity to ini- 
tial guesses. The time-asymptotic approach used herein is essentially a second-order 
accurate Taylor se r ies  expansion in time of the quantities of interest. The solution is 
advanced in time until an asymptotic situation is reached representing the steady-state 
result. 

Shock waves, with the aid of unsteady characteristics, a r e  treated as discontinuities 
providing more accurate profiles in the vicinity of the shock front. In addition, use of a 
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discontinuous shock allows a coarser  mesh to be used than is possible with the "artificial 
viscosity" technique (refs. 6 and 7); thereby, there is a considerable saving in computing 
time and storage. The second-order solutions presented in this report have been 
achieved in remarkably short computing times, typically 20 seconds/case or less on a 
Control Data ser ies  6000 computer system. The present stagnation solution is thus 
offered as a demonstration of the feasibility of the time-asymptotic approach to the solu- 
tion of general radiation-coupled flow fields as well as a valid solution in its own right. 

The second purpose of the analysis is to determine what effect variations in the 
spectral complexity of the absorption coefficients used in the analysis will have on the 
thermodynamic and flow profiles of interest and on the nongray radiative heat-transfer 
rates. In this connection, use is made of data tabulated by Olstad (ref. 8) in formulating 
step models of the absorption coefficient with one to nine spectral steps. The radiative 
processes taken into account in the formulation of these step models are line transitions, 
N+- and O+- electron recombination, free-free electron interactions, and molecular-band 
system radiation. Solutions determined with model absorption coefficients constructed 
from the same detailed spectral information a r e  compared and discussed. 

Finally, radiation heat-transfer ra tes  to a sphere a r e  presented for velocities from 
9 to 18 kilometers/second, nose radii from 0.1 to 10 meters, and altitudes from 49 to 
73 kilometers. A comparison is made with the cooling factor correlation presented in 
reference 8, and the range of this correlation is extended. 

SYMBOLS 

A parameter defined by equations (A18) and (A23) 

B 7 C 7 D 7 E 7 P 1 7  '3 parameters defined by equations (A18) 

Bv nondimensional blackbody function 

C1,C2,C3 

En 

parameter defined by equations (B4), (B5), and (B6), respectively 

exponential integral function of order n, En(Y) = ndt 
co 

1 

FR nondimensional divergence of the radiation flux vector 

*C 
qR,w cooling factor, - 

qR,w,a 

f parameter defined by equation (A24) 
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g parameter representing p, p, v, or f 

r h  'nondimensional enthalpy 

I, nondimensional specific radiation intensity 

K 

k Boltzmann constant, joules/OK 

parameter defined by equation (A10) 

- 

P nondimensional pressure 

nondimensional radiation heat flux qR 

r 

RN nose radius, meters  

radius defined by equation (A5) 

- 

S nondimensional incremental radiation path 

T,t,t' 

T" 

U nondimensional velocity vector 

nondimensional time except where indicated 

parameter defined by equation (C6) 

- 
u,v nondimensional velocity components 

VCQ free-stream velocity, meters/second 

x' , y ' , z 1 nondimensional Cartesian coordinates 

- 

X,Y nondimensional body -oriented coordinates 

x, y nondimensional floating coordinates 

Z altitude, kilometers 

a 1,a2,p 

- 

parameters describing picket-fence model 
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angle between shock and body except where indicated, radians 

nondimensional standoff distance 

nondimensional time increment 

parameter defined by equation (A3) 

parameter defined by equation (C7) 

body surface inclination, radians 

wavelength, angstroms except where indicated 

nondimensional radiation frequency 

density, kilograms/meter3 

absorption coefficient, meter- 

Planck mean absorption coefficient, meterm1 

Stefan-Boltzmann constant, watts/(meter-oK4) 

optical thickness 

azimuthal angle, radians 

solid angle, steradians 

Subscripts : 

a adiabatic wall 

0 standard atmospheric conditions 

W wall conditions 

A stationary shock conditions on center line 
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6 local unsteady shock conditions at time T 

V quantity evaluated at frequency v 

03 free-stream conditions 

Symbols with ba r s  represent dimensional quantities, those without ba r s  indicate 
nondimensional quantities. 

ANALYSIS 

Nondimensionaliz ation 

All distances a r e  non- 
dimensionalized by the vehicle nose radius RN, all time quantities by the ratio  EN/^,, 
densities by p,, pressures  by p,V, , energy flux by -p,V, , enthalpies by V, , the 

divergence of the radiation flux vector by 0 ( 7 kp)ATA4 where ;~-h is a temperature, 

velocities by v,, and absorption coefficients by (pkp>a. 

