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A TWO DIMENSIONAL MODEL OF THE

DIURNAL VARIATION OF THE THERMOSPHERE

PART II

AN EXPLANATION OF THE "SECOND HEAT SOURCE"

H. Volland, H. G. Mayr and W. Priester

as j	
ABSTRACT

A two dimensional 'model of the thermosphere between 120 and 400 km is

presented in which solar EUV heat input is the only external heat source taken

into account. By choosing the boundary values of the model appropriately, am-

plitude and phase of the observed diurnal variations of density, temperature and

winds are reproduced in a consistent manner. It is concluded that horizontal

convection, convective energy coupling between lower atmosp laere and thermo-

sphere and heat conductive energy exchange between thermosphere and exo-

sphere are of great significance for the energy and particle balance of the

thermosphere. These processes were basically neglected in Harris and

Priester's model. Therefore they must be considered to be the origin of their

"second heat source".



A TWO DIMENSIONAL MODEL OF THE

DIURNAL VARIATION OF THE THERMOSPHERE

PART II

'	 AN EXPLANATION OF THE "SECOND HEAT SOURCE"

1. INTRODUC TION

The first theoretical model of the diurnal behavior of the thermosphere was

one dimensional (Harris and Priester (1962)). Dealing exclusively with solar

EUV as diurnal heat source, their numerical results gave too high density

variations as compared with observations and their density maximum appeared

at 1700 local time, which is in contrast to observations showing a maximum at

1400 local time. Harris and Priester therefore introduced an ad hoc "second

heat source" which was provided in such a way that it could supplement the

solar EUV heat source and bring agreement between calculations and measure-
h,

ments. They assumed as boundary conditions zero variation of pressure,

temperature and vertical wind at the lower level (120 km) and zero variation of

the temperature gradient at the top of their model at 800 km height. This

choice of boundary conditions limited the wave energy exchange to heat con-

vection at the upper boundary and to heat conduction at the lower boundary.

These assumptions were extremely convenient for the calculations and they ap-

peared to be rather plausible at that time. Yet they are in fact completely

arbitrary and unjustified, and as it will be shown in this paper, they constitute

unrealistic restrictions.
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In a later paper Harris and Priester (1965) tried to overcome some of these

restrictions by allowing finite temperature and pressure variations at the lower

boundary of their model. Yet even this did not replace the need for the "second

heat source".

In an earlier paper (Volland, 1966) (referred to as paper I) the thermosphere

was treated by a two dimensional model. In this paper the basic equations for

the dynamical behavior of the diurnal variations within a two dimensional thermo-

sphere as well as approximate analytical solutions were given. This model is

valid during the time of equinox and at low latitudes. Thus latitudinal winds

have been excluded and only longitudinal and vertical winds within the equatorial

plane have been considered. In paper I it was proposed that horizontal and (or)

vertical winds could replace the "second heat source" which was required in

Harris and Priester's one dimensional model. These winds could transport

heat energy through convection and therefore should be able to shift the density

maximum into the early afternoon which is in agreement with observations. In

a second paper (Volland 1967) this idea was qualitatively confirmed. In addition

to horizontal heat convection a finite vertical temperature gradient at the upper

boundary of the model was introduced to shift the phase of the density and tem-

perature into the desired direction. However quantitative agreement with ob-

servations still could not be achieved. Again, the failure to reproduce the

observations must be attributed to the restraining choice of boundary conditions.
a

Although allowing conductive and convective energy exchange at the upper bound-

ary this model isolated the thermosphere entirely from the atmosphere below

by assuming the variations of temperature gradient and vertical velocity to be

zero at the lower level.

2
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Recently Dickinson et al. (1969) calculated a two dimensional model of the

thermosphere taking into account only the solar EUV heat source. In order to

obtain realistic results and agreement with observations they had to introduce
s	 another form of "second heat source" in this case an artificial reduction of
w	 .

'	 their wind velocity by an arbitrary "scale factor" which was thought to compen-

sate the r4ect of ion drag and viscosity. It can in fact be shown (Volland,

1969b) that ion drag has a significant influence for the phase of the density

variations. In addition to that however the failure to obtain self consistent re

stilts is also due to the unrealistic boundary conditions which were in this case

zero vertical velocity at the bottom and zero variation of the temperature

gradient at the top and the bottom of their model.

