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ABSTRACT

The infrared interferometer spectrometer to be carried on the Mars
Mariner '71 mission is essentially a Michelson type interferometer operating
in the spectral range 200-1600 cm™!, with an apodized spectral resolution cor-
responding to 2.4 cm™!. Use of the instrument on a Mars orbiting spacecraft
provides an opportunity for inferring spatial and temporal behavior of various
physical parameters associated with the planetary atmosphere and surface. In-
cluded among these parameters are atmospheric and surface temperatures and
total atmospheric water vapor content. A search can be made for minor atmos-
pheric constituents which are optically active in the spectral range of the obser-
vations. Information on the types of surface materials present can be obtained
from the phenomenon of reststrablen, and analyses of cooling curves should also
be useful in surface studies. To illustrate the information content of the inter-
ferometer measurements, examples of synthetic spectra calculated using model
atmospheres are given. Techniques for obtaining the various physical parame-
ters from measured spectra are discussed. Preliminary analysis indicates that
water vapor amounts as low as 0.1 precipitable microns should be detectable
under reasonable assumptions on the behavior of the atmospheric temperature
profile. The inferred parameters should provide essential input for studies of
the physical behavior of the atmosphere, such as the nature of the general cir-
culation. Of considerable biological interest are the possible implications of
the measurements on the existence or nonexistence of water in the liquid phase.
The identification of surface materials and of minor atmospheric constituents
may also contribute to biological studies.
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THE INFRARED INTERFEROMETER SPECTROMETER EXPERIMENT
FOR THE MARS MARINER '71 ORBITAL MISSION

"—l

INTRODUCTION

The thermal emission spectrum of a planet depends on many atmospheric
and surface parameters. The most important atmospheric parameters are the
types of optically active gases present, abundance and distribution of these gases
and the temperature profile, while the most important surface parameters are
temperature, pressure, composition, and structure.
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The infrared interferometer spectrometer (IRIS '"M') experiment for the
Mariner '71 orbital mission is designed to provide spectral measurements of the
thermal emission spectrum of the Martian surface and atmosphere. The spectral
range covered is 200 - 1600 cm™! with 2.4 em™! wide spectral resolution eie-
ments. Spatial resolution is approximately 126 km for an altitude of 1600 km.
The orbital mission allows the Martian atmospheric and surface properties to be
studied with respect to geographic location and time variation.

Absorption features due to polyatomic molecules lie within the measured
spectral range. To date only CO, (Owen, 1966; Spinrad, Schorn, Moore, Giver,
and Smith, 1966; Belton, Broadfoot, and Hunten, 1968; Giver, Inn, Miller, and
Boese, 1968), H,O (Kaplan, Munch, and Spinrad, 1964; Schorn, Spinrad, Moore,
Smith, and Giver, 1967) and CO (Connes, 1968) have been positively identified by
spectroscopic means in the Martian atmosphere. A tentative identification of
O, has been made by Belton and Hunten (1968) from two weak absorption lines of
the oxygen A band. Analysis of these lines yields a O, abundance of 20 cm=~-atm
or less. The strongly absorbing spectral region centered near 667 cm™! due to
carbon dioxide will provide information on the vertical temperature distribution
in the atmosphere while the more nearly transparent portions of the spectrum
will be well suited for the search for minor atmospheric constituents and for the
possible observation of reststrahlen phenomena caused by minerals composing
the Martian surface.

The scientific ohjectives of the experiment will first be discussed, including
the inference of temperature profiles, estimation of water vapor content, de-
tection of minor atmospheric constitugnts, and the identification of reststrahlen
features associated with surface materials. The use of these parameters in ob-
taining a better understanding of the physics of the Martian atmosphere, the
composition and structure of the surface, and possible biological implications

. will be considered. Finally, a discussion of the instrumentation will be given,
along with examples of data acquired with early versions of the instrumentation
in the laboratory and from a balloon in the earth's atmosphere.




