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SECOND-ORDER ERRORS IN LINEARIZED VELOCITY CORRECTIONS
AND THEIR EFFECTS ON THE RATE OF CONVERGENCE OF
ITERATIVE SOLUTIONS
By John D. McLean

Ames Research Center
SUMMARY

The use of a fast integration scheme, such as Danby's method, allows a
choice of methods for the on-board computation of linearized velocity correc-
tions that is impractical with slower integration methods. This report deals
with the problem of errors, caused by nonlinearity, in these velocity correc-
tions and the effect of those errors on the choice of the computation method.

Two methods of computing linearized corrections are considered. The
first, referred to as the '"linear'" method, computes the velocity correction
as a linear function of position and velocity deviations at the time of the
correction. The second method, referred to as the "half-linear' method, com-
putes the trajectory ahead to the terminal time and then determines velocity
correction as a linear function of the actual terminal error.

This report has four parts: (1) The linear and half-linear guidance laws
are presented together with formulas for predicting the errors in them caused
by nonlinearity. These formulas are based on the assumption that the errors
are adequately represented by second-order terms. (2) Second-order errors
are presented for both guidance methods on conic trajectories with eccentric-
ities of 0.2, 0.98, and 2.0, and the errors for the two guidance methods are
compared. (3) A simulated lunar mission is used as an example to show how
the data from the conic trajectories can be used to give a qualitative idea
of the relative performance of the linear and half-linear methods on an
n-body trajectory. (4) The relative advantage of using the linear or half-
linear method to compute the first velocity correction when iteration is used
to reduce the residual error is investigated. Also, the effect of neglecting
perturbing forces in calculating the state transition matrix is considered.

The two-body data show that the linear method of velocity correction is
usually superior, the second-order errors often being several orders of magni-
tude less than those for the half-linear method. If a single conic is not
sufficient to approximate the actual trajectory, the errors still follow the
same trends as the two-body data and the linear method is usually superior.
The use of the linear method to start an iteration method usually results in
more rapid convergence than when the half-linear method is used.



INTRODUCTION

This study is part of an effort at Ames Research Center to simplify the
computations required for midcourse guidance and navigation by on-board sys-
tems. The purpose of such simplification is to allow reduction of the size i
and power requirements of the on-board computer with a consequent increase in
its reliability. A reduction in the computation time is also desirable
because the time saved can often be traded for computer storage, hence, size.

In reference 1 it is shown that Danby's method of integrating the orbital
equations of motion is particularly suited for use in on-board navigation sys-
tems. For a given accuracy, this integration method requires much less time
and storage than Cowell's method and is probably superior to Encke's method.
The superiority of Danby's method results, in part, from the fact that the
transition matrices used in trajectory estimation and linearized guidance are:
a by-product of the integration process. The trajectory 1s approximated over
small-time intervals by conics, and the two-body transition matrix over each
approximating conic is used in integrating the accelerations that perturb the
spacecraft from it. For guidance purposes, the resulting sequence of matrices
may be multiplied together to give a good approximation to the matrix that
would be obtained by integrating the two-body variational equations along the
n-body trajectory.

If the integration method is fast, then either implicit or explicit
guidance may be used. (See reference 2 for a detailed discussion of implicit
and explicit guidance.) If the integration is slow, explicit guidance is
impractical, but implicit guidance may be used as in reference 3.

This study is restricted to linearized guidance, and we will refer to
linearized explicit guidance as the "half-linear' method and linearized
implicit guidance as the '"linear' method. With the half-linear method, the
best estimate of the actual trajectory is integrated ahead to the final time,
and the velocity correction is computed as a linear function of the terminal
error. In the linear method, the velocity correction is computed as a linear
function of the position and velocity deviations from a reference trajectory
at the time of the correction.

The main purpose of this report is to compare the errors that arise when ,
these two different methods are used for computing linearized velocity correc-
tions. Danby's integration method was used in this study, but the results are
applicable when other integration schemes are used. Two potential error .
sources are considered: the first, with which most of the report is concerned,
is nonlinearity, and it is present in any linearized guidance scheme. The
second is the inaccuracy that arises from neglecting the perturbing forces in
the computation of the transition matrices.

The first portion of this report presents the linear and half-linear
guidance laws and equations for predicting the errors due to the nonlinearity
under the assumption that the second-order terms are a reasonable measure of
those errors. Then, predicted second-order errors are presented for three




conics with eccentricities representative of trajectories likely to be encoun-
tered in space missions. These data show the effects of the magnitude of
initial condition errors, true anomaly at the time of the correction, and the
arc length between the correction and terminal points,

Next the results for some guidance problems simulated using a translunar
and a transearth trajectory are compared with the two-body results. Addi-
tional data from these guidance problems show how the choice of the linear or
half-linear method for the first velocity correction affects the rate of
convergence when the residual errors are reduced by iteration. The errors
due to neglecting the perturbing forces in calculating the transition matrices
are also considered.

All the data presented were obtained using fixed-time-of-arrival
guidance and initial condition errors having Gaussian distribution and zero
mean.

NOTATION

A matrix of first partial derivatives of P with respect to initial
position

B matrix of first partial derivatives of P with respect to initial
velocity

+ .
B pseudoinverse of B
G matrix of second partial derivatives of position and velocity with

respect to their initial values

H matrix used in calculating statistical information

Hy,Hy, } submatrices of H

H3:HLI»
I identify matrix
P vector of parameters to be controlled

i2 vector of first-order deviations in P
T position deviation vector

T magnitude of T

rms root mean square

Tr trace of a matrix



v velocity deviation vector

v magnitude of Vv

X,Y,Z Cartesian components of position vector

o arbitrary component of p

8 second-order deviation

6 true anomaly

AD change in true anomaly from correction to terminal point

o state transition matrix for linearization around actual trajectory
¢ state transition matrix for linearization around reference

trajectory

¢1,%2,
submatrices of ¢ and ¢, respectively

¢1,92
Subscripts
D desired
£ final
H half-linear
L linear
o initial

|- |l Euclidean norm of a matrix (root sum square of all its elements)
SECOND-ORDER ERRORS FOR LINEARIZED GUIDANCE

This section of the report presents the linear and half-linear guidance
laws, the equations used for predicting the second-order errors in these
guidance methods, and the assumptions made in deriving the equations. The
derivations of the equations for the second-order errors are given in

appendix A.

Linear guidance depends on expressing one trajectory in terms of a Taylor
series expansion about another and neglecting all but the first-order terms.




