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ABSTRACT 

The Hartree-Fock method is  used to study the even-even N Z nuclei in the 2s-ld 
shell. Basis functions with correct  asymptotic behavior are gencrated by u s e  of a Wood-
Saxon well. The resul ts  a r e  compared with calculations using the conventional harmonic 
oscillator basis. It is found that most of the Wood-Saxon results may be obtained with a 
harmonic oscillator basis if the oscillator parameter  is  carefully chosen. 
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HARTREE-FOCK CALCULATIONS WITH WOOD-SAXON BASIS FUNCTIONS 

by Wi l l i am F. Ford and R ichard  C. Bra ley  

Lewis Research Center  

SUMMARY 

In order  to determine the sensitivity of various nuclear properties to the asymptotic 
par t  of the nuclear wave function, calculations have been made using both the conven­
tional harmonic oscillator single-particle functions and the more realistic Wood-Saxon 
functions. Hartree-Fock theory w a s  used to obtain nuclear wave functions for the five 
even-even N = Z nuclei in the 2s-Id shell. Intrinsic nuclear energies, radii, and quad­
rupole moments were calculated, as well as energy gaps and single-particle densities. 
Considerable differences between harmonic oscillator and Wood-Saxon results were 
found when the usual value ( v  = 0. 35 fm-2) for the cscillator parameter w a s  used; how­
ever, close agreement could be obtained in most of the properties studied by using a 
different value (v = 0. 27 fmq2). 

INTRODUCTlON 

In recent years  the Hartree-Fock (HF) method has received considerable attention 
in studies of the energy levels of deformed nuclei (ref. I). This method is essentially a 
variational procedure, based on minimization of the energy of a many-particle system. 
While such a procedure may provide a sensitive test  of the wave function in the nuclear 
interior, it is expected that the shape of the wave function beyond the nuclear surface 
will  not affect nuclear energies significantly. For this reason, H F  calculations up until 
now have made use of single-particle harmonic oscillator basis functions, in spite of 
their obviously incorrect asymptotic behavior. 

There are ,  however, many quantities of interest  which a r e  expected to be much more 
sensitive than the total energy to the asymptotic par t  of the wave function. Electro­
magnetic transition rates, multipole moments, and form factors for  elastic and inelastic 
scattering a r e  examples which come readily to mind. It does not seem likely that very 
accurate calculations of such quantities can be performed using HF wave functions with a 
harmonic oscillator basis. Thus, a H F  calculation using the basis functions of &e more 



realist ic Wood-Saxon potential is of interest  both for  the energy spectrum it yields and 
for the effect it shows of the long-range part  of the wave function on other nuclear prop­
erties.  

In this report are presented the results of a considerably restr ic ted version of such 
a program. The H F  variational calculation is carr ied out fo r  five nuclei in the 2s- ld  
shell by using both Wood-Saxon (WS) and harmonic oscillator (HO) basis functions. A 
comparison is made of such properties as orbital energies, energy gap, and total (HF) 
energy. In addition, nuclear densities, radii, and intrinsic quadrupole moments a r e  
calculated and compared. 

SYMBOLS 

a diffuseness of Wood-Saxon well 

expansion coefficients for  the Hartree-Fock orbits 

E~~ Hartree-Fock energy 

eA Hartree- Fock single-particle energy 

h Hartree- Fock Hamiltonian 

independent-particle Hamiltonian 

d 2 J  + 1 
single-particle total angular momentum and its projection onto 

z-axis 

( j lml ,  j2m2i JM) Clebsch-Gordan coefficient 

Ij) reduced matrix element( j 7 /l ~ J l  
‘a single-particle orbital angular momentum 

symmetric 9-j  coefficient 

n! 
m!(n - m)! 