The equations appearing in this report a r e  nondimensional. - 

- 2  1- - 3 - 2  
2 

Basic Assumptions and Flow Model 

The basic assumptions under which the analysis is simplified and carried out are 
that 

(1) The flow is axisymmetric, inviscid, and nonconducting 

(2) The flow is in chemical equilibrium 

(3) The shock wave and f ree  s t ream a re  transparent to shock-layer radiation 

(4) The body surface with regard to radiation is cold, nonreflecting, and black 

(5) The tangent slab approximation is applicable 

Basically these assumptions a r e  made so that the applicability of the time-dependent tech- 
niques to radiation-coupled flows can be clearly determined free of other complicating 
phenomena. They are discussed at various points in the analysis. Figure 1 presents a 
schematic illustration of the flow geometry in the stagnation region of spherically blunted 
vehicle. 

Procedure 

The time- asymptotic approach in this report uses the following second-order accu- 
rate Taylor se r ies  expansion to advance an assumed solution in time until it becomes 
asymptotic to the desired steady-state solution: 
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g(Y,T + AT) = g(Y,T) + gT(Y,T)AT + f gTT(Y,T)AT2 + O h 3 )  ( 1) 

The expansion furnishes a new value of the parameter g, which may represent p, p, 
v, or f ,  at the coordinates Y and T + AT. This procedure is carried out at each Y 
coordinate of interest until all the information required for the continuation of the solu- 
tion in time is available at T + AT, Information on the shock and the body at T + A T  
is generated with the aid of the method of unsteady characteristics, discussed in the next 
section. Once the information at the next time plane is completely determined, the pro- 
cess  is repeated until the variation between solutions at successive time planes is suffi- 
ciently small. This is taken as the steady-state result. 

The first-order time derivatives are determined from the unsteady conservation 
equa,tions developed in appendix A (eqs. (A20), (A21), (A22), (A23), and (A25)). These 
equations a r e  given here as follows: 

2Pf +- pvY + -) 2Kpv 
PT=- (APy+x  6 x 

The right-hand side of equations (A20), (A21), (A22), (A23), and (A25) (hereafter referred 
to as set  1) a r e  evaluated by using data on the most recent time plane. All derivatives, 
with the exception of pxx, are determined by centered finite difference representation. 
At this point, it is necessary to determine values for 
assuming that at the center line the shock wave is concentric with the body so that 

pxx. This is accomplished by 

p x x = - 2 ( l - & )  

Equation (2), derived from steady-flow shock relations, is admittedly inconsistent with 
the unsteady nature of the analysis. The consequences of this inconsistency are not 
serious, however, since the momentum equation is only weakly coupled to the energy 
equation and since a steady-state solution is ultimately sought. Hence, use of equation (2) 
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involves some e r r o r  in the intermediate development of the solution but little in  the final 
results. 

Second-order time derivatives in equation (1) are obtained by differentiating set 1 
with respect to T. The mixed space-time derivatives that result are evaluated by dif- 

' ferentiating set 1 with respect to Y and using centered finite differences where appli- 
cable. Time derivatives of quantities such as PQ, PI, FR, and A a r e  cast  as back- 
ward time differences by using the most recent time data and data from the previous time 
plane. The result of these manipulations is a set of equations for the required first and 
second time derivatives of p, p, f ,  and v. These derivatives used in equation (1) per- 
mit the solution to advance in time. 

Analysis of Shock and Body Points 

A quasi-one-dimensional unsteady characteristics technique, similar to that used 
by Moretti and Abbett (ref. 5) was applied to the analysis of the shock wave in order to 
retain the shock as a discrete surface. Artificial viscosity techniques have the effect of 
smearing the shock until it becomes not a discrete surface but a region having large flow 
property gradients. The distinction between the two approaches can, for radiation- 
coupled flows, be an important one since the enthalpy level can be significantly reduced i n  
a region near the shock front. Consequently, poor shock definition can result in a poorly 
defined enthalpy profile. 
illustrate how the characteristics method is applied. The shock standoff distance 6 
varies with T. At time T all quantities are known across  the shock layer and it is 
desired to know 6(T + AT),  GT(T + AT), and values of the flow properties at point A. 
As an initial guess, it is assumed that GT(T + AT) = 6T(T) and that 
6(T + AT) = 6(T) + 6T(T)AT; thus, point A is located and, with the aid of the Rankine- 
Hugoniot relations, conditions a r e  determined at A in the shock layer. A right running 
characteristic (see appendix B), indicated in figure 2, is extended in the negative time 
direction until B is located. The location of B is stabilized by an iterative process aver- 
aging the slope of the right running characteristic between A and B. Once point B is 
stabilized, the compatibility relation (eq. (B11)) is integrated from point B to point A with 
averaged coefficients and a value of v at point A determined. If the computed v does 
not match the value obtained from the Rankine-Hugoniot equations a new value of 
tiT(T + AT), consistent with v and A as determined from the compatibility equations, is 
calculated and the entire procedure cycled to convergence. This procedure yields condi- 
tions at point A and is carried out pr ior  to the advancement of interior flow properties 
to T +AT. 

