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ABSTRACT

Electron impact ionization cross section, energy distribution and the

average energy of the ejected electrons for the first five principal quantum

numbers of atomic hydrogen, and all the azimuthal quantum numbers are cal-

culated within the Born approximation. Calculations are extended to a range

of 100 to 900 threshold units of energy. Regions of agreement and disagree-

ment between the high energy quantal and classical calculations are analyzed.

`validity of the Born approximation for excitation and ionization for a single

particle model is given. An energy spectrum of the secondary electrons due

to the passage of an energetic electron in a hydrogen atom gas is found.
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1. INTRODUCTION
t

Ionization of the ground and excited states of atomic hydrogen by electron

collison has a number of applications in plasmas physics and astrophysical prob-

lems. lAgiile there has been an extensive study for the ionization of the ground

state, little has been done for the excited states. Among studies for the ground

state ionization we can mention • the early calculations by Bethe (1930), and

Massey and Mohr (1933) within the Born approximation; measurement of the

cross section by Fite and Brackman (1958), and Boksenberg (1960); measurement

of the cross section at the th-reshold by McGowan et al. (1968); study of the wave

function for a-H ionization by Peterkop (1962); distorted-wave calculation by

Veldre and Vinkalns (1963), and Burke and Taylor (1965); and study of the threshold

of ionization by Wannier (1953), Geltman (1956), Rudge and Seaton (1965), and

Temkin (1966).

Here we are concerned with ionization of the excited states. In a previous

paper (Omidvar 1965) a calculation on impact ionization of the excited atomic

hydrogen was reported in which the cross section and other related values were

given for wave functions in parabolic coordinates. In the present paper these

values are given for wave functions in spherical coordinates. In problems re-

lated to radiation, these are more suitable coordinates. Similarly, in more

complicated calculations than the Born approximation, spherical coordinates
1

are more often used. For these reasons the present calculation will have a

wider range of applicability.

,;
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In the present paper, calculation is extended to much higher incident energies

than used in the previous paper. For principal quantum numbers n 1, 2, 3,

calculation has been extended to 900 threshold units; for n = 4, to 225 threshold

units, and for n = 5, to 100 units. The numerical results presented here are

more accurate than the previous calculation. Finally, in this paper, energies

are expressed in threshold units, and scaling law has been used for other

quantities. Thus it has been possible to study more precisely the variation in

cross section and other physical quantities in terms of n and the azimuthal

quantum number t

On the other hand, values for different magnetic quantum numbers m are

not reported here. In this paper the axis of spatial quantization is taken. along

the momentum of the ejected electron, while in the previous paper this axis was

along the momentum transfer of the incident electron. Values for a given m

in the two cases naturally do not correspond. Unless one is interested in the

ionization cross section and related values for a particular momentum transfer,

or for a particular direction of the ejected electron, the m dependent values

serve no useful purpose. Values related to a given n and l are listed here

after an integration is carried out with respect to both the direction of the ejected

electron and the direction of the momentum transfer.

An analysis is also made for the validity of the Born approximation and

its relation to the Bethe approximation. Also a comparison is made between
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high-energy quantal and classical calculations, and it is shown that as .n increases

in accordance with the correspondence principle, the quantal results approach

those given by the classical calculation.

2. DERIVATION OF THE IONIZATION AMPLITUI'

The analysis must start with the evaluation of the Born amplitude for

ionization for any given state. For this it is necessary to specify the states of

the atom before and after ionization. Atomic units are used in which It and the

electronic mass and charge are set equal to unity, and energy is. expressed

throughout in rydbergs. If p and a specify the momentum and the energy of a

particle, and k its propagation vector, it then follows that p = k and e = k

In this way energy takes the dimension of inverse of the length squared, but

numerically its value is given in rydbergs.

States of the atom are specified by the Coulomb functions. The initial

state is given by lnlm> , where n, I and m are the principal, the azimuthal,

and the absolute value of the magnetic quantum numbers. This state is related

to the states in the parabolic coordinates, inn l m>	 by the unitary transformation

n - m - t

I nlm > _ E	 nnn1 m > < nn 1 m I nlm>	 (1)
n =0

4
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where < Pint pit nlnr > are elements of the transformation matrix. In this

transformation n and nn remain fixed, it, ranges from 0 to win -1, and I

ranges from in to it -1. The recursion relation and the specific values of

< nn,tn i Win >	 for it = 9 to 5 and all possible values of to are given, elsewhere

t	 (Gmidvar, 1967). Barut and Kelinert (1967), and Hughes (1967) have shown

independently that these elements are related to the Glebsch-Gordan coefficients

►tthrough	 1/2 (n-1)	 1/2 ( - 1 )	 l
in

< tin :) Win > - (-) (21 + 1)

1/2 (m.n 1 +n2 )	 1/2 (m+n 1 -n2 )	 -m

	

t:-1	 n-1	 "t-ti, +n	 m+n -n

	

C 2	
2	 2	 2

1 ^ 12 1
where	 are Wigner I a 3 /, and	 C (jl

	

m, t'}im	
12j; m , m2 m)	 are the

Clebsch-Gordan, coefficients (Edmonds 1957)*.

In (2) the integer n 2 is given by n 2 = n -1-m- n^. The normalized hydrogenic

state ( tin  m > corresponding to a nuclear charge Z is given by Bethe and

Salpeter (1967)

*Equation (2) is given by Barut et al. If we write A lit_ for <nn l m I nlm>, then it

nz +lcan be shown directly that	 A B H n2 A In 	 A In	 ,where
1	 1

A B , A H	 and A ln are the matrices of Barut et al. , Hughes, and this
In 	 In ,	 '

author," respectively. These phase differences have no effect on the calculation,

5
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-vi a C + n)	 /^ rrr	 rr^	 r»	 Imp	 ;`
I rill to > = N	 e	 (fin)	 L	

Cad} L	 Carl} e	 }
It n fit	 rr^ +an	 n + m

;r

l	 ;^ ^z	 lli;^'1 3	 ri ^ 	
2	 t.

Nil s it rrr -`	 -	 at	

2	
3^, , a ^. r	

(3)

i
In this equation	 V, are the parabolic coordinates of the atomic electron

related to the spherical coordinates by t=r (I + cos 0) , n=r (I - cos 0) and V=V

and ao is the Bohr radius.

The final atomic state is the state of an ejected electron in the field of a {

nucleus of charge Z, and is given by a Coulomb function with outgoing waves.

