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A METHOD FOR COMPUTATION OF VIBRATION MODES

AND FREQUENCIES OF ORTHOTROPIC THIN SHELLS OF REVOLUTION

HAVING GENERAL MERIDIONAL CURVATURE

By Howard M. Adelman, Donnell S. Catherines,
and William C. Walton, Jr.
Langley Research Center

SUMMARY

This report describes a procedure for computing the vibration modes and frequen-
cies of thin shells of revolution having general meridional curvature and orthotropic elas-

tic properties. The procedure is based on the finite-element method in which the direct-

stiffness approach is used. A geometrically exact finite element is employed. A com-
puter program based on this procedure has been written and details of the program are

described. The geometric characteristics of the shell are used as inputs to the program

in the form of functions of the meridional coordinate. The stiffness and mass matrices

are computed by numerical integration by use of the trapezoidal rule.

The computer program is applied to several shell configurations including two

cylinders, two conical frustums, shells of both positive and negative Gaussian curvature,
and an annular plate. Frequencies are correlated with frequencies from previous inves-

tigations for these shells. The agreement between results of the present analysis and

results from the previous investigations is generally excellent.

INTRODUCTION

A problem of current interest to structural analysts in the aerospace field is that of
determining the dynamic behavior of structures in which some of the components are thin

shells of revolution. Understanding the modes of vibration of the individual shell com-

ponents can be of fundamental importance in connection with this problem. Consequently,

much effort has gone into developing techniques to determine natural frequencies and mode
shapes of the commonly encountered shells of revolution. Few closed-form solutions are

known and, therefore, most of the developments have been in the area of approximation
methods. Among the methods that have been tried are Rayleigh-Ritz methods (refs. 1

and 2), Stodola-type iteration methods (ref. 3), finite-difference solutions (ref. 4), finite-
element methods (refs. 5 to 9), and methods in which the shell boundary-value problem is

reduced to an initial-value problem involving first-order differential equations which




are numerically integrated (ref. 10). The finite-difference and numerical-integration
methods involve a trial-and-error search for the natural frequencies that will make a
certain determinant vanish. These '"search methods' are relatively slow, and analysts
using them have been known to overlook modes, as noted in reference 3. Stodola-type
methods also lose numerical significance in the calculation of higher modes as noted in
reference 3.

The authors, in the course of developing practical procedures to analyze the forced
response of structures incorporating shells of revolution,required a method for computing
mode shapes and frequencies of shells of revolution having general meridional curvature
and orthotropic elastic properties. These mode shapes and frequencies would be used in
analyses of structures involving such shells where in the analysis the deformation of each
shell is represented by superposition of a number of mode shapes of the shell. Early
experience indicated that selection of representative modes for a shell would require
examination of a great number of its modes some high in the frequency spectrum. It was
therefore necessary that:

(1) The method should give capability for quick calculation of a large number of
modes and frequencies

(2) The mode shapes and frequencies quite high in the frequency spectrum should be
accurately predicted

(3) The analyst should be protected from overlooking modes in computation

In view of these objectives, search methods and Stodola methods were considered
unsatisfactory for the reasons of their inadequacy to meet these requirements. Both the
Rayleigh-Ritz and finite-element approaches seemed to offer better chances for success
in meeting the objectives.

From the viewpoint of the analyst, the outstanding advantage of finite-element and
Rayleigh-Ritz approaches is that they lead to a symmetric eigenvalue problem which is
amenable to fast and accurate solution on a digital computer. In the methods available
for solving symmetric eigenvalue problems, all the modes are computed simultaneously,
and thus any danger of overlooking modes in computation is avoided.

A finite-element approach was selected in preference to a Rayleigh-Ritz approach
for the following reasons:

(1) The computing details of the Rayleigh-Ritz methods reported in references 1
and 2 resulted in use of a large number of terms. These methods lead to relatively poorly
conditioned eigenvalue formulations requiring that a large number of significant figures
be carried in the calculations in order to retain significance in the results. Preliminary
trials with circular plates indicated that the finite-element approach leads to very well-
conditioned eigenvalue problems.




(2) It was believed that the finite-element method would converge more easily than
the Rayleigh-Ritz method when local high stress gradients, such as occur for some edge
conditions (ref. 11), are present.

The element most popularly employed in the finite-element analysis of shells of
revolution has been the conical element (for example, refs. 8 and 9). This element can
exactly fit cylinders and conical frustums. However, for shells having a curved meridian,
use of this element leads to only an approximation of the shell by a series of joined conical
frustums. Thus, the curved meridian is approximated by a series of straight lines. Con-
sequently, an analysis of a shell with a curved meridian based on conical elements may
give inaccurate frequencies and stresses (refs. 5 and 6).

Analysts have been aware that the use of an element which coincides with the shape
of the shell being analyzed would probably improve the accuracy in computed results
(ref. 5). The main impediment to the use of such a geometrically exact element has been
a reluctance on the part of analysts to give up a certain computational convenience asso-
ciated with the conical element. This convenience is that since the shape is fixed, quadra-
tures required to compute the stiffness and mass matrices of the element are performed
only once, and the same matrices are used in every analysis. With a geometrically exact
element, the shape of the element depends on the shape of the portion of the shell which the
element represents, with the result that the integration has to be an inseparable part of
each analysis. It has been recognized that a natural and probably feasible approach to
making the quadratures part of the analysis is to use numerical integration (ref. 5). How-
ever, the objection has remained that for each element the radius of the shell and the two
radii of curvature must be specified as functions of position along the meridian of the

element.

In spite of this objection, the decision was made to develop a computer program to
meet the previously stated objectives based on a geometrically exact element. It was
believed that the necessity for description of the geometry of an element in terms of func-
tions rather than of numerical parameters would present no difficulties in practice if, as
is nearly always the case, the geometry of the entire shell could be described by functions
located in a subroutine which could be readily changed. Development has progressed to
the point where the program has been applied to a variety of shells of revolution of practi-
cal interest. Detailed correlations have been made between frequencies from the program
and frequencies calculated for these shells by other investigators. A cursory correlation
of mode shapes including stresses has been made for some of these shells but as yet is
inconclusive because of present unavailability of sufficient modal data from the methods of
the previous investigators. These correlations are not presented in this report.

The main purposes of this report are as follows:

(1) To describe the analysis underlying the computer program




(2) To describe the computer program

(3) To present the frequency correlations
SYMBOLS

aO,k’al,k’ a2,k’a3,k coefficients in polynomial displacement function for normal dis-
placement w

Ay matrix which transforms displacements and rotations at ends of an element
to coefficients of polynomial displacement functions (see eq. (13) and table I)

bO,k’bl,k’b2,k’b3,k coefficients in polynomial displacement function for meridional
displacement u

B matrix defined in equation (42)

C @ (0 @ coefficients in polynomial displacement function for circumferential
0,k’"1,k’"2,k’ 3,k
displacement v

Ck matrix whose elements are coefficients in an expression for strain energy of
a shell element in terms of coefficients of polynomial displacement functions
(see eq. (20))

C11,C12,Co9 membrane stiffness constants
Cee in-plane shear stiffness
D diagonal matrix whose elements are eigenvalues of mass matrix (see eq. (39))

D11,D19,D99 flexural stiffness constants

Dgg torsional stiffness

e1,€9,€19 middle-surface strains (see eqgs. (1a) to (1c))
Ex kinetic energy of kth element

E kinetic energy of shell; also Young's modulus




f frequency

Fx matrix whose elements are coefficients in an expression for kinetic energy of
a shell element in terms of coefficients of polynomial displacement functions
(see eq. (30))

h shell thickness

)| identity matrix

K number of elements used to represent a shell

K11,K19,K22,Kgg stiffness constants representing interaction between in-plane and
out-of-plane strains

L meridional length of a shell

m meridional wave number for a freely supported cylinder

My element mass matrix

M shell mass matrix

n circumferential wave number

N order of stiffness and mass matrices after edge constraints have been applied
P matrix whose elements are coefficients in an expression for kinetic energy

of a shell element in terms of displacements u, v, and w (see eq. (28))

q index representing an integration station

Q total number of integration intervals

T radius of a shell measured in plane normal to shell axis
R1,Ro principal radii of curvature of shell
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qu

matrix whose elements are coefficients in an expression for strain energy of

shell element in terms of actual variables in strain energy (see eq. (16))
meridional coordinate
element stiffness matrix
shell stiffness matrix
meridional distance from origin of s to reference edge of a shell
meridional distance from reference edge of shell to center of kth element

meridional distance from reference edge of shell to qth integration station
of kth element

meridional distance from reference edge of a shell to ith location on kth
element at which mode shape is evaluated

time

inverse of matrix Ay

meridional component of middle-surface displacement

matrix whose columns are eigenvectors of mass matrix
circumferential component of middle-surface displacement

strain energy of kth element

strain energy of shell

normal component of middle-surface displacement

meridional coordinate measured within a single element (see eq. (5))

meridional distance from center of kth element to qth integration station



X matrix which describes assumed form of variables appearing in strain energy

y column matrix containing unknown displacements and rotations

Y matrix which describes the assumed form of displacements u, v, and w

Z matrix defined in equation (43)

B rotation of shell generator relative to unstrained direction (see eq. (10))

5 modal column (see eq. (44))

v column matrix whose elements are coefficients of assumed-displacement
polynomials (see eq. (18))

Ex meridional length of kth element

0 circumferential coordinate

K{;Kg9sK1g Changes in curvatures (see eqs. (1d) to (1f))

xl,xz,. . AN  eigenvalues of mass matrix

¢ column matrix whose elements are displacements and rotations at ends of an
element (see eq. (22))

p mass density

w circular frequency

Q nondimensional frequency

L Poisson's ratio

Primes denote differentiation with respect to s or x; superscript T denotes

transpose of a matrix.
Special notations used in machine plots of figures 16, 17, 20, and 21:
N circumferential wave number

S/L nondimensional meridional distance




U,V,w middle-surface displacements in the meridional, circumferential, and normal

directions, respectively
UMAX,VMAX,WMAX maximum values of U, V, and W, respectively
-2

w2 = (Circular frequency)z, sec

DEVELOPMENT OF THE STIFFNESS MATRIX FOR A
GEOMETRICALLY EXACT ELEMENT

Strain Energy in Terms of Displacements

For purposes of the following analysis, reference is made to figure 1. In this fig-
ure, u, v, and w represent displacements in the meridional, circumferential, and
normal directions, respectively, R;{ and Rg are the two principal radii of curvature
of the shell, and r is the radius of the shell measured in a plane normal to the shell

axis. All three radii are regarded as functions of the meridional coordinate s, measured

along the shell from a reference edge.