There are several reasons why the fixed boundary conditions, employed in

the above models, are unrealistic. Zero variation of pressure and vertical

velocity at the lower boundary implies that convective energy coupling between

the lower and upper atmosphere is excluded. But we know from observations of

the geomagnetic S q current that a horizontal wind system with velocMes of the

order of 50 m/sec must exist between 100 and 120 km altitude (Kato, 1956). Such

a wind system is necessarily accompanied by vertical winds and temperature

and pressure variations. Rocket borne measurements of the N, density at heights

between 150 and 300 km by Spencer et al. (1966) and Taeusch et al. (1968) have

indeed revealed variations in the lower thermosphere which are much larger

than those predicted in the Harris and Priester model (CILIA, 1965) or Jacchia's

model (Jacchia, 1964). Therefore we must expect -and our calculations will con-

firm this—that the convective energy exchange between the lower and upper at-

mosphere significantly influences the density and temperature structure of the

thermosphere.
3



At the upper boundary of the Harris and Friester model as well as in the

Dickinson et al. model the zero variation of the temperature gradient they en-

force suppresses heat conduction and permits wave energy exchange through the

upper boundary to occur only by heat convection. In view of the increasing

f	 significance of heat conduction at higher altitudes this assumption Is unjustified.

Furthermore, the over emphasis on heat convection enhances the mass trans-

port through this boundary and therefore can be attributed to the resulting too

high theoretical density variation at high altitudes that is also In disagreement

with observations.

We shall show in this paper that without physically unacceptable restrictions

on the boundary conditions a self consistent solution can be obtained that is in

good agreement with basic observational data between 120 and 400 km. There-

by, solar EUV heat input is shown to be entirely sufficient as an external source.

It will be seen that a combination of horizontal and vertical heat convection

within the lower thermosphere and a combination of horizontal heat convection

and vertica: heat conduction within the upper part of the thermosphere con-

stitute the "second heat source". Heat convection within the lower thermo-

sphere is maintained mainly by a tidal gravity wave penetrating from below into

the thermosphere, which is consistent with a prediction of Lindzen (1967).

2. THE MODE L

The theory presented in paper I describes al. two dimensional thermosphere

model valid at low latitudes and during equinox. We shall use this theory with

the following restrictions.

({rF

Y
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a.) Perturbation Theory. A time average thermosphere model derived

from Model 4 of CURA (1965) Is adopted for density, temperature and mean

molecular mass. Perturbation theory is applierl, thus only the first harmonies

of the diurnal variations are treated and all squaresi, and higher order terms

of the diurnal wave parameters are neglected. It has been shown by Volland (1967)

that nonlinear terms affect the results in two ways. 	 First, they transfer energy

from the time dependent system into the time independent system. Since we

shall use a given time independent system from CIRA (1965) we Implicitly cannot

account for this affect but rather we must add It to the uncertainties in the CIRA

model. Second, the nonlinear terms prevent an unlimited increase of the per-

turbation amplitude which in our case is only accomplished by wave energy dis -

sipation due to heat conduction. As long as the relative wave amplitudes are

smaller than 0.3 In magnitude it turns out that perturbation theory is a sufficient

approximation. This will generally hold for altitudes lower than 400 Ian, which

is the reasor_ why we had to choose this level as upper boundary. If the relative
ij

wave amplitudes are larger than 0.,1 they have to be considered only as upper

limits.

b.) External Heat Input. As exti-rnal heat source the diurnal EUV heat

input was taken from CIRA model 4, thus, it is independent of the resulting density

distribution. This greatly simplifies the numerical calculations. In view of the

N

large uncertainties about the efficiency factor of the solar heat input, the as-

sumption of a given EUV source does not add much to the uncertainties already

I	 involved in the problem.

5
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c.) Molecular Viscosity, Molecular viscosity is neglected which also

greatly simplifies the calculations because undo- r these circumstances only 4

characteristic waves (two gravity waves and two heat conduction waves) re-

main and an analytical solution of their eigenvalues exists (Volland, 1969).