It is assumed in this analysis that:

1. The second-order terms give a good measure of the total
residual error due to nonlinearity.

2. The state of the spacecraft (position and velocity vectors) at
the time of the correction is known exactly.

3. The components of the position and velocity deviations from a
precomputed reference trajectory at the time of the correction are indepen-
dent and Gaussian with zero mean. Also, the standard deviation in each compo-
nent of position and velocity, respectively, is the same.

4. Only fixed-time-of-arrival guidance will be used.

Two different methods of computing the linear corrections are considered.
The first method uses the definition of linear impulsive guidance given in
reference 4; that is, the velocity correction is computed as a linear func-
tion of the deviations of the present state (at the time of the velocity
correction) from a given reference state. This method of computation will be
referred to as the '"linear' method. The second method of computation consists
in defining the velocity correction as a linear function of the deviations of
the parameters to be controlled from their desired values at the terminal
time. Since the complete nonlinear relationship between the initial state
deviations and the controlled parameters are used to determine the latter,
this method will be referred to as the "half-linear' method.

The difference between the two methods of guidance is illustrated in
figure 1. At the time of the velocity correction, the spacecraft position
and velocity vectors differ from the reference values by T, and Vg,
respectively, and if no correction is made, the spacecraft will miss the
desired terminal point by the error vector Tg. Therefore, we wish to compute
a change in velocity such that the corrected trajectory, indicated by the

dashed line, will terminate at the desired point.

Reference

trajectory-\\\\\\\

Desired
trajectory

Actual trajectory
{uncorrected)

Figure 1.- Fixed-time-of-arrival guidance methods.



The linear method of computation requires a knowledge of T,, V,, and the
transition matrix, ¢, which gives Tf as a linear function of those two quan-
tities. (See appendix B.) The terminal error vector can then be written as

TE = §1T5 + 9oV + OTf (1)

where ¢; and ¢, are submatrices of ¢, and 8Tf represents the nonlinear
terms in the Taylor series expansion of the actual trajectory about the

reference trajectory.

_ To compute the velocity correction for the linear method, we assume that
drg 1is zero, and solve equation (1) for the velocity correction Vi which,

when added to v,, will cause r; to be zero. The result is

— -1 _ —_
Vi, = -¢2 01Ty - V, (2)

If this correction is added to the actual velocity and the corrected trajec-
tory is expanded in a Taylor series about the reference, the first-order
error is zero and the residual error will be denoted by &T7,.

For the half-linear method, the actual trajectory is integrated ahead to
the final time, and the actual terminal position vector is subtracted from
the desired one to give -rg. This deviation can be expanded in a Taylor
series about the actual trajectory to give

-Tg = &,V + 8T (3)

Here ¢, is a submatrix of the transition matrix ¢ obtained by linearizing
about the actual trajectory, Vj; is the exact velocity correction required,
and OTp represents the nonlinear part of the expansion. If d&Tp is
assumed to be zero, that is, all of -T¢ is produced by the linear term
alone, then the velocity correction for the half-linear method is

-1
Ty = —q>2 T¢ (4)

If this correction is added to the actual velocity and the corrected trajec-
tory is expanded about the actual trajectory, the terminal deviation is

?H = —?f + (SI_'H (5)

where &ry is the residual error in the expansion of the corrected
trajectory about the actual.

If it is assumed that terms of higher than second order may be neglected,
then each component of &r; 1is given by a quadratic form in T, and each
component of &Ty by a quadratic form in vy. The mean square error
(derived in appendix A) in the X component of the second-order error is
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where |]H[E denotes the Euclidian norm of the matrix H. The parameters
oy and oy “are the standard deviations in the components of T, and v,
respectively, and the matrices Hj, H;, Hp, and Hy, are defineg in appendix A.

The rms magnitude (8r; or §ry) of the second-order error vector is

given by
(cSrL)rmS = |:E <6XL> + E<6YL> + E<6ZL >]
2 2 © 5 1/2
[E <6XH> + E <<SYH> + E<6ZH >}

TWO-BODY RESULTS
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The 1ms second-order errors were computed (see appendix B) for three
different conic trajectories with eccentricities of 0.2, 0.98, and 2.0. The
initial conditions for the high eccentricity ellipse are those for a circum-
lunar trajectory, while the hyperbola uses the same initial conditions except
that the magnitude of the velocity has been increased to give the desired
eccentricity. For the low eccentricity ellipse, the semimajor axis, and
hence the period, is kept the same as that of the high eccentricity ellipse.

The eccentricities of 0.98 and 2.0 are typical of the geocentric and
selenocentric portions of lunar trajectories such as those used for the
sample guidance problems in the next section. The low (0.2) eccentricity
ellipse is included to show how the results vary with eccentricity, and is
roughly comparable to the heliocentric portion of a Mars or Venus trajectory.

Discussion of Data

It can be seen from equations (6) and (7) that the rms second-order
error for the linear method is a function only of the initial deviation and
increases linearly with 0%. Therefore, the errors are given only for
o, = 1 km, and those for other values of oy can be obtained by multiplying
the errors for oy = 1 km by the square of the new value of o.. The half-
linear error is a function of both 0% and 0%, and data for this method were
obtained by using o, =1 km with o, = 0, 0.1, and 1.0 m/sec. These data
can be scaled in the same way for other values of o, and o, provided



oy/or remains constant. For example, if the rms errors for o, = 1 km
with oy = 0, 0.1, and 1.0 m/sec are multiplied by 100, the results are
the errors for oy = 10 km with values of o, of 0, 1, and 10 m/sec,
respectively.

For the high (0.98) eccentricity ellipse, six values of initial true
anomaly, 6,, were used (0°, 104°, 158°, 180°, 203°, and 256°) and they are
indicated on the scale drawing of the ellipse in figure 2. A translunar or
transearth trajectory can be approximated fairly well outside the sphere of
influence of the Moon by such an ellipse, and the approximate true anomalies
of entrance into or exit from the sphere of influence are indicated. These
true anomalies have no particular significance in this section of the report
and are included only to help relate the two-body results to the simulated
lunar mission considered later.

/
203° — /190°

0°€ © Earth 180°

\

Moon'’s sphere
of influence

Figure 2.- True anomalies of correction points and spheres of influence
on high eccentricity ellipse.

The rms second-order error for the high (0.98) eccentricity ellipse
is plotted as a function of the true anomaly, 6f, at the terminal time in fig-
ures 3(a) through 3(f). The data for the correction point at perigee are
presented in figure 3(a). 1Initial velocity errors for this case have little
influence, and the curves for oy # 0 are omitted. The rms second-order
error does not exceed 1 km until the true anomaly reaches 165°, and at 170°
(approximately the Moon's sphere of influence on the corresponding translunar
trajectory) it is about 10 km.