A schematic of the flow field (fig. 2) near the shock serves  to 

At the body, the procedure is similar. The slope of the left running characteristic 
(fig. 2) is assumed at A' and extended in negative time until point B' is located. Point B' 
is stabilized by iteration and the proper compatibility relation (eq. (B11)) integrated from 
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B' to A' to determine the pressure at A'. The unsteady energy equation is then integrated 
from C' to A' to determine the enthalpy at A'. Values of h and p permit a new calcu- 
lation of the characteristic slope at A' and the procedure is cycled to convergence. 

Computation of the Divergence of the Radiation Flux Vector 

The calculation of the divergence of the radiation flux vector FR is carried out 
under the assumptions and by the means indicated in appendix C. It has been determined 
that FR need not be calculated for each time cycle but may be evaluated, held fixed for 
several cycles, and then recomputed. This saves considerable computational time and 
has a negligible influence on the final result. The transient portion of the solution obvi- 

ously will differ from that in which FR is determined anew each cycle. 

Step Model Absorption Coefficient 

The difficulty of and the time consumed in the calculation of the divergence of the 
radiation flux vector FR is strongly dependent on the spectral complexity of the absorp- 
tion coefficient used. If a true replica of the absorption coefficient including line, free- 
bound, and free-free transitions were used, the computation time for FR would be such 
that general flow-field calculations about blunted bodies would be impractical. As a 
result, various simplifications to the detailed absorption coefficient have been offered. 
The most obvious approximation and, also, the crudest is the gray approximation in which 
the absorption coefficient is allowed to vary with temperature and density but not with 
wavelength. The gray coefficient is usually the Planck mean of the true absorption coef- 
ficient. This approximation is unacceptable since it eliminates spectral detail which may 
be important when the shock layer is not optically thin in all spectral regions. A second 
approximate way to represent the absorption coefficient is to use two o r  more spectral 
steps to model the true coefficient. 

The height or value of pk for each of the steps varies with temperature and den- 
sity but not with wavelength over the spectral extent of the step. Clearly, with the addi- 
tion of a large number of steps, the coefficient may be approximated as closely as 
desired. 

The approach adopted herein is that, for  engineering purposes, an adequate repre- 
sentation of the absorption coefficient can be realized with a step model. The two-step, 
three-step, and nine-step models of pk used in this report are discussed in appendix D 
and summarized in tables I and 11. For comparison purposes a gray model is included. 
A schematic of these models is shown in figure 3. 
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Equilibrium Air Properties 

Expressions used in this report relating pressure and sound speed to p and h 
for equilibrium air are presented by Cohen (refs. 9 and 10) or have been derived from 
data presented in these references. For  the temperature, correlations due to Olstad 
have been used. More exact thermodynamic data, either tabulated or calculated, were 
not used in an effort to save computational time and in the interest of program simplicity. 
With regard to the general accuracy of the overall solution, it is felt that uncertainties in 
the absorption coefficient information generally available outweigh the slight e r r o r s  due 
to the use of thermodynamic correlations. 

Stability 

The stability requirement applied to the present analysis is the CFL (Courant- 
Friedricks- Lewy) criterion used by Moretti and Abbett (ref. 5). The point of view was 
adopted that no consideration (other than optimization of the time increment) would be 
given to stability analyses unless instabilities developed in the solution. Since no such 
instabilities were encountered during the development and utilization of the present solu- 
tion, the inclusion of a stability analysis is omitted. The application of the CFL criterion 
has proved satisfactory. 

The uniqueness of the present solutions was determined by the execution of a num- 
ber  of different cases with significantly different initial conditions. In each case, varia- 
tions of the initial conditions caused the final result to  be changed by less than 1/2 per- 
cent. This observation and comparisons with other solutions led to the conclusion that 
no uniqueness problems existed. 

RESULTS AND DISCUSSION 

The analysis described has been successfully applied to flow situations with 
9 5 V, 5 20 km/sec, 0.01 9 EN 9 10 m, 36 9 5 73 km. Typical results for p, p, v, 
T, and h a r e  shown in figure 4. The variations in p and h are as expected for  a 
radiation-coupled flow field. Figure 5 depicts the variation in the enthalpy profile for 
three values of 7,. The enthalpy level is reduced as v, increases because of the 
increased energy lost by radiation from the shock layer. A similar variation in the 
enthalpy level is apparent as the nose radius EN is increased. (See fig. 6.) Variation 
of the nondimensional standoff distance with both EN and vm is shown in figure 7. At 
the smaller values of EN, 6 approaches its adiabatic value, whereas at larger  values 
of &, 6 is significantly reduced as a result of the higher density levels in the shock 
layer. 