II. SCIENTIFIC OBJECTIVES

The basic scientific objestives of the experiment are to utilize measurements
of the spectral radiance I(v) of the thermally emitted radiation from the Martian
atmosphere and surface to infer atmospheric and surface parameters. These .
parameters will then be employed in studies of the physical behavior of the at-
mosphere, investigations of the surface composition and structure, and biological
studies,

In order to obtain some feeling for the guantities to which such measurements
are sensitive, it is instructive to consider the theorctical expression for I ()
which can be written

l.Og P‘ a,r V,l P
I() = e@)Bw,T,)7,() ~I B[, T(log P)] a(logog L d1gP (1)
108 Pt ?

B3(v,T) is the Planck intensity at wave number v and temperature T, and the
transmittance for the atmospheric gas between pressure level P and the effective
top of the atmosphere P, is represented by 7 (v, log P). The subscript s refers
to surface values, and ¢(v) represents the emissivity of the planetary surface.
The atmosphere has been assumed to be in local thermodynamic equilibrium,
and the smull contribution to I (v) from radiation reflected from the surface has
been neglected. The first term in (1) represents the thermal emission from the
surface, attenuated by the atmosphere, and is dependent on the surface emissivity
and surface temperature as well as the total atmospheric transmittance. The
second term represents the atmospheric emigsion and is dependent on the at-
mospheric temperature profile through the source function B[v, T (log P)] and on
the type, total amount, and vertical distribution of the optically active gases
through the transmittance 7 (v, log P).

Techniques for inferring the various physical parameters from measure-
ments of I(v) and their applications to surface, atmospheric, and bhiological

studies are considered below.

1. Atmosphere

To illustrate the information contained in the type of measurements antici- '
pated from the experimert, several synthetic spectra have been calculated using
(1) and assuming model Martian atmospheres. Figure 1 shows the results of
such calculations for the spectral region in the vicinity of the 667 cm™! absorp-
tion band of CO,. For this illustration, a temperature profile based on




calculations of radiative and convective equilibrium by Gierasch and Goody (1968)
was employed. The profile, which is for equinox conditions at the equator at 1600
hours local time, possesses a "discontinuity" of 36°K across o 10 meter thick
bouadary layer at the surface., Since the Gierssch~Goody calculations extend only
to 30 km, the temperature profile was extrapoiated isothermally above that level.
A surface pressure of 5 mb was employed, and the chemical composition was
taken as essentially pure CO, (68 m-atm). The surface emissivity ¢ () was set
equal to unity for all » in this case.

In calculating the values of 7 (v, log P) required in (1), the monochromatic
molecular absorption coefficient along the atmospheric slant path was deter-
mined by summing the contribution of all individual lines at a particular fre-
quency using theoretically calculated line positiens and strengths, The speetral
integration techniques employed have been described previously (Kunde, 1968 a,b),
The theoretical molecular line parameters for the 667 em™! carbon dioxide band
were obtained from Drayson and Young (1967). The effect of a triangular instru-
ment function of 2 em™! total width at half maximum was included, Figure 1
shows the resulting synthetic spectra expressed in terms of the brightness tem-
peratures corresponding to the calculated radiances. Spectra corresponding to
the contributions of the various isotopic species are shown as well us the com~
plete spectrum including all isotopes. The isotopes were weighted by their
relative terrestrial abundances. The lower and upper vibrational states for each
vibrational band are also denoted, and the integrated intensity of each 12C 160,
band, relative to the 00°0 ~0110 band, is given in parentheses after the vibra-
tional tiransition.

