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A METHOD FOR COMPUTATION OF VIBRATION MODES 

AND FREQUENCIES OF ORTHOTROPIC THIN SHELLS OF REVOLUTION 

HAVING GENERAL MERIDIONAL CURVATURE 

By Howard M. Adelman, Donnell S. Catherines, 

and William C. Walton, Jr. 

Langley Research Center 

SUMMARY 

This report describes a procedure for computing the vibration modes and frequen

cies of thin shells of revolution having general meridional curvature and orthotropic elas

tic properties. The procedure is based on the finite-element method in which the direct

stiffness approach is used. A geometrically exact finite element is employed. A com

puter program based on this procedure has been written and details of the program are 

described. The geometric characteristics of the shell are used as inputs to the program 

in the form of functions of the meridional coordinate. The stiffness and mass matrices 

are computed by numerical integration by use of the trapezoidal rule. 

The computer program is applied to several shell configurations including two 

cylinders, two conical frustums, shells of both positive and negative Gaussian curvature, 

and an annular plate. Frequencies are correlated with frequencies from previous inves

tigations for these shells. The agreement between results of the present analysis and 

results from the previous investigations is generally excellent. 

INTRODUCTION 

A problem of current interest to structural analysts in the aerospace field is that of 

determining the dynamic behavior of structures in which some of the components are thin 

shells of revolution. Understanding the modes of vibration of the individual shell com

ponents can be of fundamental importance in connection with this problem. Consequently, 

much effort has gone into developing techniques to determine natural frequencies and mode 

shapes of the commonly encountered shells of revolution. Few closed-form solutions are 

known and, therefore , most of the developments have been in the area of approximation 

methods. Among the methods that have been tried are Rayleigh-Ritz methods (refs. 1 

and 2) , Stodola-type iteration methods (ref. 3), finite-difference solutions (ref. 4), finite

element methods (refs. 5 to 9), and methods in which the shell boundary-value problem is 

reduced to an initial-value problem involving first-order differential equations which 



are numerically integrated (ref. 10). The finite-difference and numerical-integration 
( 

methods involve a trial-and-error search for the natural frequencies that will make a 

certain determinant vanish. These "search methods" are relatively slow, and analysts 

using them have been known to overlook modes, as noted in reference 3. Stodola-type 

methods also lose numerical significance in the calculation of higher modes as noted in 

reference 3. 

The authors, in the course of developing practical procedures to analyze the forced 

response of structures incorporating shells of revolution, required a method for computing 

mode shapes and frequencies of shells of revolution having general meridional curvature 

and orthotropic elastic properties. These mode shapes and frequencies would be used in 

analyses of structures involving such shells where in the analysis the deformation of each 

shell is represented by superposition of a number of mode shapes of the shell. Early 

experience indicated that selection of representative modes for a shell would require 

examination of a great number of its modes some high in the frequency spectrum. It was 

therefore necessary that: 

(1) The method should give capability for quick calculation of a large number of 

modes and frequencies 

(2) The mode shapes and frequencies quite high in the frequency spectrum should be 

accurately predicted 

(3) The analyst should be protected from overlooking modes in computation 

In view of these objectives, search methods and Stodola methods were considered 

unsatisfactory for the reasons of their inadequacy to meet these requirements. Both the 

Rayleigh-Ritz and finite-element approaches seemed to offer better chances for success 

in meeting the objectives. 

From the viewpoint of the analyst, the outstanding advantage of finite-element and 

Rayleigh-Ritz approaches is that they lead to a symmetric eigenvalue problem which is 

amenable to fast and accurate solution on a digital computer. In the methods available 

for solving symmetric eigenvalue problems, aU the modes are computed Simultaneously, 

and thus any danger of overlooking modes in computation is avoided. 

A finite-element approach was selected in preference to a Rayleigh-Ritz approach 

for the following reasons: 

(1) The computing details of the Rayleigh-Ritz methods reported in references 1 

and 2 resulted in use of a large number of terms. These methods lead to relatively poorly 

conditioned eigenvalue formulations requiring that a large number of Significant figures 

be carried in the calculations in order to retain significance in the results. Preliminary 

trials with circular plates indicated that the finite-element approach leads to very well

conditioned eigenvalue problems. 
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(2) It was believed that the finite-element method would converge more easily than 
the Rayleigh-Ritz method when local high stress gradients, such as occur for some edge 

conditions (ref. 11), are present. 

The element most popularly employed in the finite-element analysis of shells of 

revolution has been the conical element (for example, refs. 8 and 9). This element can 

exactly fit cylinders and conical frustums. However, for shells having a curved meridian, 

use of this element leads to only an approximation of the shell by a series of joined conical 

frustums. Thus, the curved meridian is approximated by a series of straight lines. Con

sequently, an analysis of a shell with a curved meridian based on conical elements may 

give inaccurate frequencies and stresses (refs. 5 and 6). 

Analysts have been aware that the use of an element which coincides with the shape 

of the shell being analyzed would probably improve the accuracy in computed results 

(ref. 5). The main impediment to the use of such a geometrically exact element has been 

a reluctance on the part of analysts to give up a certain computational convenience asso

ciated with the conical element. This convenience is that since the shape is fixed, quadra

tures required to compute the stiffness and mass matrices of the element are performed 

only once, and the same matrices are used in every analysis. With a geometrically exact 

element, the shape of the element depends on the shape of the portion of the shell which the 

element represents, with the result that the integration has to be an inseparable part of 

each analysis. It has been recognized that a natural and probably feasible approach to 

making the quadratures part of the analYSis is to use numerical integration (ref. 5). How

ever, the objection has remained that for each element the radius of the shell and the two 

radii of curvature must be specified as functions of position along the meridian of the 

element. 

In spite of this objection, the decision was made to develop a computer program to 

meet the previously stated objectives based on a geometrically exact element. It was 

believed that the necessity for description of the geometry of an element in terms of func

tions rather than of numerical parameters would present no difficulties in practice if, as 
is nearly always the case, the geometry of the entire shell could be described by functions 

located in a subroutine which could be readily changed. Development has progressed to 

the point where the program has been applied to a variety of shells of revolution of practi

cal interest. Detailed correlations have been made between frequencies from the program 

and frequencies calculated for these shells by other investigators. A cursory correlation 

of mode shapes including stresses has been made for some of these shells but as yet is 

inconclusive because of present unavailability of sufficient modal data from the methods of 

the previous investigators. These correlations are not presented in this report. 

The main purposes of this report are as follows: 

(1) To describe the analysis underlying the computer program 
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(2) To describe the computer program 

(3) To present the frequency correlations 

SYMBOLS 

coefficients in polynomial displacement function for normal dis

placement w 

Ak matrix which transforms displacements and rotations at ends of an element 

B 

to coefficients of polynomial displacement functions (see eq. (13) and table I) 

coefficients in polynomial displacement function for meridional 
displacement u 

matrix defined in equation (42) 

coefficients in polynomial displacement function for circumferential 

displacement v 

matrix whose elements are coefficients in an expression for strain energy of 

a shell element in terms of coefficients of polynomial displacement functions 

(see eq. (20)) 

membrane stiffness constants 

C66 in-plane shear stiffness 

D diagonal matrix whose elements are eigenvalues of mass matrix (see eq. (39)) 

flexural stiffness constants 

D66 torsional stiffness 

e1,e2,e12 middle-surface strains (see eqs. (1a) to (1c)) 

Ek kinetic energy of kth element 

E kinetic energy of shell; also Young's modulus 
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frequency 

matrix whose elements are coefficients in an expression for kinetic energy of 

a shell element in terms of coefficients of polynomial displacement functions 

(see eq. (30)) 

shell thickness 

identity matrix 

number of elements used to represent a shell 

stiffness constants representing interaction between in-plane and 
out-of-plane strains 

meridional length of a shell 

meridional wave number for a freely supported cylinder 

element mass matrix 

shell mass matrix 

circumferential wave number 

order of stiffness and mass matrices after edge constraints have been applied 

matrix whose elements are coefficients in an expression for kinetic energy 

of a shell element in terms of displacements u, v, and w (see eq. (28)) 

index representing an integration station 

total number of integration intervals 

radius of a shell measured in plane normal to shell axis 

prinCipal radii of curvature of shell 
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R matrix whose elements are coefficients in an expression for strain energy of 

shell element in terms of actual variables in strain energy (see eq. (16)) 

s meridional coordinate 

Sk element stiffness matrix 

S shell stiffness matrix 

So meridional distance from origin of s to reference edge of a shell 

sk meridional distance from reference edge of shell to center of kth element 

Skq meridional distance from reference edge of shell to qth integration station 

of kth element 

Ski meridional distance from reference edge of a shell to ith location on kth 

element at which mode shape is evaluated 

t time 

Tk inverse of matrix Ak 

u meridional component of middle-surface displacement 

U matrix whose columns are eigenvectors of mass matrix 

v circumferential component of middle-surface displacement 

Vk strain energy of kth element 

V strain energy of shell 

w normal component of middle-surface displacement 

x meridional coordinate measured within a single element (see eq. (5)) 

Xkq meridional distance from center of kth element to qth integration station 
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x matrix which describes assumed form of variables appearing in strain energy 

y column matrix containing unknown displacements and rotations 

y matrix which describes the assumed form of displacements u, v, and w 

Z matrix defined in equation (43) 

(3 rotation of shell generator relative to unstrained direction (see eq. (10)) 

o modal column (see eq. (44)) 

y column matrix whose elements are coefficients of assumed-displacement 

polynomials (see eq. (18)) 

€ k meridional length of kth element 

e circumferential coordinate 

K1,K2,K12 changes in curvatures (see eqs. (1d) to (1£)) 

p 

w 

J..L 

eigenvalues of mass matrix 

column matrix whose elements are displacements and rotations at ends of an 
element (see eq. (22)) 

mass density 

circular frequency 

nondimensional frequency 

Poisson's ratio 

Primes denote differentiation with respect to s or x; superscript T denotes 

transpose of a matrix. 

