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ABSTRACT

The elementary problem considered was: Given earth-fixed space
directions from two non-intervisible ground stations A and B to two elevated
points 1 and 2, find the dirvection AB. Since more than two elevated points
were to be used in the practice, a preliminary adjustment for each side
AB was carried out. As the result of this adjustment, the two correlated
quantities SAB and tAB’ which were obtained, can be used as fictive
observations, in the main adjustment of a network of several stations.

If there are N statioms, the main adjustment contains 3N parameters.

Of these, four cannot be determined by triangulation. It hardly seems
worthwhile, however, to include in the main adjustment such observations

as satellite distances, ground triangulations, levelings, and astronomical
coordinates (with gravimetric deflections of the verticall). It is suggested,
therefore, that four other conditions be used, in order to keep the gravity
center of all stations and the mean scale of the approximate coordinates
fixed. In this way, the overall accuracy obtainable by the adjustment of

the network can be estimated.






1. The Fundamental Problem

We start from the well-known elementary problem of intersection on
a plane (see Fig. 1):

Given the coordinates x, y for the corner points Al, A2, Bl, and B2
of a quadrilateral,

Wanted the coordinates for the intersection point Q@ of the diagonals
Al ~ Bl and A2 - B2.

The solution can be obtained by the following sequence of formulas:

1~ *a1 71 T *B1 Va1 2~ *a2 Y2 T g2 Va2

{ b1 TV T YR CLy = ¥po = Yy (1)

Mp= x5 T Xy M) = Xgy = ¥py

\
N =L, M, =L, M
xq = (M Ky = My R/N (2)
Vg = Ry Ly = Ky L)/N

\

4 Suppose now that A and B are two observation stations between which
there is a forest or a hill which makes a direct sighting from A to B
impossible. Furthermore, suppose that, on the top of the obstacle, there
are two fixed target points, 1 and 2, which can be identified and sighted
both from A and from B.

Let a and b denote the horizontal and vertical bearings, respectively,
observed at the ground stations toward the elevated targets. Assume that
the distance AB is so short that the curvature of the earth can be

neglected and that the horizontal bearings, observed by a compass, are
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Fig. 1. Intersection of diagonals of a quadrilateral on the
celestial sphere gives the earth-fixed space direc-
tion between two stations A and B at which two
satellite positions 1 and 2 have been observed.



referred to the same vertical zero plane. It is advisable to select a
zero plane which is close to direction AB.
Assume that, in the infinity behind station B, there is a vertical
screen perpendicular to this zero plane. Then the bearings from A to 1
and 2 give two points Al and A2 on the screen. The bearings from B to 1
and 2 are taken in reverse, replacing a by 180° + a and b by -b. Then two
more points, Bl and B2, are obtained on the screen. The geometric solution
of the fundamental problem now gives point Q, or the bearing from A to B.
For the numerical computations, we must consider the screen as a
gnomonic projection of the celestial sphere to the tangent plane at zero

point:

X = tan a
(3)

_ tan b

y cos a

Substituting these coordinates into (1), formulas (2) give XQ’ yQ and the

reverse solution of (3) gives a, and b .

Q Q

2., The Equatorial Coordinates

In the satellite traingulation, the horizontal coordinates a and
b are replaced by equatorial coordinates o and §. However, the zero plane
of o is revolving with respect to the ground stations. Therefore, we

introduce the Greenwich hour angles

t=0- o (4)

where 0 is the Greenwich sidereal time of the observation.

Because the satellites are moving targets, the observations at both



ground stations must be made simultaneously. This can be accomplished by
photographing flashing satellites against the background of stars--or
chopping the trail of the satellite by synchronized shutters at both
stations.

Without going into the technical details of the measurements and their

reductions, we suppose here that the positions t and GAi of each event

i at each station A, corrected for the refractioﬁland other disturbing
effects, are already available. 1In the same way the mean errors m, and mg
should be readily estimated.

Writing t instead of a and § instead of b, we may use formulas (3)
and (1) ~ (2) for the calculation of tQ and GQ’ which indicate the earth-
fixed space direction from A to B. However, the following sequence of
formulas is more convenient for the practical computations:

For i = 1 and 1 = 2, compute

Ky = tan ﬁBi sin tAi ~ tan 6Ai sin tBi
< Ai = tan 6Ai cos tBi - tan 6Bi cos tAi (5)
y = sin (tg, - t,)

\

Our numerical example has been taken from Verdffentlichung des Geod.
Inst. Potsdam, Nr. 29, (1965) referring observations of Echo I in Potsdam and
Bucharest. The reduction to the center of the balloon has been computed
again for each observation, instead of the mean of each series, and the
results differ slightly from those published by Arnold and Schoeps (1965).
Similarly, the weights of observations for our adjustment do not agree

with those used in Potsdam.