Viscosity can be neglected If tho Reynolds number

r7 v

	

R ^	
^ at	 ^,^ l
	 (1)

((72 v	 0 4 v

greatly exceeds unity. v is the horizontal velocity, p is the mean density, t is

the time, y the longitude, z the altitude and 77 is the coefficient of molecular viscosity.

Our calculations show that the Equation (1) holds throughout the thermosphere below

4.00 km.

3. SOLUTION OF THE DYNAMICS OF THE THERMOSPHERE

Because of the restrictions mentioned In section 2, the system of equations

describing the dynamic behavior of the thermosphere is a set of four complex

coupled ordinary linear differential equations of first order which ^ie write in

concise matrix form [ see Equation (10) in paper I]

d• J k (K(z) e + h (z)^	 (2)

	

dz	
`\

where and h are column matrices containing the elements

f

- 
C p AWe l ^ C

r
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A 
C2 Cp'  P

f

AT

P T

K (d AT/d z)

	

4	
P	 CP

	

h i	 112 = h3 	0

AQZj;V

W rp

and the 4 X 4 - coefficient matrix K depending on height z can be found in

Volland, 1969, Equation (43)].

It is

vertical, wind velocity

A p	 pressure

A T	 wave amplitudes of 	 temperature

A 	 density

A v	 horizontal wind velocity

C	 velocity of sound

P

	

	 pressure
height dependent mean values of 

T	 temperat!,.;re

P f	 density
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Density and horizontal wind of the wave do not occur explicitly within

Equations (2), but are linearly related with a  e 2 and e 3 by the following ex-

pressions

Op
C P p _ e2 - e3

(3)

y P C i 1- J Z 2 

(jZ 
I el 'Y e2)

w is the angular frequency of the diurnal variation

f
k = C is a normalizing wave number

K is the coefficient of heat conductivity

AQEuv is the diurnal component of the lfr EUV heat input

Z i = 2 is the Coriolis parameter

_Z_ r = v is a collision parameter

v is the collision number between the ions and one neutral

y is the ratio between the specific heats at constant pressure and constant

volume

k
is a normalized horizontal wavenumberS k 

ky a is the horizontal wavenumber of the diurnal variation

a is the earth radius.

,a
5
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Four characteristic waves 	 two gravity waves and two heat conduction

waves — can propagate within a homogeneous thermosphere in which heat con-

ductivity is taken into account. Their vertical propagation characteristics are

described by the formula

c = c ej kN z

where the coiumn matrix c contains the four wave modes and

-q l 	0	 0	 0

0	 -q2	 0	 0
N =	 (4)

0	 0	 ql	 0

0	 0	 0	 q2

is a diagonal matrix with the eigenvalues q i of the matrix K as its elements.

:h qa are the two eigenvalues of up- and downgoing gravity waves, t q, are the

two eigenvalues of up- and downgoing heat conduction waves given in Equation (44)

in (Volland, 1969).

The characteristic waves are related with the physical parameters a of

Equation (2) by

e Z Q c	 (5)

where Q can be found from the condition

K Q =	 Q  .	 (6)



The characteristic waves c i are normalized in such a mariner that

ci ci _	 Real Awi AP* 1	 (7)

gives the time averaged vertical energy flux of the i th wave. (The star indicates

conjugate complex values.)

If we divide the realistic atmosphere into a number of homogeneous iso-

thermal slabs of thickness 6 ze Equations (2) to (G) lead in a straightforward

manner to the solution

C CZO> 
_ 

PO C 
^zn) 

+ 
^0	 (8)

with

S

P. 	 ..	 QQ 11 re QQ	 i k e N e Laze

e`—i+1

s

	

r$ i	 K NQ 1 l E _ e;keNeAz e QQ 1 he

e=i+^

C Q /C Q-1	 0	 0	 0

0	 1	 0	 0
Ce ^ 1

r ^	
ce

0	 0	 Te /T a- 1	 0

0	 0	 0	 C a/Ce . 1



The matrix r matches the internal. boundary conditions of continuous

amplitudes of lbw, A p, AT and K d (AT )f d z between two slabes of temperatures

Te _ i and T ^ . E is a unit matrix.