If k represents the propagation vector of the ejected electron and at the same

time the direction of the z -axis of the coordinate system, this function is given

by (Landau and Lifshitz 1958)

Ik>=Tk + (r),N.e ik, rF UP, 1,ikrl)

I	 Q
Nc= 2n 1 - exp

=k	 (4)
0

where F (a, b, z) is the confluent hypergeometric function which is regular
J

at the origin. ^ (r) is normalized such that ,

^k(r) + (r) dr= S (k k') _ 2k 1 S(E e') S (k-k j	 5
k	 k {)

6
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with a and F' the energy of the ejected electrons in rydbergs. The asymptotic

form of 0 (r) is given by

0 + (r) — ('n) 
3/120 

0 
/k ► r	

(U)

u

In some application it is more useful to use an integritl representation for 	 (r)

which originally was given by Sommerfeld (1931). This is

1kr^ . (r) - N 
^ 
	 a -uu .lp JQ (2 V1 u 

k n ) du	 (7)
k	 Cr ( l - la) f a

However, in this paper we use the form given by (a).

With the atomic states so defined and with k l and k^ the propagation

vectors of the incident and the scattered electrons, the ionization cross section

per unit energy range of the ejected electrons is given by

r

r
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where the transition amplitude T (l, ,J) is defined by

T (Q) 
_ 
L < f 1 elq ' r I/>	 (9)q

with q - k ) . k2	; and the total cross section defined by

111MV

Q —	 `iQ de	 (14)

0
de

The values of kz , e , and enlax are related to the incident energy k2b y conser-

vation of energy through

k -^Z 2 1 11 2 a 
o	

k2 + e= e inax	 (11)

with n being the principal quantum number of the initial state. To have a clear

account of the dimensions involved notice that with reference to (3) and (4),
7/2

T (i, P has the dimension of U -1 	. When dQ/de and Q have the dimensions

of the fourth and the second powers of length respectively.

The rest of formulation consists of evaluation of TO, f) given by (9).

We take I i > and I f > to be the states given by (3) and (4). For simplification

in evaluation of T (i, f) , we take the x -axis of the coordinate system not

along k , as is customary, but along k. We represent the spherical coordinates
_I

of q in this system, by q, 9i , +p i, and the parabolic coordinates of r by e, n, ^0. .

The ^P-dependent integral in (9) and its value are then given by

27r F

e (iq • r+ m^o)d^
p

o

fo	 _
= 2w exp / i q (cos 0

1 ) ( n) + i m (+Pl +'/2 fr)] Jm (q sin 0, f
(12
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where 
ttt the is the Bessel's function with argument x . Using this

expression we ; pan write

(nn^ nn, W N -=	
c inCcp^ + 

2 Nrr n in NC 	
U	

(13)
Q	 i	 ap

U	
[,.(p	 n	

Lin	 (an) FNP, 1, -1kn

x	 dt e	 t	 L in	 (00 Jm (q stn 0,
Q	 rt 1 + in

p = !12U 	 s - - Y., I (q cos 6 1 . k)	 (14)

To evaluate (14) we use the identity

Lm(Z) - (—)'n n! e z z -m d n- m (e -.Z z,^)

n	 (n - m)!	 d z n m	 (15)

Then by direct differentiation

rn(a) ^, (v) m,	 (n i + m)	 n '	 n, (ri i + m)	
v

n !	 v'
*M)l

With this form for L 
in
	 the integral in (1;4) can be evaluated and	 a '

n l + mr	 ``
its value is given by	 i

in	
n

1

F

(nl + m)!	
n	 (n] + m)l	 y	 s`

-)	 01^.
n^	 vl	 (Pi + in)!

P=O

v	 m %rnd '	 ? (g sin 81) 7? ^2 sine @ 71
X	 exp	

i	
l P_ P+ S.

dPpI	 (2P) m + 1	 4P
iA

9
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When this is substituted for the t -integral, in (14) we obtain

)►n
In (n + rr2)!	

1 al l 	(^r̂ )! ^v d	 ^Q sin 6	 ,

U ()	 r	 I

	

r- E v 1 (v1 + rn)!	 dPv1 ^ (2 P)ln+; (17)
V A

r =	 tln [e.X11 i7 in L in + (671)F (-19, 1 1 Ail >	 ( 1 8)
n2 n1

1^ = p - s + g 2 sin 2 0 4P .

Evaluation of the integral in (17) is accomplished by expanding Lm	 (car!)
n2 + in

according to (16). The integral; can then be evaluated by standard methods
{

(Landau and Lifshitz 1958), The result is 	 r
f

n	 m+v
(n 2 + in) !	 n2 (12 2 + in)!	

V	

2 
to + 112

I	 n ► 	
v2 

(V2 
m)i	

2µ	 r:

j2
	 V2 =v	 f12 =0 



r

By some manipulation and using the properties of the binomial coefficients, this

can be written

11 2 	nl + P2

11

	

ill	 L.../ ^2 ^ ^  	 2	 µ2
^!)

r

	

111. + U2	 la -N2-UX	 )(X + ik) + 2 (^	 (20)
µ2	 x 

l
a	 1 µ2

Substitution of C in (17) and evaluation of U and Wlap is straight forward

algebra. By inserting the value of aU/ap in (13) we find that

	

-47r	 2a	
3C	 (n2 + in)!	 /2	 lm ( +-

1	 q2	 f27rn	 (n 1 + m)! n,!  n2 !

27fa

qfn (1- (4,J)2)'nf2 A -m + 0^-1i^	 (21)
- 

n l	 µl	 µZ	 µ3	 n2 n^c + vl

F = E AE E F	 (-)µ2 + µ4 + VI 
(2a),u1 + U1 C (µµAF 4 , 

3
"1	 µ2	 µ3	 µ4	 V1	

V2



With
_ 

f1 
JA4 -vi 	- µ 2 -V2D µ 2'114D1I + µ 2 + Pl +V2

2(a + ik) `(ni+µa +P - fl) 2a(l +p +v2 +if3)	 µ2 - µa 	 - µ i +µ2 +vl + v2

X -	 A 	
I3	

+ D — +
	 D*

	 (23)

r-

A

M

where D* is the complex conjugate of D . In (22) the lower limits of the

variable integers are zero, and in (23) A, B, and D are defined as

A- (a+ik)2 +q2 , Q_==a 2 +(q k) 2 ,D= a+lt -(q-k) ,	 (24)

In this way, in the expression for T (n nl in, k) all symbols are defined except

C(µ4 , µ3) - This coefficient arises from the following consideration.