Observations: Al Bl A2 B2
t -27°16'14V70 4+ 5°35'53%50 -58°40'00Y28 -39°05'57V90
8 +13°27'18%76 +34°31'11?45 +24°51'40V66  +57°16'22V22
tan § 0.23925217 0.68779110 0.46336373 1.55603704



sin t - .45819587 + .09755152 - .85415716 - .63066790

cos t + .88885125 + .99523048 + .52001495 + .77605283
i 1 2 1x2
K -0.33848245 -1,03687155 +0.11898805 =y
A -0.37323293 -0.44956779 ~-0.44936755
i +0.54271928 +0.33491434 -0.23482380
cot tQ -0.26479004
tQ ~75°10'08%V45
sin tQ -0.96668510
tan GQ -0.50515590
GQ ~-26°48'03%21

For the adjustment (see pages 14 and 15), these approximate values

have been rounded off to

tQ = -75°10'10" and GQ = -26°48'00"
In Arnold and Schoeps (1965), there are 18 satellite positions (numbered
1 - 18) which have been observed simultaneously at Potsdam and at Bucharest
against the background of stars. From these double observations, numbers 1
and 12 have been used for the approximate computation before the adjustment

of all 18 events.

3. The Preliminary Adjustments

In the practice, more than two events are observed for the determination
of the direction of each side AB. These observations usually are independent
of those of other sides, e.g., AC or BC. We omit here the slight correlation
between sides AB, AC, and BC which occurs if some events are observed
simultaneously at three stations A, B, C.

For each side, we perform a preliminary adjustment. Before this
Q 6Q which can be

computed from two selected events as explained above or from approximate

adjustment, we need the first approximate values t




For the estimation of the weights p;» We suppose that the mean error of

one measured-event position is independent of the direction:

= m(t * cos GAi

Ai)

but may be variable from one photograph to another. The variance of 11 is

then

m 2 sin20 + mB2 sinzo
o 2 - Al Al i Bi (11)

sinzoAB

where ¢ means the arc from Q to Ai or Bi or from Ai to Bi, respectively.

The computation formulas read

cos OAi = gin GQ sin GAi + cos GQ cos 5Ai cos (tAi - tQ)
(12)
2 2 2 2 2 2
sin OAB = cos GAi cos GBi (s<i + Ai + My )
X 2
The weights p, are, of course, inversely proportional to m .
Figure 2 gives a graphical table of weights p in the case where m. =
Mgy
The normal equations of the adjustment read
[paal & + [pab] n + [pal] =0
(13)
[pab] £ + [pbb] n + [pbl] = 0

After the solution of these equations, we have new approximate values
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coordinates of stations A and B, as will be explained in the next section.
However, the formulas (5) can be applied to all observed events i = 1, 2,

3 ... n. Then formulas

A My

tan ti = —— , tan Gi = —= cos ti (7)
K, K3
i i

give the coordinates ti, Gi of that point on the celestial sphere which

is at the pole of great circle Ai - Bi. The distance of point tQ’ GQ
from this great circle can be computed by formula
li = p{sin 6Q sin 61 + cos GQ cos 61 cos (ti - tQ)] (8)

where p = 206265 seconds of arc.
Differentiation of (8) shows that if § and t. are corrected by

Q Q
d6Q = £ and dtQ = n/cos 6Q’ respectively, the new distances will be

v, =a; £+ bi n+ 1, (9)

where ai + bi = 1, approximately. In fact, we have

[+
1l

5 cos 6Q sin Gi - sin §

8§, co t, -
cos 8, s ( 1 t.)

Q Q

(10)

o
il

cos 6, sin (t, - t
os 6, ( i )

Q

The least-squares solution is based on the condition

= . VvV, v, = minimum
(o) = Ty 7y vy v = win

-10-~



GAB= 6Q+§

(14)

(nd
il

AB tQ + n/cos GQ

which are entered as fictitious observations into the main adjustment of

a network. In addition, we need the weight matrix

1 [paa] [pab] (15)
P = 15
A8 02 Y [pabl  (pbb)

where m = 1 in ideal cases. Alternatively,

5 Ipvv]
m = (16)
n -2

can be determined separately for each side AB. Here n is the number of
events 1 used in the preliminary adjustment.