- 
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The results shown in figures 4 to 7 demonstrate that the present time-asymptotic 
technique can be used successfully in the analysis of radiation-coupled flows. Results 
presented in this report cover the widest range of conditions yet published for a single 
solution. Validation of these results is accomplished by comparison with the work of 
reference 8, which uses an absorption coefficient identical to that shown in table I, and 
by comparison with the work of several other authors using different absorption coeffi- 
cients. These comparisons a r e  included in the discussion of figures 10 and 11, respec- 
tively. Typical computing times for the solutions are approximately 20 seconds/case 
or  less (Control Data series 6000 computer system) making the technique attractive from 
the standpoint of practical usage. Computing times are relatively independent of v,, 
RN, and E. 
- 

Figure 8 shows, for a typical velocity and ambient density and a range of nose radii, 
the contribution to the total radiative heat flux by the various spectral steps of the nine- 
step model. For this case, the equilibrium mole fractions of selected air species are 
given at the shock and body in table 111 (EN = 1 m). Several observations can be made 
from figure 8, the first being that the largest single contribution to the total flux for all 
RN comes from step 9, which has the smallest optical thickness. For  EN & 1.5 meters  
this contribution is larger  than the sum of the remaining contributions, an indication of 
the effect of reabsorption on the contribution from the more optically thick steps. A 
second point of interest is the relatively modest contribution made by the line centers, 
steps 4, 6, and 8. Steps 4 and 6 contribute such a minor amount that they may be com- 
bined with other steps with very little e r ror .  Step 8, however, can be as much as 6 to 
10 percent of the total at small  EN. Its identity should be preserved. Steps 1, 2, 3, 
and 5 all contribc,te heavily at small EN. These steps, together with 4 and 6, are com- 
bined according to a Planck average to form a single step existing spectrally from 400 
to 1130 A. Two other steps may be formed by the combination of 7 and 9 which behave 
similarly and by the remaining step 8. The result is the three-step model indicated in 
table 11. The two-step model of table 11 is formed with the inclusion of step 8 with 
steps 7 and 9. 

- 

It should be noted here  that the values of the absorption coefficient for steps 4, 6, 
and 8 are based on Griem's f-numbers (ref. 11, the best  available when the model was 
formulated) which, according to more recent information, may be low by an order of 
magnitude. If updated values of the f-numbers were used, conclusions concerning the 
effect of the line centers on the heat flux may be modified. However, the same type of 
argument could be applied. 

Figures 9 and 10, for a typical flow condition, show the effect, on both the heat- 
transfer rate and the enthalpy profiles, of using the nine-step, three-step, two-step, and 
gray absorption coefficients. If the nine-step model is accepted as being most nearly 
representative of the exact absorption coefficient, it is clear that the gray model is 
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unacceptable except for qualitative analysis, the enthalpy profile being in e r r o r  by as 
much as 30 percent. The three-step model has a maximum enthalpy e r r o r  of approxi- 
mately 3 percent and the two-step model of 15 percent. This is an indication that the 
contribution of the line centers, given by step 8, should be maintained as a separate step. 
A large nose radius (in this case, 8 meters) emphasizes the defects of the two- and three- 
step models. In figure 10, stagnation-point heating rates  are compared with those of ref- 
erence 8 over a range of EN and two values of v,. It should be pointed out that the 
solutions of reference 8 use the nine-step absorption coefficient (table I), whereas the 
present solutions a r e  for  both the nine-step and the three-step models (table II). The 
solutions of Olstad (ref. 8) are terminated at values of EN and v, at which the 
approximations of the smal1,perturbation solution begin to be suspect. It is felt that some 
of the divergence between the solutions at the larger  nose radii can be attributed to the 
onset of the breakdown of the small  perturbation solution. Over most of the range of 
RN, however, the agreement is excellent, slight differences in the level of the two nine- 
step models being attributed to the use of different thermodynamic correlations. The 
close agreement between solutions using the three- and nine-step models is interesting 
in light of the variation of the complexity of the step models used. 