According to Novozhilov (ref. 12), the six strain-displacement relations which

describe the local state of strain for a thin shell of revolution are as follows:

Membrane strain in meridional direction:

w
e, =u' + —
1 R4

Membrane strain in circumferential direction:

Lov 1
ez—r86+rru+

In-plane shear strain:

_1du Tl e
812 = ; 8—9 RV ; rv
Change of curvature in meridional direction:
1 1 '
=-w"+—=—u'-——Rqu
“1 Ry R12 1
Change of curvature in circumferential direction:
1 o“w 1 ov r'w' 1 ;
= - = — — - r'u
"2 2502 TR930 1 rR;

Twist of the middle surface:

- lowlg L cew o 1 SR L
Kig = 1‘89+r2r —3?+rR189+R2v ngrv

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)
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For a shell which, in general, is composed of orthotropic layers, the strain energy
is given in reference 13 (p. 45) as follows:

L §§(011e1 +2C19€18y + Coge9” + Cggeyg )r sleh
1 9 5 .
+3 \Y‘Y(DIIKI + 2D12K1K2 + Dyoko? + Dgekq9 )r de ds

+ §§[1<1161K1 + Klz(elfc2 + 62K1> + K2262K2 + K66612K12Jr de ds (2)

where in equation (2) the integrations are taken over the shell surface and the following
definitions hold:

(1) Cq11, Cy9, Cgg are membrane stiffnesses
(2) D1, D12, Dgg are flexural stiffnesses
(3) Cgg 1is the in-plane shear stiffness

(4) Dgg is the torsional shear stiffness

(5) K11, K12, K99, Kgg are stiffnesses due to the interaction between in-plane
strains and changes in curvature

All of these stiffnesses are, in general, functions of the meridional coordinate s. Ref-
erence 13 contains an excellent discussion of the derivation of the above stiffnesses for
shells having various numbers of layers and composed of materials having various types
of elastic properties.

The work in the present study is based on Novozhilov's strain-displacement rela-
tions (egs. (1a) to (1f)), the energy expression of equation (2), and the definitions of the
stiffnesses in reference 13 with the following single exception. The strain K19 (called
7 in refs. 12 and 13) is defined by Ambartsumyan (p. 25) to be double the value of this
strain as defined by Novozhilov. Since the authors prefer to use Novozhilov's definition
of kqg, the value of Dgg used herein is four times the value of Dgg given in refer-
ence 13 and the value of Kgg is twice the value of Kgg given in reference 13.

For a shell of revolution vibrating in a natural mode with circular frequency w,
the three displacements u, v, and w can be expressed as follows:

u(s, 6,t) = u(s)cos neei“‘)t
v(s,0,t) = v(s)sin neelwt (3)
iwt

w(s, 6,t) = w(s)cos noe



The displacements from equations (3) are substituted into the strain-displacement
relations of equafions (1). Substitution of the resulting strains into the strain-energy
expression of equation (2) and integration with respect to 6 yields the strain energy in
terms of displacements. The amplitude of the strain energy for n #0 is as follows:

2 ' ' 2 v 2
_m * w T w\/n T r ]
V—E\Hicll(u +—Rl) +2C12(u +——R1)(i‘-v+7,—u+—1¥2)+022(%V+Tu+—1‘:2) +C66(-'—;u+v —%v)}rds
TR 2 5
e I e s U0 vy ¥\t ., n T T e B o A2
+ﬂJ’:11(u +Rl><w +R1 Rlzu +K12u+R1 r‘2w+rsz l‘w+rR1u +K12 v+ u~f-R2

2 1 Al A} Al
n n n T r n 1 n nr n v' !
+K —v+ o —_— - — ! —_— - — 1o a— — '——- - — — o —
22(r )<r2w+rR2v = +rR1u>+K66( U+ V rv)<rw I‘2w rR1u+R2 rRZv)ers
o R'l 2 u' Ri n2 n Tl r!
5 ~w'" +—-—u + 2Dy -W'+ —- —u)| s W+—V-ZwW+-—u
R12 Ry R12 r2 TRy r rRl
i ! : n nr' n v' J 2
+ D. Wi m i L e D (L wile iyt el Sy e r ds 4
22(1‘ TRy T rRy ) 66(r r2 rRy +R2 TRy v) @

For n =0 the strain energy as given by expression (4) should be doubled. The suc-
ceeding developments are carried out on the assumption that n # 0 with the under-
standing that for n =0 appropriate expressions should be doubled.

Representation of the Shell by Geometrically
Exact Finite Elements

The present analytical method follows the main steps of conventional finite-element
analysis. It is noted, however, that each element coincides exactly with a slice of the
actual shell. Hence, the elements are spoken of as '"geometrically exact elements."

A typical idealization of a shell of revolution is shown in figure 2. Counting ele-
ments from the reference edge, the following definitions are made:

K total number of elements
Ex length of kth element, measured along meridian curve of shell
X coordinate inside kth element, measured along meridian from center of kth
interval so that following relationship holds:
€k k 5
SetRiem eSS
5 SX35 (5)
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Sk distance along meridian from reference edge of shell to center of the
kth element

From the foregoing definitions for x and Spr it follows that
5=8, +X (6)

A numbering system has been adopted in which quantites such as displacement,
€ €
derivatives of displacements, and rotations at s = Bl = Tk and s = s + 2—k are indi-

cated by subscripts k and k+1, respectively. Thus, for example, wy is the normal
€ €

displacement at s = sp - 515 and Uy q is the meridional displacement at s = s + ?k-

Also, it is necessary to have a notation for the radius of curvature Ry at the locations

€
S=8.7F —15. The symbols R and R represent the respective values.
k™ g 17k 1,k+1

Assumed Displacement Field for Element

As an approximation, the displacements u, v, and w are assumed to have the
following polynomial forms over the kth element:

- 2 3
W=ag ) +ay X+ ay X% 4 ag X

- 2 3
= bO,k + bl,kx + b2,kx + b3,kx (7)

- 2 3
V= Cp o+ Cp X+ Cg X7+ Cg 1 X

where the a's, b's, and c's are undetermined coefficients. From equation (7) it fol-

lows that:

Lol )

1t




where

1 xx2 x2 000 0 00 0 0
01 2x 3%x%20 0 0 0 0O 0O O
00 2 6x 00 0 0 00 O O
[x]:oo 0 0 1 x x2 x3 00 0 0 (9)
00 0 0O 0 1 2x 3%x2 00 0 O
000 O 0O0OTO0O O 1 x x2 x5
00 0 0 00 0 0 0 1 2x 3x

Relationship Between Undetermined Coefficients and Displacements
and Rotations at Ends of Element

The rotation of the meridian curve relative to the unstrained direction is defined
as B and is given by

P L 10
B=w Ry (10)
It follows that
u
' k
Bk = Wk = (11)
Rk
and
u
1 k+1
B =l = (12)
k+1 k+1 Rl,k+1
. ‘x k
Inserting x = - 5 and X = ok into the appropriate locations in equation (8)
results in the following relationship:
- =
W al0,13
uk al’k
Pi a3 x
Uy Do x
v'
k 1ok
= AJ 4
Wikt 1 l: k ﬁ Py k &)
U1 D3 x
Vk+l €0,k
Pr+1 Cpk
Uk+1 2,k
i\
| Vk+1 | \°3,k )
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where the elements of matrix Ak] are given in table I. When equation (13) is inverted,
the following relationship results:

fao’k\ kaﬁ
1k Uk
45 k Yk
a3’k Bk
bO,k Uy
bl,kg _ ¢
P9 x [Tk] Wi+l Y
03 k Uil
€0,k Vk+1
cl,k Bl'<+1
Lok Sicpl
(3.1 1)

where
]:Tk:] = [Ak] = (15)
The elements of the inverse matrix [Tk] are given in table II.

Formulation of Element Stiffness Matrix

From equation (4) the strain energy of an element may be written as follows:

% (Ww
. i
w"
Vi =_;_r b)v, w', w'", u, u', v, vj [R:] u ydx (16)
'
v
Jexf? '

where [R] is a 7 X 7 symmetric matrix, the elements of which are known functions of the
meridional coordinate x. The elements of [RJ are listed in the appendix. Using equa-
tion (8) in equation (16) permits the strain energy to be written in terms of the undeter-
mined polynomial coefficients as follows:

V= 1 G TR o @

2 -ek/Z

13




where

40,k
Al
a9,k
a3k
Eo,k
1,k
{7} = < Py (18)
b3
0,k |
“1,x |
€2k

€3 k J
MG
or

; \
= %{V}T[Ck]@} (19) (
‘ where

CARMAESRE Lt o

Finally, use of the transformation expressed by equation (14) gives the strain energy as

vic= 18" [ o [m(© e1)

where J
w

(a. 0) ‘

{5} - wklil (22)
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Inspection of equation (21) identifies the shell element stiffness matrix [S@ as

aE
[ = (™" [ [T &
DEVELOPMENT OF CONSISTENT MASS MATRIX FOR
THE GEOMETRICALLY EXACT ELEMENT

If rotary inertia is neglected and if the shell is assumed to be vibrating in a natural
mode, the amplitude of the kinetic energy Exr for n=#0 is

€, /2
Eg = % w2 § k/2 ph(u2 +v2 + Wz)r dx (24)
=€
K,

/

where ph is the mass per unit area of the shell. The quantity ph is a known function
of s and therefore of x. As with the strain energy, the expression for kinetic energy
must be doubled for n = 0.

Based on the assumed displacements of equation (7), the following relation may be
written:

w - [ &

where

1 x x2 x3 00 0 0 00 0 O
[¥]J=10o 0 0 0 1 x x2 x3 00 0 0 (26)
00 0 0 00 0 O 1 x x2 x3

Equation (24) can be rewritten in the form

€ /2 W
Ey = 127_ wz‘S‘ K Lw, u, \:J[P] u )dx (27)
-ek/2 v
where
phr 0 0
[P] =| 0 phr 0 (28)
0 0 phr
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Using equation (25) with equation (27) yields

B = 2 6) i )

where

Fk:”S:z;EﬂTDﬂﬁqu

In view of equation (14), equation (29) may be written as follows:

- 5O " [

Therefore, the element mass matrix may be identified as [Mlg], where

[ = [ "[mid [

DERIVATION OF MODAL EQUATIONS

(29)

(30)

(31)

(32)

In view of the numbering convention adopted for the elements, the second edge of the
kth element coincides with the first edge of the k+1st element. In this analysis, the fol-

lowing conditions of compatability are assumed to hold at each such juncture:

/~ N\ /=

Wit Wil
k1 ey
v v
k+1 K+1
- = e for all k <K
Pr+1 Pr+1
u1'<+1 u1'<+1
V2, Vi
k+1 |kth k+1 | k+1st
~  “element ~ ~ element

(33)

Of the six equalities in equation (33), the first four are standard. The last two, however,

are valid only for shells having continuous distributions of stiffness.