Suppose

AP
U (P) _	 (25)

BP + C

where A, B, and C are constants. Tien the 1tii derivative of y = y (u) with

respect to P is given by



j

dly	 l	
I

dp1 _ (13 g) 	 C(1`,11	 C	 Y^ (u), g=_
BP+ C	 (26)

^=1

where y 
X 

(u) is the X 
th derivative of y with respect to u, and Q% 1) are numbers

depending on h and 1, Differentiating equation (26) on one hand with respect to P,

I	 and, on the other hand, substituting I+ I for I in this equation and equating the

resulting expressions, we find the recursion relation for C(X,1) is
.

C	 (1-1+X) C(a,1-I)+C(T-1,1-1), a<1,	 (27)

We also note from (26) that C (1, 1) = 1; and we put C(X,1) = 0 for X>1. These

conditions and (27) are sufficient to determine all C(X,1)
t

t

It is convenient to define C(d„ 1) = S (0, 1) Then (26) can be written in a

t;	 more general form

J
d 1 y	 1	 A C	 i

tl1' 1
 = (B,g) l

	

	C(A,1) FB g y (	 (26a)
X= o

with g defined as before. , The use of C(X,1) becomes necessary when in (17) 	 J
t

differentiation with respect to P is carried out to evaluate U. A numerical table

for C(X ,1) is given elsewhere (Omidvar 1965).

Y
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n-m-1
T (nlm, k) - F

n1 = o

<rin l m I n1m3 T (nyn, k) . (28)

The expression given here for T (nnl m, k) ,	 is also given elsewhere

(Omidvar and Sullivan, 1867)*.

Since the transition amplitude is linear with respect to the initial state

wave function, from (1) the transition amplitude in spherical coordinates,

T (nlm, k) ,	 is given by

This completes the evaluation of the transition matrices.

3. VALIDITY OF THE BORN APPROXIMATION AND BETHE APPROXIMATION

In collision of a charged particle with an atomic system, the use of the first

Born approximation amounts tu two separate approximations. One is the assump-

tion tic t the atomic system has only one mode of excitation or ionization. The

second assumption is that the incident particle moves in a force-free field and

is not affected by the atomic potential. Physically there are infinite modes of

atomic excitations or ionization, virtual or real, depending on the energy of the

incident particle. The validity of the first assumption then depends on how



I

A

strongly the excited mode in question is coupled to the neglected modes of

excitation. Mathematically, its validity depends on the convergence, and the

rapidity of the convergence, of the higher order of the Born approximation

(Moiseiwitsch and Smith, 1968).

0.

	

	 The second approximation is analoguous to the scattering of a particle by

a single center of force, and similar to the case of the single center of force,

a criterion for its validity can be derived. This will be done here.

By designating the position vectors of the bound and the incident electrons

by r , and r2  , the exact transition matrix will be given by

i k- 
'2 . r2	 (r r P	 (29)E

2T	 1, 2	
<0 (rd e	 r, 2 r 

2	
11

where I and 2 refer to the initial and final states, T (r,, r2 ) is the total wave

function of the system, and 02 (rd is the final state atomic wave function.

The two approximations mentioned previously consist of the replacement of

IP (r,, r.)	 by	 T i (r, ) exp (i k, , r.)	 . Thus when integration

is carried out with respect to r, , (9) ensues. However, without carrying out

the integration, (29), with this replacement, can be written

	

T (1, 2) = f V (r) e i 
q.r 

dr	 P	 (30)



where the Z / r2 is dropped on account of the orthogonality of 0, and 0 2 . (30)

is the scattering amplitude of a potential V (r) in the Born approximation

(Schiff 1955). Corresponding to this amplitude the scattered -electron wave

function, u (r) , is given by

it 
(r)	 e c kl . r +
	 (32)

where	
/

w(r )
1 	

V( r/)	
ik 1 , r. 1 +ik, I r -r/ `

27r	 e	 + dr t	 (33)
I r - r /_I

The condition for the validity of the first Born approximation is that I w ( r)I< 1

for all values of r.

In the problem under consideration, besides the short range forces, an important

contribution arises from the long range, force due to the 1 /r 2 potential. The

following case considers a bound-to-bound transition, and derives a general

expression for V (r ) when r is small or large. Then, by making use of (33),

C



(35)

the radial

. In spherical coordinates, the discrete hydrogenie-wave function is given

0 Odin, 0 - r'' P (nl, r) Y (r7 ,
/rrt

by

(34)

where Yl
rtr

(P) is the spherical harmonics, and

function given by (Landau and Lifshitz 1958)
a

r "' P 01, r)

P (nl,r)- bnl `^zR P1+1 F (-n+ 1+1, 21+2, P)!

nl@ (21+1)!	 F2n(-n-1-1)!	 a^ir^ao, PT ar.

For evaluation of (31) we make use of the standard expansion

A
(	 _ CO ^	 y (

4^r	 r`^	
r ) y* ^r - r I _^	 )i 2	

F,21^+1	 N+1	 ^µ i	 A.µ (
r 2 ,

1 ^=0 µ= A	 r>

with r.-,, the smaller, and r) the larger, of rl and r2 . Substitution of (34)
rY

and (36) into (31), and an integration with respect to r,, leads to 	 s

V nlmn l	
41r (21 +Z)

(	 m ' r2) 	
C (1 Al, m 'µm)

(21+1)(2X+1)

X C 	
000) Y>tµ (r2	 (nln'l r2)	 (37)

where µ= m m / , and A takes on values for which the C coefficients do not

vanish. Also
I

1?

_	 1

i

r

r3

(36)



r^

y► (nlnil; rz) R r-(h+1)P (nl, r3 ) P,(nilk r2) r^X dr,

0

00

	

+ rI f P (nl, 1.2 ) P (n III r2 ) r., ( + 1) dr 2	 (38)
/'1

First we consider the case r < 1. Since in this case	 P (nl, r)	 varies

as r 1 + 1 , and always X< 1+1 1 P 	 (33) leads to

(nln111, r < 1)	 r'If P 01, 0 P 0111, 0 r 	
1) dr

j ,	 (39)
0

The definite integral on the right-hand side can be evaluated for specific cases.

Since the smallest value of X is I 1-1 1 1 , we conclude that for a bound-to-bound

transistion the potential is finite at the origin with the proportionality relation

V (nln'l , r) cc r I l -1 / I , r +o ,	 (4n)

In contrast to the case of elastic scattering where the potential is a screened

Coulomb potential, the inelastic collision potential is finite at the origin.

For the opposite case of r > 1 we obtain

(nln /l r > 1)	 r ' (^ + 1)	 P (nl, r) P (n Il , r') rT drl	{41)f0
Since the definite integral is a constant, and the smallest value of A is 11-1/ 1

1

through (37) we find

r	 11- 1 1 -1 , r ., o.	 (42)Y {nhr l , r) ^ r ' 

18
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,fin exception is the 1 n 11 transition in which case tha integral in (41) vanishes

on account of orthogonality of the radical function, and the potential vanishes
e

exponentially. The potential in this case is then similar t+) q square well

potential.