In figure 11, the present stagnation-point heating rates a r e  compared (for a range 
of v, and pA/po) with those of Hoshizaki and Wilson (ref. 2), Wilson and Hoshizaki 
(ref. 12), Chin (ref. 13), and Page, Compton, Borucki, Cliffone, and Cooper (ref. 14). All 
these references, with the exception of reference 2, include the effects of line radiation. 
Figure 11, though not the best way to present a comparison of solutions, is convenient 
since most of the data included were readily available in this form. (See ref. 14.) As  
seen from figure 11, the data of Wilson and Hoshizaki (ref. 12) with pA/po = 0.3 and 0.4 
compare very well with the present data for 0.08 < pA/po 5 0.2, the radiation heat- 
transfer rate being weakly proportional to pA/po. 
coworkers (refs. 13 and 14, respectively) appear to be slightly low over the velocity 
range shown. The data of Hoshizaki and Wilson (ref. 2) which take into account continuum 
radiation only a r e  4 1 percent below the present result emphasizing the importance of line 
transitions. In general, however, the comparisons shown in figure 11 a r e  satisfactory. 

s 

The data of Chin and of Page and 

Figure 12  presents, for a spherically tipped body, a range of stagnation-point radia- 
tion heat-transfer solutions calculated by using the three-step absorption-coefficient 
model. Solutions a r e  given for a range of EN and values of v, and 
bracket most reentry conditions of interest. 

sufficient to 

In reference 8, Olstad presents a correlation of the cooling factor Fc, the ratio of 
to the adiabatic radiant heat- 

R,w the stagnation-point radiation heat- transfer rate q 

transfer rate q R,w,a, 
factor is correlated as a function of q 
a fixed velocity. 

both heating rates including the effects of absorption. The cooling 
for various altitudes and nose radii and for 

R,w, a 
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Figure 13 presents these correlations for Fc as they appear in reference 8. The 
present solution has been used to extend the velocity range to 18 280 m/sec and to extend 
the correlations to larger  values of qR,w,a. For  values of q 
tions a r e  equally applicable, excellent agreement is obtained. At the larger  values of 

qR,w,a9 
slightly higher values of Fc. This is attributed to the aforementioned onset of the break- 
down of the small  perturbation solution of reference 8. For  further comparison, data 
from references 2 and 15 are indicated in figure 13(c), all falling well within the correla- 
tion limits. The data of Hoshizaki and Wilson (ref. 2) include no effect of line radiation, 
whereas the data of Rigdon, Dirling, and Thomas (ref. 15) use a modified hydrogenic 
approximation. In te rms  of absolute heating rates, agreement between the results of 
these references and the present results could differ by as much as 40 percent. (See 
fig. 11.) However, the good agreement of the data of references 2, 8, and 15 and the pres- 
ent data when correlated as in figure 13 is taken as a substantial indication of the validity 
of the correlation and its effectiveness in taking out the effect of variations in the absorp- 
tion coefficient. 

such that both solu- J 
R,w,a 

there is a tendency for  the solutions to diverge, the present solutions having 

In light of these observations, it appears reasonable for an investigator to devote 
(essentially a constant tem- 

R,w,a 
R,w,a considerable effort to an accurate determination of q 

perature calculation) with the best available absorption coefficient. The quantity q 
may be translated with a high degree of accuracy (5 percent) to the desired heating rate  

qR,w* 
could be further ciated with the fully coupled calculation. The determination of q 

simplified by the compilation of tables of q for a range of conditions. This would 
be useful for design purposes. 

This procedure would eliminate many of the difficulties and much of the time asso- 

R,w 
R,w, a 

CONCLUDING REMARKS 

It is felt that the present analysis successfully demonstrates the applicability of 
time-asymptotic techniques to the solution of inviscid, nonconducting flows including the 
effects of emission and absorption of nongray radiation. The advantages of the method 
a r e  that it is accurate to second order, that few approximations are necessary, that.little 
computational time is required, that solutions are insensitive to initial input, and that no 
stability problems a r e  encountered if the CFL stability criterion is satisfied. With 
regard to full flow-field calculations, solutions a r e  direct and may be easily extended 
through the sonic line with few of the usually attendant problems of other methods. 

ficients on the final solution profiles and heat-transfer rates has been investigated. It 
has been found that the three-step model can be used to adequately represent the nine- 
step model over a range of velocities and nose radii. The question raised at this point 

The effect of the variation of the spectral  complexity of the model absorption coef- 
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is whether o r  not a simplified model of the absorption coefficient (such as the nine-step 
model or one more sophisticated) can be used in practical calculations and yield suffi- 
ciently accurate results (less than 15-percent error)  when compared with calculations 
using detailed spectral absorption coefficients. Obviously the only rigorous way to answer 
the question is to calculate both divergence of the radiation flux vector and the energy flux 
throughout a nonisothermal slab using detailed spectral  information. These calculations 
should then be compared to similar calculations using modeled absorption coefficients 
derived from the detailed spectral information. To the author's knowledge, this has not 
yet been done. It is felt, however, that the present analysis strongly indicates that the 
detailed absorption can be simply modeled and these models used to achieve results with 
good accuracy and the retention of all significant trends. If full flow-field calculations 
a r e  to be carried out, such work would be greatly facilitated by the use of modeled 
absorption coefficients. 