Special notations used in machine plots of figures 16, 17,20, and 21: 

N circumferential wave number 

S/L nondimensional meridional distance 

~~~-.---~- ------_._- --~~~~~ 
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U,V,W middle-surface displacements in the meridional, circumferential, and normal 

directions, respectively 

UMAX, VMAX, WMAX maximum values of U, V, and W, respectively 

w2 = (Circular frequency)2, sec- 2 

DEVELOPMENT OF THE STIFFNESS MATRIX FOR A 

GEOMETRICALLY EXACT ELEMENT 

Strain Energy in Terms of Displacements 

For purposes of the following analysis, reference is made to figure 1. In this fig

ure, u, v, and w represent displacements in the meridional, Circumferential, and 

normal directions , respectively, R1 and R2 are the two principal radii of curvature 

of the shell, and r is the radius of the shell measured in a plane normal to the shell 

axis. All three radii are regarded as functions of the meridional coordinate s , measured 

along the shell from a reference edge. 

According to Novozhilov (ref. 12) , the six strain-displacement relations which 

describe the local state of strain for a thin shell of revolution are as follows: 

Membrane strain in meridional direction: 

e = u ' + ~ 
1 R1 

Membrane strain in circumferential direction: 

1 &v 1 I W e =--+-ru+-
2 r ae r R2 

In-plane shear strain: 

1 au I 1 , 
e 12 = r Be + v - r r v 

Change of curvature in meridional direction: 

K = -w" + ~ u' - _1_ Rl 'u 
1 Rl R12 

Change of curvature in circumferential direction: 

1 a2w 1 &v r'w ' 1 
K = - -- + -- -- - -- + -- r'u 

2 r2 ae2 rR2 ae r rRI 

Twist of the middle surface: 

K = - .! aw' + l r' aw + _1_ au + .1-. v' __ 1_ r'v 
12 r ae r2 """Fij rRI ae R2 rR2 

(la) 

(lb) 

(lc) 

(ld) 

(Ie) 

(If) 
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For a shell which, in general, is composed of orthotropic layers, the strain energy 

is given in reference 13 (p. 45) as follows: 

V = ~ SS(c lle1
2 + 2C 12e1€2 + C22e2

2 + c66e122)r d e ds 

+ ~ SS(DllK12 + 2D12K1K2 + D22K22 + D66 K122)r d e ds 

+ SSfll e1 K1 + K12 (e 1 K2 + e2 K1) + K 22 e2 K2 + K66e12K12Jr d e ds (2) 

where in equation (2) the integrations are taken over the shell surface and the following 
definitions hold: 

(1) Cll , 

(2) D1V 

(3) C66 

(4) D66 

C 12' C22 are membrane stiffnesses 

D12, D22 are flexural stiffnesses 

is the in-plane shear stiffness 

is the torsional shear stiffness 

(5) Kll, K12, K22 , K66 are stiffnesses due to the interaction between in-plane 
strains and changes in curvature 

All of these stiffnesses are, in general, functions of the meridional coordinate s. Ref

erence 13 contains an excellent discussion of the derivation of the above stiffnesses for 

shells having various numbers of layers and composed of materials having various types 

of elastic properties. 

The work in the present study is based on Novozhilov's strain-displacement rela

tions (eqs. (la) to (1£)), the energy expression of equation (2), and the definitions of the 

stiffnesses in reference 13 with the following single exception. The strain K12 (called 

T in refs . 12 and 13) is defined by Ambartsumyan (p. 25) to be double the value of this 

strain as defined by Novozhilov. Since the authors prefer to use Novozhilov ' s definition 

of K12 ' the value of D66 used herein is four times the value of D66 given in refer

ence 13 and the value of K66 is twice the value of K66 given in reference 13. 

For a shell of revolution vibrating in a natural mode with circular frequency w, 

the three displacements u, v, and w can be expressed as follows: 

u(s, e,t) = u(s)cos neeiwt 

v(s, e, t) = v(s)sin neeiwt 

w(s, e, t) = w(s)cos n eeiwt 

(3) 
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The displacements from equations (3) are substituted into the strain-displacement 

relations of equations (1). Substitution of the resulting strains into the strain- energy 

expression of -equation (2) and integration with respect to e yields the strain energy in 

terms of displacements. The amplitude of the strain energy for n '* 0 is as follows: 

1TJrc ( ' W)2 (w \(n r' W) (n r' W)2 ( n r ' )~ V = 2 LCn u + Rl + 2C12 u' + Rl) r v + r u + R2 + C22 r v + r u + R2 + C66 - r u + v' - r v J r ds 

It ( W)( u' Ri) ( w)(n2 n r' r' 1 (n r' W) + 1T KU u' + -R -wI! + -R - -2 u + K12 u ' + - -2 w + - v - - w' + - u + K12 - v + - u +-
1 1 Rl Rl r rR2 r rRl r r R2 

+K22- v +- u +- -2w+-V--W'+-U +K66 --u+v'--v _W' __ W_-U+---v rds (
n r' w )~n2 n r' r' ~ (n r' ~(n nr' n v' r' ~ 
r r R2 r rR2 r rRl r r r r2 rRl R2 rR2 

It ( ')2 ( , ) 1T u' Rl u ' Rl n2 n r' r' 
+ - Dll -wI! + - - - u + 2D12 -wI! + - - - u (- w + - v - - w' + - u\ 

2 Rl R12 Rl R12 r2 rR2 r rRl ) 

+ D22 - w + - v - - w' + - u + D66 - w' - - w - - u + - - - v r ds (
n2 n r' r' ~2 (n nr' n v' r' )2

J r2 rR2 r rR1 r r2 rRl R2 rR2 

For n = 0 the strain energy as given by expression (4) should be doubled. The suc

ceeding developments are carried out on the assumption that n '* 0 with the under
standing that for n = 0 appropriate expressions should be doubled. 

Representation of the Shell by Geometrically 

Exact Finite Elements 

(4) 

The present analytical method follows the main steps of conventional finite-element 

analysis. It is noted, however, that each element coincides exactly with a slice of the 

actual shell. Hence, the elements are spoken of as "geometrically exact elements." 

A typical idealization of a shell of revolution is shown in figure 2. Counting ele

ments from the reference edge, the following definitions are made: 

K 

x 

10 

total number of elements 

length of kth element, measured along meridian curve of shell 

coordinate inside kth element, measured along meridian from center of kth 
interval so that following relationship holds: 

Ek Ek 
- "2 ~ x ~ "2 (5) 

I 



distance along meridian from reference edge of shell to center of the 

kth element 

From the foregoing definitions for x and sk' it follows that 

(6) 

A numbering system has been adopted in which quantites such as displacement, 
E E 

derivatives of displacements, and rotations at s = sk - 2k and s = sk + 2k are indi-

cated by subscripts k and k+l, respectively. Thus, for example, wk is the normal 
Ek Ek 

displacement at s = sk - 2 and uk+1 is the meridional displacement at s = sk + 2' 

Also, it is necessary to have a notation for the radius of curvature RI at the locations 
Ek 

s = sk Of -2' The symbols RI k and RI k+1 represent the respective values, , , 

Assumed Displacement Field for Element 

As an approximation, the displacements u, v, and ware assumed to have the 

following polynomial forms over the kth element: 

(7) 

where the a's, b's, and c's are undetermined coefficients. From equation (7) it fol

lows that: 

ao k , 
a l k , 

w a2 k , 
w' a3 k , 
w" 

bO k , 

= [X] b l k 
(8) u , 

b 2 k 
u' , 

b 3 k 
v , 

Co k 
v' , 

c I k , 
c2 k , 
c 3 k , 
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where 

1 x x2 x3 0 0 0 0 0 0 0 0 

0 1 2x 3x2 0 0 0 0 0 0 0 0 

0 0 2 6x 0 0 0 0 0 0 0 0 

[x] = 0 0 0 0 1 x x2 x3 0 0 0 0 

0 0 0 0 0 1 2x 3x2 0 0 0 0 

0 0 0 0 0 0 0 0 1 x x2 x3 

0 0 0 0 0 0 0 0 0 1 2x 3x2 

Relationship Between Undetermined Coefficients and Displacements 

and Rotations at Ends of Element 

(9) 

The rotation of the meridian curve relative to the unstrained direction is defined 

as f3 and is given by 

f3 = w' (10) 

It follows that 

(11) 

and 

u 
f3 - w' _ k+1 
k+1 - k+1 R 1,k+1 

(12) 

Ek Ek 
Inserting x = -"'2 and x ="'2 into the appropriate locations in equation (8) 

results in the following relationship: 

wk aO k , 
uk a1 k , 
vk a2 k , 
f3k a3 k , 
u' b O k k , 
v' b 1 k k 

[AkJ 
, 

wk+1 = b 2 k , (13) 

uk+1 b 3 k , 
vk+1 Co k , 
f3k+1 c1 k , 
u1H1 c2 k , 
vk+1 c3 k , 
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where the elements of matrix [A~ are given in table 1. When equation (13) is inverted, 

the following relationship results: 

aO k , wk 
a1 k , uk 

a2 k , vk 
a3 k 13k , 

u' bO k k , , 
b 1 k 

[TkJ 
vk , = 

b2 k wk+1 , 
(14) 

b3 k , uk+1 
Co k , vk+1 
c 1 k ~+1 , 

I 

c2 k uk+1 , 
c3 k , v1H1 

where 

(15) 

The elements of the inverse matrix [T~ are given in table II. 

Formulation of Element stiffness Matrix 

From equation (4) the strain energy of an element may be written as follows: 

€k/2 w 

w' 

w" 

Vk = ~ Lw, w', w", u, u', v, vj [RJ u dx (16) 

u' 
v 

-Ek/2 v' 

where [~ is a 7 x 7 symmetric matrix, the elements of which are known functions of the 
meridional coordinate x . The elements of [R ] are listed in the appendix. Using equa
tion (8) in equation (16) permits the strain energy to be written in terms of the undeter
mined polynomial coefficients as follows: 

(17) 
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where 

{,) = (18) 

or 

(19) 

where 

[CkJ= 7r SEk/2[XJT[RJ[XJdx 
-E k /2 (20) 

Finally, use of the transformation expressed by equation (14) gives the strain energy as 

(21) 

where 

wk 
uk 
vk 
,Bk 
u ' k 
v' 

{o= k 
wk+l 

(22) 
uk+l 

vk+l 

,Bk+l 

uk+l 
I 

vk+l 

14 



Inspection of equation (21) identifies the shell element stiffness matrix [S~ as 

DEVELOPMENT OF CONSISTENT MASS MATRIX FOR 

THE GEOMETRICALLY EXACT ELEMENT 

(23) 

If rotary inertia is neglected and if the shell is assumed to be vibrating in a natural 

mode, the amplitude of the kinetic energy Ek for n*-O is 

Ek = !!. w2 SEJ2 Ph(u2 + v2 + w2)r dx 2 -E k /2 (24) 