From (42) we conclude that when 1 and 11 differ by unity, the incident

particle, in addition to short range forces, is also moving in a 1/r2 potential.

An expression is drivel below for the validity of the Born approximation for a

dipole potential 0,#2 , with d being the dipole moment. But first Q is evaluated

for transition between the ground and any excited state with 1-1 (primes are

dropped for the final states for convenience). Evaluation of a follows from sub-

stitution of P (10, r) and P (n,l, r) from equation (35) into the integral in (41),

and a straight forward integration. By taking 7= 1 we find that

V (100nZm, r) > 1) ^.,	
4	 Y* 

(►r')	
a	

V
3 1m

7/2
16n	 n-I n

.^	 s
2 

1)

V3 	 1	 (43)

Values of Q in units of e2 a0 for n= 2 to 10 are given in Table 1. From	 ,r

(43) it is seen that as n increases, Q diminishes as W112

k

Considering the case of ionization the dipole moment depends on the velocity

k
of the ejected electron; To treat this case, first a partial wave expansion of

i

(r) , (4), with the same normalization and phase, is made. With the z-axis
z

along the momentum of the ejected electron, this is given by (Schiff 1955) 	 r

19
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(45)

ao

(k1, r) ` r-1 F P (kI, r) Y10 0
	

(44)
100

where

P W, 0 — ek1 e"Yp p 1 + I Z` up + 1 + 1, 21 + 2, pit

Nc 4^ (21	 1	 Z
ek1 "	 a (21+1 ) !   	 (1I1 .X),	 .21k, ^^ ,^	 .^ ^ k ' p
 o

with S. given by (4) . It should be noted that by letting i p-)-n , a will become

the same as that given by (3 5) .

To evaluate the dipole moment for the case of ionization, P (nl, r) in (41)

is replaced by P (10, r) given by (35), and P	 r) is replaced by P (k1, r)

given by (45) . Then for X = 1 the integration is carried out by the standard

methods. in this way by combining (37) and (41) it can be seen that*

V (100k10, (r	 1)	 v Gos {r ^C) f r2

8 f 21 /k	 (1 + ik)	 exp E -2^P/kl

2n	 1- exp [-2ir/kl I (1 + V ) a tpwtatF 1 k. (46)

For k 41, a - 8e 2 irk. , and for k -,4' 1, a - 14 N7rkl .

*When an electron is scattered by a potential which has imaginary parts,
conservation of the current for the ingoing and outgoing wave functions is not
satisfied. The lack of this conservation law also holds for a real potential in
the Born approximation.
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To summarize, in an inelastic collision of a charged particle with an

atomic, systems the effective potential in which the particle moves is always

finites at the origin. Except for 1 * 11 transistions, the potential has long ranges,

the most important being 1/r2 for P.1 * 1 transitions.

Since the potential is finite at the origin for small distances from the

nucleus, it can be sr,: 1hoximsted by a square well potential. The criterion for

the validity of the Born approximation for this potential is that k, a )> I)

with k, the momentum of the incident particle, and a the potential range

(Schiff 1955). It will be shown below that the criterion for the validity of the

:Korn approximation for a potential

V ( r) •	 (47)
0	 ^	 r ^' a

i

is similarly kl a)> 1	
.a

To find the criterion for the validity of the Born approximation for the

scattering of a particle in a L potential, we replace V' (r) In (33) by its dipole

form given by (41) By,introducing x = r - r' , this leads to



For the purpose of angular integration in (48) we make the z• axis along 'k ,. Then

making use of expansion (36) and the expansion

oa

l'k 1 . x	
A

e	 t 14— r ^2X + 1) 1X (k l x) 
N0 (x )	 (49)

^^ 0

in (48) it can be found that

w (r) 87r veik , r(-i) 
(2X + 1 ) I (r)

r	 (2 l + 1)V (2 P	 3/+ 1) 
11^

k

X

	

	 C (X il l, omm) C (Nll;000) Ylm (r) Yllm 0	 (50)

M

where 11 1 hm takes on values for which C (X Il
l
, omm) does not vanish, and

r

1 (r)

	

	
1	 /	 x l+ l 1 + 1 1 X (1x) e ikx dx
r l+l +2

a

+ r l f l 11---------- 1 (kx) e 
ikx dx .	 (51)

xl+l / + 1

r
in (49) j^ (k l x) is the spherical Bessel''s function.

Assuming that k I a > 1, and using the asymphaatic form of iX (k 1 X),

it can be found that

I(r)	 ix+1 (1+1/+1)-1 [1-yz (a	
1+1i+1]	 1^r)	 .1I (kir) ,k a>1,

G

(52)



and Lifshitz 1958). This will give rise to resonances not predicted in the Born

approximation. The condition kl a > I also insures that this resonance will not

happen.

For potentials falling faofer than 1/r2 , the criterion k, a ^> 1 is naturally

sufficient. Then by taping the effective potential as the sum of the long and short

range forces, with the neglect of the other modes of excitations, the Born approxi-

mation is valid when k, a > 1.

The range a for different transistions can be taken to be the distance

beyond which the product P (n1, r) P (n'1 1, r) falls off exponentially. With reference

to (35) we may take t

a= 2(a+a)-1
	

(S3)

For excitation this condition reads a (n + n / ) -1 nn/(,a,,/Z) . '.Chen for

excitation of the ground state it is found that a a s /Z , while for excitation of the

highly excited states, when n I:--- n, it is found that	 a= n (ao/Z) . In the

latter case the ranges expands. The condition k, >- I/a then implies that for a

fixed incideut energy, the Born approximation is more valid for excitation of the
y

excited states. In "he excitation of the excited states it should also be noted that
ir

the threshold energy is smaller and the peak in the cross section appears at	
N

smaller incident energy. If we measure the wave number of the incident electron

in units of the wave number of the bound electron in the state n and express it

23
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by k  , then kT= nk l , and the criterion becomes k  )> Z1a0 , which is the same

as the criterion for excitation of the ground state.

For ionization of the 11 th state a= naO /Z is obtained. The validity c. iterion

is then k  ? Z1a0 .