The @ branches of the fundamental and strong combination bands are evident
in the spectra as is the rotational structure of some of the bands. For identifi-
cation purposes the observed spectra will exhibit even moxre line structure than
shown in Figure 1 as the unapodized spectra expected from the instrument cor-
respond to a higher spectral resolution of 1,2 em™!. Qualitatively the general
shape of the temperature profile in the region of the 12C 160, Q branch (667
em” }) absorption can be determined by observing the shape of the Q branch in
the spectrum. Contributions to the radiances in the strongly absorbing @ branch
come from relatively high in the atmosphere. On Earth most of the absorption
and subsequent re-emission occurs in the stratosphere where the temperature is
inereasing with altitude, resulting in a higher brightness temperature for the
Q@ branch region with respect to the adjacent portion of the spectrum. For the
Mars model, contributions from the higher portions of the atmosphere correspond
to cooler temperatures and the minimum brightness temperature occurs in the
Q branch region, Thus the 667 cm™! Q branch qualitatively indicates whether the
temperature is increasing or decreasing in the region of Q branch absorption.




To oitain quantitative information on the temperature profile throughout the
atzaosphere, mors complex considerations are required. A considerable litera~-
ture exists on computational techniques for obtaining temperature profiles from
remote radiometric measurements (Wark, 1961; Yamamoto, 1961; Twomey,
1963; 1965; King, 1964; Wark and Fiemming, 1966; Conrath, 1968). The princi-
ple of obtaining temperature profiles from observed spectra can be understood
by considering the atmospheric term in (1), The factor |37(v, log P)/? log P|
can be regarded ac the weight given the source function B(v, T (log P)] at each
level P, Tigure 2 shows weighting functions for several different wavenumbers
calculated using the model atmosphere discussed above. Because the principal
levels of contribution move from higher to lower levels in the atmosphere in
moving from the opaque band center to the less opaque band wings, measure-
ments across an absorption band permit a reconstruction of the temperature
profile. Considerable overlap of the weighting functions causes solutions ob~
tained for the temperature profile to be sensitive to instrumental noise, and
considerable effort has been expended in developing techniques which will provide
stability by introducing smoothing constraints into the solutions,
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Temperature profiles have been successfully recovered from data obtained
for the Earth's atmosphere during balloon flights. An example of data from a
balloon flight with a breadboard version of an early IRIS instrument covering the
spectral range 500 to 2000 cm™! with spectral resolution elements 5 cm™ ! wide
is shown in Figure 3. The temperature profile inferred from these data (Conrath,
1968) is shown in Figure 4 along with radiosonde data taken at a nearby station
for comparison. Computational techniques developed for application to data from
the Earth's atmosphere are adaptable to the Martian case in a general sense
although considerable work is necessary for the specific application.

In order to properly interpret the observed spectrum and to obtain the cor-
rect temperature profile, it is necessary to have accurate values of the carbon
dioxide mixing ratio and the surface pressure. The curve-of-growth techniques
utilized in the near-infrared cannot be applied to the thermal emission spectra
directly due to the additional complication of the source function. The possi-
bilivy of employing differential pressure effects in the 667 cm™1 CO, band as a
means for estimating the surface pressure and CO, mixing ratfo is currently
being investigated. Should this approach prove to be unfeasible, ground-based
values o1 values derived from the occultation experiment will be used. It will,
of course, be possible to check these values, along with the other inferred at~-
mospheric parameters, for internal consistency by comparison of a synthetic
spectrum with the observed one.

S e

Among the possible minoi atmospheric constituents, water vapor is of
primary interest because of its biological as well as geological importance. In
order to obtain an estimate for the sensitivity of the anticipated spectral
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measurements to the total water vapor content in an atmospheric column,
synthetic spectra have been calculated for the region of rotational water vapor
absorption between 200 cm™! and 600 em™!, The same atmospheric temperature
profile was used as in the calculations of the CO, spectra described previously,
and a constant water vapor mixing ratio was assumed. The positions and strengths
of the rotational water vapor lines were obtained from Benedict (private com-
munication), and spectral resolution elements 2 cm ™! wide were again employed.
TFigure 5a shows the resulting brightness temperature spectra for total water
vapor contents of 14.6 precipitable microns and for 0.1 precipitable micron. For
the 0.1 precipitable micron water vapor content, the brightness temperature
fluctuation is approximately 1°K which corresponds to a radiance fluctuation of
4.5 X 10"®% watt em™! ster ™!, The noise level of the IRIS "M instrument is ex-
pected to be of that order so 0,1 precipitable micron of water vapor represents

a signal corresponding to the noise level. The detectability can be improved by
averaging several spectra fogether,