The solution in the form of an analytical expression Equation (8) has the ad-

vantage that only once an integration has to be performed in order to determine

the altitude depending functions PP (z i ) and r (zi ) . The rest — namely the se-

lection of appropriate boundary conditions and the calculation of the physical param-

eters versus height via the transformation Equation (5) — is only a matter of solving

four complex linear equations with four unknowns. The four unknowns are

e.g.  the characteristic waves c (z. ) at the upper boundary.

In order to solve Equation (8) uniquely we need four complex or eight real

boundary values for which we can choose either characteristic waves or physical

parameters. In our calculations we apply the radiation condition which demands

itthat waves generated within the thermosphere can only leave the boundaries of the
ii
i'

thermosphere. Our boundary problem therefore reduces to one complex

parameter — namely magnitude and phase of an upgoing tidal gravity wave from

the lower atmosphere which must be chosen such that the calculations fit with

the observations (Volland and Mayr, 1969).

4. NUMERICAL RESULTS OF THE DIURNALLY VARYING PHYSICAL
4

PARAMETERS

As boundaries for our model we chose z 0 = 120 km and z n = 400 km.

The measurements we shall compare our results with were made during

moderate solar activity (F = 100 - 150). For this reason we adopt as input

11
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the time average thermosphere components of density, temperature and molecu-

lar mass from model 4 of CIRA (1965),

In calculating the ion-neutral drag farce we assumed that the ions are

"frozen" into the magnetic field and thus the ion velocity component perpendicu-

lar to the magnetic field is zero. We employed Da:lgarno's (1964) collision

frequency

v = 7 x 10-'0 Ni	 ( sec-1) ,	 (9)

where N, (in cm 9) is the number density of ions. For N i we assumed a value

of 5 x 104 at 120 km and an exponential like increase with a scale height of

100 km.

As discussed in the previous section as boundary condition only one com-

plex parameter is free to adjust the calculations to the observed data of tem-

perature, density and winds (Volland and Mayr, 1969). This parameter was chosen

as the complex wave parameter of the upward propagating gravity wave. Thus

the solution of Equation (2) for e i is uniquely determined.

If a i are the time average parameters of pressure, temperature and den-

sity and Aa i are the first (complex) harmonics of their diurnal variation, then

the relation

tai	 1
	ai 	 I v r ei

is valid (according to section 3). In real representation the diurnal variation

of the relative wave parameters (Aa i/a i ) has the form

^6ai	 w	
_	 -	 (10)

2 peal	 a.. ej t
	 - Ai cos N(t	 7- )

12



(13)

where

^^ai
A. - 2	

a	 (1'1)

is the relative magnitude and

arg (A a, )
'r,1
	 —	

Co	
(12)

is the time delay related to local midnight which gives the local time of the

maximum of the parameters.

For the wind system in which the average velocities are zero, the absolute

magnitudes

AV = 2 (Av I ; Aµ, = 2 1,^swj .

are considered .

Our theory considers only the first Fourier component of the diurnal wave.

Therefore we chose also the first Fourier component of the experimental data.

Some of the observed data we compare our theory with do not allow a harmonic

analysis because not enough data are available within a diurnal period. We

therefore made use of another parameter, the ratio, f , between the observed

maximum and minimum diurnal values, which is related to the relative magnitude

Ai by the express,n

s

r^

,t	 ^



This relationship between f, and Al becomes exact if the observational data

feature genuine diurnal harmonic variations.

Table I contains a list of authors and their observations which have been

used for comparison with our calculations in Figures 1 to 4. Here, the CIRA

model (No. I) requires a harmonic analysis, while the data of Kato (No. VI) give

already the first Fourier component. The static model of Jacchia (No. II) does

not permit the determination of the phase, and therefore only f -values can be

derived. Likewise, from the observations No. III to VI only the parameters f i

can be determined.

Spencer et al. (1966) (No. III) and Taeusch et al. (1968) (No. IV) obtained the

N2 number density from a series of rocket flights on a single day. A comparison

with our density values is only possible below about 200 km where N 2 is the

major constituent. The temperature of N 2 , also measured by Spencer and

Taeusch, is considered to be equal to the total gas temperature. The N 2 vari-

ations of Taeusch at 150 km altitude contain a semidiurnal component, which

might affect the f -value. Therefore, we must consider this f -value with caution.