A connection exists between the Born and Bethe approximations. The Bethe

approximation (Bethe 1930, Landau and Lifshitz 1958) consists of the assumption
2

that of << k l	 where of is the energy transfer by the incident electron. With

this assumption, the, cross section can be written

Q — k 1 [Aln ki +131,	 (54)

with A and B being constants dependent upon the atomic parameters and excitation

energy for s', given process. For nanl excitation, of =(1 /n2 - 1 1 /2 )Z2
/ao , and for

17 

ionization of = Z2 /n2 a2 + e (cf. 11) .	 Since ir. ionization dQ/de has appreciable

value only when a is much smaller or comparable to Z2 /n2 ao,	 the assumption

AE <^ k i	 is equivalent to k l > Z/nao ,	 which is the same as the criterion for

she validity of the Born approximation in ionization. This means that in the energy

region where Q , as calculated by the Born approximation, agrees with Q as given by

(54), the agreement can be taken as a test for the validity of the Born approximation.

In the next section, it will be shown that for ionization of a level with the principal

quantum number n , the value of k  at which the Born approximation can be I
approximated by (54) is indeed inversely proportional to n , as expected.

i

r

I

i
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4. RESULTS AND DISCUSSION

To calculate the ionization cross section, the explicit form of T (0 l.rn, k)

given by (21) and (28) is substituted into (8) and integration with respect to q and

the polar angle of k is carried out numerically. No integration with

respect to the angle of azimuth of It is necessary. With dQ/de determined, a
.

final numerical integration is performed according to (10) to determine the

total cross section Q.

A quantity of interest is the average energy of an ejected electron for a

given incident energy. This is given by

eina-V
	 (55)

E _ e	 de1Q ,
0

In the following figures and Tables 2 through 6, dQ/de, Q, and a are

given.

In Figures 1 through 4 the total ionization cross section for n 2 through

5 and all possible 1 values is plotted as a function of the incident energy. In

Figure 5, the total cross section is given as a function of energy for n = 1
i

through 5, each case being averaged with respect to the azimuthal quantum

numbers. Figures 6 through 10 are similar to Figures 1 through 5 except that

(E/I) Q is plotted as a function of log (E/1)	 with Ell the incident energy in

threshold units, and the abscissa extended to much higher incident energies. If,
:n

25
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as the incident energy increases, Q , as given by the Born approximation, approaches

the Q given by (54), then the curves given by Figures G through 10 should approach

straight lines with slopes given by A and with intersections with the ordinates

given by B This is noted to be the case. As indicated in Section 3, the agreement

between the two Q values can be taken as a measure of the validity of the plane wave
.

assumption for the incident electron in the Born approximation. Some deviation

from the straight lines noted in the figures is due to the inaccuracy in the	 .

numerical integration for the cross section at high incident energies.

Estimates of A and B for different cases are useful for practical plasma

and astrophysical calculations. Kingston (1965) gives accurate numerical values

for A for n = lthrough 5 and all possible l values. Calculation of B is much more

difficult, and should be estimated from the graphs.

Studies of the Figures 1 through 10 show that for a given n and incident

energy, the total cross section tends to increase with increasing 1 for low and

intermediate energies, but the trend is reversed at the higher energies. The

latter situation has been predicted by Bethe (1930).

These figures also show that similar situations exist with respect to n,

namely that for low an intermediate energies, for a fixed enerav the cross



classical results should agree with each other. Classically, at high incident

energies, the cross section is inversely proportional to the incident energy,

and as n increases, A (in (54)] must tend to zero in order to bring Q [as given in

(54)] into agreement with the classical cross section. The decrease in A as n

increases is clearly seen in Figure 14. There exist a wealth of experimental
w

and theoretical results for the ground state ionization. The subject has been

recently reviewed by Rudge (1968) . In contrast, no measuremer, 4, is available

for the excited state ionization, and, with few exceptions, the only available

calculation other than the Born approximation is the classical calculation.

Mentioned here is the classical impulse approximation which is valid at

high incident energies. The original calculation in this method was done by
r

Thomson (1912), and recently the method has been revived by Gryzinski (1958) .

r	 Among many calculations by this method, the one with the least number of

approximations is discussed here. Gerjoy (1966) has formulated the problem

,r

of energy transfer between two moving charged particles. Garcia (1969) has

applied this formulation to the ionization of hydrogenic atoms, where quantum I

mechanical momentum distribution is assumed for the bound electron. He finds

the differential cross section for a given n, averaged with respect I , to be given
AIX

by
t	

4 

	 ^

dQc	 Be
as {(3J + 4) (tan" i	 +y +	 y 2 ) 2 Q- 4)

I J	 1 +y	 1+de	 30	 z)
2}Y ^
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J = l + c /I a Q 1 = E/I a Y = (^ 1 . J)%
	

(5G)

with a being the electronic charge, and E and a being the incident and the ejected

electron energies in rydbergs.	 I = Z 2 e 2 /n2 ao is the ionization potential in Ry

of the level tt concerned. The total cross section as in (10) is given by
.

eniax dQ
QC 

r	 cle c do
	 (57)

0

In Figure 10 (E/!) Qe is plotted as a function of log (E/I) for comparison

with the quantal cross sections. It is seen that as n increases the quantal calcula-

tion approaches the classical one. Since both the Born and impulse approximation

are valid at high energies, this constitutes a verification of the correspondence

principle.

As the incident energy E increases, the classical cross section varies as

El . This is seen by noticing that

	

dQ c 41re 4	4

de

	

I sJ	 1 + 3J '	
A >> 1, J«P1 .	 (58)

Thus it follows that 

4	 2

C

IA



C

Equation (59) is in agreement with the asymptotic form of the other classical

impulse approximation formulas.

Kingston (1960 has made a classical calculation equivalent to the classical

calculation contained in (56) and (57). He has made a comparison between his

•	 results and the privately communicated Born calculation of this author. His

views are consistent with those given here. However, his calculation is not
.

extended beyond kT 5,

In Figure 11 the differential cross section for the kround state ionization

and incident energy of 25 threshold units is plotted as a function of the energy of

the ejected electron. The classical expression given by (56) is also plotted for

comparison. For E/I» 1 agreement is noted between the quantal and classical

calculations. The reason is that formulas for both theories have the same asymptotic

forms. This can be seen in the following. From (58) it can be seen that for

(i >>ey>>i

dQ/de N (47re 4 /Ee2 ) ( l - 2 I13e) E >> e >> I	 (60)	 .

Omidvar (1969) has similarly shown that the first two leading terms in the ex-

pansion of dQ/de as inverse powers of ell calculated by the Born approximation

are identical to (60) .

Y
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Inoltuti and Vriens in their classical binary encounter theory find the same

expression as (60) (private communication, 1968).

The main disagreement between dQlde and dQ.1de Is for e/1 << I where

the two quantities have different functional forms. Obviously the classical ex-

pression is not valid In this case. The importance of the region e << I is the fact 	 0

that most electrons in a high energy collision are ejected with small energies.