P.. two-particle exchange operator
11 


-c 

r.. IFi - rjI
11 
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A 

Sd7j 

total spin angular momentum and projection onto z-axis 

U-coefficient of Jahn (see ref .  9);  defined in te rms  of Racah coef­
ficient as [(2J12 + 1)(2J + 1)]1/2W(jlj2j4j3;J12J) 

radial par t  of basis function 

residual two-body force 


strength of residual two-body force and/or Wood-Saxon well 


nonlocal part of the Hartree- Fock Hamiltonian 


Racah coefficient 


spherical  harmonic 


mlm2 

energy gap between occupied dnd unoccupied orbits 


nucleon-nucleon force range 


Harmonic oscillator parameter 


single-particle density function which includes core effects 


single-particle density function for  valence particles only 


Pauli spin operator for  particle i 

z-projection of single-particle isotopic spin 

integral over all coordinates of jth particle 

determinantal wave function for A-particle system 

Hartree- Fock orbital function of ith particle 

total spin wave function for  two-particle system 

spin wave function for  ith particle 

isospin function for ith particle 
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THEORY 


In the H F  method, the nuclear wave function is approximated by the Slater deter ­
minant 

@ = (A! )-'I2det { p,(i) } (1) 

whose orbital functions qx(i) a r e  determined by minimizing the expectation value of the 
nuclear Hamiltonian. This variational problem leads to the eigenvalue equation 

where 

V(i)  = >:fd ?q;(j)V(ij)(l - Pij)qp(j) (3) 
2 ! J  

The operator ho is usually taken to be the Ramiltonian for  a single nucleon moving in the 
average nuclear field, and V represents the residual two-body force. The presence 
of the exchange operator P.. is a natural consequence of the antisymmetry of the deter­

1J 
minant. The summation in equation (3) is taken over all the orbits which a r e  to be varied. 

Since equations (2) and (3) are too difficult for a direct  solution, approximation 
methods are required. Usually one begins by selecting a suitable se t  of basis functions 
and then making the expansion 

The problem then reduces to diagonalizing h in the space spanned by the basis functions 
ua' In practice, this is accomplished in an approximate way by first truncating the space, 
then guessing at an initial set C i ,  and finally iterating until two successive diagonaliza­
tions yield the same se t  C i .  (Often ?Taffwill be written for the se t  jama, the se t  ja, 
or even the set naLaja when no confusion will result .)  

In order to ca r ry  out this procedure, one needs matrix elements of h. It is gener­
ally assumed that ho is diagonal with eigenvalues deduced from experimental spectra. 
The matrix elements of v may be expressed (ref. 1) in te rms  of the coupled two-body 
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matrix elements of V: 

(The tilde indicates that the product function uc(i)ud(j) has been antisymmetrized. ) The 
two-body matrix elements (ablV]$) JT a r e  of course independent of the orbital functions, 
and they are therefore ideally suited for use as input in a general program designed to 
solve equation (2). 

Calculation of the two-body matrix elements presents some problems which s tem 
from the fact that V(ij) is a function of the separation between nucleons i and j. If 
HO functions a r e  used, one can overcome the difficulty by transforming to center-of­
mass and relative coordinates, and the resulting integrals can be expressed in te rms  of 
Moshinsky brackets (ref. 2). In the general case, however, such a transformation is 
not possible, and the most promising approach seems to be an expansion of V(ij). 

For the moment the isotopic spin dependence is ignored. The coupled matrix ele­
ment may then be written 

where 

After switching from j - j to L - S coupling (ref. 3) by means of 

MLMS 

we obtain 
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where ML + Ms = M and 

In this derivation V is assumed invariant under space and spin rotations separately. 
Usually a spin dependence of the form 

is also assumed where Fo is the unit operator in spin space and gl is the ordinary 
Pauli spin operator. Then, since %(12) = ( - 1)l+'XS( 21), 

where 

ab  cdNext the spherical harmonics in qLM and qLM are decoupled and then recoupled 
according to 
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Now, after a little more Racah algebra, the coupled matrix element may be written 

LLS L' S' 

+ (-1) 

where 

and 

In the derivation of equation (14) Vs is assumed central s o  that the sums over L" and 
MI1 reduce to a single term. 

