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ABSTRACT 

An ellipsoidal velocity distribution function i s  found a s  the resul t  of maximizing the 
entropy with constraints on the number density, the mean velocity, and the s t r e s s  energy 
tensor. The relation of this function to the macroscopic flow equations (continuity, 
momentum, etc . )  is studied. The special case of one-dimensional channel flow i s  ana­
lyzed. It i s  shown that the ellipsoidal distribution function gives a consistent description 
of viscous flow. That is, the parabolic flow profile and Newton's law of viscosity become 
natural consequences of the macroscopic flow equations. 
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THE ELLIPSOIDAL VELOCITY DISTRIBUTION FUNCTION 

by N. Stankiewicz 

Lewis Research Center 

SUMMARY 

An ellipsoidal velocity distribution function is found as the resul t  of maximizing the 
entropy with constraints on the number density, the mean velocity, and the stress energy 
tensor. The relation of this function to  the macroscopic flow equations (continuity, 
momentum, etc.  ) is studied. The special  case of one-dimensional channel flow is ana­
lyzed. It is shown that the ellipsoidal distribution function gives a consistent description 
of viscous flow. That is, the parabolic flow profile and Newton's law of viscosity become 
natural consequences of the macroscopic flow equations. 

INTRODUCTION 

The concept of maximum entropy is well known in classical thermodynamics where 
i t  is used as a definition of the stable equilibrium condition. However, information 
theory, with its basic assumption that the disorder of a statist ical  system is a measure 
of its entropy, can provide a way of extending the maximum entropy concept to nonequi­
librium situations. 

The ellipsoidal velocity distribution function is an example of a nonequilibrium (non-
Maxwellian) distribution function that can be derived from a maximum entropy (disorder) 
principle (ref. 1). Its name comes from the fact that the surfaces of constant density in 
velocity space are ellipsoids. 

The derivation of the distribution function res t s  on the supposition that the entropy is 
a maximum, subject to  various constraints. The constraints are those moments of the 
distribution function which, it is hypothesized, are deduced from measurements made on 
the system. They are all local averages and can change in time and with position. An 
open (flowing) system is considered. 

The equations describing a flowing system are, in general, a hierarchy of equations 
involving the changes of a given moment of the distribution function in time; its transport  



into and out of an infinitesimal volume; the changes because of external forces; and 
finally the i r revers ible  changes caused by particle interactions. 

This report  is a study of the relation between the ellipsoidal distribution function and 
the macroscopic flow equations. The purpose herein is to show that the ellipsoidal dis­
tribution function gives a consistent description of viscous flow. 

The procedure used in this report  is in contrast to a previous work by this author 
(ref. 1)in which the relation between the Lagrange multipliers of different species within 
a single system (plasma) was investigated. 

Holway (ref. 2) and Kogan (ref. 3) show that the distribution functions obtained by the 
Grad moment method a r e  linearized expansions of the more general functions obtained by 
using the maximum entropy procedure. That is, those te rms  which depart from being 
Maxwellian a r e  linearized in references 2 and 3.  This implies that the departure from a 
Maxwellian distribution function and, hence, from equilibrium is small .  

The present report  takes the more general approach and leaves the distribution func­
tion intact. The relation of the ellipsoidal distribution function to the macroscopic flow 
equations is therefore not restricted to near-equilibrium o r  to related assumptions con­
cerning the "binariness" of collisions. 

ANALYSIS 

Maximum Entropy 

It is shown in reference 1 (and duplicated in appendix B of this report) that a dis­
placed ellipsoidal velocity distribution function is the result  of maximizing the entropy 
density 

S = -w(:y/f(ln f - l )d3v 

with the following moments of the distribution function as constraints: 

Number density: 

n = w(: r /  f d3v 
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Mean velocity density: 

Stress-energy density tensor (per unit mass): 

(All symbols are defined in  appendix A. ) The nondimensional distribution function f is 
related to the density F of phase space by 

F = w(:rf (5) 

The moments defined by equations (2) to (4)are, by hypothesis (or by observation of 
the system), the independent variables of the system. That is, any other moment can be 
expressed in te rms  of these variables. 