The large contribution to the total cross section from the region e << I accounts

for the difference between the quantal and classical total cross sections. Position

of the average energy, E, is shown in Figure 11 by means of a vertical line.

This position also indicates that large numbers of ejected electrons have small

energies.

At this point it is also convenient to discuss the exchange effect. This effect

is important when e is comparable to E. Contribution of this erect to dQlde

(Landau and Lifshitz 1958). Integrationofis of the order of IlEe	 I 1E, e 2 with

respect to e in the region that e is comparable to E shows that the ratio of

the contribution of the exchange effect to the total cross section is of the order

of 11E , and in the region of the validity of the Born approximation can be neglected.

In Figures 12 Through 14, the differential cross section for the 2s and the

2p ionization, for the incident energies of 4, 25, and 100 threshold units are

plotted versus energy of the ejected electrons. The positions of the average

energy of the ejected electrons, 7", [cf. (55)], are indicated by vertical lines.



where the differences are 2 to 3%.

Since the range of integration increases as kT increases, numerical

values at low kT are more accurate than those for large kT

5. SPECTRUM OF THE SECONDARY ELECTROE,13 IN THE PASSAGE OF AN
ENERGETIC ELECTRON IN AN ATOMIC HYDROGEN GAS

w

A

Concerning the Accuracy of the numerical results presented here, two

checks have been made to rule out a systematic error in the calculations. One

is the comparison between the present and previous results (Omidvar 1965) for

a given it and n I. In the present calculation, the z -axis is along k, while in

the old calculation this axis is along the momentum transfer. When the two

results have been summed with respect to in, agreement between them is found.

The next check has shown agreement between bvo sets of results where, in one

set, summation has been performed with respect to n ^, and in the second set

with respect to 1.

Gaussian quadratures have been used as a method of integration, and for

each Q•as a function of the parameters kT, ii, and 1, the number of intervals

of the integrations has been increased until successive values of the Q have

fallen within l% of each other. An exception to this rule is made for n 5



We assume that the atoms are 
in 

their ground state. The results obtained can

be applied to the case of hydrogen gas If the few electron volts binding energy of

the hydrogen molecules cmi be neglected compared to the energy of the primary.

If Ar,, is defined as the energy lost by the primary during the course of a

single collision due to all inelastic processes, in anology to (65) it can be

calculated by the expression- 
00	

C- in(ix 	
Q

4E4 = :

	

(Ell - E, 0) Q11 + 
fn 

V	
( 11

e
+ 0 

d 
Cie 

IQ 
in,	

(61.)

11	 0

where Q,, is the cross section for excitation of the ntll level, Eo and E,, are

energies of the ground and n"' levels, I is the ionization potential, and QiI,

the total i,,,,-elastic cross section. If dN is the number of ions produced when a

primary of energy E loses an amount of energy dE, we must have dN = WE /40 (QlQin)

with Q, as before, being the total ionization cross section. The number of

ejected electrons having energies between e and c- + de is a fraction

(dQldc-) delQ of (IN. This number can then be written

8^N AM - dQlde	 Q 
de dE =dQlde dedE,aeaE	 Q	 QinAE	 Qin 6-r'

(62)

A



ON^ 'Max Q x cr
aF

	

	 cI^	 '^trt°E
	 (63)

1+e

For evaluation of (63), a knowledge of 
Qtn°E is necessary. Accurate

evaluation of this quantity is difficult. However, at high incident energy and

within the approximation applied to the derivation of (54), it can be written

(bethe 1934, Landau and Lifshttz 1658)

QIn 
aX N (8L/E) hi (2E/I) ,	 (64)

with Qln in units of 7raA and E in rydberg In (64) Z is the number of atomic

electrons, and ! is the average excitation energy in rydberg. For the ground

state atomic hydrogen I= l . 1 05 By.

Although the Born approximation is inaccurate at low incident energies, it

is likely that the ratio of two quantities calculated according to the Born approxi-

mation will be more accurate than the quantities by themselves. The ratio in

question is Q/QinoE given by (62), AUking use of (54) and (64), we can write

?N	 1 E
 max 

dQ/de	 (A In E + B) dE

ae	 8Z	 Q X In (2E/ C)	 (65)
.+E

with r the ionization potential of the bound electron. Using (65), Wae for the

ground state atomic hydrogen has been evaluated numerically. Figure 15 is a



E
1	 )ltpJ^

N ^ 8Z
I

fi M.__—.: d E
In(2E11)

.^	
,%[LAE	 I+TT 	 In	 E I-EIn T

$Z max2
	 (T2)] 	

t	 I

where El (x) is the exponential integral.

Using (66), a plot of N for the ground state of atomic hydrogen is given in

Figure 16. Dalgarno and Griffing (1958) have calculated N due to ionization by

the primary and all higher generation electrons. This result is also shown in Figure 16,

As the incident energy increases, the value of N given by Dalgarno and Griffing in-

creases more rapidly than the value of N given by (66), mainly due to the ionization

produced by the nigher generatioa electrons

i
The energy spectrum given here can also be used to deduce the energy

spectrum-of the tertiary electrons due to energetic secondary electrons, etc.

It is of interest to know that when a is several threshold units, for any target 	 J

atom or rnolecule dQ/d^ to a good approximation is given by the Rutherford formula

which is given by the leading term of (60) multiplied by Z . Making use of (54) and

the leading term of (60) in (65) results in the following analytic formula:

(66)

.
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Table 1

Atomic dipole moments in units of e2 an for is ---tip transistions.

^z 2 3 4 5 6 7 8 9 10

Q 0.7449 0.2983 0.1759 0. 1205 0, 0896 0.0701 0.0569 0.0474 0.0403
N

}

2

I

1

L

G

F

t
4

to

pY
kt
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Table 2

Ionization of the n-2 levels. k is the ratio of the speed of the incident electron
to the speed of the bound electron  kT ives the incident energy in threshold units.
Q is the total cross section in units of irao , and F is the average energy of the
ejected electron in Ry. . 1 is the azimuthal quantum number. For each 1 the
relevant quantities have been averaged with respect to the magnetic quantum
number in .