The sensitivity of the measurements to total water vapor content depends on
the behavior of the atmospheric temperature relative to the surface temperature.
The rotational H,O spectrum was also computed without the 36°K boundary layer
"discontinuity' with the results shown in Figure 5b. The changes in brightness
temperature due to the presence of 0.1 precipitable micron of water vapor are
approximately 0.5°K. Removal of the temperature '"discontinuity' therefore de~
creases the apparent strength of the watgw vapor absorption features only by a
factor of approximately two.

In addition tc water vapor, the presence of other minor atmospheric ccn-
stituents is of interest since their presence reflects on the evolution of the at--
mosphere and may also be indicative of biological activity. The various possible
minor constituents on Mars for which upper abundance limits have been deter-
mined are listed in Table 1. In most cases, the upper limits were deduced from
the absence of absorption lines or bands in the observed spectra. The search
for minor constituents, such as those listed in Table 1, must be based in part on
a compilation and study of laboratory spectra of the gases involved. In addition,
systematic procedures must be developed for predicting abundances in a self-
consistent fashion from thermodynamic, chemical, and photochemical equilib-
rium censiderations. Several recent investigations illustrate the type of pro-
cedure required even though some of their results are now out-dated. Considering
thermodynamic and photochemical equilibrium for nitrogen oxides on Mars—
along with the upper limits for O, and NO—Sagan, Hanst, and Young (1965) have
theoretically reduced the upper limit for the abiundance of NO, below its previ-
ously observed value. Lippincott, Eck, Dayhoff and Sagan (1967) reduced the
equilibrium upper limit of NO, several orders of mcznitude below the value of
Sagan et al. In their investigation, Lippincott et al. included a larger number of




Table 1

Upper Limits on Abundances for Possible Minor Constituents

in the Martian Atmosphere

Path Length

Molecule (cm atm) Reference
0, 0.004 e
NO 20 b
NO, 0.0008 c
N,O 0.08 b
HNO, 0.16 d
HCHO 0.3 b
6105 0.2 b
H,S 7.5 b
CH, 0.1 b
C,H, 3 a
C,Hg 1 a
NH, 0.1 b

gt Ry

Kuiper, G. P., in Atmospheres of the Earth and Planets (Ed. G. P. Kulper)
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79, 1964.
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equilibrium reactions than Sagan et al. but considered only chemical equilibrium.,
The initial CO, mixing ratio used by Lippincott et al. was 0.10 which is con~
siderably lower than current best estimates so their results can no longer be
considered quantitatively valid. Bortner and Alyea (1968) have calculated the
steady state concentrations of eighteen species as a function of altitude in the
Martian atmosphere. Investigations of the type mentioned above are valuable as
a guide in the search for minor constituents and they should be extended to in~-
clude as many chemical reactions as possible,

In most cases, the concentrations of minor constituents can be expected to
be sufficiently small so that it will be difficult to directly recognize the spectral
features of the gases in the measurements. In these cases, techniques will have
to be utilized for improving the effective signal-to-noise ratio such as averaging
a number of spectra together and using cross~correlation analysis. In the latter
approach, the cross-correlation c(v) is formed between the known spectrum of
the gas to be identified T(v) and the measured brightness temperature spectrum
T(v)

cv) = JT@') T +v') dv' | @)

A significant peaking of c(v) at zeio lag would be indicative of the presence of
the gas in question.

