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ABSTRACT

Type III solar radio bursts observed from 3.0 to 0.45 MHz with the

ATS-II satellite over the period April-October 1967 have been analyzed to

derive two alternative models of active region streamers in the outer

solar corona. Assuming that the bursts correspond to radiation near the

electron plasma frequency, "pressure equilibrium" arguments lead to

streamer Model I in which the streamer electron temperature derived

from collision damping time falls off much more rapidly than in the

"average" corona and the electron density is as much as 25 times the

average coronal density at heights of 10 to 50 solar radii (Ito). In Model II the

streamer electron temperature is assumed to equal the average coronal

temperature, giving a density enhancement which decreases from a fac-

tor of 10 close to the Sun to less than a factor of two at large distances

(>1/4 A. U .) . When the burst frequency drift is interpreted as resulting

from the outward motion of a disturbance that stimulates the radio emis-

sion, Model I gives a constant velocity of about 0.35c for the exciting

disturbance as it moves to large distances, while with Model II, there is

a decrease in the velocity to less than 0.2c beyond 10 Re*
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INTRODUCTION

Information about the density and temperature structure of the corona

has come from the use of widely varying techniques. Optical measure-

ments during and outside of solar eclipse have yielded data out to 30 Ro,

but these can be reliably translated into density and temperature profiles

only out to about 10 R. (Newkirk, 1967) . Wild and his colleagues (Wild

et al. , 1959: Weiss, 1963) used interferometric positional measurements

of Type II and III bursts at metric wavelengths to derive densities above

active regions, presumably representative of active region streamers.

Further work has been done at decametric wavelengths (e. g. , Malitson

and Erickson, 1966) to give a density profile out to about 311 0 , but ex-

tension of this method to greater heights in the corona depends on obser-

vations from above the ionosphere. Beyond 10R., except for in situ

measurements of density and temperature near the Earth's orbit, the only

applicable observations to date are those of coronal occultations of discrete

radio sources and of low frequency radio bursts by means of satellites.

Although observations of scintillations of discrete radio sources due

to density fluctuations in the corona (e.g. , those of Erickson, 1964) are

good indicators of the shape of tae corona from 10 to 80 It., the derivation

of a density profile involves several unverified assumptions about the

nature and distribution of the irregularities. Until more is known about

the small-scale structure of the corona, the occultation method will have
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limited applicability. Meanwhile, the study of solar radio bursts from

above the earth's ionosphere at hectometric and kilometric wavelengths is

beginning to fill in the gaps in present knowledge of the physical properties

of the corona. The results of Slysh (1967) for Type III bursts at 1 MHz and

200 kHz, of Hartz (1968) over the range 15 MHz-600 kHz, and those contained

in this report suggest a high-density, low-temperature model for coronal

active region streamers out to about 50 It.. An alternative model with

higher temperatures and moderate density enhancements over the back-

ground is also possible.

TYPE III BURST OBSERVATIONS

The observations to be discussed here were obtained with the ATS-R

satellite, which was launched April 6, 1967 into an elliptical, 28° inclin-

ation orbit with an 11, 000 km apogee and 180 km perigee. Since details of

the ATS-II radio astronomy experiment have been presented elsewhere

(Stone et al. , 1968; Somerlock and Krustins, 1968) we will only sum-

marize the salient features of the instrument. In brief, it consists of a

76-meter dipole antenna which is connected through a pair of high imped-

ance pre-amplifiers to a Ryle-Vonbeig type comparison radiometer. The

radiometer is stepped through six discrete frequencies between 0.45 and

3.00MHz once every 40 sec. The pre-detection bandwidth is 40 kHz, and

the post-detection integration time constant is 1 sec. Approximately

1130 hours of measurements were obtained between launch date and
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October 23, 1967, when routine spacecraft operations were terminated. About

40% of the data showed evidence of "contamination" due to terrestrial

noise bursts (Bauer and Stone, 1968) and other local phenomena. During

the remaining 680 hours available for solar measurements we have observed

over fifty burst events which clearly exhibit the rapid frequency drift

pattern characteristic of Type III solar bursts. There were an additional

fifty burst events observed that we would class as "probable" Type III's.