where ph is the mass per unit area of the shell. The quantity ph is a known function 

of s and therefore of x. As with the strain energy, the expression for kinetic energy 

must be doubled for n = O. 

Based on the assumed displacements of equation (7) , the following relation may be 

written: 

(25) 

where 

o 0 0 0 o 0 0 

o 0 0 (26) 

o 0 0 0 1 x x2 

Equation (24) can be rewritten in the form 

(27) 

where 

o 

phr (28) 

o 

15 
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Using equation (25) with equation (27) yields 

(29) 

where 

(30) 

In view of equation (14) , equation (29) may be written as follows: 

Therefore, the element mass matrix may be identified as [M~ , where 

DERIVATION OF MODAL EQUATIONS 

In view of the numbering convention adopted for the elements , the second edge of the 

kth element coincides with the first edge of the k+1st element. In this analysis , the fol

lowing conditions of compatability are assumed to hold at each such juncture: 

wk+1 wk+1 

uk+1 uk+1 

vk+1 vk+1 
for all k < K (33) = 

.Bk+1 .Bk+1 

uk+1 uk+1 

vk+1 kth vk+1 k+1st 
element element 

Of the six equalities in equation (33), the first four are standard. The last two, however, 

are valid only for shells having continuous distribut ions of stiffness. 

16 

The total strain energy V and the kinetic energy E may be expressed as follows: 

K 

V= I Vk 
k=l 

K 

E = I Ek 
k=l 

~----~---------- --~~--~--

(34) 



where Vk and Ek are given in equations (21) and (31), respectively. If the summa

tions of equations (34) are carried out and use is made of equation (33), the strain and 

kinetic energies may be written as follows: 

(35) 

where · 

s 

M 

y 

stiffness matrix, which is a symmetric positive semidefinite or positive 

definite matrix of order 6(K + 1) 

mass or inertia matrix, which is a symmetric positive definite matrix of 

order 6(K + 1) 

a vector containing all of the unknown displacements and rotations 

In the present method, the matrices Sand M are constructed by the well-known 

procedure of superimposing element matrices, illustrated in figure 3. As the figure 

shows, the superposition consists of placing appropriate shell element matrices in the 

matrices Sand M so that the matrix elements in the lower right 6 x 6 block of the 

kth matrix add to the corresponding matrix elements in the upper left 6 x 6 block of the 

k+lst matrix. 

The modal equations for shells with no edge constraints may be derived by mini

mizing the quantity E - V with respect to each of the variables in the vector y. This 

minimization is equivalent to the following set of equations, 6(K + 1) in number: 

a(E - V) _ 0 
fJw -

k 

a(E - V) = 0 
aUk 

a(E - V) = 0 
&vk 

a(E - V) = 0 
a,Bk 

a(E - V) = 0 

Ouk 

a(E - V) = 0 
&V' 

k 

Equations (36) can be expressed in the form 

(k = 1, 2, ... , K + 1) (36) 

(37) 

17 
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Rigid edge constraints are incorporated by deleting from the stiffness and mass 

matrices of equation (37) those rows and columns which correspond to displacements and 

rotations that must vanish to satisfy the constraints. The form and character of equa

tion (37) are not affected by the deletion of rows and columns from the matrices Sand 

M, except that S may become positive definite instead of positive semidefinite. Of 

course, the order of matrices Sand M is reduced. 

Equation (37) determines 6(K + 1) natural frequencies and modal columns. The 

computation of these frequencies and modes is a standard operation. However, for com

pleteness, some of the reductions involved in the solution are given in the section which 

follows. 

The modal columns consist of values of displacements and rotations at each of the 

K + 1 junctures on the shell. For many purposes a more detailed mode shape is 

required. From equation (7) with x replaced by s - sk' the following equations can be 

written for the mode shape within the kth element: 

(38) 

The coefficients aO k through c3 k are computed by using equation (14) . , , 

COMPUTATIONAL METHOD AND COMPUTER PROGRAM 

In this section, the details of the computing method are given. Each step is dis

cussed and the flow of information is shown in block diagrams. The steps are intended to 

be specific enough to allow a digital computer program to be written by using them as a 

guide. 

The basic organization of the computer program used in the present analysis is 

shown in block diagram 1. 

The input which describes the geometry of the shell and its physical properties is 

first read, and stiffness and mass matrices referred to the coefficients of the displace

ment polynomials are then computed. These matrices are transformed so that they are 

referred to the displacements and rotations at the ends of the element. When a stiffness 

and a mass matrix have thus been computed for each element, the matrices are super

imposed to form the shell stiffness and mass matrices. If the shell has rigid edge 

18 



constraints, then appropriate rows and columns are deleted from the stiffness and mass 

matrices to satisfy these constraints. The stiffness and mass matrices then constitute 

the ingredients to an eigenvalue problem which is solved for frequencies and modal 

columns. From the modal columns, the coefficients of the displacement polynomials are 

computed. The detailed mode shapes are then evaluated. 

r----~ COMPUTE TRANSFORMATI ON MATRIX 

COMPUTE ELEMENT STIFFNESS MATRIX AND ELEMENT 
MASS MATRIX REFERRED TO UNDETERMINED 

COEFFICIENTS OF DISPLACEMENT POLYN()MrALS 

COMPUTE ELEMENT STIFFNESS MATRIX AND ELEMENT 
MASS MATRIX REFERRED TO DISPLACEMENTS 

AND ROTATIONS AT ENDS OF- ELEMENT-

NO 

SUPERIMPOSE ELEMENT MATRICES TO OBTAIN STIFFNESS 
AND MASS MATRI CES FOR AN UNCONSTRAINED SHELL 

DELETE APPROPRIATE ROWS AND COLUMNS FROM STIFFNESS 
AND MASS MATRICES-TO SATISFY EDGE CONSTRAINTS 

SOLVE EIGENVALUE PROBLEM FOR 
FREQUENCI ES AND MODAL COLUMNS 

RECOVER COEFFICIENTS OF DI SPLACEMENT POLYNOMIALS · 

OUTPUT FREQUENCIES AND MODE SHAPES 

NO 

Block diagram 1. 
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A more detailed block diagram (see block diagram 2) is shown. 

"~ INPUT 

(Z) 

I COMPUTE sk' k=1.2," ,K J 
(3) 'I PR INT INPUT, sk' AND EDGE CONSTRA INTI 

(4) 

CYCLE ON C IRCUMFERENT IAL WAVE NUMBER (n) I 
(S) t 

'[ COMPUTE SIZE OF ST I FFNESS AND MASS MA TR ICES I 
"'!sET ST IFFNESS AND MASS MA TR I CES TO ZERO I 

(7) t 
CYCLE ON ELEMENT NUMBER (k) I 

(I;) t 
I COMPUTE TRANSFORMATION MATRIX Tk J 

(9) CYCLE ON INTEGRATION STATION (q) I 

(10) . t 
1 COMPUTE COORDINATES OF INTEGRATION STATION (skq AND Xkq) J 

(1 
1 'fCOMPU , t COMPUTE MATRICES X(xkq)' Y(xkq)' R(skq)' AND P( Skq) I 

""[CaMPi ~ COMPUTE MA TR ICES SUMC kq AND SUMF kq 

.~ q COMPLETE 

? 
YES 

OJ} 

COMPUTE ELEMENT STIFFNESS MATRIX Sk AND ELEMENT IoIASS MA TRIX Mk 1 

(l4) 

I ADD MATRIX Sk IN PROPER POS IT I ON IN STIFFNESS MATRIX S I 
" ' I ADD MA TR I X Mk I N PROPER POS IT I ON IN MASS MATRIX M 1 

N~ 
~' 

YES 
(16) I DELETE APPRDPR lATE ROWS AND COLUMNS FROM ST I FFNESS I 

AND MASS MATRICES TO SATISFY EDGE CONSTRAINT 

(17)1 COMPUTE FREQUENC IES AND MODAL COLUMNSJ 

(lK) 

IOUTPUT FREQUENC IES AND MODAL COLUM~S 

.~ WANTED 
? 
, YES 

O~) 

CYCLE ON MODE NUMBER (i)1 

flO) 
CYCLE ON ELEMENT NUMBER (k) J 

(l1) t 
I COMPUTE COEFF I C I ENTS OF DISPLACEMENT POLYNOMIALS J 

(.!.;.) 

I COMPUTE u, v, AND w AT lINT LOCATIONSJ 

"'<$> k COMPLETE 

? 
YES 

(lJ) 
' [OUTPUT MODE SHAPE] 

.~ I COMPLETE 

? 
YES 

NO CYCLE ON 
n COMPLETE Block diagram 2, 

? 
YES 
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A detailed discussion of the computing in each block of block diagram 2 is as 

follows: 

BLOCK 1: 

The following input quantities are required: 

K number of elements used to represent shell 

length of kth element, where k = 1, 2, ... , K 

meridional distance from origin of s to reference edge of shell 

The following input functions are required: 

r 

'R ' r, 1 

reciprocals of principal radii of curvature 

shell radius measured in a plane normal to the shell axiS 

meridional rates of change of rand R1 

Cll,C12,C22,C66 

D11,D12,D22,D66 

Kll,K12,K22,K66 

stiffnesses 

[P~ mass per unit area 

The following control numbers are required: 

NBEG 

NLAST 

Q 

IPRINT 

NMODE 

initial value of n 

final value of n 

number of integration intervals to be used within each. element 

if IPRINT = 0, intermediate matrices are not printed 

if IPRINT '* 0, intermediate matrices are printed 

number of mode shapes to be computed 

21 



I 
I 
I ' 
I 

I 

lINT number of locations along each element at which mode shape is to be evaluated 

ICASE edge constraint code (see table III) 

BLOCK 2: 

k-1 

sk = So + i Ek + L Ei 
i=1 

BLOCK 4: 

n = NBEG, NBEG + 1, ... , NLAST 

BLOCK 5: 

KN == 6(K + 1) 

BLOCK 7: 

k = 1, 2, ... , K 

BLOCK 8: 

(k = 2, ... , K) 

The elements of [Tk} a 12 x 12 matrix, are given in table II. 

BLOCK 9: 

q = 1, 2, ... , Q + 1 

BLOCK 10: 

Each element is divided into Q equal intervals for the numerical integration. 

There are then Q + 1 integration stations. The values of x and s at the qth integra

tion station of the kth element are , respectively, defined as 

(q = 1, 2, ... , Q + 1) 

and 

(
q - 1 1) 

Skq = sk + E k cr- -2" (q = 1, 2, . .. , Q + 1) 

BLOCK 11: 

The elements of [X], [y J, [ P J, and [ RJ are given in equations (9), (26), (28), 