For the incremental true anomaly, A8, less than 180°, the error in the
half-linear method is slightly less than for the linear method. (For oy =1,
the two are almost equal.) Since ¢, 1is singular at 46 = 180°, the velocity
correction and second-order error become infinite. As A8 increases beyond
180°, the half-linear error rapidly becomes several orders of magnitude
larger than that for the linear method.
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Figure 3(b) shows the data for a velocity correction made at a true
anomaly of 104°. This point occurs about 0.6 hour after perigee, about the
earliest likely point for the first midcourse velocity correction on a trans-
lunar trajectory. 1Initial velocity errors are quite important in the half-
linear method for this value of 6y, although the curve for oy, = 0.1 m/sec
is almost the same as for oy = 0 and has been omitted. The half-linear
errors at the Moon's sphere of influence are 0.06 km for oy = 0 and 1.5 km
for oy = 1.0 m/sec, and they exceed the error for the linear method by fac-
tors of 3 and 75, respectively. For larger values of 60f these factors
reach several orders of magnitude. For small values of A6, the error for
the linear method exceeds the half-linear error for oy = 0, and eventually
exceeds that for oy = 1.0 m/sec when the errors for both methods are below
the scale of the graph. However, the errors are very small in this region and
the error for the linear method is never greater than three times the half-
linear error. In this figure, the errors for a given value of 0f are much
less than in figure 3(a) where the correction is made at perigee. Note, how-
ever, that the same values of o, and oy, were used in computing these curves
as for those in figure 3(a). Actually, the magnitudes of the deviations from
the reference trajectory will increase if the correction is delayed until
8o = 104°, and the resulting second-order errors will also be larger.

Figure 3(c) presents the data for 6, = 158°. This true anomaly occurs
about 13 hours after perigee and represents the latest time likely for the
first midcourse correction. At the Moon's sphere of influence, only the half-
linear error for oy = 1.0 m/sec is above the scale of the graph, but data for
the other cases were obtained. The half-linear error at this value of 6
exceeds that for the linear method by an order of magnitude for oy, = 0
by three and five orders of magnitude, respectively, for oy = 0.1 and
1.0 m/sec. The trend at low values of A6 for the half-linear errors to be
smaller than the linear errors was also noted, but only where the errors for

both methods are extremely small,

Note that the initial velocity errors now have a very large effect on
the half-linear errors and are the dominant source of error even for
oy = 0.1 m/sec. Also, as 6, increases, the peak in the curves near
A8 = 180° becomes very narrow.

Figures 3(d) through 3(f) show similar data for the return portion of
the high (0.98) eccentricity ellipse. The Moon's sphere of influence on a
return trajectory from the Moon corresponds to a true anomaly of about 190°.
For this portion of the ellipse, the error for the half-linear method is
again larger except for very small values of A6 and near the singular points.
When the correction is made at large distances from perigee, the half-linear
error exceeds that for the linear method by several orders of magnitude, but
this factor decreases as the correction point approaches perigee. Also, as
the correction point approaches perigee the initial velocity deviations
become relatively less important. In figure 3(f) the curve for
oy = 0.1 m/sec is so close to that for oy = 0 that it has been omitted.

10
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Figure 4.- Rms second-order errors for low eccentricity ellipse with
opr = 1 km.

Figures 4(a) and 4(b) show the data for the low (0.2) eccentricity
ellipse. Since this orbit is so nearly circular, the transition matrices,
second partial derivatives, and the resulting second-order errors for a given
change in true anomaly are nearly independent of 6,. Therefore, only the
curves for 65 = 0° and 180° are presented; the data for other values of 0,
are between them. These curves have the same general characteristics as those
for the high (0.98) eccentricity ellipse; that is, the linear method is the
superior one over the greater part of the trajectory; exceptions occur near
the singular points and for very small values of A6. The half-linear errors
may exceed those for the linear method by a factor of several orders of magni-
tude, but this factor does not reach the extreme values encountered in the
high (0.98) eccentricity case.

We can conclude from the data for the two ellipses that the linear method
will usually be superior for elliptic trajectories, the errors being several
orders of magnitude smaller than for the half-linear method. Exceptions occur
near the singular points, where corrections are unlikely, and for the lower
values of A8 where the errors are so small as to be insignificant. This
range of A6 1is usually very small, but it increases as 6, approaches peri-
gee or as eccentricity increases and reaches 180° for the high (0.98) eccen-
tricity ellipse with 65 = 0. However, the errors for the linear method never
exceed those for the half-linear method by large amounts, and it seems
reasonable to use the linear method as the sole method of correction.

11



The hyperbola is drawn to scale in figure 5, and the true anomalies of
the correction points are indicated. The radial distance from the Earth at
~115° is 1.2x10° km, at -119.8° the distance is 2.6><1O6 km, which could not
be shown in the figure. The Earth's sphere of influence relative to the Sun
is at about #115°., If the Moon were the central body, the true anomaly of its
sphere of influence relative to the Earth would be at about 111° for the same
semimajor axis.

Y

115° -106°

Figure 5.- True anomalies of correction points on hyperbola.

Figures 6(a), 6(b), and 6(c) present the rms errors resulting from
velocity corrections made while the spacecraft is approaching perigee on the
hyperbola. The results, which are quite similar to those for the return por-
tion of the high (0.98) eccentricity ellipse, indicate that the linear method
is superior over most of the trajectory.

In figure 6(a), the error for the linear method is below the scale of the
graph, but as the correction point moves nearer to perigee (figs. 6(b) and
6(c)), this error becomes progressively larger. On the other hand, the error
for the half-linear method decreases for corrections near perigee. Also, as
the correction point moves nearer perigee, the curves for the different values
of o, become closer together, and in figure 6(c) the curve for
oy = 0.1 m/sec is so close to that for o, = 0 that it has been omitted.

As in the case of the ellipses, the error for the linear method becomes
larger compared to those for the half-linear method as A8 decreases. This
trend can be seen clearly in figure 6(c) and was also noted in data (not shown)
for the other two cases.

Figures 6(d) and 6(e) illustrate the data for the outbound portion of the
hyperbola. In both figures, the curve of half-linear error for
oy = 0.1 m/sec has been omitted because it is so close to that for o, = 0.
Figure 6(d) shows the data for 6, = 0. In this case, the half-linear
method is superior for all values of 6., although the ratio of linear-to-half-
linear errors decreases for larger values of A6. However, the errors in this
case will be relatively small for initial deviations likely to be encountered.