One example of the possible uses of the parameters derivable from the
thermal emission spectra is a study of the Martian general circulation. The
lack of appreciable amounts of water vapor and bodies of liquid water will tend
to simplify the general circulation of Mars compared to Errth. On the other
hand, the possible freezing of CO, at the winter pole (Lei’/;;ton and Murray,
1966) may complicate the flow patterns An investigation of the Martian circu-
lation may be made with numerical models (e.g. Leovy and Mintz, 1966) or
analytical techniques (Gierasch and Goody, 1968). Studies of the general circu-
lation and possible correlations with the wave of darkening, inquiries into the
composition of the polar caps, and other branches of investigation using the data
anticipated from this instrument are being pursued.

2. Surface'

For studxes of the Martian surface, itis necessary to choose spectral
intervals where the atmosphere is nearly transparent so the first term in (1) is
dominant. Such atmospherlc "windows' exist in the 8-13u region and in some
portions of the region from 18 to 50 (Kunde, 1967)., If the surface emlssw1ty




¢(v) possesses distinct features in these spectral intervals, then it may be
possible to identify the type of material present.

The phenomenon of reststrahlen in some minerals produces variations in
€ (v) within the appropriate spectral intervals. This phenomenon was first
noticed by optical physicists in the reflectance spectra of polished crystalline
minerals such as quartz, salt, and corundum. The marked increase of reflect-
ance in certain wavelengths longer than 8 microns was used to localize the areas
of the spectrum where the reststrahlen bands occurred. Recently, this optical
phenomenon has been revived for remote sensing. Measurements by several
investigators (Hovis and Callahan, 1966; Lyon, 1965) have shown that the rest-
strahlen of silicate bearing minerals varies in wavenumber with the concentra-
tion of the silicate. Igneous rocks are often classified by the SiO, content.
Granite with more than 65% SiO, is considered acidic and dunite with less than
45% $i0, ultra basic.

The measured reststrahlen of four typical igneous rocks are shown in
Figure 6 for four fractured but unpolished solid samples. As can be seen the
peak of the various reststrahlen varies from about 8.5 microns to about 11
microns with the most acidic having the peak at shortest wavelength. Though
there is no satisfactory theoretical explanation for this behavior, a large number
of measurements have found no exceptions. There is a weakening of the rest-
strahlen features as the material is ground to smaller sizes as shown in Figure
7. Though the reststrahlen remain they are considerably weaker in the smaller
particles and thus require greater instrumental accuracy for detection than is
the case for the scolid samples.

The investigations of reststrahlen mentioned above were restricted to wave
numbers greater than approximately 455 em™!. The spectroscopic work of
Aronson, Emslie, Allen and McLinden (1966) on minerals indicates that con-
siderable information on surface composition can also be obtained from the
50-667 cm™! spectral region.

Cooling curves can provide another means of acquiring information on the
nature of the surface materials. Ideally, one would like to obtain the surface
temperature at a particular location as a function of local time through a com-
plete day-night cycle. In practice, it will be difficult to get such data for one
small surface area, but it should be possible to obtain measurements from vari-
ous points on relatively homogeneous surface features intersected by the termi-
nator. Computational techniques have been developed for obtaining the parameter
(pkc)”# from the cooling curves, where o, k, and c are respectively the density,
thermal conductivity, and specific heat of the surface material (Wesselink, 1946,
Jaeger, 1953).




3. Biological Inferences

Observations of various atmospheric and surface parameters will provide a
basis for possible biological inferences. The problem of whether it is physically
possible for liquid water to exist at the surface is of primary concern. There-~
fore, since the surface pressure appears to be in the vicinity of the triple point
pressure for water, it is highly important to obtain accurate determinations of
the surface temperature as well as the total atmospheric pressure at as many
locations as possible., The maximum brightness temperature observed in the
high resolution spectra will provide a better estimate for the surface tempera~
ture than can generally be obtained from broad band radiometric measurements.

The surface features visible to the IRIS will be compared with the same
features as observed by the infrared radiometer, television, and ultraviolet
spectrometer for possible correlations. The possibility that large areas of
vegetation may provide identifiable spectral features is currently being investi-
gated. If this should prove to be true, comparisons of observed IRIS spectra with
a catalog of spectra of interesting terrestrial compounds can be made.