The total strain energy V and the kinetic energy E may be expressed as follows:

K
-
k=1
K
E-= Z Ex
k=1

16
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where V) and Ejp are given in equations (21) and (31), respectively. If the summa-
tions of equations (34) are carried out and use is made of equation (33), the strain and
kinetic energies may be written as follows:

- 3K
B = L 2T

(35)

where’

S stiffness matrix, which is a symmetric positive semidefinite or positive
definite matrix of order 6(K + 1)

M mass or inertia rﬁatrix, which is a symmetric positive definite matrix of
order 6(K + 1)

y a vector containing all of the unknown displacements and rotations

In the present method, the matrices S and M are constructed by the well-known
procedure of superimposing element matrices, illustrated in figure 3. As the figure
shows, the superposition consists of placing appropriate shell element matrices in the
matrices S and M so that the matrix elements in the lower right 6 X 6 block of the
kth matrix add to the corresponding matrix elements in the upper left 6 X 6 block of the
k+1st matrix.

The modal equations for shells with no edge constraints may be derived by mini-
mizing the quantity E - V with respect to each of the variables in the vector y. This
minimization is equivalent to the following set of equations, 6(K + 1) in number:

oE-V) _, AB-V) _,)

agﬁaju_vzzo BEBU;'{V=0 k=1,2,...,K+1) (36)
k

a(gv—v)zo E’%vj_VLO
k k J

Equations (36) can be expressed in the form

(8K} - «®[Mzy = 0 (37)
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Rigid edge constraints are incorporated by deleting from the stiffness and mass
matrices of equation (37) those rows and columns which correspond to displacements and
rotations that must vanish to satisfy the constraints. The form and character of equa-
tion (37) are not affected by the deletion of rows and columns from the matrices S and
M, except that S may become positive definite instead of positive semidefinite. Of
course, the order of matrices S and M is reduced.

Equation (37) determines 6(K + 1) natural frequencies and modal columns. The
computation of these frequencies and modes is a standard operation. However, for com-
pleteness, some of the reductions involved in the solution are given in the section which
follows.

The modal columns consist of values of displacements and rotations at each of the
K + 1 junctures on the shell. For many purposes a more detailed mode shape is
required. From equation (7) with x replaced by s - i the following equations can be
written for the mode shape within the kth element:

=
W=agy + al,k(s - Sk) + az’k(s - sk)z o as,k(s - Sk)3

W=D i+ Dy (5 = Si) + Py k(S - Sk)2 +bg e Sk)3 (38)

V=Cot cl’k(s - sk) 3 cz’k(s - Sk)2 + c3’k<s - Sk)BJ

The coefficients aj, through cgq . are computed by using equation (14).
COMPUTATIONAL METHOD AND COMPUTER PROGRAM

In this section, the details of the computing method are given. Each step is dis-
cussed and the flow of information is shown in block diagrams. The steps are intended to
be specific enough to allow a digital computer program to be written by using them as a
guide.

The basic organization of the computer program used in the present analysis is
shown in block diagram 1.

The input which describes the geometry of the shell and its physical properties is
first read, and stiffness and mass matrices referred to the coefficients of the displace-
ment polynomials are then computed. These matrices are transformed so that they are
referred to the displacements and rotations at the ends of the element. When a stiffness
and a mass matrix have thus been computed for each element, the matrices are super-
imposed to form the shell stiffness and mass matrices. If the shell has rigid edge

18



constraints, then appropriate rows and columns are deleted from the stiffness and mass

matrices to satisfy these constraints. The stiffness and mass matrices then constitute

the ingredients to an eigenvalue problem which is solved for frequencies and modal

columns. From the modal columns, the coefficients of the displacement polynomials are

computed. The detailed mode shapes are then evaluated.

>I INPUT

e |
[——thOMPUTE TRANSFORMATION MATRIX

|

COMPUTE ELEMENT STIFFNESS MATRIX AND ELEMENT
MASS MATRIX REFERRED TO UNDETERMINED

i

]
COMPUTE ELEMENT STIFFNESS MATRIX AND ELEMENT

MASS MATRIX REFERRED TO DISPLACEMENTS
AND ROTATIONS AT ENDS OF ELEMENT

ALL ELEMENT
MATRICES COMPUTED

SUPERIMPOSE ELEMENT MATRICES TO OBTAIN STIFFNESS
AND MASS MATRICES FOR AN UNCONSTRAINED SHELL

Y

DELETE APPROPRIATE ROWS AND COLUMNS FROM STIFFNESS
AND MASS MATRICES TO SATISFY EDGE CONSTRAINTS

1

SOLVE EIGENVALUE PROBLEM FOR
FREQUENCIES AND MODAL COLUMNS

1

IRECOVER COEFFICIENTS OF DISPLACEMENT POLYNOMIALS'

[ coupurE MoDE SHAPES |

1

lOUTPUT FREQUENCIES AND MODE SHAPESI

CYCLE ON

WAVE NUMBER

COMPLETE
?

NO

Block diagram 1.
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‘ A more detailed block diagram (see block diagram 2) is shown.

(1),
- INPUT

= [COMPUTE s, =1,2, -+ K|

1
(3)
PRINT INPUT, s,, AND EDGE CUNSTRAINd

i
<[ GYCLE ON CIRCUMFERENTIAL WAVE NUMBER (n)
1

[ COMPUTE SIZE OF STIFFNESS AND MASS MATRICES |

1
= SET STIFFNESS AND MASS MATRICES TO ZERO]

1
@
V{CYCLE ON ELEMENT NUMBER (kf}

i
[ COMPUTE TRANSFORMATION MATRIX Ty

) . o B
r——_@LE ON INTEGRATION STATION (gq) |
: = i
- [COWPUTE COORDINATES OF INTEGRATION STATION (s, ) AND x,.)]

= 1
(ulcompum MATRICES X(xicq)s Y(x), R(sg), AND P(s )]
1

az — —_
COMPUTE MATRICES SUMCkq AND SUMqul

CYCLE ON
q COMPLETE

NO

a3

' rbOMPUTE ELEMENT STIFFNESS MATRIX S, AND ELEMENT MASS MATRIX @EJ
]

(14
ADD MATRIX S, IN PROPER POSITION IN STIFFNESS MATRIX SJ
[l
(6}
LAPD MATRIX My IN PROPER POSITION IN MASS MATRIX Ml

NO CYCLE ON ™
k COMPLETE

?
yYES

; o DELETE APPROPRIATE ROWS AND COLUMNS FROM STIFFNESS
AND MASS MATRICES TO SATISFY EDGE CONSTRAINT
1

’'COMPUTE FREQUENGIES AND MODAL GOLUNNS |

“*[OUTPUT FREQUENCIES AND MODAL COLUMNS!

NO ~MODE SHAPES
WANTED

19
— 1 CYCLE ON MODE NUMBER (i)]
2 i
——— <[ CYCLE_ON ELEMENT NUMBER (K) ]
1

““"[COMPUTE GUEFF ICIENTS OF DISPLACEMENT POLYNOMTALS |

(22

1
COMPUTE u, v, AND w AT IINT LOCATIONS |

NQ

CYCLE oN
k COMPLETE

OQUTPUT MODE SHAPE

CYCLE ON
I COMPLETE

CYCLE ON
n COMPLETE

Block diagram 2.
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A detailed discussion of the computing in each block of block diagram 2 is as

follows:

BLOCK 1:

The following input quantities are required:

K number of elements used to represent shell
Ep length of kth element, where k=1,2, . . ., K
S meridional distance from origin of s to reference edge of shell

The following input functions are required:
] /Rl,l /R2 reciprocals of principal radii of curvature

I shell radius measured in a plane normal to the shell axis

|

Ry meridional rates of change of r and Ry

C11,C12,C22,Ce6
D11,D12,D92,Dg¢ stiffnesses

K11,K12,K22,Ke6
[plﬂ mass per unit area
The following control numbers are required:
NBEG initial value of n
NLAST final value of n
Q number of integration intervals to be used within each element

IPRINT if IPRINT = 0, intermediate matrices are not printed
if IPRINT # 0, intermediate matrices are printed

NMODE number of mode shapes to be computed
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IINT number of locations along each element at which mode shape is to be evaluated
ICASE edge constraint code (see table III)

BLOCK 2:

k-1
sk_so+%ek+ €5 (k =2, , K)
i=1
BLOCK 4:
n = NBEG, NBEG + 1, . . ., NLAST
BLOCK 5:
KN = 6(K + 1)
BLOCK T7:
k=12, ... K
BLOCK 8:

The elements of [Tk], a 12 X 12 matrix, are given in table II.
BLOCK 9:

4=1,2 ... Q+1
BLOCK 10:

Each element is divided into Q equal intervals for the numerical integration.
There are then Q + 1 integration stations. The values of x and s at the qth integra-~
tion station of the kth element are, respectively, defined as

-1
xkq=6k<'q_Q—'%> @=1,2, .. .,Q+1)

and

q-1
Skq=Sk+ek(T-%> (q=1,2,---,Q+1)

BLOCK 11:

The elements of [X:], [Y], [P], and [R:] are given in equations (9), (26), (28),
. ‘ q
and (A1) to (A28), respectively. The matrices [:X(qu)] and [Y(quﬂ are found by
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substituting Xeq in equations (9) and (26), respectively. The matrices [P(skq)] and

E{(skqﬂ are found by substituting Spq 10tO equations (28) and (A1) to (A28), respectively.

BLOCK 12:

[Ck{' =7 :X(xkq)]T[R (skq>:| [:X(qu)]

P gl

[sUMOCyg = [SuMCy 1] + [Cig
SUMCy u1] = [SUMCy g] + 3[Ck,qu1]
] =[] ") (5]
e, - Y

SUMFyg) = [SUMFy 1) + [Fig]
Foe ) - [FMTig] <ok

BLOCK 13:

[CK] . [:SUMCk’ - +ﬂ
[:Fk] - [SUMFk’ Q+}]
5= [
- BB

BLOCKS 14 and 15:

(q:2,3, o o

(a=2,3, .

Q)

5 Q)

The manner in which the matrices (either stiffness or mass) are placed in the over-

all matrix is illustrated in figure 3.
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BLOCK 16:

Commonly encountered edge constraints along with the appropriate rows and
columns to be deleted from S and M are given in table III.

BLOCK 17:
Compute by the threshold Jacobi method (ref. 14, p. 397) a modal matrix U and a
set of eigenvalues Xy, . . ., Ay for the matrix M. Then
A 0
1 Ay
uTMU =D = o (39)
0 . AN
and
vTu =1
where
N order of matrix M
I identity matrix of order N

Since M is positive definite, all diagonal elements of D are positive.

Compute:

Mo

pl/2 _ o (40)

Dyt o= T (41)

1/2

B - p~1/2yTsyp-1/2 (42)
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BLOCK 19:

i=1,2, ... NMODE
BLOCK 20:

k=12 .. .,K

Compute Z, a modal matrix of B, by the threshold Jacobi method. Then

@12 0|
- 2
W
7TBz = : (43) ‘
2 \
e o “N] |
ZTZ =1

The values of w2 are the squares of the circular frequencies.

Compute:
5 = UD" /27 (44)

The columns of 6 are the modal columns. After the computation of the modal columns,
insert zeros in the locations which correspond to rows and columns deleted from S
and M.