The final step is the inclusion of isotopic spin dependence. It is assumed that 

1 

T'=O 

where "to and "tl are defined like go and zl but in isotopic spin space. The treat­
ment is evidently exactly like that given for the spin dependence. With the customary 
assumption that 
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where pstTl measures the relative strengths of VstTf , the final result  is obtained: 

L+S+T+lc+ld ad, cb  ad, 
- (-1) B ~ F ~ 7 f~ 

where 

The method used to evaluate integral (21) is based on a technique due to Sawaguri 
and Tobocman (ref. 4), who developed a general formalism for evaluation of six-
dimensional integrals. A simplified version adequate for the work herein is obtained as 
follows. Let 

be a complete se t  of functions in te rms  of which the expansion 

l m  
nln2 

is made. The desired integral (21) may then be written 

where 
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The usefulness of the method depends on whether the ser ies  in equation (24) is 
rapidly convergent and whether values of V a r e  easy to obtain. Sawaguri and 
Tobocman showed that for  the choice P 2 l  

2 2 2  

n! 1 1  r.gfn(r) =dn(a - (pr) e p r / 2  F (-n;l +3/2;p 2 2) 

one gets 

nl “2 

ml=O m2--0 

where 

and 

In practice, for  appropriate choices of a! and p ,  the se r i e s  in equation (24) can be made 
to converge sufficiently fast to make the entire scheme an excellent computational device. 

RESULTS 

The theory just described has been applied to the five s-d shell nuclei neon 20, mag­
nesium 24, silicon 28, sulfur 32, and argon 36 (Ne2’, Mg24, Si28, S32,and A36). The 
H F  wave functions a r e  assumed to have axial symmetry (ref. 5), and they a r e  formed by 
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putting particles into deformed orbits about a spherical, closed-shell, inert oxygen 16 

(0
16) core. Each deformed orbit is described as a mixture of ld5/2, 2s1/2, and Id

3/2
basis vectors, each with the appropriate spin projection mA. The coefficients for  the 
negative m, orbits a r e  related to those for the positive mA orbits by time reversal  
symmetry: 

h h j-m,
C.

J 
(-mA) = C.

J 
(m,)(-l) 

The eigenvalues of ho used in the calculation a r e  taken from the experimental spec­
t rum of oxygen 17 (017), and they a r e  listed in the fourth column of table I. The residual 
two-body force V(ij) is a Rosenfeld mixture with Gaussian shape, much like that used by 
Ripka (ref. 1): 

i. . i 
V(ij) = Vo -j k . 3  + 0 . 7  cl(i) Fl(j)l e 

3 

with V = -50 MeV (instead of Ripka's Vo = -55 MeV) and p = 0 . 2 9  per square femtom-
O - 2  ).eter  (fm 

For a discussion of the basis vectors themselves, two sets of harmonic oscillator 
basis functions were used and one set  of Wood-Saxon basis functions (ref. 6). The latter 
were chosen by varying the parameters Vo and CY in the Wood-Saxon potential 

n 

V = p ( r ) - c w - '- - 1 d p
O - Z - ­ 


(2:~) r d r  

V 


S as to reproduce as clo ely as possible the experimental eigenvalues of ho as given 
in table I. The eigenvalues thus obtained a r e  given in the third column of table I .  

Choosing the harmonic oscillator basis functioiis poses something of a problem -
namely, what cr i ter ia  to use. At length i t  was  decided that one set  of functions (HO - 1) 
should be chosen on the basis of similarity to the Wood-Saxon basis functions within the 
nuclear interior,  as measured by comparison of eigenvalues and location of peaks and 
nodes in the functions. For this se t  an optimum choice was  I/ = 0.35 fm-2. This choice 
v is based on an approximate method fo r  calculating the "correct" nuclear radius 
(ref.  7). 
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TABLE I. - OXYGEN 17 SINGLE-PARTICLE ENERGIES 