ri 

A wide range of stagnation-point radiation heat- transfer solutions is presented 
which allows a direct determination of the heating rate  for the nose radii, velocities, and 
altitudes shown. In addition, extensions of previously published cooling factor correla- 
tions have been made and a r e  presented. These extensions allow the determination of 
the radiation heating rate  for arbitrary altitudes, nose radii, and (within certain limits) 
absorption coefficients. Required for this determination is the velocity of the vehicle 
and a calculation of adiabatic wall  heat flux by using the chosen absorption coefficient. 
Use  of these correlations greatly simplifies the determination of the nongray radiation 
heat transfer for  fully coupled flows and should prove valuable for design work. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 24, 1968, 
129-01-03-09-23. 
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APPENDIX A 

COORDINATE SYSTEM AND BASIC EQUATIONS 

Coordinate System 

The coordinate system used in the analysis is a "floating" system (sketch Al) 
obtained from a transformation of body-oriented coordinates (t,x,y) for axisymmetric 
flow (sketch A2). The procedure will be to transform the equations of motion from the 
Cartesian system (t',x',y',z') to the body-oriented system, then to recast  these relations 
in the "floating" coordinates (T,X,Y). 

X = O  
Sketch A1 

4 
Sketch A2 x = o  
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Basic Equations 

The following unsteady inviscid, nonconducting equations, including radiation effects, 
are given as follows: 

Continuity 

(All aP 
at' - + v - (pG) = 0 

Momentum 

Energy 

- ah. + U - - Vh = - - E F R + l a P  G * V  
at' P irw+-Pg 

i 
The relations governing the transformation from the Cartesian coordinates (t',x',y',z') 
to  the body-oriented system (t,x,y) are as follows: 

x' = 1 cos 0 dx - y s in  0 

t' = t 

y '  = r sin 4 
z '  = r cos 4 

where 

If the proper transformation equations are applied and, for axisymmetric flow, the 
azimuthal components ignored, equations (Al) to (A3) become, in the body-oriented system, 

Continuity 

(A6) 
a p + - - ( p u ) + ~ s i n e + - - ( p v ) + p v ~ + ~ ) ~ O  i a  a COS e 
a t  x ax r ay 

x - momentum 

16 
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y-momentum 

Energy 

where 

X = l + K q  

It would be convenient, if during the unsteady calculation the shock itself became a 
coordinate line as well as the body. This is accomplished through the transformation to 
the "floating" coordinate system shown as follows: 

which gives for y = 0, Y = 0 and for y = 6, Y = 1. The differential relationships 
between the two coordinate systems a r e  given below 

With the state equation, 

h = hb,P) 

and switching to p as the dependent variable in the energy equation, equations (A6) to 
(A10) under the transformation (A1 1) become 

17 
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Continuity 

p T = - ( A p y + ~ p X - B u y + - u  U P +'v +C) 
x x  $ Y  

X- momentum 

Y-momentum 

.vT=- (Av  + - v  U +-p  1 
Y x x p6 y - 9  

Energy 

Subscript notation has been used to denote partial differentiation. The parameters in the 
equations are defined by the following relations: 

Equations (A14) to (A18) are valid for inviscid, nonconducting, equilibrium flows 
over smooth blunt bodies including emission and absorption of nongray radiation. 

For this analysis these equations must be reduced so that they are applicable to 
stagnation-line flows. Symmetry dictates the following conditions at the stagnation line: 

18 
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pv 'Os e are evaluated with the aid of pu sin 8 and 
r Indeterminant te rms  such as 

L'Hospital's rule. Equations (A14) to (AM) now reduce to the following set: 

Continuitv 

Y- momentum 

Energy 

where under the stagnation line restrictions (eqs. (A19)), 

Equation (A15), the X-momentum equation, becomes degenerate at the stagnation line and 
seemingly offers no useful information. However, if equation (A7) is differentiated with 
respect to x, restricted to the stagnation line, and expressed in te rms  of the defined 
quantity f, where 

f = ux = ux (A241 

the following differential equation for f is obtained: 

after transformation to the (T,X,Y) system. This equation is necessary because of the 
appearance in  equations (A20) and (A22) of ux. 