12
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Figure 6(e) shows the result of increasing 6, to 77°, corresponding to
a radial distance from the Earth of about twice the perigee radius. For
o, = 0 the half-linear method is superior for all 6f, but for o, = 1.0 m/sec
the half-linear error exceeds that for the linear method when 6¢ > 111°.
Note that the second-order errors are smaller than in figure 6(d) since the
portion of the trajectory between 6, and 0f is more nearly a straight line.

The data for the hyperbola show the linear method to be greatly superior
on the inbound portion of the hyperbola, while the half-linear method is
better, in most cases, on the outbound leg. However, the second-order errors
on the outbound leg are comparatively small for the initial errors likely to
be encountered, and the linear method is sufficiently accurate. Therefore,
it seems reasonable to use the linear method for both parts of the hyperbola.

The rms errors for the conics just presented show that:

1. The linear method is usually the superior one, and the half-
linear error is often several orders of magnitude greater than that for the
linear method.

2. When the errors for the linear method are the larger, they never
exceed the half-linear errors by more than a factor of 5. This situation
occurs only where the second-order errors are small or near the singular
points, where a velocity correction is unlikely.

3. The half-linear method becomes poorer compared to the linear
method as A6 and o, are increased and as the correction point moves away

from perigee.

4. The portion of the half-linear error due to initial velocity
deviations ranges from a small fraction of that due to position deviations
alone to several orders of magnitude greater. However, in practical cases the
contribution of the initial velocity deviation will usually be dominant.

Accuracy of Equations for 1ms Second-Order Errors

The accuracy of equations (6) used in predicting the rms second-order
errors for the linear and half-linear methods was checked at several points on
the conic trajectory using a Monte Carlo method. The initial deviations for
each Monte Carlo sample were obtained by multiplying random numbers from a
Gaussian distribution with zero mean and unit standard deviation by oy or oy,
whichever was appropriate. The velocity correction appropriate for the result-
ing set of initial deviations was computed by both the linear and half-linear
methods. Then each of the corrected trajectories was projected (using non-
linear equations) to the terminal point and the terminal error was found.

Since equations (6) are valid only for second-order errors, it was
necessary to insure that the Monte Carlo data would not contain significant
errors of higher order. This was done as follows: For each pair of correction
correction and terminal points, the values of oy and oy were adjusted by

14



trial and error to obtain values for which errors of higher than second order
could be neglected. The mms error for a small number of samples was com-
puted several times using the same random numbers with different values of

or and oy. With the resulting data, it was possible to select values of

opr and oy within a range of values where the mms second-order errors
increased linearly with o2 and o2, and where there was no serious loss in
significant figures. ¥ v

Once good values were established for oy and oy, the mean-square and
rms second-order errors were computed for 100 Monte Carlo samples. The
largest difference between the rms error predicted using equations (6) and
(7) and that obtained by the Monte Carlo method was about 16 percent of the
predicted value. The mean-square error for the Monte Carlo method differed
from the predicted value (eqs. (6)) by no more than 33 percent of the pre-
dicted value. This appears to be a reasonable agreement for the number of
samples used if we consider the degenerate case in which two of the components
of both T, and Vv, are zero. In this case, 6rj and 6ry are members of the
chi-squared distribution of random variables, and the standard deviation of
the sample mean-square value for 100 samples is 32.7 percent of the population
mean-square value. However, even errors of 16 percent in predicting the rms
second-order errors are not particularly significant in comparing the linear
and half-linear methods since differences of several orders of magnitude may
exist.

COMPARISON OF TWO-BODY AND FOUR-BODY RESULTS

Since actual space trajectories are never truly conics we would like to
consider the problem of predicting the effects of second-order errors for
n-body trajectories involving gravitational anomalies such as oblateness.
Equations (6) and (7) could be solved to provide this information, but much
more computer time would be required than in the two-body case. Since only
qualitative information is needed to determine whether the linear or half-
linear method is better, we ask whether the two-body data presented in the
previous section can be used for this purpose.

The patched conic approach, which is often used to obtain qualitative
information about n-body trajectories, was tried for the qualitative evalua-
tion of second-order errors. A four-body simulated lunar mission was used as
a test problem since translunar and transearth trajectories are generally
recognized as stringent tests of two-body approximations.

When the lunar trajectory lies entirely inside or outside the Moon's
sphere of influence, it can be approximated fairly accurately by a conic. In
this case, a direct numerical comparison was made between the Monte Carlo rms
errors from the four-body trajectory and the second-order errors from the two-
body study. Two conics are required to approximate trajectories crossing the
Moon's sphere of influence, and it is not apparent how the second-order errors
for the two conics can be combined to give meaningful numerical answers. How-
ever, data will be presented under ''Discussion of Data' which show that the
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trends in the four-body errors are what would be expected from considering
data for the two-body cases and support the use of two-body data as presented

in the previous section.

The three conics presented in the two-body section are representative of
trajectories encountered in a large number of space missions. Therefore, two-
body data can be used to indicate whether the linear or half-linear method is
better on most missions.

Description of Simulated Lunar Mission

One translunar and one transearth trajectory that include gravitational
forces of the Earth through the second harmonic term, the Moon, and the Sun
were considered (fig. 7). Translunar injection occurs at a true anomaly of

Moon at time of
pericynthion

Moon's sphere of
influence

N

47.0 hr

61.2 hr

%

pericynthion

11.4 hr

(a) Translunar.

Moon at time of

injection
injection
12.8 hr
&h- 0 hr
4.2 hr
Moon'’s sphere of
influence

Perigee

(b) Transearth.

Figure 7.- Lunar trajectories in inertial coordinates (not to scale).
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about 13° and flight time to pericynthion is 61.2 hours. The Moon's sphere

of influence is entered at 47 hours and a true anomaly of about 168°. Trans-
earth injection is at a true anomaly of about 11° and the flight time to

return perigee is 69.7 hours with exit from the Moon's sphere of influence at
12.8 hours after injection. These times along with other times used for veloc-
ity corrections are indicated in the figure. The heavy black lines indicate
the portions of the trajectory over which direct numerical comparison of
two-body and four-body results is made.