Since our experiment operated on a 50% duty cycle (i.e., 10 min. on - 10

min off), thi corresponds tc an occurrence frequency of about 0.15-0.3

bursts per hour as compared with 1 burst per hour reported for Type III's

at decametric wavelengths for a comparable level of solar activity. This

apparent decrease is probably due in part to sensitivity limitations arising

from spacecraft RFI levels. Very recent measurements from the

first Radio Astronomy Explorer satellite tend to confirm this explanation,

and show a large number of Type III bursts in the 1 MHz region. DatL used

for analysis of solar bursts were confined to times when the satellite was

above 5000 km.

The distribution of bursts with frequency (Figure 1) suggests an

interesting trend. Of all those bursts observed at 2.2 MHz, only about

80% extend to 0.7 MHz and 28-68% are found to go to 0.45 MHz. (The 	 i

large uncertainty is due to a deficiency of data at 0.45 MHz which became

more serious during the final weeks.) Part of this effect may be due to
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screening of the lower frequencies by the ionosphere, but when the

analysis is confined to bursts observed at altitudes above 9000 km (the

0.45 MHz plasma level is below 7000 km) only 12-36% of those bursts ob-

served at 2.2 MHz extend down to 0.45 MHz. To investigate the possible

influence of eoronal propagation effects on the burst-frequency distribution

we sorted all bursts observed according to the heliocentric latitude and

longitude of the solar flare most likely associated with the bursts. Flare

information was obtained from the monthly "Solar-Geophysical Data" re-

ports from ESSA in Boulder, Colorado. Although there is some evidence

of a propagation effect reflected by a decrease in the number of low

frequ%ncy bursts associated with flares more than 45° from the center of

the solar disk, the distribution of all bursts associated with active centers

within 45 0 of the center still clearly shows a drop-off in the wimber of

bursts that extend down to 0.45 MHz. In other words, it appears that all

Type III's do not drift to indefinitely lower frequencies.

Several examples of Type III bursts observed with the ATS experi-

ment are shown in Figure 2. Since the antenna was shared with another

experiment on the satellite, radio noise measurements were obtained for

a period of ten minutes, and then the experiment was off during alternate

ten minute periods. The radiometer stepped ti.-.rough six frequencies -

0.45, 0.7, 1.1, 1.6, 2.2 and 3.0 MHz - in 40 seconds. Although this

sampling rate is not sufficiently fast to show the time structure of the
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bursts in detail, the abrupt onset, rapid drift from high to low frequencies,

and the approximately exponential decay common to Type III bursts are

apparent in the examples shown in Figure 2. Note also that there is a

tendency for both the rise times and the decay times of the bursts to in-

crease as frequency decreases.

For each burst, we have measured the time taken for the maximum to

drift from one frequency to the next lower one. The drift rates derived from

these measurements are plotted on Figure 3, along with some results from

other investigations. The straight line represents the observations of

Hartz (1968) from the Alouette I and II satellites, and the crosses come from

a study of University of Colorado radio spectrograph data by Boischot (1967) .

It should be pointed out that the ATS-II points are based on drift rates of the

burst maxima, which are somewhat lower than the drift rates of burst com-

mencement times used by Hartz and Boischot. In our case, burst maximum

times gave more consistent results, being relatively insensitive to the

level of the background noise above which the burst had to be recognized.

The error bars in Figure 3 reflect the uncertainty in estimated drift times

due to the relatively slow sampling rate of the experiment.