The satellite drag observations by King-Hole and Hingston (1967), (1968) (No. V)

have been derived from satellites with low perigee. For the height of 155 km

King-Hele and Hingston (1967) give a value of fp = 1.7 and a time delay of TP

12 00. Considering only the first harmonic in their data we find the values of

fp = 1.4 and rp 15 00 . These values have been plotted in Figure 1. For the

height of 190 km King-Hele and Hingston (1968) give the value f p = 1.4 but no

value of TP . They only state that the maximum density has been observed at day

time. Therefore the phase of this observation has not been plotted in Figure 1b.

14
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Mahajan's (1968) derived the ,ion temperature from 'homson backseatter

spectra at Aricibo Ionospheric Observatory. The ion temperature is calculated

to be up to 25 °K higher than the neutral, temperature at day time and at 250 km

height while at nighttime the ion temperature is equal to the neutral temperature

(Nisbet, 1967). Therefore, this temperature amplitude may be too high by about

10%.

All measurements collected in Table I are made during moderate solar

activity (F 100 - 150). For comparison we therefore selected model 4 of

CIRA (F = 125) (dashed lines in Figures 1 and 2) and Jacchia's (1964) model at

F = 125 (dash-dotted lines in Figures 1a and 2a). From comparison between the

observed data (No. III to VI) with the models No. I and H we notice immediately

that neither the CIRA model nor Jacchia's model are in agreement with the ob-

served density variations below 200 km altitude.

The calculated values of our two dimensional model which are plotted as

full lines in Figures 1 to 4 are the result of a solution which fits optimally to all

available observed data. The agreement between observed temperature and

density observations and our calculation is quite good (Figures 1 and 2).

Also the horizontal wind approaches rather close to the horizontal wind

field at about 1.10 km height which was derived by Kato (1956) from the S  vari-

ation on a rotating earth (see Figure 3). We compare the horizontal wind with

calculations made by Kohl and King (1967) and Geisler (1967) who determined

winds from the horizontal pressure gradients inherent in Jacchia ' s model (1964).

Kohl and King's (1967) winds at the equator at 300 km altitude (see their Figure 6)

^i
	 15
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show a maximum westerly flow at r V = 2100 local time and a magnitude of

A V = 140 m/sec. Geisler (1967) obtains very, similar numerical data. This is

in reasonable agreement with our theoretical results in Figure 3 which give

A V = 147 m/sec and Fr V = 2140 local time.

Recently, Dickinson and Geisler (1968) evaluated the vertical velocity of the

diurnal thermospheric tide from the static Jacchia model (1964). To do this,

they integrated the equation of continuity, which preassumes an exact knowledge

of the pressure field throughout the thermosphere as well as the boundary con-

ditions at the lower boundary. Since the observed density structure is in dis-

agreement with Jacchia's model below 200 km Dickinson and Geisler's vertical

winds cannot be expected to be realistic. Never-the-less at 300 km altitude the

magnitude of their vertical wind velocity is 4 m/sec which is only a factor of

two larger than our value. The time of the velocity maximum in Dickinson and

Geisler's meridional system is 16 00 local time at 300 km compared with 1000

local time in our model.

5. THE "SECOND HEAT SOURCE"

In discussing energy transport we must distinguish clearly between the time

average flux and its diurnal component. The time average of the energy flux car-

ried by waves can be dissipated into heat of the surrounding air. This is an ir-

reversible process which continuously heats the thermosphere and thus affects

the time average thermosphere structures of density and temperature which are

not discussed in this paper. The diurnal variation of the energy flux constitutes

16



a reversible process for waves which alternately changes from conveett'le into

conductive energy form and thus it affects the temporal variations in the

thermosphere. It is this component of the diurnal wave that actually represents

the "second heat source."