The formulas (5) and (7) to (12) give the true geometric gquantities
if we want to illustrate the events graphically by the diagonals mentioned
in the first section (see Fig. 3). Especially

a = cos B

b = -sin B

where B is the angle between the diagonal and the meridian of point Q.
For the programming of the numerical computations, however, the

following sequence of formulas is more convenient:

-11-
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A
S TE .
7
137 16,18
]O" -
26°48'}
8
7
6
2
"‘0" | 4
1
13
.Qo"_
3
, ) . !
-75°10'20" -75°1010" -75°10'0"

Fig. 3. Error ellipse of the direction Potsdam~Bucharest, as
computed from 18 satellite events.



(Q1)

]

(AL

(A2)

(a3)

(A4)

[

B =

Normal

{(Q2)M - (QVK } /P
{(Al) (B2) - (A2) (BL)}

equations:

(a%] € + [AB] n + [AL]

(AB] £ + [B®] n + [BL]

sin GQ (Q2) = cos 6Q

sin GAi (81) = sin éBi

cos aAi cos (tAi - tQ) (B2) = cos 6pq COS (tBi - tQ)

cos 6, sin (tAi - tQ) (B3) = cos 65y sin (tg, - tQ)

Q1) (A1) + (Q2) (A2) (B4) = (Q1) (Bl) + (Q2) (B2)
= (A3) (B1) - (Al) (B3)

(A2) (B3) - (A3) (B2)

nl 1= w0? +n? (- 600

206265 {(QL)M + (Q2)K } /P

0

0

[pvv] = [L?] + £[AL] + n[BL]

The true distances of point Q from arcs Ai - Bi are

Hence:



Example: My, =Wp, = 1
tQ -75°10'10%00
tyy -27°16'14%70
tai + 5°35'53Y50

thy = tQ +47°53'55V30
(Q1) ' ~0.45087754
(A1) +0.23268520
(A2) +0.65204128
(A3) +0.72159530
(Ab) +0.47709027
K +0.21968928
M +0.43488900
P 1.3242
Adjustment

Operation equations

i

b W N

O 0 N O

10
11

12
13

P A

1.324 +0.3679

1.324 3668
1.323 3656
1.321 3626
1.320 3613

1.206 +0.3459

1.204 3436
1.203 3427
1.203 3419

1.139 +0.1959
1.138 1930

1.287 +0.1431
1.286 1406

B

-0.2558

2582
2606
2666
2690

-0.2506

2544
2556
26569

-0.3694

3704

-0.4260

4259

~14-

Q2)
(81)
(82)
(B3)
(B4)

+1V53
+0.41
+7.96
+1.25
+4.95

-0.78
-2.14
-2.88
+1.37

+1.80
+1.03

+1.05
-1.81

~26°48'00%00
+13°27'18'76
+34°31'11V45
+80°46'03%V50
+0.89258582
+0.56669168
+0.13219026
+0.81325659
+0.13751740
+0.3679
-0.2558

+1U53

-0V20
+2.31
~14.52
+0.39
~7.84

+5.03
+8.19
+9.89
-0.04

-2.29
-0.48

-0.84
+5.50



14 1.283 1356 - 4255 +3.02 ~5.34

15 1,282 1332 - 4253 +2.19 ~3.51
16 1.281 1295 - 4249 ~0,91 +3.43
17 1.280 1283 - 4247 +1,12 -1.13
18 1,279 1271 - 4246 -0.88 +3.37
Normal equations Solution

1.3391¢ -1.3700n +5.406 = O £

it

~3V704 = d§
Q

it

-1.3700¢ +2.1419n ~5.771 = 0 n
2

0.325 dtQ = +0.364

L] = 132.80 [pvvl = 110.90
Weight coefficients ﬁz =6.931 m =+ 2V63
2.1608  +1.3821 Spp = -26°48'03V70 + 387
+1.3821 1.3509 thg = -75°10'09%64 + 3V43
Error ellipse
Semiaxis 4171 direction 37°
1.48 127

4. Adjustment of a Network

For each station of the network, we need to calculate good approxi-
mate coordinates designated as ¢, A, H., Using any reference ellipsoid

with semiaxes a, b and denoting

we compute the Cartesian coordinates

~15~



(N + H) cos ¢ cos A

w
it

(N + H) cos ¢ sin A an

(N - e2N + H) sin ¢

<
]