Taking a variation of S (the variation operates only on the distribution function) and 
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introducing the constraints by means of the Lagrange multipliers -a,-c, and -r, we 
obtain (as shown in appendix B) 

where 

2 

-c p = -2(v') . r 

* 
f - l =2((Tf7) - (T)(7)) 

and 
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where 

A =  det r12 r22 r 2 3  

1 1 3  r23 r33, 

The specification of the distribution function consistent with the assumed information 
is complete. That is, all the Lagrange multipliers a r e  given in te rms  of the independent 
moments of equations (2) to (4). Equations (7), (8), and (9) define z,8, and a,re­
spectively, in te rms  of these moments. 

The Ellipsoidal D is t r ibu t ion  Funct ion and t h e  H ierarchy  of Flow Equations 

It is assumed in the preceding section that the constraints imposed by equations (2) 
to (4) a r e  the results of measurements made on the system. However, these measured 
values may change in time, or from station to station within the system. There may also 
occur irreversible changes due to the internal interactions of particles. 

The changes in the constraints can be found by taking the appropriate moments of 
the Boltzman collision equation. Hence, corresponding to equations (2) to (4),fo r  a sys­
tem with no applied forces, the following equations can be derived: 

m.div p(F7) = 0- ,  Iat 

+e+
-+ div p ( v v v )  = 
a t  

where p(=mn) is the mass  density. 
The left hand sides of these equations are the changes due to time and to transport, 

while the right hand sides contain the irreversibil i t ies (sources and sinks) of the flows. 
Equations (11) and (12) are, therefore, expressions of conservation of mass and momen­
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tum. The trace of equation (13) i s  the energy equation whose right hand side would in­
clude wall interactions. No use is made of this equation in this report. 

An important point to notice about this set of equations is the occurrence of the next 
+++ -+e­higher flow average - namely, p( v v v )  . Also, the equation for p( v v v )  would contain 

*-c-c-c~ ( V V V V )Seemingly a complete solution to any flow problem thus entails the solution of. 
an infinite set of equations for all the flow averages. The usual resolution of this diffi­
culty is to truncate arbitrari ly the hierarchy of equations. The point of truncation usually 
coincides with the exhaustion of names for the higher te rms  - the heat flux generally 
being the last te rm considered. 

The appearance of higher flow averages is not a problem if the distribution function 
is known, because the needed te rm is then calculable. 

The maximum entropy technique outlined in the Maximum Entropy section (see p. 2) 
provides the most probable distribution function, consistent with the constraints con­
sidered. Al l  higher moments a r e  then calculable and expressable as functions of the in­
dependent constraining moments. This procedure is essentially an a priori  truncation 
method for the s e t  of equations (ll),  (12), and (13). From appendix B we get 

Equation (14) is used in the next section to simplify equation (13) for analyzing a 
special case of viscous flow. 

The Ellipsoidal Distribution Function and Viscous Flow 

The purpose here is to show that the ellipsoidal distribution function gives a correct  
description of physical reality, in that it contains the elements of viscous flow. 

The case considered is steady-state incompressible channel flow in which the flow 
velocity is one-dimensional in the x direction, that is, 

and the pressure tensor is 

$ = p [ ( i Y )  - (?)(?)I= P 
p.y 

p 00 puy P:j 



where P is the sca la r  pressure.  
Equations (11) and (15) with the conditions of steady-state and incompressible flow 

immediately specify that 

Because of equations (15) and ( l l ) ,  equation (12) can be rewritten as 

div p(( 77)- (7) =(7))0 

Then, with the use of equation (16), equation (18) becomes 

ax ay 

It is assumed that the scalar  pressure is constant in  the y-direction, that is, transverse 
to the flow. Equation (19) then becomes 

d P  
-d P  + 3 = 0  

where P = P(x) and P
Xy = Pxy(y). 