Study of the distribution of atmospheric water vapor should provide some
indication of the most likely locations in which biological processes may exist.
Observation of other minor atmospheric constituents may also be indicative of
biological activity. For example, photosynthesis might be detected through the
atmospheric depletion of a gas during the sunlit period and the atmospheric in-
crease of that gas, or another, during the dark period. This and other possible
indicators of biological activity are currently being studied.

III. INSTRUMENTATION

The proposed instrument is a Michelson type interferometer which is in all
critical areas (detector, beamsplitter, auxiliary interferometer, calibration, and
large parts of the electronic circuitry) identical to the interferometer designed
for the Nimbus "B" and "D'' meteorological satellites. The Nimbus "B'" instru-
ment had passed all environmental tests for spacecraft use and would have
yielded data from an Earth orbit were it not for a launch malfunction in the Thor
booster (May 17, 1968). Some of the mechanical and electrical configurations
and circuits, however, will have to be changed for two reasons. First, the inter-
face with the existing Mariner spacecraft and its power and data handling sys-
tems will require some modifications to the instrument, and second, the experi-
ence gained in extensive testing of the Nimbus instruments suggests several
improvements which permit an increase in spectral resolution to become equiva-
lent to 2.4 em™! in the apodized spectra and to 1.2 cm ™! in the unapodized one.




This increase in resolution is considered significant. It will allow the recognition
of individual lines in the rotation-vibration bands of CO, which are spaced at

approximately 1.6 cm™ !,

1. The Design
Table 2 summarizes the more important parameters of the Nimbus inter-

ferometers and the Mars Mariner '71 instrument (IRIS '"M"). Figure 8 shows a
simplified diagram of the proposed instrument.

Table 2
Characteristic Parameters of Nimbus and Mariner Interferometers
IRIS "B" IRIS "D" IRIS "M"

Nominal spectral range,

cm™! 500-2000 200~1600 | 200-1600
Number of samples per

interferogram 3408 4096 4096
Reference Wave Length, A 5852 5852 6929

(or 7032)

No. of Reference fringes

per sample interval 2 3 3
Optical path difference, cm. 0.4 0.72 0.85
Displacement of mirror

during interferogram, cm 0.2 0.36 0.427
Velocity of mirror,

cm/sec ! 0.0184 0.0275 0.0235
Width of resolved spectral

intervals, apodized, (un- |

apodized) cm ™! 5 (2.5) 2.8 (1.4) 2.4 (1.2)
Area of aperture, cm? 13 15 15
Solid angle, ster. 1.57-1072 5.5-1073 4.7-1073
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Table 2 (Continued)

IRIS "B" IRIS "D" IRIS "M"

Field of view, degree ~8 ~H ~4,5
Duration of interferogram,

sec 10,956 13.107 18.2
Basic frame period, sec 16 16 21
Bits in A/D converter 8+Gain 9+Gain 12
Neon reference, frequency,

Hz 625 937.5 675
Frequencies in data

channel, Hz 18-73 11-88 9,5-75.8
Number of resolved spec~

tral intervals, apodized 300 500 585
Noise equiv. radiance

(watt cm™ ! ster™Y) 6 x 1078% 6X 1078* | 32X 1078%%
Operating temperature of

detector, °K 250 250 250

* Measured value
** Design goal

The essential part of the interferometer is the beamsplitter which divides
the incoming radiation into two approximately equal components, After reflection
from the fixed and moving mirrors, respectively, the two beams interfere with
each other with a phase difference proportional to the optical path difference be-
tween both beams. The recombined components are then focused onto the de-
tector where the intensity is recorded as a function of path difference, . Since
the mirror motion is phase locked to a stable clock frequency, the mirror path
difference is also proportional to time. For quasi-monochromatic radiation, a

circular fringe pattern appears at the focal plane of the condensing mirror. There

the detector size is chesen to cover just the smallest central fringe for the high-
est wavenumber of interest. This aperture also determines the field of view of
the instrument. ‘
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The central fringe may be light or dark depending on the path difference
between the two beams., For polychromatic radiation and neglecting constaxnt
terms, the signal at the detector, called the interferogram. is