The decay times (i.e., e-folding times) for all Type IIII I s observed are

shown in Figure 4 where we have plotted the average decay time for each

frequency. The times vary inversely with frequency from 30 sec at 3 MHz

to about 120 sec at 0.45 MHz. The error bars again sht)w the effect of the

slow sampling rate.
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DERIVATION OF CORONAL STREAMER TEMPERATURE AND DENSITY

Following Boischot, Lee, and Warwick (1960) and others, we can use

the burst decay time to estimate the streamer electron temperature. If

one assumes that the Type III bursts are due to plasma oscillations at or

near the local electron plasma frequency and that electron-ion collisions

are primarily responsible for the damping of the oscillations, then the

electron temperature is given by

T e = 0.65 x 1U4 72/3f4/3
	

(Eq • 1)

where 7 is the e-folding duration of the burst observed at a radio frequency

f (Jaeger and Westfold, 1949). Upon using the decay times shown in Fig-

ure 4 in Equation 1, we get electron temperatures which vary system-

atically from 2.9 x 10 5 K at 3.0 MHz to 5.4 x 10 4 K at 0.45 MHz. Similar

results are obtained from an equation due to Spitzer (1956) which differs

from the above by a constant factor, typically of the order of 4.

In order to apply the temperatures deduced from burst decay times to

a model of an active region coronal streamer we must have an independent

means of determining the height in the solar corona to which the measured

temperatures apply. For that purpose, we assume an equilibrium be-

tween the total pressure in a streamer and in the surrounding coronal

plasma. That is,

2N $ kTa + B,/8n = 2N,kT a + B .2 /87r	 (Eq. 2)

where Ns , T o , and B. refer respectively to the streamer electron density,
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temperature, and magnetic field and N. , T. , and B. refer to the same

quantities in the "average" corona. The magnetic pressure in the

streamer is assumed to be negligibly small, thus eliminating the second

term on the left side of the equation. Support for this approach is pro-

vided by the model of Sturrock and Smith (1968) based on eclipse obser-

vations, in which a streamer is the visible manifestation of a current

sheet between two tubes of opposite magnetic flux. The magnetic pressure

in the sheet would be zero, therefore making it necessary for the gas

pressure alone to balance the total pressure in the surrounding "average"

corona.

Next, in order to estimate the streamer density and temperature dis-

tribution, we adopt models for the density, temperature;, and magnetic

field in the average corona, based on presently available data, and then

determine the altitude at which Equation 2 is satisfied. For the average

corona we have used the electron density model for the solar wind by

Whang, Liu, and Chang (1966) which compares well with other equatorial

coronal models close to the Sun and with space probe measurements near

1 A.U. The average electron temperature model adopted is similar to

that developed by Noble and Scarf (1963) which ranges from 2 x 10 6 K at

one solar radius to about 3 x 10 5 K at 1 A. U. Finally, we have taken the

average coronal magnetic field to vary inversely with the square of the

distance from 2.5 gauss at one solar radius to 5 gamma at 1 A. U. (a
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figure that also agrees well with space probe measurements). These

assumptions lead to the streamer temperature and density models labelled

"Model I" in Figu. a 5.

We find that the streamer temperatures fall off much more steeply

than in the average coronal model and, when extrapolated to 1 A. U. ,

suggest that if streamers extend that far out they would have temperatures

below 10 4 K. The streamer densities are not inconsistent with the model

of Malitson and Erickson (1966) for lower altitudes but are enhanced over

the average coronal densities by a factor of 20 to 30 at heights of 30

to 50 Re. Model I, therefore, is consistent with the results of a

similar analysis by Hartz (1968) and suggests a picture of dense, cold

streamers.

The streamer model derived above should probably be interpreted as

giving a lower limit to electron temperatures and an upper limit to

electron densities. It seems likely that there are other damping mechan-

isms in addition to collisions which will contribuie to the burst decay and

thereby lead to temperatures which, if calculated on the basis of collisions

alone, will be too low. Upon including a finite magnetic pressure term

on the streamer side of Equation 2, a given density point is shifted to a
f

lower altitude, thereby reducing the factor by which the streamer density
3

i

	 is enhanced over the average coronal density.

To investigate the effect of a higher streamer temperature than that

deduced from the decay times we have developed a second model in which
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the streamer temperature is taken to be equal to the average coronal

temperature at large distances from the Sun. The resulting density dis-

tribution using Equation 2 with T. = T, is labelled "Model II" in Figure 5.