The final flow equation to be considered is equation (13), which expresses the 
changes in the stress-energy tensor but contains the higher moment p(vivjvk) . Nor­
mally, this would be an unknown term, and for the analysis to continue, one would need 
to make some assumption concerning i t .  However, because of the maximum entropy 
procedure used in this report  the most probable distribution function is known and this 
moment is calculable and given by equation (14). 

Equation (13), with the use of (14),then reduces to 
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If the interaction te rm is linearized by 

(%)I= -vPXy 


it is seen that equation (21) contains Newton's law of viscosity - namely, 

dV
PXY= -77 dy 

where 77 = P / v  is the coefficient of viscosity, and is an interaction frequency, or the 
reciprocal of a characterist ic relaxation time. 

Equations (20) and (23) can now be solved for  the velocity profile. Each te rm in 
equation (20) must be equal to a constant s o  that for the case of constant viscosity equa­
tion (20) becomes 

where equation (23) was used in equation (24b). The scalar  pressure,  according to equa­
tion (24a), then varies linearly with the distance down the channel. And, solving equa­
tions (24), with the conditions 

V =  0 for y =  &a 

yields the parabolic velocity profile 

v = v0f-5) 
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It is thus seen that the ellipsoidal distribution function leads to a meaningful physical 
result. 

CONC LUD ING REMARKS 

The principle of maximum entropy (disorder) consistent with the moments n, n(v'), 
and n(v'v') as constraints leads to the ellipsoidal velocity distribution function. The con­
straints are introduced into a variational equation by means of Lagrange multipliers and 
these unknown multipliers a r e  subsequently related to the constraints. The constraining 
moments a r e  a se t  of independent macroscopic variables of the system. 

In general, the flowing (open) system is described by a hierarchy of flow equations 
(continuity, momentum, e t c . )  which shows how the moments can vary with respect to po­
sition o r  time. However, the flow equations a r e  not a closed s e t  in that they always in­
volve an unknown higher moment. 

Because the constrained moments constitute an independent s e t  of variables, the un­
known moment is expressible in  terms of the constraints. That is, all moments are cal­
culable because the distribution function is known. Moreover, the distribution function 
is the most probable one consistent with the constraints considered. Thus, the principle 
of maximum disorder provides a consistent truncation for a given se t  of flow equations. 

For the specific case of the ellipsoidal distribution function and for one-dimensional 
incompressible channel flow it is shown that the truncation of the flow equations contains 
Newton's law of viscosity. And this leads to a parabolic velocity profile. 

An extension of the method to include heat flux and other higher moments is desir­
able and further studies might yield cr i ter ia  predicting the point when higher moments 
must be introduced to describe adequately the flowing system in general. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 12, 1968, 
129-02-08-05-22. 
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APPENDIX A 

SYMBOLS 

A determinant of the I? matrix, defined in eq. (10) 

C constant 

F density in velocity-position (6-dimensional) space 

f velocity distribution function 

h Planck's constant
* 
I unit tens or 

J Jacobian, determinant of transformation matrix 

K constant 

m mass  

n number density 

P sca la r  pressure;  or ,  with subscripts, component of pressure tensor 

i? pressure tensor 

S entropy 

mean velocity 


velocity vector; components 


velocity vector defined in eq. (B15) 


components of position vector 


parameter defined in eq. (B16) 


matrix of Lagrange multipliers 


coefficient of viscosity 


vector whose components a r e  Lagrange multipliers 


interaction frequency 


velocity vector defined in  eq. (B12) 


mass  density 


La grange multiplier 


degeneracy factor 
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Subscripts: 


i, j, k running indices (= 1,2 ,3)  