BLOCK 18:
The output consists of the following:

(1) Lists of circular frequency squared wz, circular frequency w, and
frequency f.

(2) For each mode, an array of displacements and rotations as follows:

Wy | vy Py uy ] |
Wo uy Vo By Uy vy |

i

Yrel  YRel YR+l PRl Ukel VRel |

Note that zeros again appear in the locations corresponding to deleted rows and columns
in S and M.
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BLOCK 21:

N a ;
(ao,k W )
a1,k U
a9,k Yk
a3 K P
Do x U
b Vi

1,k\ _ [T] kY
< bz,k> 5 <W1<+1
P3 x Uil
0,k Vi+1
1k Prs1
C2 k Uk+1
c v,
(3,55 Y
where the elements of Tj are given in table IL

BLOCK 22:

For the purpose of computing the detailed mode shapes, each element is divided
into IINT intervals. The number of locations at which the mode shape is to be evaluated
is IINT + 1. The value of s at the ith location of the kth interval is defined as Ski and
is given by

_ i-1 1 - . _
ski—sk+€k(iﬁ i’) (l-—l,...,IINT+1, k-—l,...,K)

The mode shape over the portion of the shell represented by the kth element is then com-
puted from:

W =2g .+ 2y (S - Sk) * 2k (Bki Sk)z +ag 1Sy - Sk)3
U= b g+ By g (S - Sc) + P (S - Sk)2 +bg 1Sy - Sk)3

V=Cok* Cl,k(ski E Sk) + c2,k(ski - sk)2 * °3,k(sk1 - Sk)3

The entire mode shape is then constructed by placing the portions end to end.
BLOCK 23:

The mode shape consists of arrays of u, v, and w.
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APPLICATIONS AND DISCUSSION

Description of Shells Analyzed

In order to ascertain the generality and efficacy of the present method for computing
natural frequencies, a number of applications were made. The following configurations,
shown in figure 4, were treated:

(1) An isotropic cylinder with freely supported edges investigated by Arnold and
Warburton (ref. 15) using an exact solution.

(2) An orthotropic cylinder with freely supported edges investigated by Hoppmann
(ref. 18) using an exact solution.

(3) An isotropic 120° conical frustum with both free-free and clamped-free edges,

investigated by Naumann (ref. 1) using a Rayleigh-Ritz analysis.

(4) An isotropic shell having positive Gaussian curvature with freely supported edges
investigated by Cooper (ref. 4) using a finite difference solution.

(5) An isotropic shell having negative Gaussian curvature with freely supported edges
also investigated by Cooper (ref. 4).

(6) An isotropic annular plate with free edges, investigated by Raju (ref. 17) using
an exact solution.

Correlation With Previous Investigations

Frequencies and mode shapes were computed for these shells, and the frequencies
were compared with those from existing solutions. Ten elements were used to represent
each shell. One hundred integration intervals within each element were used. In the cor-
relations to follow, the quantities to be compared are called frequency parameters. For
the cylinders, conical frustums, and annular plate, the parameter is the square of the
circular frequency. For the shells of positive and negative Gaussian curvature, the param-
eter is a dimensionless frequency defined in the appropriate tables and figures.

Frequencies based on the methods of previous investigators were obtained as follows:

(1) For the cylinders and the annular plate, the methods of the previous investigators
(refs. 15, 16, and 17) were automated for computation on a digital-computer. Some of the
physical data of the orthotropic cylinder were obtained from reference 18.

(2) For the conical frustums, the computer program of Naumann (ref. 1) was used.

(3) For the shells of positive and negative Gaussian curvature, frequencies were
provided by Paul A. Cooper who obtained them by use of a computer program based on the
procedure described in reference 4.
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Presentation of Results

Calculations were performed with the present method for each shell using a range
on the circumferential wave number n of 0 through 10 because the minimum frequencies
for the shells were in this range. Since all calculations by the present method were based
on representations by 10 elements, approximately 60 modes per value of n were gener-
ated. Because presentation of all these modes appeared impractical, a decision had to be
made as to which modes to present for each shell. A main consideration in selection of
a mode for presentation was whether a calculation of the frequency parameter was avail-
able from one of the methods of the previous investigators for comparison.

Minimum frequencies.- The minimum frequency parameter for each value of n

was available for every shell. Correlations for minimum frequency parameters are pre-
sented in table IV. The information in this table is shown graphically in figures 5 to 11.
The frequency parameters in these figures should be viewed both as results of the present
analysis and as results of the previous investigators since the differences are too small
to be seen on the plots. Some experimental results from references 16 and 1 are shown
in figures 6 and 7, respectively.

Higher modes of cylinders.- The selection of which higher frequency parameters to
present was made for each shell on an individual basis. For the cylinders, the solutions

of Arnold and Warburton and of Hoppmann give exact frequency parameters for all modes.
In order to describe which of these modes were selected for correlation, it is necessary
to discuss briefly the nature of the exact mode shapes for the freely supported cylinders.
The exact mode shapes have the form:

_ mr7s
u= Amyp COS =5, cos no

. m7s _.
v = Bmn smTﬂsm ne

w = Cpp sin ELE cos n@

where m takes on integer values and Ap,, Bmp, and Cp,, are constants which char-
acterize a mode.

Thus, m is equal to the number of nodal circles in u or one plus the number of
nodal circles in v or w. For a given pair of values for m and n, three modes are
possible. Each mode corresponds to a different ratio of App : Bmn : Cmn. For each
value of n, modes were arbitrarily selected for values of m from 1to 5. The cor-
responding frequency parameters computed by the present analysis were identified by
inspecting the computed mode shapes and counting nodal circles. Correlations for the
higher frequency parameters of the cylinders are presented in tables V and VI for the

28




values of n and m considered. For the purpose of illustration, the variations with m
of the three frequency parameters associated with each value of m are shown in fig-

ures 12 and'13'for n = 2.

Higher modes of conical frustums.- For the conical frustums, a large number of
frequency parameters were available from Naumann's Rayleigh-Ritz procedure for com-
parison with results of the present analysis. A correlation was made for n=2. Modes
were selected for presentation as follows: First, all modes having from one to five nodal
circles in the w-displacement were examined. For the freely supported cylinders, there

were exactly three modes having a given number of circumferential waves and a given
number of circular node lines in the w-displacement. For the conical frustums, there
are usually not exactly three. For purposes of presenting frequencies in the present
analysis, an arbitrary selection of modes was made. If there are three or less modes
corresponding to a given number of nodal circles in w, all are presented. If there are
more than three, only three are presented. To avoid any misunderstanding, the following
table tells which modes of the conical frustums having five or less nodal circles in w
are not presented:

Nodal circles Nodal circles Nodal circles
in w in u in v

Free-free 1 0

Clamped-free

B w b w O
D BN O
XX g o = O | O

The correlations for the higher frequency parameters of the conical frustums for n = 2
are shown in tables VII and VIII. This information is also shown graphically in figures 14
and 15. As in figures 5 to 11, the results in figures 14 and 15 can be interpreted as either
the results of the present analysis or the other investigation since the results are coinci-
dent for plotting purposes. As a matter of interest, the mode shapes from the present
analysis corresponding to the frequency parameters in figures 14 and 15 are shown in fig-
ures 16 and 17.

Higher modes of shells having positive and negative Gaussian curvature.- For the
shells of positive and negative Gaussian curvature, no higher frequency parameters were
available from Cooper's method for correlation. As a matter of interest, some higher
frequency parameters computed by the present analysis for these shells are presented for
n=2 intables IX and X. Specifically, frequency parameters for modes having four or
less circular node lines in w are presented. As was the case with the cylinders, there
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are exactly three frequencies corresponding to each number of circular node lines in w.
The variation of the three frequency parameters with the number of circular node lines
in w is shown in figures 18 and 19. The mode shapes corresponding to the frequency
parameters in figures 18 and 19 are shown in figures 20 and 21.

Discussion of the Applications

The correlations in tables IV to VIII can be summarized as follows: All frequency
parameters presented for the two cylinders, the shells of positive and negative Gaussian
curvature, and the annular plate showed agreement with the results of the previous inves-
tigators through at least the second significant figure. For the cylinders, the agreement
was in most cases through six significant figures. For the free-free conical frustum,
most frequency parameters predicted by the present analysis agreed with the frequency
parameters from the method of reference 1 through at least the second significant figure.
The exceptions were the ninth, eleventh, and twelfth values of w2 listed in table VII in
which the frequency parameters from the present analysis were lower in the second sig-
nificant figure. It is noted in reference 19 that under certain conditions (that are met by
the present analysis) the finite-element method is equivalent to the Rayleigh-Ritz method
in that both methods give upper bounds to the exact frequencies. Therefore, it follows
that the frequency parameters predicted by the present analysis are better approxima-
tions to the corresponding exact frequency parameters than are the frequency parameters
from the method of reference 1. It is believed that the first significant figure in the three
frequency parameters is probably correct and that the lack of agreement for these fre-
quency parameters does not indicate any significant inaccuracy in the results of the pres-
ent analysis. For the clamped-free conical frustum, most frequency parameters pre-
dicted by the present analysis again agreed with the frequency parameters from the
method of reference 1 through at least the second significant figure. The exceptions in
this instance are the minimum frequency parameters in table IV for n = 1, 2, and 3 and
the eighth and ninth values of the frequency parameters w2 listed in table VIII. For the
eighth and ninth values of w2 listed in table VIII, the present analysis predicted fre-
quency parameters which were lower than the corresponding values from the method of
reference 1. As with the free-free conical frustum, these differences occurred in the
second significant figure. It is again concluded that the present results are closer to the
exact frequency parameters. In the case of the noted disagreement in table IV, the fre-
quency parameters from the present analysis are higher (in the first significant figure
for n = 2) than the corresponding result from the method of reference 1. By reasoning
similar to that used in the preceding discussion, it is concluded that the present analysis
is somewhat inaccurate for the minimum frequency parameters of the clamped-free coni-
cal frustum for n =1, 2, and 3.
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No dependence of accuracy on the circumferential wave number was noted. Further-
more, only slight degradation of accuracy was noted as modes with increasing numbers of
circular node lines in w were considered. In the latter instance, significant degrada-
tion might have been expected. The only notable degradation of accuracy was with regard
to edge constraint. The frequency parameters of the conical frustum with a clamped edge
(tables IV and VIII) showed worse correlation with the results of the previous investiga-
tions than did the frequency parameters of shells with free or freely supported edges.

For the reasons stated in the introduction, no correlations are presented for mode
shapes. However, a cursory correlation between the mode shapes from the present anal-
ysis and such mode shapes as were available from the methods of the previous investiga-
tors was made. The computed mode shapes for the cylinders appeared to coincide with
the exact mode shapes which are sine and cosine curves. The computed mode shapes
corresponding to some of the minimum frequencies of the free-free conical frustum
appeared to agree with those mode shapes published in reference 1. The authors also
made some correlations of mode shapes for a few of the higher modes of the conical
frustums obtained by the method of reference 1. For these mode shapes the present anal-
ysis and the method of reference 1 appeared to agree very well.