Now the streamer densities are enhanced over the average densities by a

factor of 5 at 30 Re, and the streamers tend to merge into the sur-

rounding corona at greater distances from the Sun. When extrapolated

to 1 A. U., Model H suggests that the streamer would simply appear as a

10 to 20% increase over the average density. To make this density model

consistent with the Malitson and Erickson streamer model at low altitudes,

we need only include a small streamer magnetic pressure term or allow

the streamer temperature to slightly exceed the average temperature

close to the Sun.

VELOCITIES OF TYPE III BURSTS

If the Type III bursts are interpreted as being due to plasma oscilla-

tions excited at successively higher levels in the corona by a disturbance

moving rapidly along a streamer, then the frequency drift rates can

he used to determine the velocity of the disturbance. We have used

the delay in the times of peak intensity at each observing frequency

to calculate velocities for both density models, and the distribution of

velocities determined for bursts drifting between 2.2 and 1.1 MHz is

shown in Figure 6. Since the radio emission at different frequencies is
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postulated to come from different altitudes in the corona, the observed

time delays must be corrected for the difference in the light time between

the points of origin at each frequency. To do this, we assumed that each

burst occurred radially above the most actively flaring region on the disk

at the time of the burst. The time correction to be applied to the delay

times between two frequencies is then given by

t _ (R 2 - 2AR cosO +A2) v:  - (r 2 - 2Ar cos8 +A2) Y2 	
E 3)c	 ( q'

where R, r are the radial distances from the Sun to the points of origin at

the two frequencies, 0 is the heliocentric angle between the Earth and the

source, A is the length of the A.U., and c is the velocity of light. The

velocity distributions thus approximately corrected are shown by the dashed

histograms in Figure 6. The average velocities are found to fall at 0.3

to 0.35c for density Model I and 0.15 to 0.18c for Model II.

In Figure 7 we have plotted the corrected velocities deduced from the

drift times at each frequency as a function of distance for both streamer

models. Also shown are velocities deduced from ground-based observa-

tions of drift rates at high frequencies all calculated on the basis of the

Malitson and Erickson streamer model and velocities calculated from

Hartz's drift rates using our density curves for ModE' I and Model II. In

spite of the considerable spread in the high-frequency points and the

necessarily large error bars on the low-frequency points, certain trends
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are evident in Figure 7. In Model I the average Type III burst velocity is

nearly constant out to at least 50 Re at a value of about 0.35c. In Model II

the average velocity appears to decrease with distance, from a value of

about 0.45c at one solar radius to about 0.15c at 30 Re.

DISCUSSION

Streamer temperatures derived by assuming that the decay rate is due

entirely to collisional damping are found to fall off as R' 1 , i.e., far more

rapidly than expected for the ambient solar wind. Corrections to account

for the finite extent of the exciter or a larger emission bandwidth will

only tend to lower the temperature. As suggested by Newkirk (1967) the

R 1 decrease of temperature might be a consequence of subsonic streamer

flow resulting from the choking off of the supersonic solar wind by the high

streamer density. Yet there have been no definite space observations

showing the existence of such cold, dense streamers extending out to the

orbit of the Earth. Furthermore, the assumption that the emission decay

is due entirely to collisional damping may be incorrect. For realistic

temperatures and exciter velocities, Landau damping is ineffective com-

pared to collisional damping. Since there is no reason to expect that the

excited plasma is Maxwellian, it should be possible to obtain significant

collisionless damping by proper choice of a distribution function. This

point will not be pursued further here. There is also the possibility

that the decay is apparent in that the excited plasma spectrum may
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shift to longer wavelengths where the emission is not observable.

This has been considered by Tsytovich (1936) using nonlinear plasma

theory.

Our Model I is used to illustrate the typical streamer characteristics

resulting from an energy density balance argument, an ambient solar wind

model, and streamer temperatures deduced from damping times. Model

II, on the other hand, disregards the temperatures derived from the burst

decay and assumes streamer and ambient coronal temperatures are equal.

This model was introduced to obtain a somewhat independent determination

of exciter velocity. The model has the interesting property that the

streamer density enhancement relative to the ambient corona first in-

creases and then slowly decreases to the ambient coronal density value.

This type of structure is expected on the basis of more substantive anal-

ysis as presented by Pneuman (1968).