Mathematical symbols: 

det determinant of 

d i V  divergence in coordinate space 

grad gradient in coordinate space 

gradv gradient in velocity space 

-1  inverse of 

dot o r  sca la r  product 

vector 
i: tensor symbol 

0 average value of 
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APPENDIX B 

IDENTIFICATION OF THE LAGRANGE MULTIPLIERS 

The variational equation used in deriving the ellipsoidal distribution function is 

Substituting equations (1)to (4)into equation (Bl) yields 

Because the variation 6f is arbitrary,  the integrand must vanish s o  that 

- - - c  * ­
f = e-52-1-1. v - v - r.v 

which is the ellipsoidal distribution function .in equation (6). 
There are many ways to a r r ive  at equation (7) and (8), but the simplest  is as follows 

Taking the gradient in velocity space of f gives 

gradvf = - f(c+ 2? . I?) 034) 

A 
in which the symmetry of I? is used in equation (B4). 

When integration is performed over all velocities, the left hand side of equation (B4) 
vanishes because f must vanish for infinite velocities: 

gradvf d3v = ei /zdvi d2v = 2ei J [f(w) - f(-w)]d2v = 0 
avi 

i i 

Hence, equation (B4) becomes 



where equations (2) and (3) were used. Finally, 

which is equation (7) of the main text. 
Substituting equati,on (B6)into equation (B4)and forming the diadic give 

(gradvf)? = 2fF - ((F)? - ??) 

and noticing that 

gradv(f?) = ?f + (gradvf)v' 

one arr ives  at 

gradv(fv') -^If = 2fF ((?)v' - v'v') 039) 

If equation (B9)is integrated over all velocities, the gradient te rm will again vanish. 
After simplifying one gets 

2

I = 2? - ((Fv') - (v') (F)) 

Equation (B10)immediately defines equation (8); that is, 

+- l=2 ( ( 3  - (iw)) 

The integration of equation (2) to get the explicit form of 
as follows. First, transform to the relative velocity variable 

v'= (v') + g-
From this it follows that 

d3v = d3( 

( B W  

n in equation (9)proceeds 
g, which is given by 

(B12) 

0313) 

Then, with the use of equation (B6),the number density of particles in an incremen­
tal volume of velocity space d3 v becomes 
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The easiest way to ca r ry  out the indicated integrals is to complete the square of 
each component (f 1, f 2, t3 ) .  The following nonorthogonal transformation will accomplish 
this result: 

p33 
1/2

r11P33 

0 

where 

p33 = r11r22 - e 2  

It follows from equation (B15) that 

3 3
d w =  J d  f 

= d3f 

where J is the determinant of the transforming matrix in equation (B15). The integra­
tion in equation (B14) can now be carr ied out: 
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which is equation (9). 
Because of the independence of the Lagrange multipliers, one is able to compute any 

integral of f through a process of differentiation of n with respect to the Lagrange 
multipliers. 

Therefore, note that 

An = Sf d3v = n(S2,3, ?) 
0319) 

and 

an=-[fvi d3 v = - n(vi)alii 

Likewise, since 

(vi) = SfP d3v 
n 

then 

1Jfv, d 3 v 1 f v i  d3v - 1/fvivk d3v = (v,) (vi) - (vivk)a b . )  = 
(B2 1) 

apk n 2 n 

Lastly , 

14 




and 

Equations (B22), (B21), and (B20) can now be rewritten in  te rms  of first, second, 
and third order differentiations of n. If this is done, then equations (B20) and (B21) 
verify the results given by equations (B6) and (B11). 

Equation (B22) is the defining equation for (vivjvk) . Substituting equation (B11) 
yields 

a(v.v.)
(v.v.v ) = (V.V.)(Vk) - 1 

I l k  1 1  
apk 

a ( v J  
= (ViVj) (v,) - (Vi) J- <Vj) -- (B23) 

apk apk 

Now using equation (B21) gives 

Multiplying equation (B24) by p then gives equation (14). 
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