Orbit 

1% /2 

lp3/2 

%/2 

ld5/2 

2Sl/2 

ld3/2 

Energy, MeV 

Ear monic oscillator parameter,  Wood-Saxon Experiment 
v. fm- 2 

v = 0.27 fm- 2 

-26.2 

-15.0 

-15.0 

-3.7 

-3.7 

-3 .7  

-32.6 -34.68 --35 

-18.2 -20.21 -21.83 

-18.2 -16. 53 -15.67 

-3. 7 -6.02 -4.14 

-3.7 -4.54 -3.27 

-3 .7  -0.53 0.94 

A second set  (HO - 2) was chosen eventually on the basis of similarity to the Wood-
Saxon basis functions as measured by comparison of the resulting nuclear binding 
energies, orbital energies, energy gaps, and intrinsic quadrupole moments. For this 
set, v = 0.27 fm-2 . 

In table I the energy eigenvalues of the various basis functions are compared, while 
in figures 1to 5 their  shapes are compared. Little can be determined from the energy 
eigenvalues, but figures 1 to 5 reveal clearly for  the 1s-ip shell  functions that HO-1 is 
closer to WS than HO-2 is. In the 2s- ld  shell the situation is somewhat ambiguous: 
HO - 1 has the same peaks and nodes as WS, as before, whereas HO-2 has different peaks 
and nodes but has perhaps an overall better match in magnitude. 

The results of HF calculations using the three se t s  of basis functions just described 
a r e  compared in tables II(a) and (b). On the basis of the binding energies and the gaps, 
it is evident that HO-2 gives a better match to the WS results than HO-1. 

Root-Mean-Square Radi i  

The r m s  radii  are obtained from evaluation of the expectation value of the operator 

R =criA + 2  
(34) 

i=1 
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Figure 1. - Single particle function 
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0 Wood-Saxon 
a Harmonic oscil lator. u = 0.35 
0 Harmonic oscil lator. u = 0.27 
0 Experiment 

Parameter 

0 Wood-Saxon 

a Harmonic oscil lator. u = 0.35 

0 Harmonic oscil lator. u = 0.27 

0 Experiment 

3 . 3  

3.2 
LL 

Niass number, 

Figure 2. - In t r i ns i c  radius (R2)'" 
for the 4n 2s-Id shell nuclei. 

Parameter 
Wood-Saxon 

Harmonic oscil lator 
HO-1 - ___  HC-2 

A 

against mass number A 

I 
6 

Radius r, fm (or FI 

la1 Valence density. lb) Total density. 

F igure 3. - Densities for neon 20. 
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a 

Parameter 

Harmonic oscillator 

t 
,0002 


.0001 
0 
L- 4 ­
1 

(a) Valence density. 

Figure4. 

Parameter 

Wood-Saxon 

Harmonic oscillator 

HO-1 _ _ _ _  HO -2 

1 2 3 4 5 

la) Valence density. 

\ 

Radius, r. 

lbl  Total density. 

- Densities for magnesium 24. 

--
0 
-.-.A 

i 

Dc 

6 
Radius, r. 

(bl Total density 

Figure 5. - Densities for s i l icon 28. 
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TABLE II. - ENERGIES AND WAVE FUNCTIONS FOR AXIALLY SYMMETRIC, EVEN-EVEN, 2s-1d SHELL NUCLEI 

rResults using a Wood-Saxon basis are in boldface type; light type corresponds to a harmonic oscillator basis with a stated harmonic oscillator parameter 11.1 

(al Harmonic oscillator parameter. II = O. 35 fm- 2 

Nucleus Hartree- Fock Energy gap. Single-particle Projection of Projection of the Hartree- Fock orbits on spherical basis. CA 
J 

energy. A, Hartree- Fock angular momentum 

EHF' MeV energy, on z-axis, 1d 5/ 2, 1/ 2 1d 5/ 2, 3/ 2 1d5/ 2,1/2 2S1/2, 1/ 2 1d3/ 2, 1/ 2 1d3/ 2, 3/ 2 