The governing differential equations are now (A20), (A21), (A22), and (A25). 
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APPENDIX B 

DEVELOPMENT OF UNSTEADY CHARACTERISTICS EQUATIONS 

IN FLOATING COORDINATE SYSTEM 

A quasi-one-dimensional unsteady characteristics solution, similar to that reported 
in reference 5, is used for the shock and body points. The compatibility equations and 
characteristic directions a r e  determined from the general equations cast in the following 
form. The asterisks in equations (Bl) and (B4) indicate that it is the natural logarithm 
of p that is differentiated. 

where 

vT + AvY + - 1 
p6 PY = c2 

C2 = - ( z v  - E) 
A X  

J - 

At this point, it should be noted that, in the vicinity of the shock wave, the pertinent quan- 
tities are the normal component of the velocity and the Y-coordinate. The tangential 
velocity is unchanged across  the shock and for smooth bodies the tangential derivatives 
of the flow properties are, for the most part, small in comparison with other terms.  
These observations coupled with the fact that for hypervelocity flows, the Y coordinate 
in the "floating" system is nearly normal to the shock (it is normal on the stagnation line 
for axisymmetric flow) suggest treating the te rms  represented by C1, C2, and C3 as 
driving te rms  and employing a one-dimensional characteristics treatment of the shock 
point. The same basic argument can be made with regard to body points and it is for 
these reasons that equations (Bl) to (B3) a re  cast  in their present form. A variation of 
this basic technique was discussed by Moretti in reference 16 and more detailed informa- 
tion can be found in that publication. 

To determine the characteristic directions for equations (Bl) to (B3) and the fol- 
lowing differential relations: 
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ap* dT + - aP* dY = dp* 
aT ay 

- av dT +- - av dY = dV 
aT ay 

aP aP - dT + - dY = dp aT a y  

the associated coefficient determinant is se t  equal to zero and expanded. The resulting 
cubic in dY/dT is solved and the characteristic directions a r e  found to be 

dY 

The compatibility equations a r e  determined by replacing a column of the coefficient 
determinant by the column formed by the right-hand side of equations (Bl) to (B3) and 
(B7) to  (B9). Expanding the resulting determinant and substituting equation (B10) yields 
the following equation: 

dv 1 dp c3 - 
dT * dT = c2 * 

Equations (Bl) to  (B11) a r e  valid for general flow fields. For axisymmetric 
stagnation-line flow equations (B10) and (B11) maintain the same general form; however, 
A is given by equation (A23) rather than equation (Ala), C2 = 0, and 6 3  becomes 

+ Kv) - '".3 P1p 
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EVALUATION OF THE DIVERGENCE OF THE RADIATION FLUX VECTOR 

It is desired to derive and determine a means of evaluating the expression for the 
divergence of the radiation flux vector at points across the shock layer. The shock layer 
at the stagnation line is modeled as an infinite gas slab of thickness 6 with one boundary 
transparent to incident radiation and nonemitting. The other boundary, representing the 
body surface, is to be a cold, nonemitting, reflecting surface. Properties a re  assumed 
to vary only with the normal coordinate, and local thermodynamic equilibrium is assumed. 

The nondimensional divergence of the flux vector is represented by the integral 

where I, is the specific intensity of the radiation, and ds  an incremental length along 
the path a pencil of radiation travels. The radiative transfer equation is substituted and 
after integrating there results 

If I,, as determined from a solution of the radiative transfer equation, is substituted and 
the proper boundary conditions applied, equation (C2) becomes 

(63) 

where rw is the constant coefficient of reflection of the wall and t, a dummy variable 
of integration. 

In the present report rw = 0, and the absorption coefficient, discussed in appen- 
dix D, is approximated by a step function model with one to nine spectral steps. The 
value of the absorption coefficient is invariant within spectral range of each step but is 
allowed to change with temperature and density. Under these assumptions equation (63) 
may be written as 
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where N is the number of spectral steps considered. Since pki is constant over 
A v i  it may be removed from under the integral and the integrations over v and t, the 
optical thickness, transposed. Equation (C4) then becomes 

where 

and 

The problem, with flow properties being known across  the stagnation line, is now 
reduced to the numerical evaluation of the integral 

for each spectral step in the absorption coefficient model. The optical thickness T 

given by the integral 

is evaluated with the aid of closed Adams quadrature formulas. Hence the integral of 
equation (C8) is determinant at each point of the shock layer. With dT*4/dr evaluated 
as a local constant, equation (C8) integrated by parts, and the result substituted in equa- 
tion (C5), the following expression for the divergence of the radiation flux vector at the 
kth mesh point results: 

A t i  p 3 (  [ ti, j+l - 'i,kl) 
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with 

where the shock layer contains M + 1 mesh points. 

A considerable saving in computing time and computer storage requirements can 
be effected if the shock layer is divided into equal increments of the optical thickness 
rather than Y. This division is carried out for each spectral step with third-order 
Lagrangian extrapolation polynomials used to obtain flow quantities at the resulting mesh 
points. The quantity A t i  now becomes 

7i, M+I 
M A t i  = 

For purposes of accuracy, a finer mesh is used in the calculation of F 
in the general flow-field calculation. 

than is used R, k 
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APPENDIX D 

STEP MODEL ABSORPTION COEFFICIENT 

The absorption coefficient models used in this report are either identical to, or 
derived from, the model absorption coefficient reported by Olstad (ref. 8). In refer- 
ence 8, Olstad presents data, tabulated for a range of temperatures and densities for  each 
step of a nine-step model of the absorption coefficient. This information, for  purposes 
of reference is presented herein as table I. Included in this absorption coefficient model 
a r e  contributions due to atomic line transitions, N+- and O+-electron recombination, free- 
f ree  transitions, and molecular bond transitions. Equilibrium air properties are assumed 
to exist. 