Computational Efficiency and Reliability

As was stated in the introduction, two major objectives of the computer program
were: (1) machine efficiency, that is, the ability to compute quickly a large number of
frequencies and mode shapes; (2) reliability, that is, capability of predicting every mode
in the range of the frequency spectrum of interest. Machine efficiency was achieved.
Typically, over 600 frequencies and modal columns are computed in less than 15 minutes
on the Control Data 6600 computer system. Reliability was not proven but is indicated by
the correlations obtained by the exact theory for the cylinders. The eigenvalue problems
generated were well conditioned, since only single-precision arithmetic was required for
accurate solution.

Limitations

Experience with this computer program and with the correlations are believed to
indicate that the major limitation of the program in its present form lies in the approxi-
mation of the normal displacement w by a third-order curve over each element. (See
eq. (7).) From the assumption that w is a third-order curve in each element, it follows
that:

(1) Certain moment resultants are discontinuous across junctures between elements.
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(2) The moment distributions may be seriously in error if the moment distribution

in a region represented by a single element has a variation of higher order than linear.

Some results of modal stress calculations for modes with large moment gradients
are suspected to be in error. Furthermore, the errors previously noted in some mini-
mum frequencies of the clamped-free conical frustum are believed to stem from the third-
order approximation since a steep moment gradient is known to occur near a clamped
edge. A possible remedy is to increase by two the order of polynomial representation of
w and to require continuity of curvature across element junctures.

Another limitation which is emphasized is the restriction of the present analysis to
shells for which the shell surface does not intersect the axis of the shell. Thus, this
analysis is not applicable to configurations such as a hemisphere.

Finally, the reader is reminded that the analysis is restricted to shells with con-
tinuous stiffness distributions as noted from the conditions imposed by equation (33).
This restriction is easily removed by replacing the last two equalities of equation (33) by
appropriate conditions on the continuity of stress and moment resultants across element
junctures.

CONCLUDING REMARKS

An analytical procedure based on the finite-element method is developed for com-
puting natural frequencies and mode shapes of thin shells of revolution. The shells may
have general meridional curvature and orthotropic elastic properties. The details of a
computer program based on this procedure are described.

A distinguishing feature of the procedure is that it employs an element which is
geometrically exact in that the actual geometry of the shell being analyzed is input to the
analysis in the form of functions. The displacements of the shell within an element are
approximated by third-order polynomials which are defined over the element. Inter-
element compatibility is expressed by equating displacements and rotations at all junc-
tures between elements. The required integrations for computing the element stiffness
and mass matrices are performed numerically by using the trapezoidal rule. The stiff-
ness and mass matrices for the complete shell are formed by superposition. Edge con-
straints are incorporated by deleting rows and columns from the complete shell stiffness
and mass matrices. The resulting symmetric eigenvalue problem is solved by a standard
method.

The computer program has been applied to several shells:
(1) An isotropic cylinder with freely supported edges
(2) An orthotropic cylinder with freely supported edges
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(3) A 120° conical frustum with free-free edges

(4) A 1200 conical frustum with clamped-free edges

(5) A shell having positive Gaussian curvature with freely supported edges
(6) A shell having negative Gaussian curvature with freely supported edges
(7) An annular plate with free-free edges

The main results and conclusions are as follows:

1. Very generally, excellent agreement was noted between frequencies from the
present analysis and frequencies from the previous investigations.

2. The only inaccuracies of the present analysis which might be considered signifi-
cant occurred in three minimum frequencies of the clamped-free conical frustum. This
inaccuracy is believed to stem from the inability of third-order polynomials to conform
to a steep stress gradient near a clamped edge, and consequently increasing the repre-
sentation of the normal-displacement component to a fifth-order polynomial would be
expected to result in overall excellent agreement.

3. The computer program performs with very short running times and no modes are
overlooked in computation.

4. The natural frequencies and mode shapes from this method appear to constitute
reliable input for forced response calculations for structures involving shells of
revolution.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., September 3, 1968,
124-08-05-08-23.
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APPENDIX

ELEMENTS OF MATRIX [R]
[See eq. (16)]

The elements of matrix [:R] are as follows:

Cllr C12r szr D22n4 D66n2(r')2 2K12n2 2K22n2
T ot ot

Rq1 = + - +
Rlz RiRg R22 r3 r3 rRq rRy
R R D22r'n2 D66n2r' K12r' Kzzr'
1277215 "= 5 "7 2 "Ry Ry
D12n2 Kllr Kqor
Rigr=Ray= 05— R, Ry
' ' 2n' 1) 20 ' '
e Cqor Cogr D12n R1 D22r n D66n T Kller Kqor
147417 R~ " " 7 | 9n | 25 nd 52
1 2 I‘Rl g Rl 3 Rl Rl Rl

_K12rR'1+K22“2r' Koo' Kggn’r'
R12Rs r2 RiRy r2

Cqiqr Cqor D n2 Kaiqr K n2 Kqor
Rys = Ryq = él + 12 + 12 + 11 + 1% N 12

Cign Cagn Dygn® Degn(r)® Kypn Kyon® Kpon
+ + +

R =R = ST
16~ R61= R * R,

2
Keean(r')
G088

r

D66nr' B K66nr'
I‘Rz r

Ry =Rqq=-

B D22(r')2 D66n2

R22 = T <+ T

Rosisiap = Dok

rsz rsz RiRo r2 Rzz

(A2)

(A3)

(A4)

(A5)

(A6)

(AT)

(A8)

(A9)



APPENDIX

o o 2 n2 2
i e ARRLY Dya(r')” Dggh™ Kpalr)™ Kegn
R12 I‘Rl I‘Rl r r
D12r'
Ros5 = Rpg = - Ry 12

Dzznr' D66r'n Kzznr' K66nr'
Rog = Rgo = - - - -
26 62 rRy rRy L r

D66n
Ron = Ryg = Ry T Keggh

Rgg = Dyy*

Rgq = Ry3 = ——Dg;'lr s Bt D;{zlrv
Rgp = Rg3 = - Délr =S

Rgg = Rg3 = - Dplén =

Ban S =10

N2 2 1\2 't { 2 2
Omlel” Ceel” | D;y(Ry)°r 2DypRyr . Doplt")”  Dggn

Ryq T T

4 3
Ry Ry rR12
9K, .r'R: 2K, (r")% 2K,.n?
B s O bl
R12 rRq rRl
D++Rir Dqor' K Rir 2Kqvor!
_ _ i R 12
R45 = R54 = Clzr - + + Rl

3 2 2
Rq Ry Ry

I'R.12

(A10)

(A11)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

35




APPENDIX

. ' ' v '
~ ~ Cggr'n  Cggnr' DyonRy D22nr Dggr'n  K;9nRy
R46 = R64 = + = =

+
i r R12R2 rRiRy  rRiRy R12
Koonr' Koonr' Kppnr' Kaanr'
o 22 N 22 N 66 + 66 (A21)
rRy rRo rRy rRo
Dggn Kggn  Kggn
R :R =-C n - = = (A22)
47 74 66 RiRy Ry Ry
Dy,r 2Kqqr
11 1Ll
Rer = CqiqT + + (A23)
55 1
1 R12 Rl
Dby LCein s
Reat= Rop ~Clonipaii, 120, 12 (A24)
Coon?  Cpra(r)? Doon? Doa(r)? 2Koon®  2Kan(r')>
R, - 22" 66 L2266\ ) S22t | “Pee (A26)
66 r 2y rRZZ rRZZ I‘Rz I‘Rz
Daart 2Kt
66 66
Rg7 = Ryg = -CggT" - - (A27)
R22 Rg
Dgpar 2Kgpar
Ry2 Ry
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TABLE III.- EDGE CONSTRAINTS

ICASE Description Equations for edge constraint Rows and columns deleted
1 Free-free None None
2 Free—freely supported v(L) =w(L) =0 (6K + 1), (6K + 3)
3 Freely supported—free v(0) =w(0) =0 1, 3
4 Free—simply supported u(L) = v(L) =w(L) = 0 (6K + 1), (6K + 2), (6K + 3)
5 Simply supported—ifree u(0) =v(0) = w(0) =0 12,3
6 Free-clamped u(L) = v(L) =w(L) = (L) = 0 (6K + 1), (6K + 2), (6K + 3), (6K + 4)
7 Clamped-free u(0) = v(0) = w(0) = B(0) = 0 15234
8 Freely supported— v({0) =w(0) =0 1, 3, (6K + 1), (6K + 3)
freely supported v(L) =w(L)=0
9 Simply supported— u(0) = v(0) =w(0) = 0 1, 2, 3, (6K + 1), (6K + 2), (6K + 3)
simply supported w(l) = v(L) = w(L) =0
10 Clamped- clamped u(0) = v(0) = w(0) = B(0) = 0 1,2, 3,4, (6K + 1), (6K + 2), (6K + 3), (6K + 4)
u(L) = v(L) = w(L) = B(L) = 0
11 Freely supported— v(0) =w(0) =0 1, 3, (6K + 1), (6K + 2), (6K + 3)
simply supported u(L) = v(L) =w(L) =0
12 Freely supported— v(0) =w(0) =0 1, 3, (6K + 1), (6K + 2), (6K + 3), (6K + 4)
clamped u(L) = v(L) =w(L) = g(L) = 0
13 Simply supported— u(0) =v(0) = w(0) =0 1, 2, 3, (6K + 1), (6K + 3)
freely supported v(L) =w(L) =0
14 Simply supported— u(0) =v(0) =w(0) =0 1, 2, 3, (6K + 1), (6K + 2), (6K + 3), (6K + 4)
clamped u(L) = v(L) = w(L) = B(L) =0
15 Clamped— u(0) = v(0) = w(0) = B(0) = 0 1,2, 3, 4, (6K + 1), (6K + 3)
freely supported v(L) =w(L) =0
16 Clamped— u(0) = v(0) = w(0) = B(0) =0

simply supported

u(L) =v(L) =w(L) =0

1, 2, 3, 4, (6K + 1), (6K + 2), (6K + 3)
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TABLE IV.- COMPARISON OF MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY

PRESENT METHODS WITH THOSE OF PREVIOUS INVESTIGATIONS

Circumferential
wave number,
n

w2 S(—Z‘()_2

’

Freely supported—freely supported cylinder

Isotropic

Orthotropic

Present analysis

Reference 15

Present analysis

Reference 16

© 00 J O U v W N~ O

—
o

3.86111 x 108
1.17339 x 108
2.25430 x 107
5.95827 x 107
2.17401 x 106
1.11765 x 106
9.09145 x 10°
1.11505 x 108
1.64300 x 108
2.50514 x 106
3.75508 x 106

3.86111 x 108
1.17339 x 108
2.25430 x 107
5.95827 % 107
2.17401 x 106
1.11765 x 106
9.09145 x 109
1.11505 x 106
1.64300 x 106
2.50514 x 106
3.75508 x 106