The data in Figure 1 suggest that the occurrence probability of Type

III bursts apparently decreases with frequency, i.e., with distance. This

conclusion is tentative because of the limited sample of bursts available

after discarding those not observed near satellite apogee and those with

associated flares at large heliocentric angles. Sensitivity limitations of

the ATS experiment may also invalidate the occurrence probability anal-

ysis. However if the result is valid, the decrease of occurrence proba-

bility could be explained by a "thinning out", i.e., decrease in density,
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of the streamer at large distances. As the streamer density approaches

that of the ambient plasma, the range of angles over which the radio

emission can escape will decrease. There is also the possibility that at

some distance out, the streamer can no longer contain the exciting

mechanism, so that the emission cannot be observed.

An experiment conducted by Slysh (1967b) has introduced an interesting

challenge to the hypothesis that emission occurs near the plasma frequency.

The approximate positions of bursts at 200 kHz were obtained both from

antenna null positions and from lunar occultations observed with the Luna-

11 and -12 probes. Slysh found that the bursts occurred at a distance

approximately 200R. from the Sun. The plasma hypothesis would place

the 200 kHz level at about 100R.. To account for his observations, Slysh

invokes a theory developed by Gailitis and Tsytovich (1964) which gives

emission at a frequency well above the local plasma. frequency. It is

interesting to note that over the frequency range common to the ATS and

Luna experiments, the density profile derived by Slysh is essentially in

agreeement with the results of Model I.

SUMMARY

Two models of active region coronal streamers at large distances

from the Sun have been developed for use in interpreting Type III radio

burst observations at low frequencies. The cold, dense streamers

pictured in Model I probably represent lower limits to the electron
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temperatures and upper limits to the electron densities. Actual streamer

parameters probably fall somewhere between these limits and the values

given by Model II, in which the streamer temperature remains equal to

that of the ambient corona, and the streamer density approaches ambient

solar wind density far from the Sun. Direct measurements pertaining to

the existence of streamers out to 1 A. U. , and the determination of the

characteristics of solar radio bursts to kilometric wavelengths would go

far toward resolving these questions.
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FIGURE CAPTIONS

Figure 1. Percentage of Type III bursts observed at 2.2 MHz that extend

to lower frequencies. The burst frequency distribution relative to

2.2 MHz is shown as a function of satellite altitude and heliocentric

angle of the associated active region.

Figure 2. Sample portions of ATS-II radiometer data showing Type III

bursts. The small brackets along the bottom of each diagram denote

the times when Type III bursts were detected by the University of

Colorado decametric radio spectrograph.

Figure 3. Change of drift rate of Type III bursts with frequency. The

open circles represent ATS-II data. The solid line was derived by

Hartz (1968) from Alouette-I and -II satellite data and the crosses are

from Boischot's analysis (1967) of data from the radio spectrograph

of the University of Colorado.

Figure 4. Variation of the average burst decay time (e-folding time) with

frequency.

Figure 5. Models of the variation of electron density and temperature

with distance from the center of the Sun for the "average" corona and

for active region streamers. Model I streamer temperatures are

derived from burst decay times; Model II streamer and "average"

temperatures are assumed to be equal.



FIGURE CAPTIONS (Continued)

Figure 6. Distribution of Type III burst exciter velocities derived from

the frequency drift times between 2.2 and 1.1 MHz and the Model I

and II streamer electron density distributions. Assuming that the

disturbance moves radially outward from the associated active region,

the dashed histogram shows the effect of correcting for the difference

in propagation time from the points of origin at the two frequencies.

Figure 7. Variation of burst exciter velocity with distance from the

center of the Sun. For comparison with the ATS data, the broken

curves show the velocities derived from Hartz's (1968) drift rates in

terms of Models I and II; whereas the numbered points (1- Elgarmy

and Rsdberg, 1963; 2- Maxwell, 1965; 3- Wild, 1950; 4- Wild et al.,

1959; 5- Riihimaa, 1963; 6- Malville, 1962; 7 - Clark, 1967) refer to

ground-based drift rate measurements reduced in terms of the

Malitson and Erickson (1966) streamer model.
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