(2]
i(8) = j; K,(B, -~ B,) cos (2mrvd - ¢,) dv,

The amplitude is proportional to a responsivity factor K, and the difference in
radiance between the scene within the field of view B,, and B, , the Planck
function corresponding to the instrument temperature. The phase is defined with
»espect to a point chosen as close as possible to, but not necessarily at, the zero
path difference point, Imperfect optical compensation and residual phase shift
in the analog part of the data channel cause the angle ¢ to depend somewhat on
the wavenumber. Reconstruction of the spectrum is performed on the ground by
a digital computer.

The cesium Iodide beamsplitter of the Nimbus "D'' and Mariner instrument
is optically flat to a fraction of a visible fringe. It has a multilayer dielectric
coating which is optimized to the 6 - 50u region except for a small area in the
center where the beamsplitter is coated to perform well in the visible and near
infrared. In this center region, the fringe control interferometer operates. It
utilizes not only the same beamsplitter but also the prime infrared interfer-
ometer mirrors. The fringe control interferometer generates a sine wave of
675 Hz at the silicon diode detector from a nearly monochromatic spectral line
of a low pressure neon discharge lamp. The line is isolated by an interference
filter. The 675 Hz signal serves, after being divided by three, as a sample com-
mand and assures equal distance sampling, and secondly, it is compared in
phase to a clock frequency to provide the error signal for the phase locked loop.

The Michelson mirror assembly has an electromagnetic drive coil and also
a pick up coil to generate a voltage proportional to mirror velocity. The velocity
signal is also used in a feedback arrangement to provide electrical damping and
to make the system insensitive to moderate levels of external vibration. The
phase locked condition of the Michelson mirrcr provides a constant mirror
velocity and permits a constant data rate; moreover, the data stream can be
synchronized with the spacecraft clock.

The Image Motion Compensation and Calibration system channels radiation
from several sources to the interferometer. After 7 interferograms are taken
in the operating mode, one is taken from a built-in warm blackbody (290°K)
followed by another set of 7 planetary interferograms and finzally by an inter-
ferogram from the interstellar background (4°K). The spectra from the blackbody
and from space serve calibration purposes to be discussed later.

12




The instrument generates main data and housekeeping data, The main data
are quantized in a 12 bit analog to digital converter. Sixty four words of house-
keeping information (blackbody temperature, voltages, bore sighted radiometer,
etc.) are transmitted just before and also just after each interferogram, The
total number of bits per frame is then 50688. One spectrum corresponds,

. therefore, to about 10 TV lines.

Some of the housekeeping data are multiplied with the main data and are
’ then transmitted just before and just afier each interferogram. This set of
housekeeping data is required in the data reduction process. Another setf of
housekeeping data for instrument performance evaluation is transmitted via the
spacecraft system.

2, Data Reduction in Ground Based Computer

The data reduction process consists of four steps:

1. A check of consistency and completeness of input tape and
processing of housekeeping information,

2. Fourier transformation of all interferograms by the Cooley-Tukey
method.

3. Phase correction, and application of calibration procedure.

4., Production of output tapes which contain the calibrated spectra,
housekeeping information and orbital parameters.

In the check of consistency and completeness, the total number of words per
interferogram is determined. Housekeeping data are converted into engineering
units such as temperatures by application of conversion tables established during
preflight calibrations.

Spectra which pass the screening procedure mentioned above will then be
transformed, corrected in phase, and submitted to the calibration procedure.

3. Calibration

The instrument is exposed occasionally to a built-in calibration blackbody
and to outer space, by rotation of the Image Motion Compensation Mirror (IMCC).
The calibration spectra are transformed in the same manner as the spectra ob-
tained while viewing Mars. The amplitude ¢ in the spectrum is proportional to
, the difference in radiance between the instrument and the target.