Three velocity correction times were used for the translunar trajectory:
injection time, and 0.8 and 11.4 hours after injection. The latter two times
were chosen to represent the earliest and latest times likely for the first
midcourse velocity correction. The correction times used for the transearth
case were injection, 12.8 hours after injection and, to represent the first
midcourse velocity correction, 4.2 hours after injection. Terminal points at
0.8 and 2.5 hours on the translunar trajectory and 60 hours on the transearth
trajectory were included to show the effect of increasing AG.

Computation of Data

Four-body data.- The transition matrices from Danby's method were
corrected for perturbing forces by the method of reference 5, and the rms
second-order errors for the four-body trajectories were computed by the Monte
Carlo method described in the section on two-body results. The Monte Carlo
procedure adjusted the magnitudes of o, and o, so that errors of higher than
second order and those due to the loss of significant figures were negligible.
The resulting data were normalized to values corresponding to o, = 1 km and

T
o, = 0 or oy, = 1 m/sec and tabulated in tables I and II.

Two-body data.- In the cases where the portion of the n-body trajectory
between the velocity correction and terminal points lies entirely inside or
outside the Moon's sphere of influence, the errors computed for the two-body
case were tabulated for comparison. These data were obtained from those pre-
sented in the section on two-body results by interpolation. The errors for a
given value of 6y were read from the curves (figs. 3 and 6) and plotted as a
function of 6,. The error data presented in this section were taken from the
resulting plot.

Since the mass of the Earth was used in the two-body study, the hyperbola
does not represent a Moon-centered trajectory. The data were scaled to fit
the osculating hyperbola at transearth injection by changing the units of
length from 1 to 0.3 km and the units of time from 1.0 to 1.5 second. A crude
correction was also made to account for the fact that the eccentricity of the
osculating hyperbola at transearth injection was about 1.6 instead of 2.0 as
in the two-body study. To accomplish this, each true anomaly from the osculat-
ing hyperbola was multiplied by the ratio of the maximum true anomaly for an
eccentricity of 2.0 to that for an eccentricity of 1.6. The same inter-
polation procedure used for the two-body data from the ellipse was applied to
that from the hyperbola.
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Discussion of Data

Table I compares the terminal errors for the four-body translunar
trajectory with those predicted from the two-body data. The two-body and
four-body errors differ at most by a factor of 5, and, since only six Monte
Carlo samples were obtained, this is reasonably good agreement.

The linear method is superior for the velocity corrections made at points
likely for the first midcourse correction with the terminal point at the
Moon's sphere of influence. These are the same results as obtained in the
two-body study in which the linear method was superior for the inbound leg of
the hyperbola. Therefore, we would expect the linear method to be superior
when the ellipse and hyperbola are combined to represent the translunar
trajectory; this reasoning is verified by the four-body data.

We noted in examining the two-body data that as A8 increases the half-
linear errors become larger compared to those for the linear method, and the
errors for both methods increase in magnitude. The four-body data show that
both of these trends continue when the translunar trajectory crosses the

Moon's sphere of influence.

Table II presents a similar set of data for the transearth trajectory
using the same sets of initial deviations as were used to obtain the data in
table I. Again, where direct comparison is possible, there is reasonably good
agreement between the two-body and four-body data. On the hyperbolic (within
the Moon's sphere of influence) portion of the trajectory, the linear method
is superior for o, =1, but for oy = 0 the half-linear method is best.

The same continuation of trends across the boundary of the Moon's sphere
of influence as in the translunar case is seen here. That is, as A48
increases, the ratio of half-linear-to-linear errors increases, and the magni-
tudes of the second-order errors increase for both methods. On the hyperbolic
part of the trajectory, the linear method is much poorer compared to the half-
linear than in the translunar case. However, the elliptic portion constitutes
most of the trajectory so that the linear method is still far superior for the

complete transearth trajectory.

ITERATION CONVERGENCE RATES

If, after the velocity correction is applied, the residual error
(GrL or 8ry) is unacceptable, we may wish to reduce it by iteration. Since
the velocity correction in the linear method depends only on ¢ and T,, which
are unchanged after the first correction, this method cannot be used itera-
tively. Further, corrections must be computed using the half-linear method,
but the efficiency of the first correction greatly influences the rate with
which the subsequent iterations converge.
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The next data to be presented show how the rates of convergence of
iterations are affected by: (a) the method (linear or half-linear) of comput-
ing the first trial velocity correction, (b) the magnitude of the initial
errors, and (c) the effects of perturbing forces. These data were obtained
using two sets of initial deviations selected from the six sets used for the
Monte Carlo data in the previous section. Case A yielded the maximum terminal
error and case B, the minimum value, when the Monte Carlo trajectories were
integrated from injection to pericynthion without a velocity correction. The
same sets of initial errors also gave maximum and minimum terminal errors for
the transearth trajectory.

The trajectories were started at transearth or translunar injection with
these (case A or B) initial errors and integrated ahead to the appropriate
velocity correction time. Iterative velocity corrections were continued
until the terminal error at perigee or pericynthion was reduced below 1 km.
Data were obtained in each case using the transition matrices that had been
corrected for perturbing forces and also using the uncorrected matrices. The
residual errors after each iteration are plotted in figures 8 through 11 and
the residual error corresponding to an abscissa of zero is the terminal error
that results if no velocity correction is made.

Figure 8 shows the residual errors in the iteration process for
or = 1 km, oy = 1 m/sec, and a correction time of 0.8 hour after translunar

injection. In both cases, the differences between the residual errors when

104 7 T 1 T T T T L
Corrected matrices
=~— ———— Uncorrected matrices
108 | B - ]
All iterations
E half - linear
~ 102 . Y 7
g All iterations
@ half - linear
E
s 10 ] ]
8
o . . First iteration
/FII’St iteraction li
1+ linear i Inear i
\\
\ \
10-1 L A } ' 1 '\ .
0 1 2 3 4 5 0 1 2 3
Number of iterations
(a) Case A. (b) Case B.

Figure 8.- Errors in iteration for correction 0.8 hours after translunar
injection; 0. = 1 km and o, = 1 m/sec.
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the corrected transition matrices were used and those for the uncorrected
matrices are relatively small except after the last iteration. For both sets
of initial errors, the correction computed by the linear method reduces the
terminal error below 1 km and no further iteration is necessary. With the
first correction by the half-linear method, however, two iterations are
required for case B and five iterations for case A.

Figure 9 presents the results for the same initial errors when the
velocity correction is made 11.4 hours after injection. The curves in fig-
ure 9 are nearly identical to those in figure 8 except for case A with the
linear method and uncorrected transition matrices used for the first
correction. In this case, one additional iteration was required because of
the error due to perturbing forces.