The way in which the diurnal wave alternatingly stores and drains energy is

complex due to the various forms of energy transfer. In the energy equation

[ see Equation (2) of paper I) the temporal change of the internal energy is the

result of the total heat input per unit volume and unit time

PC 
dt 

_
Qcotal = AQEUV 

* 
6QHC ^QEV	 (14)

f

where p is the mean density, c iw the specific heat at constant volume, AEUv is

j	 the diurnal component of the FUV input,

i

	

ZQHC = AQHC hor + 
6QHC vert	 k  KAT + 

Z
` AT 
BZ

is the heat input due to heat conduction with its horizontal and vertical com-

ponents, and

BAw
'^' QCV	 AQCV hor + AQCV vert "M _ sky PQV — P 'aZ

is the heat input due to heat convection (or adiabatic heating) with its horizontal

and vertical components.

17
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To determine the relative importance of the various energy terms their

magnitudes and phases have been calculated. They are plotted versus altitude in

Figure 5. We have omitted A 
Q11c nn r 

which is at least two orders of magnitude

smaller than the other terms. We notice from Figure 5 that the heat inputs

from horizontal and vertical heat convection are comparable with the heat in-

put from the solar EUV radiation up to 300 krn altitude. In this same altitude

range vertical heat conduction is relatively insignificant while above 350 km

this process becomes the dominating one.

From the input rates in Figure 5 it becomes immediately clear why the

earlier models failed to describe the thermosphere consistently:

The Harris and Priester Model is one dimensional and thus does not con-

sider the very significant contributions from horizontal heat convection. Due

to the boundary conditions in this model, the contribution of vertical meat con-

duction at high altitudes and the contribution of vertical heart convection at 120 km

were suppressed. In our model these processes are shown to be of dominating

significance.

The two dimensional model of Volland (paper I) correctly predicts the signifi-

cance of horizontal heat convection, but it fails to achieve quantitative agreement

because it does not consider the very effective energy exchange through heat con-

vection at 120 km.

What applies to the previous models basically also applies to the model of

Dickinson et a1.

18



I

To explain the origin of the "second heat source" we show in Figure 6 the

va.rioue energy inputs that flow per unit time into a thermospheric column above

unit area between 120 and 400 km height. These inputs are primarily due to

EUV (note that in otir representation only the first Fourier component is con-

sidered), vertical heat convection (which in our model results mainly from the

large convective energy flow through 120 km), horizontal heat convection and

vertical heat conduction. Harris and Priester assumed that horizontal heat con-

vection is zero and that the corresponding input from vertical heat convection

results only from a comparatively small convective energy flow at the upper

boundary of their model.. Therefore we can clearly identify the origin of their

"second hest source". It results primarily from the convective energy transfer

which is suppressed by their choice of boundary conditions and their restric-

tion to one dimension. In our model this convective heating is induced by the

EUV heat input and by a tidal wave generated below 120 km. We see from Fig-

ure 6 that both the horizontal and the vertical component of heat convection are

each comparable with the EUV input, while their phases are shown to be signifi-

cantly different from that of the EUV source.

Adding the two convective inputs we show our equivalent of the "second heat

source", AQS.., in Figure 7 (solid line). As we see the maximum of AQsPC oc-

curs at 5"° local time and its magnitude is 0.5 erg/cm2 sec. This maximum be-

fore noon shifts the total heat input into the morning hours thus shifting the

maximum of temperature and density from the late to the early afternoon which

is in agreement with observations. The first Fourier component of the "second

heat source" of Harris and Priester (1963) is also shown in Figure 7 (dashed



line). As evident this source has about the same form as our convective heat

input. The amplitudes of both heat inputs are almost identical. Harris and

Priester's "second heat source" however peaks three hours later than QQseC",

a discrepancy that is understandable if we consider that Harris and Priester
i	 M

did not describe the relatively large density and temperature variations in the

lower thermosphere. These variations are in our model partly induced by

vertical heat convection which — as we see from Figure 6 peaks at 2 00 local

time and thus is responsible for shifting in our model the convective heat input

into the early morning.

Above 300 km altitude the diurnal, tidal wave from the lower atmos^lsere has

lost its predominant influence on the diurnal density variation. The "second

heat source" at these heights is in our model due to the open boundary between

thermosphere and exosphere which allows the upgoing characteristic waves to

propagate freely into the exosphere. In the Harris-Priester model as well as

in the Dickinson et al.-model the unrealistic upper boundary condition of zero

temperature gradient gives rise to peculiar interferences between upgoing and

downgoing waves at the upper boundary. This is f.nalogous to a closed "wave

guide" that confines the diurnal wave energies between two fixed boundaries,

and thus causes the too large density variations in the calculations of Harris

and Priester (1962) as well as of Dickinson et al. (1968).