1.0 1.1

k n 4 Q it2 e. n	 Q 112 E

1.2 0.668 0.163 0.643 0.155
1.4 1.017 0.321 1.083 0.303
1.6 1.103 0.465 1.234 0.443
1.8 1.074 0.596 1.227 0.572
2.0 1.001 0.714 1. 152 0.689
25 0.792 0.965 0.902 0.936
3.0 0.620 1.165 0.692 1.130
3.5 0.493 1.328 0.541 1.285
4.0 0.399 1. 462 0.431 1. 414
4.5 0.329 1.572 0.352 1.523
5.0 0.276 1.663 0.292 1.619
6.0 0.202 1. 814 0.210 1.783
7.0 0.155 1.911 0.159 1.923
8.0 0.122 1.969 0.124 2.043
9.0 0.099 1.999 0.100 2.145 g

10.0 0.082 2.009 0.082 2.229
15..0 0.040 2.142 0.039 2.496 ,.i
20.0 0.023 2.120 0.022 2.575
25.0 0.015 2.117 0.014 2.59
30.0 0.011 2.125 0.010 2.59

I
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2 cn 

0.161
0.31..7
0.462

0.594
0.714
0.971
1.1.78
1.349
1.495

1.625
1.743

1.937
2.064
2.162
2.202
2.239
2.361
2.510
2.609
2.614

2cn 

0.150

0.297
0.437
0. 5619
0.689
0.944
1.146
1.311
1.449
1.569
1.674
1.853
2.01.9
2.1.45
2.270
2.389
2.771
2.963
3.045
3.139

Table on

Ionization of the it = 3 .levels,
Notations and explanations are the same as in Fable 2.

l =0 1=^.
lc,^,

4 n2
n_4 Q

n	 Q
e

1.2 0.708 0.167 0.701
1.4 1.034 0.327 1.072
1.6 1.101 0.473 1. 161
1.8 1.059 0.607 1.127
2.0 0.978 0.729 1.046
2.5 0.760 0.990 0.816
3.0 0.587 1.200 0.630
3.5 0.463 1.372 0.494
4.0 0. 373 1. 514 0.396
4.5 0.306 1.628 0.324
5.0 0.255 1.717 0.270
6.0 0.18 5 1.752 0.1915
7.0 0.140 1.792 0.148
8.0 0.110 1.833 0.116
9.0 0.089 1.883 0.093

10.0 0.074 1.974 0.077
15.0 0.035 2.218 0.036
20.0 0.021 2.365 0.021
25.0 0.014 2.382 0.014
30.0 0.010 2.388 0.010

1_2
n-4 Q

0.665
1.149
1.307
1.290
1.199

0.917
0.692
0.533
0.421
0.340
0.281
0.200
0.150
0.116
0.093
0.076
0.035
0.020
0.01.3
0.009



t=3

n74' Q n2

0.661 0. 144

1.186 0.290

1. 358 0.431
1.335 0.564
1.233 0.686
0.930 0.946
0.694 1.154
0.530 1.325
0.41.6 1. 470
0.335 1.595
0.274 1.705

0.194 1.898
0.144 2.078

0.112 2.214
0.089 2.360
0.072 ` 2.496
0.033 2.977

I

1J

1=2

n-4 Q n2 E

0. 709
1..1.16
1.219
1.185
1.098
0.849

0.649
0.504
0.401
n. 326

0.270
0.194
0.146
0.113
0.091

0.074
0.035

0.157
0.31.1
0.454
0.585
0.'706
0.965
1.174
1.344
1.484

1.608
1. 725

1.956
2.166
2.274
2.351
2.417
2.615

Table 4

Ionization of the n	 4 levels.
Notations and explanations are the same as in Table 2.

l ^4 I =1

k -4 n2 -4
n2n Q n

Q

1.2 0.726 0.168 0.724 0.164
1.4 1.048 0.328 1. 070 0.323
1.6 1.108 0.476 1.1.43 0.469
1.8 1.059 0.611 1.099 0.603
2.0 0.973 0.735 1.013 0.726
2.5 0.749 1.001 0.783 0. 989
3.0 0.575 1.216 0.602 1.203
3.5 0.450 1.387 0.472 1.383
4.0 0.360 1.515 0.378 1.543
4.5 0.294 1.602 0.309 1.690
5.0 0.244 1.660 0.258 1. 820
6.0 0. 175 1.707 0.186 1.966
7.0 0.133 1.844 0.141 2. 015
8.0 0.105 1.954 0.110 2.044
9.0 0.085 2.056 0.089 2.099

10.0 0.070 2.118 0.073 2.189
15.0 0.034 2.422 0.034 2.481
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I W `Y' W Y'4 Cir/ W +J',Y ^1 `^ 4eY O

.f
i
.̂y

7̂

II

r O O O O C t; H H H .4 H' H N G4 c4 c4

t?0 t)4 m t`- L— d# 00 m H H O H a) L— C
n tocgmmcqrnmtoto mccgH3Hoc
10 c;4r4 4,-4o0000000000

cqW 0 O eL`- ^ m ^ L`= '^ ^ O H ^ ^ 914 to ^Cy H CrJ 1fJ cD Ca H M+ c0 L`- Oa H m

O O O C) O O H H H H H H CV cV GV N

II
ti

O w m "* t- to r-I O GV CD (M ^ r-I 00 L -
L-

9
H CV cq H o4 CD m 'RoI m CV H H H O O

^d or4 r44c;c;ocioo ©c;888

I W = H w m H t- m to r-4 ;o (n M cq LO = L{

N H m W LO N rn H m In to t- O H CV N m
b 000 Co) o*00HO•ir Ho NO NO cq*

cq

II

'•,• ^, m H LM C+'J O eN m m N u:l H 00 q O CSC mm O 00 'd{ LO H C17 00 00 H cD 00 $ H 00 c-
^M CD H rl H O 00 t9 11^4 m m C 11 H H H O O

d O ri H H ti`4 O O O O O D O C L O G

in LO cq L- cq H O Lo m m m m to 00 Lo H
W to GV Lam- O m O m O H L- LO t- (n H 0

r! m to L`- O cq 4 cD L` t- 00 (m O N =
O O O O O H H H H H H H H N Cpl CV

r.{

...