and (AI) to (A28) , respectively. The matrices [X(xkq~ and r(Xkq~ are found by 
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substituting xkq in equations (9) and (26), respectively. The matrices [P(Skq~ and 

r(Skq~ are found by substituting Skq into equations (28) and (A1) to (A28), respectively. 

BLOCK 12: 

[Ck~ = 7T[X(Xkq~T[R(SkqD [X(Xkq~ 

[SUMCk~ = ~[Ck~ 

[Fk~ = 7T~(Xkq~T~(Skq~ [Y(Xkq~ 

[SUMFk~ = ~~k~ 

[SUMFkq] = ~UMFk,q_~ + ~k~ 

BLOCK 13: 

[CKJ = ~UMCk,Q+~ 

~k] = ~UMFk,Q+~ 

[SkJ = [Tk]T[C~[TkJ 

[Mk] = [T~T~~[T~ 
BLOCKS 14 and 15: 

(q = 2, 3, ... ,Q) 

(q = 2, 3, .. . , Q) 

The manner in which the matrices (either stiffness or mass) are placed in the over

all matrix is illustrated in figure 3. 
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BLOCK 16: 

Commonly encountered edge constraints along with the appropriate rows and 

columns to be deleted from Sand M are given in table III. 

BLOCK 17: 

Compute by the threshold Jacobi method (ref. 14, p. 397) a modal matrix U and a 

set of eigenvalues AV ... , AN for the matrix M. Then 

o 

(39) 

o 

and 

where 

N order of matrix M 

I identity matrix of order N 

Since M is positive definite, all diagonal elements of D are positive. 

Compute: 

Dl/2 = (40) 

-1/2 D = (41) 

(42) 
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Compute Z, a modal matrix of B, by the threshold Jacobi method. Then 

w 2 
1 0 

w2
2 

ZTBZ = (43) 

0 w 2 
N 

The values of w2 are the squares of the circular frequencies. 

Compute: 

(44) 

The columns of {j are the modal columns. After the computation of the modal columns, 

insert zeros in the locations which correspond to rows and columns deleted from S 

and M. 

BLOCK 18: 

The output consists of the following: 

2 (1) Lists of circular frequency squared w , circular frequency w, and 

frequency f. 

(2) For each mode, an array of displacements and rotations as follows: 

u' 
1 

v' 
1 

v' 2 

Note that zeros again appear in the locations corresponding to deleted rows and columns 

in Sand M. 

BLOCK 19: 

i = 1, 2, ... , NMODE 

BLOCK 20: 

k = 1, 2, ... , K 

--- - -----
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L 

BLOCK 21: 

aO k , wk 
a 1 k , uk 

a 2 k , vk 
a 3 k , 13k 
bO k u' , k 
b 1 k 

[TkJ 

v' k , = 
b 2 k wk+l , 
b 3 k , uk+1 
Co k , vk+l 
c 1 k , 13k+1 
c2 k , uk+1 
c 3 k , vk+l 

where the elements of Tk are given in table II. 

BLOCK 22: 

For the purpose of computing the detailed mode shapes, each element is divided 

into lINT intervals. The number of locations at which the mode shape is to be evaluated 

is lINT + 1. The value of s at the ith location of the kth interval is defined as ski and 

is given by 

6 - 1 1) 
ski = sk + Ek\IINT - "2 (i = 1, . . ., lINT + 1; k = 1, . . ., K) 

The mode shape over the portion of the shell represented by the kth element is then com

puted from: 

The entire mode shape is then constructed by placing the portions end to end. 

BLOCK 23: 

The mode shape consists of arrays of u, v, and w. 
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APPLICA TIONS AND DISCUSSION 

Description of Shells Analyzed 

In order to ascertain the generality and efficacy of the present method for computing 

natural frequencies, a number of applications were made. The following configurations, 

shown in figure 4, were treated: 

(1) An isotropic cylinder with freely supported edges investigated by Arnold and 

Warburton (ref. 15) using an exact solution. 

(2) An orthotropic cylinder with freely supported edges investigated by Hoppmann 

(ref. 16) using an exact solution. 

(3) An isotropic 1200 conical frustum with both free-free and clamped-free edges, 

investigated by Naumann (ref. 1) using a Rayleigh-Ritz analysis. 

(4) An isotropic shell having positive Gaussian curvature with freely supported edges 

investigated by Cooper (ref. 4) using a finite difference solution. 

(5) An isotropic shell having negative Gaussian curvature with freely supported edges 

also investigated by Cooper (ref. 4). 

(6) An isotropic annular plate with free edges, investigated by Raju (ref. 17) using 

an exact solution. 

Correlation With Previous Investigations 

Frequencies and mode shapes were computed for these shells, and the frequencies 

were compared with those from existing solutions. Ten elements were used to represent 

each shell. On~ hundred integration intervals within each element were used. In the cor

relations to follow, the quantities to be compared are called frequency parameters. For 

the cylinders, conical frustums, and annular plate, the parameter is the square of the 

circular frequency. For the shells of positive and negative Gaussian curvature, the param

eter is a dimensionless frequency defined in the appropriate tables and figures. 

Frequencies based on the methods of previous investigators were obtained as follows: 

(1) For the cylinders and the annular plate, the methods of the previous investigators 

(refs. 15, 16, and 17) were automated for computation on a digital ' computer. Some of the 

physical data of the orthotropic cylinder were obtained from reference 18. 

(2) For the conical frustums, the computer program of Naumann (ref. 1) was used. 

(3) For the shells of positive and negative Gaussian curvature, frequencies were 

provided by Paul A. Cooper who obtained them by use of a computer program based on the 

procedure described in reference 4. 
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Presentation of Results 

Calculations were performed with the present method for each shell using a range 

on the circumferential wave number n of 0 through 10 because the minimum frequencies 

for the shells were in this range. Since all calculations by the present method were based 

on representations by 10 elements, approximately 60 modes per value of n were gener

ated. Because presentation of all these modes appeared impractical, a decision had to be 

made as to which modes to present for each shell. A main consideration in selection of 

a mode for presentation was whether a calculation of the frequency parameter was avail

able from one of the methods of the previous investigators for comparison. 

Minimum frequencies.- The minimum frequency parameter for each value of n 

was available for every shell. Correlations for minimum frequency parameters are pre

sented in table IV. The information in this table is shown graphically in figures 5 to 1l. 

The frequency parameters in these figures should be viewed both as results of the present 

analysis and as results of the previous investigators since the differences are too small 

to be seen on the plots. Some experimental results from references 16 and 1 are shown 

in figures 6 and 7, respectively. 

Higher modes of cylinders.- The selection of which higher frequency parameters to 

present was made for each shell on an individual basis. For the cylinders , the solutions 

of Arnold and Warburton and of Hoppmann give exact frequency parameters for all modes. 

In order to describe which of these modes were selected for correlation, it is necessary 

to discuss briefly the nature of the exact mode shapes for the freely supported cylinders. 

The exact mode shapes have the form: 

m7Ts u = Amn cos L-" cos ne 

B . m7TS. e v = mn sm L-" sm n 

C . m7TS w = mn sm L-" cos ne 

where m takes on integer values and Amn, Bmn, and Cmn are constants which char

acterize a mode. 

Thus, m is equal to the number of nodal circles in u or one plus the number of 

nodal circles in v or w. For a given pair of values for m and n, three modes are 

possible. Each mode corresponds to a different ratio of Amn: Bmn : Cmn. For each 

value of n, modes were arbitrarily selected for values of m from 1 to 5. The cor

responding frequency parameters computed by the present analysis were identified by 

inspecting the computed mode shapes and counting nodal circles. Correlations for the 

higher frequency parameters of the cylinders are presented in tables V and VI for the 
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values of nand m considered. For the purpose of illustration, the variations with m 

of the three frequency parameters associated with each value of m are shown in fig

ures 12 and 13 for n = 2. 

Higher modes of conical frustums.- For the conical frustums, a large number of 

frequency parameters were available from Naumann's Rayleigh-Ritz procedure for com

parison with results of the present analysis. A correlation was made for n = 2. Modes 

were selected for presentation as follows: First, all modes having from one to five nodal 

circles in the w-displacement were examined. For the freely supported cylinders, there 

were exactly three modes having a given number of circumferential waves and a given 

number of circular node lines in the w-displacement. For the conical frustums , there 
are usually not exactly three. For purposes of presenting frequencies in the present 

analysis, an arbitrary selection of modes was made. If there are three or less modes 

corresponding to a given number of nodal circles in w, all are presented. If there are 

more than three , only three are presented. To avoid any misunderstanding, the following 

table tells which modes of the conical frustums having five or less nodal circles in w 

are not presented: 

Nodal circles Nodal circles Nodal circles 
in w in u in v 

Free-free 1 0 0 

Clamped - free 0 1 0 

3 0 1 

4 2 5 

3 4 7 

4 6 8 