N
[

where

=lw

W= »/1 - e2 sin2¢

The fictitious observations GAB’ tAB between two stations A and B

give residuals

/ %p T %y
kAB=arc tan —GAB
2 2
/(x -x,)" + (y, - v,)
ﬁ B A B A (18)
¥qg ™ F
- B A _
hAB = (arc tan . tAB) cos 6AB
Xy A

Differentiation of (18) shows that if x, y, z are corrected by dx, dy, dz,

respectively, the new residuals will be

<
i

o = A dxy - dxA) + Bl(dyB - dy,) + C,(dzy - dz,) + kg (19)

<
[

L = Ay (dxy - dx) + Bz(dyB - dyA) +h,o (20)

where

-16-
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1 r AB AB
Bl = - Egin 6AB sin tAB
Cl = + %‘cos SAB
ﬂ
A2 = - %-sin tAB (2

= 4 £
B + - cos tAB

r = /{xB - xA)2 + (yB - yA)2 + (zB - zA)2

The weight matrix of (19) and (20) is given by (15). Therefore, we form

equations

(19) [paal + (20) [pab]
; = v
m V[paa] 1
< (22)
2
(20) -~ {pab]} _
m (pbb] - [paal =V

which can be considered as uncorrelated observation equations with weights
of 1. Then the mormal equations can be formed and solved, in order to
obtain corrections dx, dy, dz.

In this adjustment, only the earth-fixed space directions have been
used as observed quantities. Therefore, the network cannot be fixed with
respect to any absolute zero point nor to the scale. 1If the corrections
of all coordinates are considered to be unknown, the matrix of normal
equations becomes singular. In fact, one point remains undetermined and, in
addition, one coordinate of some other point.

In the practice, the gcale can be determined from the existing ground
triangulations between some stations. Perhaps, also, the observed distances

of satellites from the ground stations can be used, with appropriate

~17~



weights. Similarly, the absolute zero point can be determined from existing
astronomical observations of latitude and longitude, with appropriate
gravimetric corrections for the deflection of the vertical. It is probable
that the weights for all these additional observations are smaller than those
for the space directions., Therefore, it is hardly feasible to include them
in the main adjustment of the satellite network.

In the following adjustments, the missing four coordinates are
determined as follows: The observation equations (22) are taken in matrix

form
Ax + 1 =v (23)
but the four coordinates Xy cannot be determined. Therefore, we write

Al x; + Ay x, + l=v (24)

and take four more equations

T -
Bl Xy + B2 X, = 0 (25)

from conditions that the arithmetical mean of all ( or, at least, the best)

approximate coordinates and of the side lengthis will not be changed:
[dx] = [dy] = [dz] = [xdx + ydy + zdz] = O (26)

Because Bl is a 4 x 4 matrix, we can compute

and (24) becomes

-1 _
(A2 - Al Bl B2) X, +1=v

This system of equations is no longer singular. Therefore, denoting:

-]18-~



T -1 T
4 G B1 B2
T
A= A2 - A1 G
\
(
N=AT 4
< u = AT 1
\
we can compute
x2 = —N—l u
T
xl = -G XZ

and the weight coefficients:

Finally, we may point out that the Cartesian coordinates (17) are
needed for the computation of residuals (18) only. The observation equa~
tions (19) and (20) can be written using the original parameters ¢, A,
and H in which purpose it 18 advisable to introduce temporary differentials

dB = (M + H) d¢
(27)
dL. = (N + H) cos ¢ dxr
1- e2 1 - e2
where M= ———N= a
W2 W3

-19~



For the computation of the coefficients of these new observation equations,

the following matrix formula can be used:

dx cos¢ cosA - 8in¢ cosi - sin) dH
dy > ={ cos¢ sini - sin¢ sinA cosh dB (28)
dz sing cosé 0 dL

Summagz

There are as yet no extensive observed nets which would provide data
that could be used in numerical examples or in testing the methods
suggested above. However, I am currently studying a schematic net which
is a very good approximation of the global satellite network planned for
international cooperation. In brief, I computed a net of Z0 spherical
triangles with 12 corner points and 30 sides, using the well-known proper-
ties of a regular icosaeder. The middle points of each side were then
taken as additional corner points. In this way, a network with 80
triangles, 42 stations, and 120 sides was obtained. I hope that the
experiences obtainable from the computation of such a regular system will
give useful ideas to others for the planning of future computations of

the networks actually observed.

~20-
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