104 I T T T ¥ f . i l
Corrected matrices
—————— Uncorrected matrices
103 | i |
£
Y4 . -
~ 107 All iterations - \ Al _ 1
S half - linear \ ///// 'terétHDHS
5 half - linear
§ First \
-3 10 iteration 4 |
o linear
First iteration
T 1 linear
\
\\
1077 1 \ )
Number of iterations
(a) Case A. (b) Case B.

Figure 9.- Errors in iteration for correction 11.4 hours after translunar
injection; oy = 1 km and o,, = 1 m/sec.

Figure 10 shows the same data for the same conditions as figure 9 except
that o, and oy have been increased by an order of magnitude. For case A,
using the corrected transition matrices, the total number of iterations
increased from one to two when the first correction was linear and from five
to nine for a half-linear first correction. For case B, the linear correction
still reduced the residual below 1 km, but when the first correction was half-
linear the number of iterations rose from two to three. In figure 10, the
effects of the perturbing forces are similar to those in figure 9, though
somewhat larger, and these errors require an additional iteration in two of
the four cases shown. Note that after the first iteration for case A the
residual error for the linear method is about 100 times the equivalent error
in figure 9, while that for the half-linear method has increased by only a
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Figure 10.- Errors in iteration for correction 11.4 hours after translunar
injection; o, = 10 km and oy = 10 m/sec.
factor of 4. Thus, the assumption that the error due to nonlinearity can be
approximated by the second-order term is not valid for the half-linear method
and the large case A initial deviations. However, the half-linear error
still exceeds the linear error by more than two orders of magnitude, and
still illustrates the superiority of the linear method.

Figure 11 presents similar data for the transearth trajectory with
op = 1 km, oy = 1 m/sec, and the velocity correction 4.2 hours after injection.
In this instance, the perturbing forces are somewhat more significant than in
the translunar case, but they become dominant only after the terminal error
has been reduced to about 10 km. When oy, and oy were increased by an order
of magnitude in case A, one additional iteration was required after an initial
linear correction; but when the first correction was half-linear, the
iteration failed.!

The data presented in this section show that iteration is much less
likely to be needed if the first velocity correction is made by the linear
method. Also, if iteration is necessary, convergence will be faster than when
the first correction is made by the half-linear method. As the magnitudes of

If the iteration failed for both methods of making the initial correc-
tion, it would be necessary to use nonlinear methods such as those described
in references 2 and 6.
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the initial deviations increase, the number of iterations required increases
for both methods, but the increase is greater when the first correction is
half-linear. The errors due to neglecting perturbing forces in computing the
transition matrices become important only when the residual errors are small,
and they usually cause no more than one additional iteration.
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Figure 11.- Errors in iteration for correction 4.2 hours after transearth

injection; o = 1 km and o, = 1 m/sec.

CONCLUDING REMARKS

The two-body data show that the linear method of velocity correction is
usually superior, the second-order errors often being several orders of
magnitude less than those for the half-linear method. When the error for the
linear method is the larger, it never exceeds the half-linear error by more
than a factor of 5. This situation occurs near the singular points, where a
correction is unlikely, and for small values of A6 or on the outbound leg of
a hyperbola, where the second-order errors for both methods are small.

The linear method is superior even when there are no initial velocity
deviations; but if initial velocity deviations are present the half-linear
error is much larger. In fact, the part of the half-linear error caused by
initial velocity deviations is usually much larger than that due to initial

position deviations.

The comparison of two-body and four-body data showed that, when the
portion of the trajectory under consideration can be approximated by a conic,
the two-body error analysis is fairly accurate. If a single conic is not
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sufficient to approximate the trajectory, the four-body data still follow the
same trends as the two-body data, and the linear method is usually superior.

When the linear method is used to compute the first velocity correction,
it is much less likely that subsequent iterations will be needed than when the
first correction is half linear. If further iteration is necessary, conver-
gence is faster when the first correction is linear. Also, the number of
iterations does not increase as rapidly with the magnitude of the initial
deviations as with a half-linear correction.

The errors caused by neglecting the perturbing forces in the computation
of the transition matrices can be important enough to require an additional
iteration or two. However, these errors are much less troublesome than the
second-order errors.

We have not arrived at a satisfactory physical or mathematical explana-
tion for the general superiority of the linear method. However, numerical
data have been presented for conics representative of those found in most
space missions as well as data which show that conics can be used to indicate
trends for n-body trajectories. These data are sufficient to show that for
most practical applications the linear method should be used.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, Nov. 6, 1968
125-17-04-01-00-21
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APPENDIX A
DERIVATION OF EXPRESSIONS FOR SECOND-ORDER ERRORS

Expressions for the mean-square second-order errors will be derived
without the restrictions on the guidance law and statistical distribution of
the initial errors. Then, restrictions will be applied to obtain the

expressions in the text.

Let P be a vector of parameters which are to be constrained to prede-
termined (reference) values by the guidance system. If P is expanded in a
Taylor's series about the reference value, then its deviation, P, from the
reference value is

P = AT, + BV, + &p (A1)

where A and B are matrices of the first partial derivatives of P with
respect to the Cartesian components of initial position and velocity, and &p
is the summation of the higher order terms in the expansion.

We wish to make a velocity correction, or, in other words, to replace
Vo, with a corrected velocity deviation,'vl, which will make p =zero. In
computing the velocity correction by the linear method, we assume &p to be
zero. It is shown in reference 4 that a solution for the linear part of
equation (Al) is possible if the number of components of P does not exceed
the number of components in V,. Then, with the minimum velocity correction,

v, = -(B'RT, + (1-BTB)V, (A2)

where B' is the pseudoinverse of B.

When V, is replaced by Vv;, we find that the error in P after a
correction by the linear method is 6p;, residual of the expansion of P for
the corrected trajectory about the reference value. Note that v, is
replaced with Vv; so that 6§L is not the same as 65— in equation (Al).

If we linearize around the actual trajectory instead of the reference,
we use the nonlinear equations relating P to the initial state and deter-
mine P by differencing the actual and reference values of P. Since we can
only change the initial velocity (not the position}, we wish to compute a
change, Vb, in the initial velocity that will reduce p to zero. If Vb

were known, we could write

D = (B+8B)V, + 5P, (A3)
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where OPp represents the nonlinear terms in the expansion of the desired
value of P about its actual (uncorrected) value. The term AB is added

to B to emphasize the fact that the Taylor's series expansion is about the
actual trajectory instead of the reference. In computing the velocity correc-
tion, we again assume that Pp 1is due entirely to the first-order term. The
same derivation as given for the linear method in reference 4 gives the
correction that will reduce the linear portion of p to zero as

v, = -(B+B)"F = -(B"+O)F (A4)

where
c = (B+aB)* - B* (A5)

Expansion of the trajectory corrected by the half-linear method about the

actual trajectory gives the deviation of P from its uncorrected value as

Py = b + Py (A6)

where Gﬁh represents the nonlinear terms in the expansion of the corrected

P about the actual one. Since we wish this deviation to be exactly -p, the
residual error after the half-linear correction is Sﬁh.