The correlations for the higher frequency parameters of the conical frustums for n = 2 

are shown in tables VII and VIII. This information is also shown graphically in figures 14 

and 15. As in figures 5 to 11, the results in figures 14 and 15 can be interpreted as either 

the results of the present analysis or the other investigation since the results are coinci

dent for plotting purposes. As a matter of interest, the mode shapes from the present 

analysis corresponding to the frequency parameters in figures 14 and 15 are shown in fig

ures 16 and 17. 

Higher modes of shells having positive and negative Gaussian curvature.- For the 

shells of positive and negative Gaussian curvature, no higher frequency parameters were 

available from Cooper's method for correlation. As a matter of interest, some higher 

frequency parameters computed by the present analysis for these shells are presented for 

n = 2 in tables IX and X. Specifically, frequency parameters for modes having four or 

less circular node lines in ware presented. As was the case with the cylinders, there 
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are exactly three frequencies corresponding to each number of circular node lines in w. 

The variation of the three frequency parameters with the number of circular node lines 

in w is shown in figures 18 and 19. The mode shapes corresponding to the frequency 

parameters in figures 18 and 19 are shown in figures 20 and 21. 

Discussion of the Applications 

The correlations in tables IV to VIII can be summarized as follows: All frequency 
parameters presented for the two cylinders, the shells of positive and negative Gaussian 

curvature, and the annular plate showed agreement with the results of the previous inves

tigators through at least the second significant figure. For the cylinders, the agreement 

was in most cases through six significant figures. For the free-free conical frustum, 
most frequency parameters predicted by the present analysis agreed with the frequency 

parameters from the method of reference 1 through at least the second significant figure. 

The exceptions were the ninth, eleventh, and twelfth values of w2 listed in table VII in 

which the frequency parameters from the present analysis were lower in the second sig

nificant figure. It is noted in reference 19 that under certain conditions (that are met by 
the present analysis) the finite-element method is equivalent to the Rayleigh-Ritz method 

in that both methods give upper bounds to the exact frequencies. Therefore, it follows 

that the frequency parameters predicted by the present analysis are better approxima

tions to the corresponding exact frequency parameters than are the frequency parameters 

from the method of reference 1. It is believed that the first Significant figure in the three 

frequency parameters is probably correct and that the lack of agreement for these fre

quency parameters does not indicate any significant inaccuracy in the results of the pres

ent analysis. For the clamped-free conical frustum, most frequency parameters pre

dicted by the present analysis again agreed with the frequency parameters from the 

method of reference 1 through at least the second significant figure. The exceptions in 

this instance are the minimum frequency parameters in table IV for n = 1, 2, and 3 and 
the eighth and ninth values of the frequency parameters w2 listed in table VIII. For the 

eighth and ninth values of w 2 listed in table VITI, the present analysis predicted fre
quency parameters which were lower than the corresponding values from the method of 

reference 1. As with the free-free conical frustum, these differences occurred in the 

second significant figure. It is again concluded that the present results are closer to the 
exact frequency parameters. In the case of the noted disagreement in table IV, the fre
quency parameters from the present analysis are higher (in the first significant figure 

for n = 2) than the corresponding result from the method of reference 1. By reasoning 

similar to that used in the preceding diSCUSSion, it is concluded that the present analysis 

is somewhat inaccurate for the minimum frequency parameters of the clamped-free coni

cal frustum for n = 1, 2, and 3. 
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No dependence of accuracy on the circumferential wave number was noted. Further

more, only slight degradation of accuracy was noted as modes with increasing numbers of 

circular node lines in w were considered. In the latter instance, significant degrada

tion might have been expected. The only notable degradation of accuracy was with regard 

to edge constraint. The frequency parameters of the conical frustum with a clamped edge 

(tables IV and VIII) showed worse correlation with the results of the previous investiga

tions than did the frequency parameters of shells with free or freely supported edges . 

. For the rea.sons stated in the introduction, no correlations are presented for mode 

shapes. However, a cursory correlation between the mode shapes from the present anal

ysis and such mode shapes as were available from the methods of the previous investiga

tors was made. The computed mode shapes for the cylinders appeared to coincide with 

the exact mode shapes which are sine and cosine curves. The computed mode shapes 

corresponding to some of the minimum frequencies of the free-free conical frustum 

appeared to agree with those mode shapes published in reference 1. The authors also 

made some correlations of mode shapes for a few of the higher modes of the conical 

frustums obtained by the method of reference 1. For these mode shapes the present anal

ysis and the method of reference 1 appeared to agree very well. 

Computational Efficiency and Reliability 

As was stated in the introduction, two major objectives of the computer program 

were: (1) machine efficiency, that is, the ability to compute quickly a large number of 

frequencies and mode shapes; (2) reliability, that is, capability of predicting every mode 

in the range of the frequency spectrum of interest. Machine efficiency was achieved. 

Typically, over 600 frequencies and modal columns are computed in less than 15 minutes 

on the Control Data 6600 computer system. Reliability was not proven but is indicated by 

the correlations obtained by the exact theory for the cylinders. The eigenvalue problems 

generated were well conditioned, since only Single-precision arithmetic was required for 

accurate solution. 

Limitations 

Experience with this computer program and with the correlations are believed to 

indicate that the major limitation of the program in its present farm lies in the approxi

mation of the normal displacement w by a third-order curve over each element. (See 

eq. (7).) From the assumption that w is a third-order curve in each element, it follows 

that: 

(1) Certain moment resultants are discontinuous across junctures between elements. 
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(2) The moment distributions may be seriously in error if the moment distribution 

in a region represented by a single element has a variation of higher order than linear. 

Some results of modal stress calculations for modes with large moment gradients 

are suspected to be in error. Furthermore, the errors previously noted in some mini

mum frequencies of the clamped-free conical frustum are believed to stem from the third

order approximation since a steep moment gradient is known to occur near a clamped 

edge. A possible remedy is to increase by two the order of polynomial representation of 

wand to require continuity of curvature across element junctures. 

Another limitation which is emphasized is the restriction of the present analysis to 

shells for which the shell surface does not intersect the axis of the shell. Thus, this 

analysis is not applicable to configurations such as a hemisphere. 

Finally, the reader is reminded that the analysis is restricted to shells with con

tinuous stiffness distributions as noted from the conditions imposed by equation (33). 

This restriction is easily removed by replacing the last two equalities of equation (33) by 

appropriate conditions on the continuity of stress and moment resultants across element 

junctures. 

CONCLUDING REMARKS 

An analytical procedure based on the finite-element method is developed for com

puting natural frequencies and mode shapes of thin shells of revolution. The shells may 

have general meridional curvature and orthotropic elastic properties. The details of a 

computer program based on this procedure are described. 

A distinguishing feature of the procedure is that it employs an element which is 

geometrically exact in that the actual geometry of the shell being analyzed is input to the 

analysis in the form of functions. The displacements of the shell within an element are 

approximated by third-order polynomials which are defined over the element. Inter 

element compatibility is expressed by equating displacements and rotations at all junc

tures between elements. The required integrations for computing the element stiffness 

and mass matrices are performed numerically by using the trapezoidal rule . The stiff 

ness and mass matrices for the complete shell are formed by superposition. Edge con

straints are incorporated by deleting rows and columns from the complete shell stiffness 