MeV eA, rnA 
MeV 

Ne 20 - 40 . 21 10 . 6 -17 . 01 1/2 0 . 67tJl -0 . 6342 - 0 . 37L 

- 35.27 8.5 -14.46 1/ 2 .7782 -.4943 -.3874 

Mg24 - 72 . 28 4 . 9 - 15 . 88 3/2 0 . 9559 - 0 . 2938 
-68.26 5.0 -14. 78 3/ 2 .95 50 -.2835 

- 13 . 83 1/2 0 . 8414 -0.1080 0 . 5294 

-12.78 1/ 2 .8552 -.0997 .5086 

Si 28 - 132 . 45 8 . 2 - 21 . 93 1/2 0 . 4798 0 . 8320 - 0 . 2787 

-116.80 7.1 -1 8.37 5/ 2 1.000 
- 19 . 95 5/2 1.000 

-17.16 1/ 2 O. 6066 0.7345 -0.3040 
- 15 . 86 3/2 0 . 6440 0 . 7650 

-13.98 3/ 2 . 6959 .7182 

S32 - 179 . 64 5 . 9 - 22 . 66 1/2 0 . 4083 0 . 8830 - 0 . 2315 

-157.89 5. 0 -1 8.35 5/ 2 1.000 

- 20 . 24 5/2 1 . 000 

-18.11 1/ 2 0.8167 O. 4404 -0.3730 
- 18 . 55 1/2 0 . 7965 -0 . 4685 - 0 . 3823 

-15.14 1/ 2 -.4162 .8972 .1481 
- 16 . 22 3/2 0 . 7030 0 . 7112 

-14.35 3/ 2 .7889 .6145 

Ar 36 - 238 . 56 8 . 1 - 25 . 07 1/2 0 . 3607 0 . 9268 - 0 . 1040 

-209.66 6.9 - 21. 41 5/ 2 1. 000 
- 23 .05 5/2 1 . 000 

-20.38 3/ 2 0.9968 0.0801 
- 22 . 27 3/2 0 . 9969 0 . 0781 I 
-19.47 1/ 2 O. 6691 0.7419 0.0431 
- 18 . 94 1/2 0 . 7411 - 0 . 2172 0 . 6352 I 

-16. 16 1/ 2 . 5498 -. 5332 .6429 I 

- 17 . 18 3/2 -0.0781 0 . 9969 I 

-14. 57 3/ 2 - .080 1 =68~ 
-'---- --- - - -
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Ne 20 