8.01167 x 108
1.09559 x 108
2.15504 x 107
5.53142 x 107
1.85439 x 108
4.74829 x 108
1.01231 x 109
1.90756 x 109
3.29043 x 109
5.31084 % 109
8.13868 x 10°

8.01167 x 108
1.09559 x 108
2.15504 x 107
5.53142 x 107
1.85439 x 108
4.74829 x 108
1.01231 x 10°
1.90756 x 10°
3.29043 x 109
5.31084 x 10°
8.13868 x 10°

Circumferential
wave number,
n

w2,

sec-2

120° conical frustum

Free-free

Clamped-free

Present analysis

Reference 1

Present analysis

Reference 1

© 0 9 D o B W N = O

—
o

0
0

2.8727 x 102
1.9154 x 103
6.3759 x 103
1.5047 x 104
2.7824 x 104
4.4394 % 104
6.6322 x 104
9.5417 x 104
1.3333 x 10°

0

0

2.8725 x 102
1.9149 x 103
6.3728 X 103
1.5038 x 104
2.7815 x 104
4.4387 x 104
6.6310 x 104
9.5394 x 104
1.3329 x 109

2.5380 x 104
3.7049 X 10°
7.2558 x 104
2.2666 x 104
1.3694 x 104
1.7636 x 104
2.8529 x 104
4.4524 x 104
6.6338 x 104
9.5418 x 104
1.3333 x 10°

2.5378 x 104
3.6125 x 109
6.9075 x 104
2.1638 x 104
1.3434 x 104
1.7611 x 10%
2.8520 x 104
4.4507 x 104
6.6324 x 10%
9.539 x 104
1.3329 x 10°
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TABLE IV.- COMPARISON OF MINIMUM FREQUENCY PARAMETERS AS COMPUTED BY

PRESENT METHODS WITH THOSE OF PREVIOUS INVESTIGATIONS — Concluded

Dimensionless frequency parameter, Q = wR[(p/E)(l - u2)]1/2

Circumferential Shell of positive Shell of negative
wave number, Gaussian curvature, Gaussian curvature,
n freely supported edges freely supported edges
Present analysis Reference 4 Present analysis Reference 4
0 EEEE ——— 0.640 0.640
1 0.411 0.412 .368 .368
2 .360 .362 o115 157
3 .340 .340 .0628 .0628
4 -331 .331 .01970 .01972
5 321 3217 .00779 .00784
6 .324 .324 .01923 .01924
7 .323 .322 .02804 .02805
8 .322 .321 .02580 .02609
9 .321 .321 .0240 .0241
10 .321 .321 .0292 .0292
w2, sec-2
Circumferential
wave number, Plates
A Present analysis Reference 17
0 86.74 86.74
1 295.8 295.8
2 18.24 18.24
3 130.5 130.5
4 443.8 443.8
5 1087 1087
6 2 215 2 215
7 4 003 4 003
8 6 660 6 660
9 10 415 10 415
10 15 532 15 532
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TABLE V.- CORRELATION OF FREQUENCY PARAMETER w2 OF FREELY SUPPORTED CYLINDER
AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION OF REFERENCE 15

wz, sec™2
m Present analysis r Reference 15 Present analysis I Reference 15 Present analysis Reference 15
n=0 n=1 n=2
1.950193 x 109 1.950193 x 109 1.17339 x 108 1.17339 x 108 2.25430 x 107 2.25430 x 107
1 9.00656 x 108 9.00656 X 108 1.41017 x 109 1.41017 x 109 3.1160 x 109 3.116  x 109
3.86111 x 108 3.86111 x 108 4.09860 x 109 4.09860 x 109 9.65443 x 109 9.65443 x 109
1.53415 x 109 1.53415 % 109 5.83357 x 108 5.83356 x 108 1.90073 x 108 1.90073 x 108
2 4.57961 x 109 4.47961 x 109 2.78500 x 109 2.78500 x 109 4.59200 x 109 4.59200 x 109
1.54445 x 109 1.54445 x 109 6.67902 x 109 6.67902 x 109 1.24328 x 1010 1.24328 x 1010
1.58626 x 109 1.58626 x 109 1.02452 x 109 1.02451 x 109 4.75299 x 108 4.75290 x 108
3 9.96586 x 109 9.96570 x 109 1.18772 % 1010 1.18772 x 1010 6.60278 x 109 6.60268 x 109
3.47507 x 109 3.47500 x 109 4.51464 x 109 4.51457 x 109 1.75057 x 1010 1.75056 x 1010
1.59995 x 10° 1.59995 x 109 1.26785 x 109 1.26782 x 109 7.55161 x 108 7.55117 x 108
4 1.75668 x 108 1.75655 x 108 1.94100 x 1010 1.94088 x 1010 2.49175 % 1010 2.49164 x 1010
6.17832 x 109 6.17778 % 109 7.05640 x 10° 7.95582 x 109 9.22905 x 109 9.22834 x 10°
1.60572 x 109 1.60571 x 109 1.39208 x 109 1.39201 x 109 9.73034 x 108 9.72909 x 108
5 2.73552 x 1010 2.73485 x 1010 2.91681 x 1010 2.91617 x 1010 3.46020 x 1010 3.45961 x 1010
9.65539 x 109 9.65279 x 109 1.04453 x 1010 1.04425x 1010 | 1,25978 x 1010 1.25946 x 1010
m n=3 ni= n=195,
5.95827 x 106 5.95827 x 106 2.17401 x 106 2.17401 x 106 1.11765 x 106 1.11765 x 108
1 6.15055 x 109 6.15055 x 109 1.04833 x 1010 1.04833 x 1010 1.60902 x 1010 1.60902 x 1010
1.85829 x 1010 1.85829 x 1010 3.09779 x 1010 3.09779 x 1010 4.68747 x 1010 4.68747 x 1010
6.66567 X 107 6.66563 X 107 2.70603 x 107 2.70601 x 107 1.27354 % 107 1.27352 x 107
2 7.56577 x 109 7.56576 x 109 1.18310 x 1010 1.18310 x 1010 1.73881 x 1010 1.73881 x 1010
2.15282 x 1010 2.15282 x 1010 3.40266 x 1010 3.40266 x 1010 4.99865 x 1010 4.99865 x 1010
2.13124 x 108 2.13118 x 108 1.00599 x 108 1.00594 x 108 5.13733 x 107 5.13704 % 107
3 9.67973 x 109 9.67963 x 109 1.39500 x 1010 1.39499 x 1010 1.94829 x 1010 1.94828 x 1010
2.66367 x 1010 2.66367 x 1010 3.92032 x 1010 3.92031 x 1010 5.52220 x 1010 5.52219 x 1010
4.10749 x 108 4.10708 x 108 2.22493 x 108 2.22462 x 108 1.24623 x 108 1.24601 x 108
4 1.24380 x 1010 1.24372 x 1010 1.67738 x 1010 1.67733 x 1010 2.23239 x 1010 2.23230 x 1010
3.39988 x 1010 3.39978 x 1010 | 4.65653 x 1010 4.65745 x 1010 6.26256 x 1010 6.26249 x 1010
6.12256 x 108 6.12119 x 108 3.72329 x 108 3.72208 x 108 2.27379 x 108 2.27282 x 108
5 4.36214 x 1010 4.36131 x 1010 2.02963 x 1010 2.02922 x 1010 7.222176 x 1010 7.22237 x 1010
1.58850 x 1010 1.58813 x 1010 5.61740 x 1010 5.61693 x 1010 2.58897 x 1010 2.58853 x 1010
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TABLE V.- CORRELATION OF FREQUENCY PARAMETER 2 OF FREELY SUPPORTED CYLINDER

AS COMPUTED BY PRESENT ANALYSIS AND EXACT SOLUTION OF REFERENCE 15 — Concluded

w2, sec”

2

Present analysis

Reference 15

Present analysis

Reference 15

Present analysis

Reference 15

n

=6

ni=4

n=

9.09145 x 10°
2.29598 x 1010
6.62863 x 1010

6.96234 x 106
2.42233 x 1010
6.94380 x 1010

2.85635 x 107
2.62905 x 1010
7.47182 x 1010

7.33039 x 107
2.91264 x 1010
8.21554 x 1010

1.42224 % 108
3.27094 x 1010
9.17738 x 1010

9.09145 x 10°
2.29598 x 1010
6.62863 x 1010

6.96226 x 106
2.42233 x 1010
6.94380 x 1010

2.85615 % 107
2.62903 x 1010
7.47182 x 1010

7.32876 X 107
2.91254 x 1010
8.21548 x 1010

1.42150 x 108
3.27049 x 1010
9.17704 x 1010

1.11505 x 10°
3.10870 x 1010
8.92182 x 1010

4.56899 x 108
3.23267 x 1010
9.23964 x 1010

1.74106 x 107
3.43697 x 1010
9.77096 x 1010

4.56222 x 107
3.71926 x 1010
1.05176 x 1011

9.20757 % 107
4.07780 x 1010
1.14813 x 1011

1.11505 x 109
3.10870 x 1010
8.92182 x 1010

4.56892 x 108
3.23267 x 1010
9.23964 x 1010

1.74092 x 107
3.43696 x 1010
9.77096 x 1010

4.56103 x 107
3.71916 x 1010
1.05176 x 1011

9.20184 x 107
4.07733 x 1010
1.14812 x 1011

1.64300 x 10°
4.,04694 x 1010
1.15673 x 1011

3.77396 x 108
4.16922 x 1010
1.18870 x 1011

1.18524 x 107
4.37157 x 1010
1.24207 x 1011

3.03024 x 107
4.65240 x 1010
1.31698 x 1011

6.21633 X 107
5.01043 x 1010
1.41378 x 1011

1.64300 x 106
4.04694 x 1010
1.15673 x 1011

3.77391 x 108
4.16922 x 1010
1.18870 x 1011

1.18514 % 107
4.37156 % 1010
1.24207 x 1011

3.02935 x 107
4.65231 x 1010
1.31698 x 1011

6.21190 X 107
5.00996 x 1010
1.41353 x 1011

n

=9

n=

10

T e e g =W

2.50514 x 108
5.11057 x 1010
1.45653 x 1011

3.91728 % 108
5.23161 x 1010
1.48862 x 1011

9.27100 x 108
5.43242 x 1010
1.54218 x 1011

2.17922 x 107
5.71189 x 1010
1.61727 x 1011

4.41539 x 107
6.06912 x 1010
1.71401 x 1011

2.50514 x 108
5.11057 x 1010
1.45653 x 1011

3.91725 % 108
5.23162 x 1010
1.48862 x 1011

9.27021 x 108
5.43241 % 1010
1.54218 x 1011

2.17854 X 107
5.71180 x 1010
1.61727 % 1011

4.41191 x 107
6.06864 x 1010
1.71401 x 1011

3.75508 x 106
6.29952 x 1010
1.79157 x 1011

4.75813 % 108
6.41965 x 1010
1.82376 x 1011

8.48546 x 108
6.61922 x 1010
1.87746 x 1011

1.72993 x 107
6.89750 x 1010
1.95275 x 1011

3.34003 x 107
7.25384 x 1010
2.04966 x 1011

3.75508 x 108
6.29952 x 1010
1.79157 x 1011

4.75810 % 108
6.41965 x 1010
1.82376 x 1011

8.48484 x 108
6.61921 % 1010
1.87746 x 1011

1.72939 x 107
6.89741 x 1010
1.95272 x 1011

3.33725 % 107
7.25336 x 1010
2.04960 x 1011
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TABLE VI.- COMPARISON OF FREQUENCY PARAMETER w2 OF AN ORTHOTROPIC CYLINDER

WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS
AND EXACT METHOD OF REFERENCE 16

w2 sec-2

Present analysis

Reference 16

Present analysis

Reference 16

Present analysis

Reference 16

n=0

n=1

n=2

8.37907 x 109
2.00989 % 109
8.01167 x 108

6.73909 x 109
1.00045 x 1010
3.20467 x 109

7.77840 % 109
1.95747 x 1010
7.21064 % 109

7.97769 % 109
3.42687 x 1010
1.28198 x 1010

8.18535 x 109
5.32836 x 1010
2.00346 x 1010

8.37907 x 109
2.00989 x 109
8.01167 x 108

6.73909 x 109
1.00045 x 1010
3.20467 x 109

7.77835 x 109
1.95744 x 1010
7.21050 x 10°

7.977217 % 109
3.42661 x 1010
1.28198 x 1010

8.18303 x 109
5.32704 x 1010
2.00292 x 1010

1.09559 x 108
6.98986 x 109
1.76461 x 1010

9.33628 x 108
1.05341 x 1010
2.20377 % 1010

2.47618 x 109
3.14843 x 1010
1.41632 x 1010

4.14783 x 109
4.59040 x 1010
1.85782 x 1010

5.52799 x 109
6.48262 x 1010
2.47182 x 1010

1.09559 % 108
6.98986 x 109
1.76461 x 1010

9.33624 x 108
1.05341 x 1010
2.20377 x 1010

2.47610 x 109
3.14841 x 1010
1.41630 x 1010

4.14727 x 109
4.59018 % 1010
1.85770 x 1010

5.52532 x 109
6.48142 x 1010
2.47122 x 1010

2.15504 x 107
2.18774 x 1010
4.35227 % 1010

1.96173 % 108
2.39218 x 1010
5.00686 x 1010

7.07832 x 108
2.70286 x 1010
6.10771 x 1010

1.56673 x 109
7.64494 x 1010
3.13158 x 1010

2.66133 x 109
9.60704 x 1010
3.70574 x 1010

2.15504 x 107
2.18774 x 1010
4.35227 x 1010

1.96170 x 108
2.39218 x 1010
5.00686 x 1010

7.07771 % 108
2.70284 x 1010
6.10769 x 1010

1.56621 x 109
7.64474 x 1010
3.13143 x 1010

2.65858 x 109
9.60598 x 1010
3.70507 x 1010

n=4

5

5.53142 X 107
4.77293 x 1010
8.54639 x 1010

1.16635 x 108
4.85733 x 1010
9.33321 x 1010

3.18483 x 108
5.04809 x 1010
1.05863 x 1011

7.36447 x 108
5.37677 x 1010
1.22697 x 1011

1.40603 x 109
1.43650 x 1011
5.86279 x 1010

= e N e o Sy

5.53142 x 107
4.77293 x 1010
8.54639 x 1010

1.16633 x 108
4.85733 x 1010
9.33321 x 1010

3.18432 x 108
5.04807 x 1010
1.05864 x 1011

7.35971 x 108
5.37662 x 1010
1.22696 x 1011

1.40340 x 109
1.43641 x 1011
5.86202 x 1010

1.85439 x 108
8.43972 x 1010
1.43693 x 1011

2.30036 x 108
8.44403 x 1010
1.52391 x 1011

3.55839 x 108
8.52479 x 1010
1.66119 x 1011

6.21337 x 108
8.73284 x 1010
1.84339 x 1011

1.08415 x 109
9.09817 x 1010
2.06739 x 1011

1.85439 x 108
8.43972 x 1010
1.43693 x 1011

2.30034 x 108
8.44403 x 1010
1.52391 x 1011

3.55792 X 108
8.52477 x 1010
1.66119 % 1011

6.20889 x 108
8.73268 x 1010
1.84338 % 1011

1.08160 x 109
9.09739 x 1010
2.06733 x 1011

4.74829 x 108
1.31754 x 1011
2.18346 x 1011

5.25903 x 108
1.31272 x 1011
2.27577 x 1011

6.44414 x 108
1.31219 x 1011
2.42199 x 1011

8.74824 x 108
1.32196 x 1011
2.61593 x 1011

1.27123 x 109
1.34611 x 1011
2.85407 x 1011

4.74829 x 108
1.31754 x 1011
2.18346 x 1011

5.25901 x 108
1.31272 x 1011
2.27577 x 1011

6.44369 x 108
1.31219 x 1011
2.42198 x 1011

8.74385 x 108
1.32194 x 1011
2.61592 x 1011

1.26872 % 109
1.34603 x 1011
2.85339 x 1011
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TABLE VI.- COMPARISON OF FREQUENCY PARAMETER w2 OF AN ORTHOTROPIC CYLINDER
WITH FREELY SUPPORTED EDGES AS COMPUTED BY PRESENT ANALYSIS
AND EXACT METHOD OF REFERENCE 16 — Concluded

(JJZ SeC_2

Present analysis Reference 16 Present analysis Reference 16 Present analysis Reference 16

n==6 n="17 n=8

1.01231 x 109
1.89737 x 1011
3.09484 x 1011

1.07881 x 109
1.88906 x 1011
3.19069 x 1011

1.21550 x 109

1.88205 x 1011
3.34351 x 1011

1.45929 x 109
1.88257 x 1011
3.54695 x 1011

1.85912 x 109
1.89540 x 1011
3.79646 x 1011

1.01231 x 109
1.89737 x 1011
3.09484 x 1011

1.07880 X 109
1.88906 x 1011
3.19069 x 1011

1.215546 x 109
1.88205 x 1011
3.34351 x 1011

1.45885 x 109
1.88256 x 1011
3.54700 x 1011

1.85661 x 109
1.89533 x 1011
3.79631 x 1011

1.90756 x 109
2.58318 x 1011
4.17137 x 1011

1.99482 x 109
2.47246 x 1011
4.26965 x 1011

2.16263 x 109
2.56061 x 1011
4.42737 x 1011

2.44390 x 109
2.55363 x 1011
4.63855 x 1011

2.88407 x 109
2.55664 x 1011
4.89809 x 1011

1.90756 x 109
2.58318 x 1011
4.17137 x 1011

1.99481 x 109
2.47246 x 1011
4.26965 x 1011

2.16258 x 109
2.56061 x 1011
4.42737 x 1011

2.44346 x 109
2.55362 x 1011
4.63851 x 1011

2.88152 x 109
2.55657 x 1011
4.89791 x 1011

3.29043 x 109
3.37482 x 1011
5.41321 x 1011

3.40265 x 109
3.36238 x 1011
5.51321 x 1011

3.61029 x 109
3.34688 x 1011
5.67465 % 1011

3.94411 x 109
3.33389 x 1011
5.89187 x 1011

4.44733 x 10°
3.32856 x 1011
6.15984 x 1011

3.29043 x 109
3.37482 x 1011
5.41321 x 1011

3.40265 x 109
3.36238 x 1011
5.51321 x 1011

3.61024 x 109
3.34688 x 1011
5.67462 x 1011

3.94365 x 109
3.33387 x 1011
5.89184 x 1011

4.44473 x 109
3.32849 x 1011
6.15972 x 1011

n=9

10

{
{
{
{
{
{
{
{
{

4.27220 x 1011

5.31084 x 109
4.27220 x 1011

8.13868 x 109
5.27528 x 1011

8.13868 x 109
5.27528 x 1011

6.82044 x 1011 6.82044 x 1011 8.39310 x 1011 8.39310 x 1011
5.45179 x 109 5.45179 x 109 8.31196 x 109 8.31196 x 109

4.25852 x 1011 4.25852 x 1011 5.26066 x 1011 5.26066 x 1011
6.92169 x 1011 6.92169 x 1011 8.49529 x 1011 8.49529 x 1011

5.70636 x 109
4.24463 x 1011
7.08592 x 1011

6.10407 x 109
4.22240 x 1011
7.30801 x 1011

6.68682 x 109
4.21001 x 1011
7.58307 x 1011

5.70631 x 109
4.24022 x 1011
7.08591 x 1011

6.10360 x 109
4.22239 x 1011
7.30800 x 1011

6.68415 x 109
4.21001 x 1011
7.58295 x 1011

8.61988 x 109
5.24019 x 1011
8.66169 x 1011

9.09120 x 109
5.21849 x 1011
8.88772 x 1011

9.76702 x 109
5.20031 x 1011
9.16865 x 1011

8.61982 x 109
5.24019 x 1011
8.66169 x 1011

9.09072 x 109
5.21849 x 1011
8.88769 x 1011

9.76427 x 109
5.20024 x 1011
9.16854 x 1011
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TABLE VIL.- NATURAL FREQUENCIES OF A FREE-FREE 120° CONICAL
FRUSTUM SHELL AS A FUNCTION OF NUMBER OF CIRCULAR

NODE LINES IN NORMAL DISPLACEMENT w

p-1

Number of circular

Mode-identification

w2, sec-2

HORE IO BT figure Present analysis Reference 1
1 16(a) 3.903 x 104 3.900 x 10%
1 16(1) 1.780 x 109 1.781 x 109
1 16(j) 4.337 % 109 4.337 x 109
2 16(b) 1.858 X 107 1.861 % 107
2 16(k) 8.045 x 109 8.045 % 109
3 16(c) 2.267 x 107 2.286 X 107
3 16(g) 2.422 % 109 2.422 x 109
3 16(1) 1.311 x 1010 1.314 x 1010
4 16(d) 2.754 X 10" 2.831% 107
4 16(h) 4.127 x 109 4.127 x 109
4 16(m) 1.874 x 1010 1.951 x 1010
5 16(e) 3.314 x 107 3.654 x 107
5 16(i) 6.342 x 109 6.342 x 10°
5 16(n) 21019 <1010 NSRS
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TABLE VIII.- NATURAL FREQUENCIES OF A CLAMPED-FREE 1200 CONICAL