and mass matrices. The resulting symmetric eigenvalue problem is solved by a standard 

method. 
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The computer program has been applied to several shells: 

(1) An isotropic cylinder with freely supported edges 

(2) An orthotropic cylinder with freely supported edges 
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(3) A 1200 conical frustum with free-free edges 

(4) A 1200 conical frustum with clamped-free edges 

(5) A shell having positive Gaussian curvature with freely supported edges 

(6) A shell having negative Gaussian curvature with freely supported edges 

(7) An annular plate with free-free edges 

The main results and conclusions are as follows: 

1. Very generally, excellent agreement was noted between frequencies from the 

present analysis and frequencies from the previous investigations. 

2. The only inaccuracies of the present analysis which might be considered signifi

cant occurred in three minimum frequencies of the clamped-free conical frustum. This 
inaccuracy is believed to stem from the inability of third-order polynomials to conform 

to a steep stress gradient near a clamped edge, and consequently increasing the repre

sentation of the normal-displacement component to a fifth-order polynomial would be 

expected to result in overall excellent agreement. 

3. The computer program performs with very short running times and no modes are 

overlooked in computation. 

4. The natural frequencies and mode shapes from this method appear to constitute 

reliable input for forced response calculations for structures involving shells of 

revolution. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., September 3, 1968, 

124-08-05-08-23. 
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APPENDIX 

ELEMENTS OF MATRIX [RJ 
[See eq. (l6D 

The elements of matrix [RJ are as follows: 

Cll r Cl2r C22r D22n4 D66n2 (r·)2 2Kl2n2 2K22n2 
Rll = -- + 2 -- + -- + + + + ---

Rl2 Rl R2 R22 r3 r3 rRl rR2 

D66n2r ' Kl2 r' K22 r' 
---- --

r2 Rl R2 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 



1--

APPENDIX 

(A10) 

(All) 

D66 r'n K22nr' 

rR2 r 
(A12) 

(A13) 

(A14) 

(A15) 

(A16) 

(A17) 

R37 = R73 = 0 (A18) 

_ C22 (r,)2 C66n2 Dll(Rl)2r _ 2D12Rl r' D22 (r,)2 D66n2 
R44 - r + r + 3 + + 2 

R14 Rl rR12 rRl 

2K12r'R~ 2K22 (r,)2 2K66n2 
----=-- + + ---

R12 rRl rRl 
(A19) 

(A20) 
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(A21) 

(A22) 

(A23) 

(A24) 

(A25) 

(A26) 

(A27) 

(A28) 
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TABLE 1.- ELEMENTS OF MATRIX [A~ 

-€k € 2 - €k 3 
1 k 0 0 0 0 0 0 0 0 

2 4 8 

-€k € 2 _€ 3 

0 0 0 0 1 k k 0 0 0 0 -2- 4 8 

-€k € 2 -€k3 

0 0 0 0 0 0 0 0 1 k 
2 4 8 

3€ 2 
-1 €k _€ 2 € 3 

0 1 -€k 
k k k 0 0 0 0 

4 R1,k 2R1 k 4R1 k 8R1,k , , 

3€ 2 
0 0 0 0 0 1 k 0 0 0 0 -€k 4 

3€k2 

0 0 0 0 0 0 0 0 0 1 -€k 
4 

€k € 2 € 3 
1 k k 0 0 0 0 0 0 0 0 

2 4 8 

€k 
2 €k3 

0 0 0 0 1 
€k 

0 0 0 0 
2 4 8 

€k € 2 E 3 

0 0 0 0 0 0 0 0 1 k k 
"2 4 8 

3€ 2 
_-_1_ - €k _€ 2 _€ 3 

0 1 
k k k 0 0 0 0 €k 4 R1,k+1 2R1,k+1 4R1,k+1 8R1,k+1 

3€ 2 

0 0 0 0 0 1 €k 
k 0 0 0 0 -4-

3€ 2 
0 0 0 0 0 0 0 0 0 1 k 

€k -4-
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TABLE II.- ELEMENTS OF MATRIX [T~ 

1 Ek 
0 

Ek 
0 0 1 -E k 0 

- Ek 0 0 2" 8R1,k "8 2 8R1,k+1 8 

-3 -1 
0 -1 0 0 3 -1 0 -1 0 0 

2Ek 4R1,k "4 2Ek 4R1,k+1 4 

0 -1 0 -1 0 0 0 1 0 1 0 0 
2EkR1,k 2Ek 2EkR1 k+1 2Ek , 

2 1 0 1 0 0 -2 1 0 1 0 0 
E 3 Ek2R1 k E 2 E 3 Ek

2R
1 k+1 E 2 

k , k k , k 

0 1 0 0 
Ek 

0 0 1 0 0 
- Ek 0 -

2 8 2 8 

0 -3 
0 0 

-1 
0 0 3 0 0 -1 0 

2Ek 4 2Ek 4 

0 0 0 0 -1 0 0 0 0 0 1 0 
2Ek 2Ek 

0 2 0 0 1 0 0 -2 
0 0 1 0 

E 3 E 2 ;--3 ~ k k k k 

0 0 1 0 0 
Ek 

0 0 1 0 0 
- Ek 

2 8 2" 8 

0 0 -3 
0 0 -1 

0 0 3 0 0 -1 
2Ek 4 2Ek 4 

0 0 0 0 0 -1 
0 0 0 0 0 1 

2Ek 2Ek 

0 0 2 0 0 1 
0 0 

-2 
0 0 1 

€ 3 ~ € 3 E 2 
k k k k 

l 
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TABLE III.- EDGE CONSTRAlliTS 

lCASE Description Equations for edge constraint Rows and columns deleted 

1 Free-free None None 

2 Free-freely supported veL) = weLl = 0 (6K + 1), (6K + 3) 

3 Freely supported-free viOl = w(O) = 0 1, 3 

4 Free-simply supported u(L) = veL) = weLl = 0 (6K + 1), (6K + 2), (6K + 3) 

5 Simply supported-free u{O) = viOl = w{O) = 0 1, 2, 3 

6 Free-clamped u(L) = veL) = weLl = {3(L) = 0 (6K + 1), (6K + 2) , (6K + 3), (6K + 4) 

7 Clamped-free u(O) = viOl = w(O) = {3(0) = 0 1, 2, 3, 4 

8 Freely supported- v(O) = w(O) = 0 1, 3, (6K + 1), (6K + 3) 

freely supported veL) = weLl = 0 

9 Simply supported- u{O) = viOl = w{O) = 0 1, 2, 3, (6K + 1) , (6K + 2), (6K + 3) 

simply supported u(L) = veL) = weLl = 0 

10 Clarnped- clamped u(O) = viOl = w{O) = {3(0) = 0 1, 2, 3, 4, (6K + 1), (6K + 2), (6K + 3), (6K + 4) 

u{L) = veL) = weLl = {3{L) = 0 

11 Freely supported- viOl = w{O) = 0 1, 3, (6K + 1), (6K + 2), (6K + 3) 

simply supported u{L) = veL) = weLl = 0 

12 Freely supported- viOl = w{O) = 0 1, 3, (6K + 1), (6K + 2) , (6K + 3), (6K + 4) 

clamped u(L) = veL) = weLl = {3(L) = 0 

13 Simply supported- u{O) = v(O) = w(O) = 0 1, 2, 3, (6K + 1), (6K + 3) 

freely supported veL) = weLl = 0 

14 Simply supported- u{O) = viOl = w(O) = 0 1, 2, 3, (6K + 1), (6K + 2), (6K + 3), (6K + 4) 

clamped u(L) = veL) = weLl = {3(L) = 0 

15 Clarnped- u{O) = v(O) = w{O) ·= {3(0) = 0 1, 2, 3, 4, (6K + 1), (6K + 3) 

freely supported veL) = weLl = 0 

16 Clarnped- u{O) = v(O) = w{O) = {3(0) = 0 1, 2, 3, 4, (6K + 1) , (6K + 2), (6K + 3) 

simply supported u{L) = veL) = weLl = 0 
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TABLE IV.- COMPARISON OF MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY 

PRESENT METHODS WITH THOSE OF PREVIOUS INVESTIGATIONS 

w2 sec- 2 , 
Circumferential Freely supported- freely supported cylinder 
wave number, 

n Isotropic Orthotropic 

Present analysis Reference 15 Present analysis Reference 16 

0 3.86111 X 108 3.86111 X 108 8.01167 X 108 8.01167 X 108 

1 1.17339 X 108 1.17339 x 108 1.09559 X 108 1.09559 x 108 

2 2.25430 X 107 2.25430 x 107 2.15504 X 107 2.15504 X 107 

3 5.95827 X 107 5.95827 X 107 5.53142 X 107 5.53142 X 107 

4 2.17401 X 106 2.17401 X 106 1.85439 X 108 1.85439 X 108 

5 1.11765 X 106 1.11765 x 106 4.74829 X 108 4.74829 x 108 

6 9.09145 x 10 5 9 .09145 x 105 1.01231 x 109 1.01231 x 109 

7 1.11505 x 106 1.11505 x 106 1. 907 56 x 109 1.90756 x 109 

8 1.64300 x 106 1.64300 x 106 3.29043 x 109 3.29043 x 109 

9 2.50514 x 106 2.50514 x 106 5.31084 x 109 5.31084 x 109 

10 3.75508 X 106 3.75508 X 106 8.13868 X 109 8.13868 X 109 

w 2, sec- 2 

Circumferential 1200 conical frustum 
wave number, 

n Free-free Clamped-free 

Present analysis Reference 1 Present analysis Reference 1 

0 0 0 2 .5380 X 104 2.5378 X 104 

1 0 0 3.7049 X 10 5 3.6125 x 105 

2 2.8727 x 102 2.8725 x 102 7.2558 x 104 6.9075 x 104 

3 1.9154 x 103 1.9149 x 103 2.2666 x 104 2.1638 x 104 

4 6 .3759 x 103 6.3728 x 103 1.3694 x 104 1.3434 x 104 

5 1.5047 x 104 1.5038 x 104 1. 7636 x 104 1. 7611 x 104 

6 2.7824 x 104 2.7815 x 104 2.8529 x 104 2.8520 x 104 

7 4.4394 x 104 4.4387 x 104 4.4524 x 104 4.4507 x 104 

8 6.6322 x 104 6 .6310 x 104 6.6338 x 104 6 .6324 x 104 

9 9.5417 x 104 9.5394 x 104 9 .54 18 x 104 9.539 x 104 

10 1.3333 x 105 1.3329 x 105 1.3333 x 105 1.3329 x 105 
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TABLE IV.- COMPARISON OF MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY 

PRESENT METHODS WITH THOSE OF PREVIOUS INVESTIGATIONS - Concluded 

Dimensionless frequency parameter, Q = wR~pIE)(l - !l2)J1/ 2 

Circumferential Shell of positive Shell of negative 
wave number, Gaussian curvature, Gaussian curvature, 

n freely supported edges freely supported edges 

Present analysis Reference 4 Present analysis Reference 4 

0 ---- ---- 0.640 0.640 

1 0.411 0.412 .368 .368 

2 .360 .362 .157 .157 

3 .340 .340 .0628 .0628 

4 .331 .331 .01970 .01972 

5 .327 .327 .00779 .00784 

6 .324 .324 .01923 .01924 

7 .323 .322 .02804 .02805 

8 .322 .321 .02580 .02609 

9 .321 .321 .0240 .0241 

10 .321 .32 1 .0292 .0292 

Circumferential 
w2, sec- 2 

wave number, Plates 
n 

Present analysis Reference 17 

0 86.74 86.74 

1 295.8 295.8 
2 18.24 18.24 

3 130.5 130.5 
4 443.8 443.8 

5 1087 1 087 

6 2 215 2 215 

7 4 003 4 003 

8 6 660 6 660 

9 10415 10415 

10 15 532 15 532 
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TABLE V.- CORRELATION OF FREQUENCY PARAMETER w2 OF FREELY SUPPORTED CYLINDER 

AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION OF REFERENCE 15 

w2, sec- 2 

Present analysis Reference 15 Present analysis Reference 15 Present analysis Reference 15 

n = 0 n = 1 n = 2 

{ 1.950193 x 10
9 1.950193 x 109 1.17339 x 108 1.17339 x 108 2.25430 x 107 2.25430 x 107 

9.00656 x 108 9.00656 x 108 1.41017 x 109 1.41017 x 109 3.1160 x 109 3.116 x 109 

3.86111 x 108 3.86111 x 108 4.09860 x 109 4 .09860 x 109 9.65443 x 109 9.65443 x 109 

{ 1. 53415 x 109 1.53415 x 109 5.83357 x 108 5.83356 x 108 1. 90073 x 108 1. 90073 x 108 

4.57961 x 109 4.47961 x 109 2.78500 x 109 2.78500 x 109 4.59200 x 109 4.59200 x 109 

1. 54445 x 109 1. 54445 x 109 6.67902 x 109 6.67902 x 109 1.24328 x 1010 1.24328 x 10 10 

{ 1.58626 x 109 1. 58626 x 109 1.02452 x 109 1.02451 x 109 4.75299 x 108 4.75290 x 108 

9.96586 x 109 9.96570 x 109 1.18772 x 10 10 1.18772 x 10 10 6.60278 x 109 6.60268 x 109 

3.47507 x 109 3.47500 x 109 4.51464 x 109 4 .51457 x 109 1.75057 x 10 10 1. 75056 x 1010 

{ 1.59995 x 109 