Mg24 

Si28 

S32 

Ar 36 

- 34 . 82 

- 35. 27 
- 65 . 99 

- 68. 26 

- 116 . 41 

- 11 6.80 

- 159 . 06 

-1 57 . 89 

- 211 . 89 

-209 . 66 

--

- ---- ---- - .~- -- ---

8 . 2 

8. 5 
4 . 8 

5.0 

7 . 0 

7.1 

5 . 0 

5.0 

7 . 1 

6.9 

(b) Harmonic oscillator parameter . II = O. 27 fm- 2 

- 14 . 27 1/2 0 . 7273 

-14.46 1/ 2 .7782 

- 14 . 14 3/2 0 . 9562 

-1 4.78 3/ 2 .9550 

- 12 . 52 1/2 0 . 8333 

-12.78 1/ 2 .8552 
- 17 . 94 1/2 0 . 5290 

-1 8.37 5/ 2 
- 17 . 55 5/2 

-17.16 1/ 2 O. 6066 

- 14 . 07 3/2 0 . 6682 

-1 3.98 3/ 2 .6959 

- 18 . 76 1/2 0 . 5757 

-18.3 5 5/ 2 
- 17 . 76 5/2 

-1 8.11 1/ 2 0.8167 

- 16 . 11 1/2 0 . 6928 

- 15. 14 1/ 2 -.4162 

- 14 . 48 3/2 0 . 7333 

-14.35 3/ 2 .7889 

- 20 . 68 5/2 

- 21. 41 5/ 2 

- 20 . 40 1/2 0 . 4868 

- 20.38 3/ 2 0.99 68 

- 19 . 81 3/2 0 . 9960 

- 19.47 1/ 2 O. 669 1 

-1 6 . 87 1/2 0 . 6828 

-1 6. 16 1/ 2 .5498 

- 15 . 42 3/2 - 0 . 0895 

-14.57 3/ 2 -.0801 
_. __ . -

- 0 . 5729 -0 . 3780 

-.4943 -. 3874 

- 0 . 2928 

-. 2835 

- 0 . 0809 0 . 5469 

-. 0997 .5086 

0 . 7967 -0 . 2922 

1.000 

1 . 000 

0.7345 - 0. 3040 

0 . 7440 

.7182 

0 . 7598 - 0 . 3020 

1.000 

1 . 000 

0.4404 -0 .37 30 

- 0 . 6495 - 0 . 3133 

.8972 .1481 

0 . 6799 

.614 5 

1 . 000 

1 .000 
I 

0 . 8716 - 0 . 0576 

0.0801 

0 . 0895 

0.7419 0.0431 

-0 . 3386 0 . 6475 

-. 5332 .6429 

0 . 9960 

. 9968 



between H F  states @. The resul ts ,  shown in figure 2, differ considerably for the three 
se t s  of basis functions, and only the WS results bear a reasonable resemblance to exper­
iment and then only in an average sense.  As the mass  number increases  toward 40, the 
WS results begin to deviate even more from experiment. The HO results are quite poor 
in both cases. However, the comparison of all these results with experiment would be 
much more meaningful if  the expectation values were taken with respect to states of good 
angular momentum. The results are, nonetheless, significant fo r  nuclear matter studies. 

Intrinsic Quadrupole Moment 

The intrinsic quadrupole moment is defined as the expectation value of the operator 

with respect to H F  states CP. The operator T~ is an isospin operator with eigenvalues 
+1and -1 for  protons and neutrons, respectively; e is the proton charge. In table III 
the results a r e  given for the intrinsic quadrupole moments. The set  HO-2 yields a much 
better match to the WS than does HO- 1. The sign of {Qo) for any particular nucleus 
does not depend on the choice of basis,  and the signs are in agreement with the accepted 
type of deformation (i.e. , prolate o r  oblate) for  these nuclei. 

TABLE III. - INTRINSIC QUADRUPOLE MOMENT 

Tuc1eus Quadrupole moyent ,  

~ 

Harmonic oscillator parameter ,  Wood-Saxon 
v, fm- 2 

v = 0.27 fm- 2 v = 0.35  fm- 2 

29.00 22.30 29.24 

15.80 12.60 14.90 

-42. 59 -33.18 -42. 51 

-12.74 -10.25 -11.74 

-25.92 -19.17 -29.65 
~. 
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Nuclear Density 

The nuclear density function is defined as the expectation value of 

A 
p = 6(F- E )  

i=l 

Since the H F  calculations of the type presented here  test only the extra-core wave func­
tions, two types of density functions are shown for  each of the nuclei. The valence den­
sity pv is the expectation value of p with respect to wave functions which do not spec­
ifically include the spherical  core  functions. The total density p ( r )  does contain the 
core effects. In figures 3 to 7 the density functions are presented. In each of the figures,  
par ts  (a) and (b) refer to valence and total density, respectively. The arrows which 
appear on each of the figures indicate the position of 1.25 A l l 3 ,  where A is the mass  
number. Examination of figures 3 to 7 reveals that both sets of density functions (with 
the exception of Mg24) show consistent behavior as one goes from Ne2' to A36. For the 
moment the problem of Mg24 is se t  aside, and the general trends for  the valence and 
total densities for  the other nuclei a r e  considered. 