We will assume that 6§L and Sﬁh can be approximated accurately by the

second-order terms in the appropriate Taylor's series, and in the remainder
of the derivation they will be used to denote only the second-order terms.

The second-order term in the expansion of the ith component, o, of P about
its reference value is given by

Sa = —21—<‘fg vg> G <§g> (A7)

where G 1is the 6 by 6 matrix of the second partial derivatives of o with
respect to the components of the initial position and velocity.

If we wish to compute the second-order error after a linear correction,
we substitute V& for v, in equation (A7). Since we can write V& as a

o
linear function of T, and v,, we obtain

+ T —
I (-B'A) I 0 T
_l/2r o) ©
Sap, = E—Kro Vo/) G (A8)

[0 (I-B*B) (-B*A)  (I-B'B)] |V,
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For the half-linear system, we can write

0
S0y = %(o VHT> (G+46) (A9)

VH

where the term AG emphasizes the fact that we are expanding about the actual
trajectory instead of the reference. Since VHTAGVﬁ is of third order, it

will be neglected in the computation of the second-order error. Substituting
for P in equation (A4) from (Al) gives

— + — —
vy = -(B + C)(Aro + Bv, + Sp) (A10)

Since Cp and B+6p are themselves of second order they will be neglected in
the computation of 6aH so that

v, x -BAT, - BUBY, (A11)

These simplifications give the half-linear error as a function of T  and v,
as follows

0o (-7 0 0 To
S0, = (T T G (A12)
H 2 o} o} . . + _
0 (-B B) -{B A) (-B B) Vo
Note that equations (A8) and (Al2) are both of the form
1
Sa = ? Hx (A13)
where
T
.
v

Therefore,
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so that

\
6 6 6 6
2y - 1 \' T
E(Sac) = ZE Z‘ /. Z Z hijhkz(XinXsz)
i=1 j=1 k=1 I=1
> (A14)

BN

6 6 i 6
Z 2 Z Z‘hijthE(XinXkXZ) J

i=1 j=1 k=1 1=1

where E indicates the expected value. Equation (Al4) can usually be simpli-
fied when the statistical distributions of the components of x are known.

At this point we will assume that the components of x are independent
and Gaussian with zero mean and standard deviation o - For this distribution,

n_m n m
Exixj = (Exi)(Exj)

and, if n is odd,

Therefore, we need consider only those terms in equation (Al14) that contain
only even powers of the components of x. In this case,

6 6 6 6
1 2.2 1 2 2.2
E(8a?) = Z—E }: }:hiihjjxixj +§-E E: }: hjjxixj
i=1 j=1 i=1 j=1 41
1#]
(note that H is symmetric). Since
2 2
Ex.x. = o%o.
1] 1]
and
Ex% = 3¢
1
1 © » 2 6 6 [
2y = = .. . N
E(8a?) = 7 Z Zhllh”oloj 23 N2 e s L th 5252
i1 d= 4 ii i 2 ij 173
=1l 3= . i=1 i=1 j=1
i#j i#]
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or

This equation can be reduced to

E(8a?) = & Tr(HDHD) + % (TrHD) > (A15)

N =

where D is the diagonal matrix whose diagonal terms are oi. If we make the

further simplification that the standard deviations for the components of
position and velocity, respectively, are equal, then

2
Hl H2> OI‘I O
HD =
Hy  Hy/ | o5 521

v

2 2 2
E(6a2) = %-O;HHlnE + cioéHHZHE + %-O;HHqHZ + %{fr(joiﬂl + oiHu:ﬂ (Al6)

The expanded form of the H; from equations (A4) and (Al12) is summarized in

tabular form below where
G G
G = 1 2

Submatrix Linear Half-linear
H, Gy - 26,8"A + (8"A)Tc,B*A (8*A) 6, B"A

Hy = Hy' G, (1-B¥B) - (8"A) TG, (1-8H) 3*'A) T6,B7R
Hy, (1-B"B)G, (I-B*B) B*BG,B'B

If we expand equation (A9) we find that wherever Vo occurs in the
expression for d&ojp 1t is always multiplied by (I—B+B). On the other hand,
in the expression for GaH given by expanding equation (Al12), v, 1is always
multiplied by -B'B. Note that B+B76 represents the components of Vv,
(see ref. 4) that affect P, while (I—B+B)Vb is orthogonal to the first set
and does not affect P,

Now consider the three possible types of velocity correction discussed
in reference 4.
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(1) The rank of B is 3. In this case, B'B = I so that for the
linear method H, = H; = H, = 0 and oy, is not a function of Vb, while for

the half-linear method all the terms in equation (Al6) are present.

(2) The rank of B is 2. 1In this case, H,, Hy, and H, are of
rank 1 for the linear method, while for the half-linear method they are of
rank 2. This means that for the linear method the second-order errors are a
function of the one component of V, that does not affect the parameters we
wish to control. On the other hand, for the half-linear method, the second-
order errors are a function of the two components of V, that do affect the

parameters.

(3) The rank of B is 1. In this case, two components of Vv,
contribute to the error in the linear method, while only one contributes to
the errors in the half-linear method.

The above shows that the influence of the initial veloctiy deviation on
the half-linear method decreases with the rank of B, while the reverse is
true for the linear method. Thus, we would expect the relative advantage of
the linear method to decrease with the number of parameters controlled.

Finally, we wish to restrict the problem to fixed-time-of-arrival
guidance. In this case, it is shown in reference 4 that

A

¢y
B = ¢,

where

_ | %1 ¢2]
¢ $3 ¢4J

is the state transition matrix relating the terminal errors to Ty and v,.