1. 59995 x 109 1.26785 x 109 1.26782 x 109 7.55161 x 108 7.55117 x 108 

1. 75668 x 108 1. 75655 x 108 1.94100 x 10 10 1.94088 x 1010 2.49175 x 1010 2.49164 x 10 10 

6.17832 x 109 6.17778 x 109 7.05640 x 109 7.95582 x 109 9.22905 x 109 9.22834 x 109 

{ 1.60572 x 109 1.60571 x 109 1.39208 x 109 1.39201 x 109 9 .73034 x 108 9.72909 x 108 

2.73552 x 1010 2.73485 x 1010 2.91681 x 1010 2.91617 x 10 10 3.46020 x 1010 3.45961 x 1010 

9.65539 x 109 9.65279 x 109 1.04453 x 10 10 1.04425 x 1010 1.25978 x 10 10 1.25946 x 1010 

n = 3 n=4 n=5 

{ 5.95827 x 106 5.95827 x 106 2.17401 x 106 2.17401 x 106 1.11765 x 106 1.11765 x 106 

6.15055 x 109 6.15055 x 109 1.04833 x 1010 1.04833 x 1010 1.60902 x 10 10 1.60902 x 1010 

1.85829 x 1010 1.85829 x 1010 3.09779 x 10 10 3.09779 x 1010 4.68747 x 10 10 4.68747 x 1010 

{ 6.66567 x 107 6.66563 x 107 2.70603 x 107 2.70601 x 107 1.27354 x 107 1.27352 x 107 

7.56577 x 109 7.56576 x 109 1.18310 x 10 10 1.18310 x 1010 1.73881 x 10 10 1. 73881 x 1010 

2.15282 x 1010 2.15282 x 1010 3.40266 x 10 10 3.40266 x 1010 4.99865 x 1010 4.99865 x 1010 

{ 2. 13124 x 108 2.13118 x 108 1.00599 x 108 1. 00 594 x 108 5.13733 x 107 5.13704 x 107 

9.67973 x 109 9.67963 x 109 1.39500 x 10 10 1.39499 x 10 10 1.94829 x 1010 1.94828 x 1010 

2.66 367 x 1010 2.66367 x 1010 3.92032 x 10 10 3.92031 x 1010 5.52220 x 1010 5.52219 x 1010 

{ 4.10749 x 108 4.10708 x 108 2.22493 x 108 2.22462 x 108 1. 24623 x 108 1.24601 x 108 

1.24380 x 1010 1.24372 x 1010 1.67738 x 1010 1.67733 x 1010 2.23239 x 1010 2.23230 x 10 10 

3.39988 x 1010 3.39978 x 1010 4.65653 x 1010 4.65745 x 1010 6.26256 x 1010 6.26249 x 10 10 

{ 6.12256 x 108 6.12119 x 108 3.72329 x 108 3.72208 x 108 2.27379 x 108 2.27282 x 108 

4.36214 x 1010 4.36131 x 1010 2.02963 x 10 10 2.02922 x 1010 7.22276 x 1010 7.22237 x 1010 

1. 58850 x 1010 1. 58813 x 1010 5.61740 x 1010 5.61693 x 1010 2.58897 x 1010 2.58853 x 10 10 
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TABLE V.- CORRELATION OF FREQUENCY PARAMETER w2 OF FREELY SUPPORTED CYLINDER 

AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION OF REFERENCE 15 - Concluded 

w2, sec- 2 

Present analysis Refe r ence 15 Present analysis Reference 15 Present analysis Reference 15 

n=6 n = 7 n=8 

{ 9.09145 x 105 9.09145 x 105 1.11505 x 106 1.11505 x 106 1.64300 x 106 1.64300 x 106 

2.29598 x 1010 2.29598 x 1010 3.10870 x 1010 3.10870 x 1010 4.04694 x 1010 4.04694 x 1010 

6.62863 x 1010 6.62863 x 10 10 8.92182 x 1010 8.92182 x 1010 1.15673 x 1011 1.15673 x 1011 

{ 6.96234 x 106 6.96226 x 106 4.56899 x 106 4 .56892 x 106 3.77396 x 106 3.77391 x 106 

2.42233 x 1010 2.42233 x 1010 3.23267 x 1010 3.23267 x 1010 4 .16922 x 1010 4.16922 x 1010 

6.94380 x 1010 6.94380 x 1010 9.23964 x 1010 9.23964 x 1010 1.18870 x 1011 1.18870 x 1011 

{ 2.85635 x 107 2.85615 x 107 1. 74106 x 107 1. 74092 x 107 1.18524 x lD7 1.18514 x lD7 

2.62905 x lO lD 2.62903 x 1010 3.43697 x 1010 3.43696 x 1010 4.37157 X 10 10 4.37156 X 10 10 

7.47182 x 1010 7.47182 x 1010 9.77096 x 1010 9.77096 x 1010 1.24207 x 1011 1.24207 x 1011 

{ 7.33039 x 107 7.32876 x 107 4.56222 x 107 4 . 56103 x 107 3.03024 x 107 3.02935x 107 

2.91264 x 1010 2.91254 x 1010 3.71926 x 1010 3.71916 x lO lD 4.65240 x 1010 4.65231 x 1010 

8.21554 x 10lD 8.21548 x 1010 1.05176 x 1011 1.05176 x 1011 1.31698 x 1011 1.31698 x 1011 

{ 1.42224 x 108 1.421 50 x 108 9.20757 x 107 9.20184 x 107 6.21633 x lD7 6.21190 x 107 

3.27094 x 1010 3.27049 x 1010 4.07780 x 1010 4.07733 x 10 10 5.01043 x 1010 5.00996 x 10 10 

9.17738 x 1010 9.17704 x 10 10 1.14813 x 1011 1.14812 x 1011 1.41378 x 1011 1.41353 x 1011 

n = 9 n = 10 

{ 2.50514 x 106 2.50514 x 106 3.75508 x 106 3.75508 x 106 

5.11057 x 1010 5. 11057 x 1010 6.29952 x 10 10 6.29952 x 10 10 

1.45653 x 1011 1.45653 x 1011 1. 79157 x 1011 1.79157 x 1011 

{ 3.91728 x 106 3.91725 x 106 4.75813 x 106 4.75810 x 106 

5.23161 x 1010 5.23162 x 1010 6.41965 x 10 10 6.41965 x 1010 

1.48862 x 1011 1.48862 x 1011 1.82376 x 1011 1.82376 x 1011 

{ 9.27100 x 10
6 9.27021 x 106 8.48546 x 106 8.48484 x 106 

5.43242 x 1010 5.43241 x 1010 6.61922 x 1010 6.6 1921 x 1010 

1.54218 x 1011 1.54218 x 1011 1.87746 x 1011 1.87746 x 1011 

{ 2.17922 x 10
7 2.17854 x 107 1. 72993 x 107 1. 72939 x 107 

5.71189 X 10 10 5.71180 X 1010 6.89750 x 10 10 6.89741 x 10 10 

1.61727 x 1011 1.61727 x 1011 1.95275 x 1011 1.95272 x 1011 

{ 4.41539 x 10
7 4.41191 x 107 3.34003 x 107 3.33725 x 107 

6.06912 x 1010 6.06864 x 1010 7.25384 x 1010 7.25336 x 1010 

1. 71401 x 1011 1. 71401 x 1011 2.04966 x 1011 2.04960 x 1011 
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TABLE VI.- COMPARISON OF FREQUENCY PARAMETER w2 OF AN ORTHOTROPIC CYLINDER 

WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS 

AND EXACT METHOD OF REFERENCE 16 

w2, s ec- 2 

Present a nalysis Reference 16 Present analysis Refe r ence 16 Pres ent analysis 

n = 0 n = 1 n = 2 

{ 8.37907 x 109 8.37907 x 109 1.09559 x 108 1.09559 x 108 2. 15504 x 107 

2.00989 x 109 2.00989 x 109 6.98986 x 109 6.98986 x 109 2.18774 x 10 10 

8.01167 x 108 8.01167 x 108 1. 76461 x 1010 1.76461 x 10 10 4.35227 x 10 10 

{ 6.73909 x 109 6.73909 x 109 9.33628 x 108 9.33624 x 108 1.96173 x 108 

1.00045 x 1010 1.00045 x 1010 1.05341 x 10 10 1.05341 x 1010 2.39218 x 10 10 

3.20467 x 109 3.20467 x 109 2.20377 x 1010 2.20377 x 1010 5.00686 x 10 10 

{ 7.77840 x 109 7.77835 x 109 2.47618 x 109 2.47610 x 109 7.07832 x 108 

1.95747 x 1010 1.95744 x 1010 3.14843 x 10 10 3.14841 x 1010 2.70286 x 10 10 

7.21064 x 109 7.21050 x 109 1.41632 x 10 10 1.41630 x 1010 6 .10771 x 10 10 

{ 7.97769 x 109 7.97727 x 109 4.14783 x 109 4.14727 x 109 1. 56673 x 109 

3.42687 x 1010 3.42661 x 1010 4.59040 x 1010 4.59018 x 10 10 7.64494 x 1010 

1.28198 x 10 10 1.28198 x 1010 1.85782 x 10 10 1.85770 x 1010 3.13158 x 10 10 

{ 8. 18535 x 109 8.18303 x 109 5.52799 x 109 5.52532 x 109 2.66133 x 109 

5.32836 x 1010 5.32704 x 10 10 6.48262 x 1010 6.48142 x 1010 9.60704 x 1010 

2.00346 x 1010 2.00292 x 1010 2.47182 x 1010 2.47122 x 1010 3.70574 x 10 10 

n = 3 n=4 n = 5 

{ 5.53142 x 10
7 5.53142 x 107 1.85439 x 108 1.85439 x 108 4.74829 x 108 

4.77293 x 1010 4.77293 x 1010 8.43972 x 10 10 8.43972 x 10 10 1.31754 x 1011 

8.54639 x 1010 B.54639 x 1010 1.43693 x 1011 1.43693 x 1011 2.18346 x 1011 

{ 1.16635 x 108 1.16633 x 108 2.30036 x 108 2.30034 x 108 5.25903 x 108 

4.85733 x 1010 4 .85733 x 1010 8.44403 x 1010 8.44403 x 1010 1. 31272 x 1011 

9.33321 x 1010 9.33321 x 1010 1. 52391 x 1011 1.52391 x 1011 2.27577 x 1011 

{ 3.18483 x 108 3.18432 x 108 3.55839 x 108 3.55792 x 108 6.44414 x 108 

5.04809 x 1010 5.04807 x 1010 8.52479 x 1010 8.52477 x 1010 1.31219 x 1011 
1.05863 x 1011 1.05864 x 1011 1.66119 x 1011 1.66119 x 1011 2.42199 x 1011 

{ 7.36447 x 108 7.35971 x 108 6.21337 x 108 6.20889 x 108 8.74824 x 108 

5.37677 x 1010 5.37662 x 1010 8.73284 x 10 10 8.73268 x 1010 1.32196 x 1011 
1.22697 x 1011 1.22696 x 1011 1.84339 x 1011 1.84338 x 1011 2.61593 x 1011 

{ 1.40603 x 109 1.40340 x 109 1.08415 x 109 1.08160 x 109 1. 27123 x 109 

1.43650 x 1011 1.43641 x 1011 9.09817 x 1010 9.09739 x 1010 1.34611 x 1011 

5.86279 x 1010 5.86202 x 1010 2.06739 x 1011 2.06733 x 1011 2.85407 x 1011 

L _ ____ _ 

Reference 16 

2.15504 x 107 

2.18774 x 10 10 

4 .35227 x 10 10 

1.96170 x 108 

2.39218 x 10 10 

5.00686 x 10 10 

7.07771 x 108 

2.70284 x 10 10 

6.10769 x 10 10 

1. 56621 x 109 

7.64474 x 1010 

3.13143 x 10 10 

2.65858 x 109 

9.60598 x 10 10 

3.70507 x 10 10 

4.74829 x 108 

1.31754 x 1011 

2.18346 x 1011 

5.25901 x 108 

1.31272 x 1011 

2.27577 x 1011 

6.44369 x 108 

1.31219 x 1011 

2.42198 x 1011 

8.74385 x 108 

1.32194 x 1011 

2.61592 x 1011 

1.26872 x 109 

1. 34603 x 10 11 

2.85339 x 1011 
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TABLE VI.- COMPARISON OF FREQUENCY PARAMETER w2 OF AN ORTHOTROPIC CYLINDER 

WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS 

AND EXACT METHOD OF REFERENCE 16 - Concluded 

w 2, sec- 2 

Present analysis Reference 16 Present analysis Reference 16 Present analysis Reference 16 

n=6 n = 7 n=8 

{ 1.01231 x 10
9 1.01231 x 109 1.90756 x 109 1. 907 56 x 109 3.29043 x 109 3.29043 x 109 

1.89737 x 1011 1.89737 x 1011 2.58318 x 1011 2.58318 x 1011 3.37482 x 1011 3.37482 x 1011 
3.09484 x 1011 3.09484 x 1011 4.17137 x 1011 4.17137 x 1011 5.41321 x 1011 5.41321 x 1011 

{ 1.07881 x 109 1.07880 x 109 1. 99482 x 109 1.99481 x 109 3.40265 x 109 3.40265 x 109 

1.88906 x 1011 1.88906 x 1011 2.47246 x 1011 2.47246 x 1011 3.36238 x 1011 3.36238 x 1011 
3.19069 x 1011 3.19069 X 1011 4.26965 X 1011 4.26965 X 1011 5.51321 X 1011 5.51321 X 1011 

{ 1.21550 x 109 1.215546 x 109 2.16263 x 109 2.16258 x 109 3.61029 x 109 3.61024 x 109 

1.88205 x 1011 1.88205 x 1011 2.5606 1 x 1011 2.56061 x 1011 3.34688 x 1011 3.34688 x 1011 
3.34351 x 1011 3.34351 x 1011 4.42737 x 1011 4.42737 x 1011 5.67465 x 1011 5.67462 x 1011 

{ 1.45929 x 109 1.45885 x 109 2.44390 x 109 2.44346 x 109 3.94411 x 109 3.94365 x 109 

1.88257 x 1011 1.88256 x 1011 2.55363 x 1011 2.55362 x 1011 3.33389 x 1011 3.33387 x 1011 
3.54695 x 1011 3.54700 x 1011 4.63855 x 1011 4.63851 x 1011 5.89187 x 1011 5.89184 x 1011 

{ 1.85912 x 109 1.85661 x 109 2.88407 x 109 2.88152 x 109 4.44733 x 109 4.44473 x 109 

1.89540 x 1011 1.89533 x 1011 2.55664 x 1011 2.55657 x 1011 3.32856 x 1011 3.32849 x 1011 
3.79646 x 1011 3.79631 x 1011 4.89809 x 1011 4.89791 x 1011 6.15984 x 1011 6.15972 x 1011 

n = 9 n = 10 

{ 5.31084 x 10