Paramete r  'r 
Wood-Saxon 

H a r m o n i c  osc i l l a to r  

H O - 1- _ _ _  HO-2 

.04 

.004 

,002 

, 0 0 1
0 

Radius,  r, fm ( o r  F) 

(a) Va lence  dens i t y .  (bl Total dens i t y  

F i g u r e  6. - Dens i t i es  f o r  s u l f u r  32. 
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Valence densities. - It is seen f rom figures 3(a), 5(a), 6(a), and 7(a) that for  
0 5 r 5 1 . 5  the HO-2 (v = 0.27 fm-2) results show better agreement with the WS case 
than does the HO-1 (v = 0.35 fm-2) result. However, fo r  1 . 5  5 r 5 4.2, HO-1 agrees  
more closely with WS. In the region beyond about 4 .2  fm,  the HO-1 densities fall off 
more rapidly than both the WS and HO-2 densities. The three curves focus at about 
3 .3  f m  fo r  all four nuclei. 

Total densities. - The total densities are presented in figures 3(b), 5(b), 6(b), and 
7(b). For the WS case the flattening near the nuclear center is washed out as A in 
increases,  and all of these total density functions have the same  general shape. In the 
region 1 .5  5 r 5 4.3, the HO-1 (v = 0.35 fm-2) resul ts  match the WS results quite well, 
but drop off rapidly beyond r NN 4. 5. Beyond r = 5 fm it is observed that the HO-2 
(v = 0.27 fm2) results agree more closely with WS as might be expected since this is the 
same region in which the HO-2 wave functions agree most closely with those of the WS 
potential. 

For the case of Mg24, an examination of figure 4(a) perhaps gives an indication as to 
why Mg24 should be treated separately. Certainly the valence density has a peculiar ap­
pearance in view of the consistent behavior of the other densities. However, Bar-Touv 
and Kelson (ref. 8) performed calculations which indicate that Mg24 is not axially sym-

Paramete r  

lYood - S  axon 

fm ( o r  FI  

la1 Ve loc i t y  dens i t y .  lbl Total dens i t i es  

F i g u r e  7. - Dens i t i es  for a r g o n  36. 
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metric,  so Mg24 might be expected to have properties which differ from those of axially 
symmetric nuclei. Based on the findings of Bar-Touv and Kelson, S32 would also be ex­
pected to behave similarly, since the same set of calculations indicated that S32 is like­
wise asymmetric. The size of the gaps in the HF spectra(see tables II(a)and (b)) indicate 
that the assumption of axial symmetry is equally poor for  S32 and Mg24. That is, since 
the energy gap between occupied and unoccupied orbits is quite a bit smaller  for these 
nuclei than for the others,  a perturbation theory calculation would yield larger effects of 
axial asymmetry for  these nuclei than for  the others. 

In addition, one of the results of attempting to treat Mg24 as axially symmetric is 
that the coefficient of the 2s

1 0  
basis vector turns out to  be abnormally small, -0.10. 

Consequently, the valence density is drastically reduced at the origin. This does not 
occur for  S32, nor does it occur in an asymmetric treatment (ref. 8) of Mg24 . 

If asymmetry is assumed, calculations of the energy spectra and other properties of 
these nuclei, should be more informative than the results just given. However, the 
previous results do substantiate the belief that Mg24 has to be treated differently than the 
other 2s- ld  shell nuclei. 

SUMMARY OF RESULTS 

The intrinsic energy spectra,  radii, and quadrupole moments have been studied for  
the five even-even nuclei in the 2s- Id shell. The nuclear wave functions were obtained 
using the HF method. The HF calculations were made using the Wood-Saxon basis func­
tions as well as the more conventional harmonic oscillator basis. It was found that the 
asymptotic behavior o r  the WS basis functions could be simulated with harmonic oscillator 
functions if the oscillator constant were properly chosen. Such oscillator functions were 
also found to yield the best match to the Woods-Saxon HF spectra ,  indicating an important 
dependence on the asymptotic part  of the wave function. As expected, Mg24 (and to a 
lesser  extent S32) was found to have rather peculiar properties when assumed to be axially 
symmetric.  

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 25, 1968, 
129-02-07-07-22. 
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