6. CONCLUSION

A two dimensional model of the thermosphere between 120 and 400 km is

presented in which the solar EUV heat input is the only external heat source

20



taken into account. This is in contrast to Harris and Priester's model in which

additionally an unspecified "second heat source" was required.

In our model we successfully reproduced the amplitude and phase of the

diurnal thermospheric density and temperature variations. The relative diurnal

density variation is thereby shown to be significantly higher than the LIRA model

predictions below 250 km in accordance with measurements by Spencer et al.

(1966) and Taeusch et al. (1968). The horizontal, wind Held in our model agrees

in phase and amplitude with the wind field derived from the Sq currents below

120 km (Kato, 1956), and it is also found to be consistent with the wind field

derived from the Jacchia model (Kohl and King, 1967).

The main differences that characterizes our model when comparing it with

the Harris-Priester model are the following:

I. Our model is two dimensional. Therefore we consider not only vertical

convection but also horizontal convective energy flow which — as pre-

dicted in paper I — is of great significance. This energy flow is induced

by the EUV heat input and intensified byheat convection due to a tidal wave

propagating upward into the thermosphere. This tidal wave plays a dom-

inating role up to 200 km and remains significant even above 300 km.

The effects of convective energy transport are twofold. Firstly, as

we have shown in this paper, this process gives rise to energy inputs

that are comparable with the input due to the diurnal EUV component.

Yet the phase of the convective energy component is different from that

of the EUV source. As a result, the convective energy transfer acts like
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d

Harris and Priester's "second heat source" thus shifting the density and tem-

perature maximum from the late afternoon into the early afternoon.

Secondly, in our model, it is the transport process of convection that

plays the major role in the energy balance of the lower thermosphere.

This is in contrast to Harris and Priester's model in which heat con-

r?: ;L.!tion predominates. Our emphasis on heat convection is necessarily

associated with enhanced mass transport and this increases the diurnal

density amplitude over that in Harris and Priester's model below

250 km.

2. Energy exchange through vertical heat conduction is considered to play

a major role at the upper boundary of our model at 400 km. There,

relatively small variations of the heat flux and thus very small varia-

tions of the temperature gradient contribute significantly to the diurnal

energy balance because of the small energy content at these heights.

This is in contrast to Harris and Priester's model in which heat con-

duction is suppressed through their choice of the upper boundary con-

ditions. In their model the diurnal energy exchange at the upper bound-

ary was carried exclusively by heat convection. Therefore without

their "second heat source" this convection was associated with mass

exchange that resulted in density amplitudes much larger than are

observed. With the "second heat source" their model of course de-

scribed the density variations properly as it was introduced for this

purpose.
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Table I: List of authors the data of which have been used

for comparison with the theoretical model.

Observed
No. Source or Derived Height Methodphysical Range

Parameter

I CIRA (1965) Density, 120-400 Model 4
Temperature (F = 125)

II Jacchia (1964) Density, 120-400 Model
Temperature (F = 125)

III Spencer et al. (1966) Density, 150-300 Rocket
Temperature

IV Taeusch et al. (1968) Density, 150-300 Rocket
Temperature

V King-Hele et al. Density 155-190 Satellite
(1967) 0 (1968) Drag

VI Mahajan (1968) Temperature 250 Backscatter

VII Kato (1956) Horizontal 110 Geomagnetic
Wind Sq current
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INTEGRAL HEAT INPUT

AQCV vert
	

2KQEUV

0.5

u
N

NE O
U.

AQHC vert

AQCV hor	 .^---

/
OOOPf	 ^^	 '/

•

0	 6	 12	 18	 24

LOCAL TIME

Figure 6. Integral heat input within a unit column of the thermosphere due to the diurnal
component of EUV, to heat conduction and heat convection of the diurnal wave versus local time.
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Figure 7. Integral convective heat input, equivalent too second heat source , AQsec = AQCV
and first Fourier component of "second heat source" of Harris and Priester (1963).
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