The absorption due to line radiation in the wavelength interval 911 to 1800 A was 
determined with the aid of parameters presented by Griem (ref. 11). In order  to incor- 
porate the resultant absorption coefficient information realistically into a step model, 
Olstad developed a "picket fence" model in which the line information is represented by a 
large number of narrow (in wavelength) steps of height al(p,T) superposed on a gray 
background of height az(p,T). The relative width and spacing of the steps are taken into 
account by a parameter p(p,T). Sketch D1 illustrates Olstad's model for line radiation 
between 911 and 1800 A. 

I 4------ 
911 - 1800 k 

h 

Sketch D1 

A detailed discussion of the model, its restrictions, and the means by which the 
governing parameters a1, 0 2 ,  and p a r e  determined a r e  presented in reference 8. 
It suffices here to say that this model appears to be a reasonable means of treating the 
absorption coefficient due to line radiation where the lines may not be optically thin. 
Above 1800 A, contributions to the absorption coefficient, including line radiation, are 
treated as optically thin and a r e  represented by a Planck average. In fact, for some of 
the larger nose radii, the line centers may be optically thick not thin. The spectral dis- 
tribution of the black body function coupled with arguments in  the section "Results and 
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Discussion" (regarding the relative contributions of line centers and line wings) indicate 
that the resulting heat-transfer e r ro r  will be small. 

and O+-electron recombination were obtained from Hahne (ref. 17). Of the twelve photo- 
ionization edges indicated by Hahne, four were used in the construction of the step model 
absorption coefficient presented in reference 8. These edges a re  located at wavelengths 
of 852, 911, 1020, and 1130 A. No contributions to the absorption coefficient are included 
below 400 A. 

In the vacuum ultraviolet, contributions to the absorption of radiation due to N+- 

Absorption coefficient models used in this report include a gray, a two-step, a 
three-step, and a nine-step .model. The nine-step model is used directly as presented in 
table I. The other models are constructed from the nine-step model by means of Planck 
averages of various combinations of steps and are  summarized in table 11. 

It should be noted that a11 absorption models are constructed from the same basic 
spectral information and hence a r e  consistent. This allows meaningful comparisons of 
flow profiles and heat-transfer solutions to be made between models of varying spectral 
complexity. 
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TABLE 11.- SUMMARY OF STEP-MODEL ABSORPTION COEFFICIENT 

Model 

Gray 

Wavelength Formed from Planck 
Step interval, average of these steps 

A of table I 

1 400 to 100 000 1 to 9 

1 400 to 1130 1 to 6 
2 1130 to 100 000 7 to 9 

Two step - 
Three step 

model A 

Nine step 

30 

1 400 to 1130 1 to 6 
2 1130 to 1800 8 
3 1130 to 100 000 7 and 9 

The nine-step model is used as it appears in table I 



TABLE 1II.- SUMMARY O F  MOLE FRACTIONS OF SELECTED AIR SPECIES AT 

SHOCK WAVE AND BODY FOR v, = 15 240 m/s7 p,/po = and EN = 1 m 

Mole fraction 

Shock w-ave Species 
(T = 13 750 OK; p = 0.264 atm) 

E- 
N 
N+ 
0 
O+ 
N2 
N2+ 
02 
021- 
02- 
NO 
NO' 

3.52 x 10-1 
2.24 x 10-1 
2.97 X 10-1 
7.00X 
5.31 X 

2.28 X 10-6 
1 . 7 5 ~  10-6 

7.68 x 10-9 

2 . 3 5 ~  10-13 
2.00 x 10-7 

3.78 x 10-8 

2.54 X 

Body 
(T = 8 700 OK; = 0.275 atm) 

1.14 x 10-2 
7.81 X 10-1 

1.87 x 10-1 
9.66 x 10-3 

1.66 x 10-3 
5.13 x 10-3 
2.56 x 10-5 
8.33 x 10-7 
1.10 x 10-7 

7.81 x 10-5 
9.47 x 10-5 

3.88 X 
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Figure 1.- Schematic of flow field and body-oriented coordinate system. 

32 



Figure 2.- Schematic of use of unsteady characteristics at shock wave and body. 
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Figure 3.- Schematic of absorption coefficient models. 
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Figure 3.- Concluded. 
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