W m N m r-I CA O m O H O O to CD O O
00

O O H O O N m di m c+z Cpl H H ri O O

O H H H H O 6 6 0 0 0 0 0 0 O O

[-^ CV d+ ^ oo O H O Lf^ O tf^ 0 0 0 0 0 0
H H H 9 CV C4 m m 4 4 Lf o t; 0+ C O

t-I i

Iku

ttO
II
ti Op

d+

Ip



0

•

H

tt^ b4 [^

Cpd ^
Cd
t^ vii
a^

M A
^j :cdr1

II

0
d

Cld tc

0.04	
0

z
V
CdQ
0

W

r

cD

H

L"

Iw
C'+1

M
II

d

N m t- O mw o L- 9 w W SD O "4=
W O W O SD m M C5 N	 = M v-+ C-►rfi m *^ r1J ^- G'1 r-t C7 4t? tD ^- Q# r-{ ^1 m ^

o a o oi:^ o ..4 ,4 ,.4 ra 9 ,.f c4 4,i ca c

ri SD m W N L- -44 -f+ L- r-f -All W r-4 O L- r-i
mcDUaooNsD W-14 aW p -w ►-^ N N rat 0o cs> t^ m cn N ,-^ ►-^ ^ o

o4 4 4t4c;	 c; c;

f

^w

b

11

b

is

ow
N

II

b ^

b

0  ^mdi MeD r-a cap- ai m
u^ O	 0.'7 Q cD 1;- W t?'s r-# m H L^- 00 a0 GA mm 1 ^.ca ^- ^ ^ m ^ cD ^- m o ri N m ^»
O 4 O O c? Q rl r-{ t 4 r r-{ r ' c cV N cal c4

N " w SD m w 0 CD r-1 SD 00 r-{ m r-i 0 0) "
SOD H N NC^7 H w w 0 %:v M N H r4H O O 0

,G r 4 r4 9 9 0 cD O J <a 0 0 0 0 0 0 0

SD N W ri N rl	 OD d0 N 0 ri O O 'tv w SD N ' 14' m
+n O m O O lr- O r-1 O N w M O SD N O rr r^r-i m ^+ u^ co as ^ N m ^+ d+ ^ cc ^- 04 00 c y o r^ ^
O o O O O O 9 ri 4 9 H 4 r-+ r-i 4 4 cV c N N

M M O m O L- m d+ M O W O rl m N O CA O
,o-r ,m^ l4t

 
m -lc:v = d

+ d+ m 4 rOi ^ rNi .° o 0 0 0
0or--i	 C; C; C; C; C;

w
w
in
r-i

L-O
m

meH rl00
u3

Na
c-

w0
cn

mSD Om
m

N
i,`-
«#^

m
t1^

NO
L-

Ot-
a pp

00O
O

wH
H

'oHO
N

mM
N

mL`-
W

SD
d+
L-

w
N
W

r-i
00
W

m O O O o o O H H H r-1 H r q cv N N clt N N N cat

11

p+ N o w O m w O m 00 r4 "14 L- 00 Ln m CD LO o m m

d+ 00w Hr-{ mcv H
N

N
H

CD
a0 tow r-IM O

tt+ mm L-
N

Or-!
IttH r-4r-I o

o
N
O

m
o

N
0

HO o0
q o,-i,-i r4 4c;00000OOOOO CZ 000

1w
I
^o

4
L= M-=w = H ommNmm^ ltJ St7 p-=NNO^ O r-i H w

ocNCtic^-

N

,I
OOOOc C4 C4

A
at

d{ SD
oar

o
Wit+ W Oa0 r-

N
-ro w

H H
1 L- t-

d+

00 O
NN
M"

f+O mcD 00 0000
m N N

000 ►.n N 0
e-{ rH rl O

" O N m m M0
00 MN r

000
-4 H

O
Ci' O r4 r-1 rl rd 0 0 0 O O O O 0 0 0 0 0 0 0 0

-1

N '^ cD W O itJ O tPJ O tfJ -4 0 0 0 0 0 0 0 0 0
,.

x	 r-I r4 4 9 c4 N c^ m 4 d+ tt? So t^- o0	 O tr; o u; a
r	 ri	 N N t+^



i

FIGURE CMDTIONS

Figure 1. Total cross section for the ionization of the n = 2 level of atomic hydrogen.

Gross sections, in units of ri 
aIWO , are averaged with respect to the magnetic quantum

number to for each azimuthal quantum number 1 For low and intermediate incident

energies Q for ! = 1 is larger than Q for i = 0 for a fixed energy, but at high energies

it falls below 1 = 0 values (of, Figure 6),

Figure 2, Total cross section for the ionization of the n = 3 level, Similar to the

n 2 case, for low and intermediate energies Q increases as 1 increases, The

situation is reversed at high energies,

Figure 3. Total cross section for the ionization of the n = 4 level.

Figure 4. Total cross section for the ionisation of the n = 5 level.

Figure 5. Total cross section for the ionization of the n = 1, 2 0 3 9 40 and 5. For

eachn v the cross section has been averaged with respect to the azimuthal quantum

number l . E is the energy of the incident electron, and I is the ionization

potential for the level concerned. With the scaling shown in the Figure, and for

a given low energy, the cross section increases with the increasing order of n .

The situation reverses for snergies higher than a few threshold units.

Figure 6. A plot of (E/I) Q versus log s o (E/I)	 for ionization of the r = 2

and 1 = 0 9 1 states. At high energy the graphs approach straight lines. Slopes

M

r



y
r_

and intersections of these lines with the ordinate give the two parameters

necessary for the High-energy calculation of Q. 	 As

Figure 7. A plot of (Ell) Q versus	 logi a ( /I) for Ionization. of the n 30

1 0 9 to 2 states, Notations are the same as in Figure G.

Figure 8. A plot of (E11) Q versus 109, 0 (x11) for ionization of the n = 4 states.

Notations are the same as in Figure G.

Figure 9. A plot of (Ell) Q versus lol l O(Ell) for ionization of the n 4 5 states.

Notations are the same as in Figure G.

Figure 10. A plot of (Ell) Q versus log 10 (E /1)	 for n = I t 2 9 3 0 4, and 5

levels, For each 11, Q has been averaged with respect to the different l . The

classical formulais that of the impulse approximation with quantum mechanical

momentum distribution assumed for the bound electron. As n increases the

quantum mechanical results approach those given classically in accordance with

the correspondence principle.

Figure lx. A comparison of the results of the Born, the asymptatic Born, and

the classical theories for the differential cross section with ground state ionization

of hydrogen. The asymptatic Born is valid for e > I The incident energy is



Figure 12. Differential cross section for the n = 2 level ionization for an

incident energy of 4 threshold units. Positions of T(2s) and T(2p) are shown	 i

'knj vertical lines.

Figure 13. Differential cross section for ii = 2 and an incident energy of 25

threshold units. Notations are the same as in Figure 12. 	 •

Figure 14. Differential cross section for n = 2 and an incident energy of 100

threshold units. Notations are the same as in Figure 12.

Figure 15, Numberber of the secondary electrons per unit range of their energy,

M13e, versus c- for different primary energies, The primary energies E 
I

through E, 7 are 10, 20, 30, 40, 60, 80, and 100 units of the ionization potential,

respectively.

Figure 16. Total number of the ejected electrons versus the primary energy.

Curve I is the result of the present calculation. Curve 2 is due to Dalgarno

and Griffing (1958).
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