FRUSTUM SHELL AS A FUNCTION OF NUMBER OF CIRCULAR

NODE LINES IN NORMAL DISPLACEMENT w

(-2

Number of circular

Mode-identification

w2, sec-2

RoeE e L SEuE Present analysis Reference 1
1 17(a) 1.199 x 107 1.195 x 107
1 17(f) 1.794 x 109 1.795 x 109
1 17(k) 4.290 x 109 4,290 x 109
2 17(b) 1.948 x 107 1.953 x 107
2 17(g) 1.420 x 109 1.420 % 109
3 17(c) 9.420 x 107 9.453 x 107
3 17(h) 3.069 x 109 3.076 x 109
3 17(1) 8.695 x 109 8.702 x 109
4 17(d) 2.940 x 107 3.076 X 107
4 17(m) 1.304 x 1010 1.325 x 1010
4 17(i) 52241040 s —meeeeaio
5 17(e) 35450 e
5 173) 1025 % 1010 . | ———eeecio
5 17(n) 1760 x 1020 m T
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TABLE IX.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL HAVING
POSITIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NODAL CIRCLES
IN NORMAL DISPLACEMENT w

50

[~ 2]
Number of circular Mode-identification 92, sec2
node lines in w figure (present analysis)

0 20(a) 0.1425
0 20(f) .2340
0 20(k) 5.659
1 20(b) 0.3607
1 20(g) 3.918
1 20(1) 9.754
2 20(c) 0.5507
2 20(h) 5.914
2 20(m) 15.90
3 20(d) 0.6641
3 20(i) 8.571
3 20(n) 24.40
4 20(e) 0.7260
4 20(j) 12.26
4 20(o) 35.24




TABLE X.- NATURAL FREQUENCIES OF A FREELY SUPPORTED SHELL WITH
NEGATIVE GAUSSIAN CURVATURE AS A FUNCTION OF THE NUMBER OF

CIRCULAR NODE LINES IN NORMAL DISPLACEMENT w

p-1

Number of circular Mode-identification 02, sec-2
node lines in w tigure (present analysis)

0 21(a) 0.0246
0 21(f) 1.888
0 21(k) 5.804
1 21(b) 0.1950
1 21(g) 3.243
1 21(1) 8.660
2 21(c) 0.403
2 21(h) 5.128
2 21(m) 13.96
3 21(d) 0.5547
3 21(i) 1.347
3 21(n) 7.738
4 21(e) 0.6499
4 21(j) 11.13
4 21(0) 31.39




Geometry of a shell of revolution.

Figure 1.-
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Figure 2.- Typical idealization of shell of revolution showing geometrically exact finite elements.
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6(K+I) cols.

12 rows

-

k=2

© rows

k

6(K+1)rows

Figure 3.-

Illustration of synthesis of stiffness and mass matrices.




r =5in. = 12.7T cm
1/R1 0
1/Rg = 0.2 in.”1 = 0.07874 cm~1
T =1()
R)=0
L = 20 in. = 50.8 cm
E = 2.96 x 107 1b/in2 = 2.0408 X 107 N/cm2
p=0.29
p = 17.33 % 10-4 Ib-sec2/in% = 0.78335 X 1074 N-sec2/cm?
h = 0.008 in. = 0.02032 cm

I

(a) Isotropic cylinder.

r = 1.925 in. = 4.8895 cm
I/Rl = 0
1/Rg = 0.5195 in"1 = 0.2045 cm~1
r'=20
Ry =0
h = 0.065 in. = 0.165 cm
L = 15.53 in. = 39.4462 cm
ph = 0.1211 X 10-4 1b-sec2/in3 = 0.3287 x 10~ 2 N-sec2/cm3
Cq1 = 1.25 % 109 Ib/in. = 2.189 x 106 N/cm
Cy9 = 0.187 x 106 1b/in. = 0.327 X 106 N/cm
Cgg = 0.742 X 106 1b/in. = 1.299 x 108 N/cm
Cge = 0.473 x 106 1b/in. = 0.828 x 106 N/cm
Dyq = 0.652 X 106 Ib-in. = 7.367 x 106 N-cm
Dq9 = 1.767 X 106 1b-in. = 19.964 x 106 N-cm
Dgg = 2.767 X 106 Ib-in. = 31.263 x 106 N-cm
Dgg = 9 X 105 1b-in. = 101.686 x 106 N-cm

(b) Orthotropic cylinder.

Figure 4.- Properties of the shells analyzed for sample calculations.
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r=34+s\3/2 (in.) = 7.62 + s {3/2 (cm)

l/Rl =0
1 . 1
1/Rg & —————— (in-1l) o ———— (cm'l)
/ 0.1667 + s\3 0.06562 + s\3
r'= \/§/2
Rl =0
L= 2 in,) = l_oﬂ (Cm)
V3 V3
E=1x 107 1b/in2 = 6.8948 X 106 N/cm2
©=0.315

p = 2.54 X 10-4 1b-sec2/in4 = 0.2714 x 10-4 N-sec2/cm4
h = 0.025 in. = 0.0635 cm

(c) Isotropic 1200 conical frustum.

r =3 cos (0.5 g §> - 1.879 (in.) = 7.62 cos<0.5 - 25) - 4173 (em)

3 7.62
1/Rq = 0.333 in"1 = 0.131 cm-1
cos (0.5 - S €os(0.5 = =
1/R2= ( < 5) (in-1) = < '75.62) (em-1)
3 cos (0.5 d §> - 1.879 7.62 cos (0.5 = —) -4.73
7.62

r' = sin (0.5 - %) = sin <1.27 - %)
R, =0
Li= 3 in. = 7.62 cm
E = 1 lb/in2 = 0.68948 N/cm?
© = 0.30
p = 1 Ib-sec2/in4 = 0.10687 N-sec2/cm4
h = 0.001 in. = 0.00254 cm

(d) Isotropic shell of positive Gaussian curvature.

Figure 4.- Continued.




r =1 - 20{cos[-(1.5 - §)0.5] - 1} (in.)
2.54 - 50.8 {cos[-(3.81 - 5)0.01969] - 1} (cm)
-0.05 in-1 = -0.01969 cm~1
-cos[—(l.5 - s)0.05_-] ol
-1 + 20 {cos[-(1.5 - §)0.05) - 1}
~cos[-(3.81 - 5)0.01969]

-2.54 + 50.8{cos[-(3.81 - )0.01969] - 1}

r' = sin(-(1.5 - 5)0.05] = sin[-(3.81 - 5)0.01969]
R'l =0

L=3in. =17.62 cm

E = 0.91 Ib/in2 = 0.6274 N/cm?2

uw=0.30

p =1 1b-sec2/in4 = 0.10687 N-sec2/cm4

h = 0.001 in. = 0.00254 cm

I

"

1/Ry

1/R2 =

1

cm-

i}

(e) Isotropic shell of negative Gaussian curvature.

r=0.5+s (in.) = 1.27 + s (cm)
1/R1 =0
I/RZ =0
i =l
Ry =0
L=0.5in. =1.27 cm
E = 10.92 1b/in2 = 7.5291 N/cm?2
© = 0.30
p =1 1b-sec2/in% = 0.10687 N-sec2/cm4
h=1in =2.54 cm

(f) Isotropic annular plate.

Figure 4.- Concluded.
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O Calculated values
—— Faired curve
1081
o~
l(.)
(&)
(2]
e
3
o
’5
f=
(V)
=)
loF
e
=
S
E)
=
Q
108}
5 | | | 1
10°- § 2 4 6 8 0

Number of circumferential waves, n

Figure 5.- Minimum circular frequencies of a cylindrical shell computed by present method and method of reference 15. Freely supported edges.
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a Calculated values
0 Experiment (ref(6)
Faired curve
o 109}
o
(&)
w
o
3
s
=
o
c
Q
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o
&
S
=y
=
Q
108—
o
|07_ | | | | | 1
) 2 4 6 8 10

Number of circumferential waves, n

Figure 6.- Minimum circular frequencies of an orthotropic cylindrical shell computed by present method and method of reference 16.
Freely supported edges.
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|05_
m] Calculated values
‘?‘o o Experiment (ref |)
© Faired curve
e
3
-
=
o
=
(&)
=}
®
= ol
5]
=)
<
5
|
|
I
103k !
28 | | | | J
10~ 5 2 4 6 8

Number of circumferential waves, n

Figure 7.- Minimum circular frequencies of a 1200 conical frustum by present method and method of reference 1.
Free-free edge conditions.
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=2

(Circular frequency)?, w?, sec

O Calculated values
—— Faired curve
108}
|05_
|04_ T | L ] ! g
0 2 4 6 8 10
Number of circumferential waves, n

Figure 8.- Minimum circular frequencies of a 1200 conical frustum by present method and method of reference 1.

Clamped-free edge conditions.
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42r
O Calculated values
40k — Faired curve
-, .38f
=
4 3sl
e
i
3
S 34t
32+
3OL L | | 1 1 |

@) 2 4 6 8 1O
Number of circumferential waves, n

Figure 9.- Minimum nondimensional frequencies of a shell of positive Gaussian curvature as computed by present method and
method of reference 4. Freely supported edges.
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.60
O Calculated values
SO —— Faired curve
T 40
w
~
Q.
x .30F
3
=]
20
JOF
it ! | | |
@) Z 4 6 8 |0

Number of circumferential waves, n

Figure 10.- Minimum nondimensional frequencies of a shell of negative Gaussian curvature as computed by present method and
method of reference 4. Freely supported edges.
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104} o Calculated values
—— Faired curve

o
)]
T

. 2 2
(Circular frequency)”, w", sec

4 6 8 10

—

@7
N

Number of circumferential waves, n

Figure 11.- Minimum circular frequencies of an annular plate as computed by present method and method of reference 17. Free-free edges.
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108} o) Calculated values
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Number of meridional waves, m

Figure 12.- Frequencies of an isotropic cylinder as computed by present method and method of reference'15. Freely supported edges; n = 2.
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1091
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108} |
|
f
|
s o | ! I | ‘
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Number of meridional waves, m |

Figure 13.- Frequencies of an orthotropic cylinder as computed by present method and method of reference 16. \
Freely supported edges; n = 2. |
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[72]
'3
= 108}
o
[
(V)
=
o
(e
o
= IO7—
2
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(e} Calculated values
6 Faired curve
O~
IO5—
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G | 2 3 4 5

Number of circular node lines in w

Figure 14.- Circular frequencies of a free-free 120° conical frustum as computed by present method and method of reference 1.
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Figure 15.- Frequencies of a 1200 conical frustum shell as computed by present method and method of reference 1. Clamped at
smaller end; n = 2.
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(c) Three nodal circles in w displacement.
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= W =2.754 x107
E N =2
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U/UMAX

W/HHAX

(d) Four nodal circles in w displacement.

Figure 16.- Natural mode shapes of a free-free 120° conical frustum corresponding to the frequencies shown in figure 14.
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Figure 16.- Continued.
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Figure 16.- Continued.
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Figure 17.- Natural mode shapes of a clamped-free 120° conical frustum corresponding to the frequencies shown in figure 15.
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Figure 17.- Continued.
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Figure 18.- Circular frequencies of a shell with positive Gaussian curvature with freely supported edges. n = 2.
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‘ Figure 19.- Circular frequencies of a shell with negative Gaussian curvature having freely supported edges. n = 2.
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