13




€y - rv(l?'tnrgct:”135.:'mtrunu:mt:)

The factor of proportionality is the responsivity of the instrument.

One obtains a set of three equations; one for the target (index 1), one for the
cold hlackbody (index 2), and one {or the warm blackbody (index 8), Under the
assumptions that the responsivity, r,, is independent of the target brightness and
that the detection and amplification is a linear process, the 3 equations may be
solved to yield B, as well as r, and B, . If one uses the interstellar background
as the cold reference (~4°K), then B, is for all practical purposes zero and the
equations simplify to

C, - C
2~ “1
B1 % B, """"""'""""Cz -, '
G -G
r, = B,
B, = B, C = Ca

The equation for B, is used to reduce the spectra. Neither the responsivity nor
the instrument temperature are contained explicitly in this equation. The cali-
bration spectra C, and C, are the average of many individual spectra so that the
random effects in these spectra are greatly reduced. Then the sample standard
deviation s, of the responsivity is determined for each orbit.

k
2 (r, = 1,)?
_ i=1

v k-1

%

S

The r, are the responsivities computed from each calibration pair (hot and cold
blackbody). The average responsivity per orbit is called T, and k is the number
of calibration pairs per orbit. The standard deviation gives the short time re-
peatability of the instrument and allows a judgement of the magnitude of the
random errors in each spectral interval. The noise equivalent radiance may be
calculated from
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A comparison of the mean orbital responsivity for each spectral interval from
orhit to orbit, and from day to day yields the long term drift,

The derived instrument temperature T; which is calculated from B, and the
instrumenrt temperature measured by the thermistors embedded in the housing
should be in close agreement, A deviation from this agreement is used as a
caution flag which calls for a special investigation if it should occur,

In preparation for space flight the Nimbus IRIS "B" instrument was tested
on the spacecraft in a thermal vacuum chamber., The data were stored on the
on-board tape recorder and then transmitted via the spacecraft telemetry sys-
tem. The instrument had reached the operating temperature near 250°K, the
reference target simulating outer space was at liguid nitrogen temperatures, and
the on-board calibration blackbody was reading about 280°K. A typical inter-
ferogram is shown in Figure 9,

The instrument was then exposed to a blackbody of 279°K mounted in front of
the earth part., A calibrated spectrum was generated using only a single inter-
ferogram from that blackbody and the calibration procedure described above,
The calibrated spectrum is shown in Figure 10, Averaging of several spectra,
of course, improves the signal-to-noise ratio further.

4, Supporting Measurements

To facilitate better discrimination between dark and bright areas a small

radiometer, sensitive between 0.6 and 0.8 micron (Silicon cell) and having the same

field of view, as the interferometer is bore-~sighted with the interferometer.
Data are read out as part of the housekeeping information with each interfero-
gram, Furthermore, correlation of the spectra with data of other experiments,
such as TV, or infrared mapping experiments, would be very desirable.

IV. SUMMARY

The infrared interferometer spectrometer experiment will provide infor-
mation on a wide range ¢f physical parameters associated with the Martian at-
mosphere and surface. These data can be applied toward an understanding of
many problems associated with the planet, such as the general circulation of the
atmosphere, structure and composition of the surface, and the possible existence
of biological activity. In the present report, it has been possible to give only
rather general treatments of a few of the areas to which the experiment is ap-
plicable. Effort is currently being devoted to developing in a more quantitative
fashion the various techniques required for extracting the desired physical
parameters from the type of spectral data anticipated.
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Figure 1. Synthetic brightness temperature spectra for the 667 em” ! CO, absorption band. The
model atmosphere employed in the calculations is described in the text, and the isotopic species
used in each case is shown in the legend.
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Figure 4. Estimate of the terrestrial temaerature profile obtained from the measured spectrum
shown in Figure 3. A temperature profile based on data obtained from a nearby radiosonde sta-

tion is shown for comparison.
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