9 5.31084 x 109 8.13868 x 109 8.13868 x 109 

4.27220 x 1011 4.27220 x 1011 5.27528 x 1011 5.27528 x 1011 
6.82044 x 1011 6.82044 x 1011 8.39310 x 1011 8.39310 x 1011 

{ 5.45179 x 10
9 5.45179 x 109 8.31196 x 109 8.31196 x 109 

4.25852 x 1011 4.25852 x 1011 5.26066 x 10 11 5.26066 x 1011 
6.92169 x 1011 6.92169 x 1011 8.49529 x 1011 8.49529 x 1011 

{ 5.70636 x 109 5.70631 x 109 8.61988 x 109 8.61982 x 109 

4.24463 x 1011 4.24022 x 1011 5.24019 x 1011 5.24019 x 1011 
7.08592 x lOll 7.08591 x 1011 8.66169 x 1011 8.66169 x 1011 

{ 6.10407 x 109 6. 10360 x 109 9.09120 x 109 9.09072 x 109 

4.22240 x 1011 4.22239 x lOll 5.21849 x 1011 5.21849 x 1011 

7.30801 x 1011 7.30800 x 1011 8.88772 x 1011 8.88769 x 1011 

{ 6.68682 x 109 6.68415 x 109 9 .76702 x 109 9.76427 x 109 

4.21001 x 1011 4 .21001 x 1011 5.2003 1 x 1011 5.20024 x 1011 

7.58307 x 1011 7.58295 x 1011 9.16865 x 1011 9.16854 x 1011 
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TABLE VII.- NATURAL FREQUENCIES OF A FREE-FREE 1200 CONICAL 

FRUSTUM SHELL AS A FUNCTION OF NUMBER OF CIRCULAR 

NODE LINES IN NORMAL DISPLACEMENT w 

[n = 2J 

Number of circular Mode- identification w 2 sec- 2 , 
node lines in w figure Present analysis Reference 1 

1 16(a) 3.903 x 104 3.900 x 104 

1 16 (f) 1.780 x 109 1.781 x 109 

1 16(j) 4.337 x 109 4.337 x 109 

2 16(b) 1.858 x 107 1.861 x 107 

2 16(k) 8.045 x 109 8.045 x 109 

3 16(c) 2.267 x 107 2.286 x 107 

3 16(g) 2.422 x 109 2.422 x 109 

3 16(1) 1.311 x 10 10 1.314 x 1010 

4 16(d) 2.754 x 107 2.831 x 107 

4 16(h) 4.127 x 109 4.127 x 109 

4 16(m) 1.874 x 1010 1.951 x 1010 

5 16(e) 3.314 x 107 3.654 x 107 

5 16(i) 6.342 x 109 6.342 x 109 

5 16(n) 2.019 x 1010 -----------



TABLE VIII.- NATURAL FREQUENCIES OF A CLAMPED-FREE 1200 CONICAL 

FRUSTUM SHELL AS A FUNCTION OF NUMBER OF CmCULAR 

NODE LINES IN NORMAL DISPLAC EMENT w 

[n = 2J 

Number of circular Mode- identification w 2 sec- 2 , 
node lines in w figure Present analysis Reference 1 

1 17(a) 1.199 x 107 1.195 x 107 

1 17(f) 1.794 x 109 1. 795 x 109 

1 17(k) 4.290 x 109 4.290 x 109 

2 17(b) 1.948 x 107 1.953 x 107 

2 17(g) 1.420 x 109 1.420 x 109 

3 17(c) 2.420 x 107 2.453 x 107 

3 17(h) 3.069 x 109 3.076 x 109 

3 17(1) 8.695 x 109 8.702 x 109 

4 17(d) 2.940 x 107 3.076 x 107 

4 17(m) 1.304 x 1010 1.325 x 1010 

4 17 (i) 5.224 x 1010 ------ -- ---

5 17(e) 3.545 x 107 -----------
5 17(j) 1.025 x 1010 -----------
5 17(n) 1. 760 x 1010 ------- - ---
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TABLE IX.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL HAVING 

POSITIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NODAL CIRCLES 

IN NORMAL DISPLACEMENT w 

Number of circular Mode- identification 0 2 sec-2 , 
node lines in w figure (present analysis) 

0 20(a) 0.1425 

0 20 (f) .2340 

0 20(k) 5.659 

1 20 (b) 0 .3607 

1 20(g) 3.918 

1 20(1) 9 .754 

2 20(c) 0.5507 

2 20(h) 5.914 

2 20(m) 15.90 

3 20(d) 0.6641 

3 20(i) 8.571 

3 20(n) 24.40 

4 20(e) 0.7260 

4 200) 12.26 

4 20(0) 35.24 

---~--



TABLE X.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL WITH 

NEGATIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NUMBER OF 

CIRCULAR NODE LINES IN NORMAL DISPLACEMENT w 

[n = 2J 

Number of circular Mode-identification n2 sec-2 , 
node lines in w figure (present analysis) 

0 21(a) 0.0246 

0 21(f) 1.888 

0 21(k) 5.804 
, 

1 21(b) 0.1950 

1 21(g) 3.243 

1 21{l) 8.660 

2 21(c) 0.403 

2 21(h) 5.128 

2 21(m) 13.96 

3 21(d) 0.5547 

3 21(i) 1.347 

3 21(n) 7.738 

4 21 (e) 0.6499 

4 21(j) 11.13 

4 21(0) 31.39 
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Figure 1.- Geometry of a shell of revolution. 
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Figure 2.- Typical idealization of she ll of revolution showing geometrically exact finite elements. 
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Figure 3.- Ill ustrati on of synthes is of sti ffness and mass matr ices. 
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r :::: 5 in. :::: 12.7 cm 

1/R1:::: 0 
1/R2 :::: 0.2 in. -1 :::: 0.07874 cm- 1 

r' :::: 0 

Ri :::: 0 
L :::: 20 in. :::: 50.8 cm 
E :::: 2.96 X 107 Ib/in2 :::: 2.0408 X 107 N/cm2 

11 :::: 0.29 
p :::: 7.33 X 10-4 Ib-sec2/in4 :::: 0.78335 X 10-4 N-sec2/cm4 

h:::: 0.008 in. :::: 0.02032 cm 

(a) Isotropic cyl i nder. 

r :::: 1.925 in. :::: 4.8895 cm 

1/R1 :::: 0 

1/R2:::: 0.5195 in- 1 :::: 0.2045 cm- 1 

r ' :::: 0 

Rl :::: 0 
h:::: 0.065 in. :::: 0.165 cm 

L:::: 15.53 in. :::: 39.4462 cm 

ph :::: 0.1211 X 10-4 Ib-sec2/in3 :::: 0.3287 X 10- 5 N-sec2/cm3 

C11 :::: 1.25 X 106 Ib/in. :::: 2.189 X 106 N/cm 

C12:::: 0.187 X 106 Ib/in. :::: 0.327 X 106 N/cm 

C22 :::: 0.742 X 106 Ib/in. :::: 1.299 X 106 N/cm 

C66 :::: 0.473 X 106 Ib/in. :::: 0.828 X 106 N/cm 

D11 :::: 0.652 X 106 Ib-in. :::: 7.367 X 106 N-cm 

D12 :::: 1. 767 X 106 Ib-in. :::: 19.964 X 106 N-cm 

D22 :::: 2.767 X 106 Ib-in. :::: 31.263 X 106 N-cm 

D66 :::: 9 X 106 Ib-in. :::: 101.686 X 106 N-cm 

(b) Orthotropic cyl i nder. 

Figure 4. - Properties of the shel ls analyzed for sample ca lculations. 
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r = 3 + s '13/2 (in.) = 7.62 + s {3/2 (em) 

1/ R1 = 0 

1/ R2= 1 (in-I) = 1 (em -I) 
0.1667 + s1/3 0.06562 + s 13 

r' = 1/3/2 
Rl = 0 

L = 42 (in.) = 106.7 (em) 
Y3 V3 

E = 1 X 107 Ib / in2 = 6.8948 X 106 N/ em2 

J.l = 0.315 
P = 2.54 X 10-4 Ib-see2/in4 = 0.2714 X 10- 4 N-see2/ em4 

h = 0.025 in. = 0.0635 em 

(cl Isotropic 1200 conica l frustum. 

r = 3 eos(0.5 - ~) - 1.879 (in.) = 7.62 eos (0.5 - 7.~2) - 4.773 (em) 

1/ R1 = 0.333 in- 1 = 0.131 em- 1 

cos (0.5 - ~) . cos (0.5 - 7 ~2) 
1/R2 = (m-1) .. . (em-I) 

3 cos (0.5 -~) - 1.879 7 .62 cos (0.5 - 2-\ -4.773 

r' = sin (0.5 - ~) = sin (1.27 - 7 .~2) 
R~ = 0 

L = 3 in. = 7.62 em 

E = 11b/ in2 = 0.68948 N/ em2 

J.l = 0.30 
p = 1 Ib-see2/ in4 = 0.10687 N-see2/ em4 

h = 0.001 in. = 0.00254 em 

(d) Isotropic shel l of pos itive Ga uss ian curvature. 

Fi gu re 4.- Continued. 
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r = 1 - 20{e08[-(1.5 - 8)0 . 5J - 1) (in.) 

= 2.54 - 50.8008[-(3.81 - 8)0.01969J - 1) (em) 

1/R1 ::: -0 .05' in- 1 ::: -0.01969 em- 1 

/ 
-e08 G(1. 5 - 8)0 .05J 

1 R2 ::: -----=------=---
-1 + 20 ~08[-(1. 5 - 8)0.05J - 1) 

-e08t(3.81 - 8)0.01969J 
::: em- 1 

-2.54 + 50.8008[-(3.81 - s)0.01969J - 1) 

r' = sint(1.5 - 8)0 .05J ::: sin[-(3 .81 - 8)0.01969J 

Ri::: 0 
L = 3 in. = 7.62 em 
E ::: 0.91 Ib/in2 = 0.6274 N/ em2 

fJ. ::: 0.30 

p ::: 1 Ib-8ee2/in4 ::: 0.10687 N-8ee2/em4 

h ::: 0. 001 in. ::: 0.00254 em 

(e) I sotropic she ll of negative Gaussian curvatu re. 

r::: 0.5 + 8 (in.) ::: 1.27 + 8 (em) 
l/Rl ::: 0 

1/R2::: 0 

r' ::: 1 

R1::: 0 

L::: 0.5 in. ::: 1.27 em 

E ::: 10.92 Ib/in2 ::: 7.5291 N/em2 

fJ. ::: 0.30 

p ::: 1 Ib-see2/ in4 ::: 0.10687 N-8ee2/em4 

h ::: 1 in. ::: 2. 54 em 

(f) Isotropic annu lar plate. 

Figure 4.- Conc luded. 
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Figure 5.- Minimum circular frequencies of a cylindrical she ll computed by present method and method of reference 15. Freely supported edges . 
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Figure 6.- Minimum circular frequencies of an orthotropic cylindrical shell computed by present method and method of reference 16. 
Freely supported edges. 
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Figure 7.- Minimum circular frequencies of a 1200 conical frustum by present method and method of reference 1. 
Free-free edge conditions. 
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Figure 8.- Minimum circular frequencies of a 1200 conical frustum by present method and method of reference l. 
Clamped-free edge conditions. 

61 



N 
"--
r---1 

N 

:::t 
I 

w 
"'-
Q... 

~ 
0:: 
3 
II 

~ 

62 

.42 

.40 

.38 

.36 

.34 

.32 

.30 o 2 4 

o Ca lculated values 

Faired curve 

RI~ 

6 8 10 

Number of circumferential waves, n 

Figure 9.- Minimum nondimensional frequencies of a shell of positive Gaussian curvature as computed by present method and 
method of reference 4. Freely supported edges. 
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Figure 10.- Minimum nondimensional frequencies of a shell of negative Gaussian curvature as computed by present method and 
method of reference 4. Freely supported edges. 
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Figure 1l.- Minimum circular frequencies of an annular plate as computed by present method and method of reference 17. Free-f ree edges. 
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Figure 12.- Frequencies of an isotropic cylinder as computed by present method and method of reference '15. Freely supported edges; n = 2. 
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Figure 13.- Frequencies of an orthotropic cy linder as computed by present method and method of reference 16. 
Freely supported edges ; n = 2. 
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Figure 14.- Circular frequencies of a free-free 1200 con ical frustum as computed by present method and method of reference 1. 
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Figure 15.- Frequencies of a 12()O conical frustum shell as computed by present method and method of reference 1. Clamped at 
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Figure 16.- Natural mode shapes of a free-free 1200 conical frustum corresponding to the frequencies shown in figure 14. 
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