For fixed time of arrival using the linear method

Hy = Gy - 2G2¢;1¢1 +¢;1¢1G4¢;1¢1

H2=H3=H4=0
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In the text H; for the linear method is denoted as HL'

For the half-linear method,

Hy = ¢;1¢1G4¢;1¢1
T _

Hy = Hy" = ¢21¢1G4

Hy = Gy

Substituting these matrices in equation (Al6) gives
2) . L1 u 2 .1 g 2
E <6XL) 7 Ol I+ g o [TrH) (A17)

and
2

1 2 2 2 1
E <§X§> =3 <%;HH1HE + ZoicsﬂHz“E + O;HHHHE> + Z—[Tr <E%H1 + 03H4>J (A18)

Note that &a has been replaced by &X since fixed-time-of-arrival controls

the Cartesian components of the terminal position vectors. The equations for

the Y and Z components are the same as equations (A17) and (Al8) except that
different matrices G; of second partial derivatives are used in defining

the Hi .
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APPENDIX B
COMPUTATION TECHNIQUES

This appendix describes some of the computation techniques used in
obtaining the numerical results presented in the report. The discussion is
divided into two sections, the first of which deals with the four-body compu-
tations used in the comparison of two-body and four-body results and for the
study of iteration convergence rates. The second section discusses the
computations used in obtaining the two-body results.

Four-Body Computations

The four-body trajectories were integrated using Danby's method and the
digital computer program described in reference 1. The version of this pro-
gram used computes the osculating conic covering each integration step in
double precision. The two-body transition matrix over each integration step
and the perturbation from the osculating conic are computed in single preci-
sion, and rectification occurs after each integration step.. The transition
matrix over longer time arcs is obtained by multiplying together transition
matrices across the individual integration steps. The matrix multiplication
subroutine used for this multiplication accumulates each individual element of
the product matrix in double precision and then stores it as a single
precision number.

The accuracy of the resulting matrix was checked for several example
cases, including translunar injection to pericynthion and transearth injection
to return perigee, by multiplying the matrix by its own inverse.! The
resulting product in each case was a unit matrix to within eight significant
figures. That is, if we let

then

6
€ij = Z %518 (B1)
k=1

. ' . . . -1 .
!There is no loss of numerical accuracy in computing ¢ since

Y
A
-b3 9
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and

where € is less than 10 ° times the largest product in the summation in

ij
equation (Bl). This is the same accuracy obtained by integrating the varia-
tional equations of motion using Cowell's method as described in reference 3.
Using a matrix multiplication routine without the double precision

accumulation feature results in the loss of roughly one significant figure.

For most of the four-body data, the transition matrix over each
integration step was corrected to account for the perturbing forces by the
method described in reference 6. The time required for this correction was
not determined, but 1300 additional words of computer storage were needed.
Since this is nearly half the storage required for the entire trajectory
integration program without the matrix correction, the correction procedure

would probably not be used in practical applications.

When velocity corrections were made by the linear method, the values of

Tos Vg and ¢ were obtained by integrating the reference trajectory backward
from the terminal time to the correction time. This approach requires less
storage than the method used in reference 3. There, the transition matrix
from injection to the terminal time is precomputed, stored, and then updated
by post-multiplying by the inverse of the transition matrix from injection to

the correction time.

Two-Body Computations

The two-body computations were carried out using the appropriate
subroutines from the Danby integration program that have been modified so that
all operations including computation of the transition matrices are in double
precision. The transition matrices were computed along the reference conic
and along a set of conics with initial position and velocity perturbed from
the reference. The elements of the transition matrices were differenced to
obtain the second partial derivatives. The desired accuracy was achieved by
judicious choice of the initial deviations. This method was used for simplic-
ity in programming (the necessary subroutines were already available), and it
is not particularly recommended.

An alternate approach that would yield a more efficient program would be
to use the closed-form equations for the second partial derivatives given in

reference 7 or 8.
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TABLE I.- RMS ERRORS AND RATIOS FOR TRANSLUNAR TRAJECTORIES

Time from

Second-order errors

injection, hr Type of Linear Half-linear, o, = 0 Half-linear, o, = 1
. . data rms value rms value, Ratio to rms value, Ratio to
Correction Terminal km km linear km linear
Two-body 1.5x10°3 9.5x107" 6.3x1071 9.3x107" 6.2x10"!
0.0 0.8 Four-body | 1.1x10°3 6.5x10"% | 5.9x1071 1.1x10"3 1.0
Two-body 1.4 2.4 1.7 3.5 2.5
.0 47.0 -1
Four-body 6.4x10 2.3 3.6 4.6 7.2
.0 61.2 Four-body 1.5 3.1x102 2.1x102 1.2x103 8.0x102
Two-body 8.0x107° 1.3x107° 1.6x1071 3.7x107" 4.6
-8 25 Four-body 5.0x10" 5 2,7x1076 5.4x10"2 2.9x10™% ;
S
Two-body 7.8x1073 1.2x1072 1.5 4,2x1071 5.4x101
-8 47.0 Four-body | 7.1x10-3 2.4x103 3.4x107 1 7.0x10~1 9.9x101
.8 61.2 Four-body 1.0x1072 6.2x1071 6.2x10! 1.6x10! 1.6x10%
Two-body 1.2x10-5 2.7x107© 2.3x107! 1.6x1072 1.3x103
11.4 47.0 Four-body 1.3x10°5 4.1x1076 3.2x10" ] 2.1x10"2 1.6x108
11.4 61.2 Four-body 2.2x107° 2.1x1073 9.5x101! 3.6x10! 1.6x10°
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TABLE II.- RMS ERRORS AND RATIOS FOR TRANSEARTH TRAJECTORIES

Time from Second-order errors
injection, hr Type of Linear Halif-linear, o, = 0 Half-linear, oy = 1
. . data rms value, rms value, Ratio to rms value, Ratio to
Correction Terminal . .
km km linear km linear
Two-body 3,7x1072 1.3x1072 3.5x1071 4.2x1072 1.1
0.0 12.8 Four-body 4.6x1072 3.2x1072 7.0x107! 9.6x1072 2.1
.0 69.7 Four-body 1.7 1.5x10! 8.8 1.3x102 7.6x101
Two-body 2.3x107° 7.7x1077 3.4x1072 1.2x1073 5.2x10!
4.2 12.8 Four-body | 7.4x1076 4.1x107 | 5.5x10°2 | 4.0x10"% | 5.4x10}
4.2 60.0 Four-body 1.2x107% 1.0x107° 8.3x10"2 1.8x107! 1.5x103
4.2 69.7 Four-body 4,5%x107" 6.1x1073 1.4x10} 3.2x10! 7.1x10%
Two-body 1.1x107% 5.1x1073 4.6x101 1.6x102 1.4x10°
12.8 69.7 Four-body 2.9x107° 8.1x1073 2.8x102 6.8x101 2.3x10°
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