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SUMMARY

Kubo's formulation of irreversible quantum statis-

tics is applied to electron. mobility. In the weak coup-
;

,a ling limit the approach to equilibrium is shown to be

characterized, in the lowest order, by a relaxation time.

With the use of Coopersmith wave functions for hard-core

interactions a characteristic relaxation time is derived

which to "all orders" is independent of the external

(small) driving force. For the specific application to

mobility the general theory yields the known results of

semi-classical kinetic theory at high temperature and

low density. For the region of lower temperature and

higher density the theory gives qualitative agreement

f

	

	 with the anomalous drop in mobility found by Levine and

Sanders for electrons in low temperature helium. How-

;

	

	 ever, lack of quantitative agreement indicates a need

for further work on the problem.



ABSTRACT

Kubo l s formulation of irreversible quantum statis-

tics is applied to electron mobility. In the weak coup-

ling limit the approach to equilibrium is shown to be

characterized, in the lowest order, by a relaxation time.

With the use of Coopersmith wave functions for hard-core

interactions a characteristic relaxation time is derived

which to "all orders" is independent of the external

(small) driving force. For the specific application to

mobility the general theory yields the known results of

semi-classical kinetic theory at high temperature and

low density. For the region of lower temperature and

higher density tha theory gives qualitative agren,Liment

with the anomalous drop in mobility found by Levine and

Sanders for electrons in low temperature helium. How-

ever, lack of quantitative agreement indicates a need

for further work on the problem.
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I. INTRODUCTION

A
It has long been realized that the quantum mechan-

ical analogue to the Boltzmann equation contained two

assumptions of limited and even questionable validity#1

These are the repeated random phase approximation (RPA)

and the relaxation time aasumption (RTA) Recently sev-

eral authors have worked at developing,; a general trans-

port theory that would avoid these assumptions. Van

Hove chose to start with the derivation of the master

(Pauli) equation and showed that RPA could, for various

physically reasonable potentials, be replaced by a much

weaker condition. 2 A number of attempts have also been

made starting from the Liouville equation governing the

density matrix P . Greenwood derived an equation for

conductivity in a metal which avo Wed the use of RPA.3

This formula was evaluated by Edwards for a meW:al with

randomly located impurities to yield the usual solution

to the Boltzmann equation. 4 Lax also developed a formal

theory which avoids use of RPA. For the case of a weak

scattering perturbation (weak-cou p ling limit) and with-

out RTA he obtained the usual transport reiult and the

Nyquist theorom. 5 Kohn and Luttinger have also shown

the validity of the quantum mechanical Boltzmann Eq.
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in the weak coupling limit without resorting to RPA

or RTA. They,carried their work to third order in the

coupling strength parameter, and for a periodic lattice

with impurities restricted to lattice sites found devia-

tions from standard theory which appear to play a role

in the Hall effect.6

Kubo also treated irreversible processes starting

from the Liouville equation. 7 He developed a formal

theory using neither RPA nor RTA. Kubo's theory bears

much the same relationship to Yrreversible Statistical

Mechanics as does the partition function to equilibrium

theory. It is an exact, formal theory with (to my know-

ledge) no questionable assumptions and quite often Ls

rather difficult to evaluate. This theory has been

applied by Nakano to conductivity in metals who showed

that it gives the Gruneissen formula if one introduces

RTA. 8 Chester and Thellung have taken Kubo's formal

theory and applied it to elastic scattering in a metal*9

For the weak coupling limit they obtained results ident-

ical with those of the quantum Boltzmann teory with

neither RPA nor RTA.

In the-present work we calculate electron mobility

based on the :Formal theory developed by Ku`no. Neither

RPA nor RTA are used. The weak coupling limit is con-

sidered briefly in lowest order. Our primary concern,

however, is the calculation of electron mobility to "all
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orders'l in the presence of randomly located hara-core

scatterers. We shall see that in both instances the

approach to a steady state is actually characterized

by a single relaxation time which we derive, not assume.

Our choice of a model based on random hard-sphere

scatterers corresponds most closely to the situation in

helium vapor. For low energy electrons, helium has a

positive scattering length, no Ramsauer effect and the

electron-atom interaction is adequately characterized by

a spherically symmetric hard-core repulsion. 10

Electron mobility in helium gas has been experimen-

tally investigated at various times since the early

1920s at temperatures ranging from 77 0 K to 3000 K.11

The results of these experiments have been effectively

explained by classical kinetic theory. Recently, there

has been interest in electron mobility in low temperature

helium gas. This was motivated by measurements in liquid

helium where it was found that an electron formed a sta-

ble dense complex with very low mobility. This led to a

prediction that such a complex would also be stable in

helium gas at sufficiently low temperature and high den-

sity. Measurements to test this hypothesis were made by

Levine and Sanders at temperatures near 4 0 K and densi-

ties of the order of 1021 atoms/cm 3 . 12 Under these con-

ditions the mobility was found to be almost four orders

of magnitude lower than that obtained from classical

4



kinetic theory of free eli
formation of a correlated
Zor this high density-low
failed to account for the
sity.

A quantum-mechanical

3ctrons. A tneory based on

(bubble) state was developed

temperature phenomenon, but it

transition region at lower den-

consideration of the properties

of a free electron expi^riencing hard-core repulsion in an
ideal gas was made by C'oopersmith in a calculation of the

equilibrium free energy. 13 By using Kubo's quantum mech-

anical formulation for nobility, we extend this work to
the study of a non-equilibrium property. The first order

results of this effort have been previously reportedly'
and are reviewed in this work in the course of develop-

ment of the full theory.

All work will be done in units with 	 = m = 1 .
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II. MOBILITY - GENERAL THEORY

The mobility 1.4 of an electron in the direction

of an external electric field E is given by 

E " t
	 zip)
	 (2.1)

where tr is a trace and 4 	 is the electron velocity

along; E. 6f is the difference between the total

density matrix 
PT and the unperturbed (E=0) density

matrix P,

4

The Hamiltonian HT for an electron in the Ares=

ence of N scattering centers can be correspond;.ngly

divided into

H,. = H +,d H	 (2.3)

where

Al

a

(2.5)

and

ti
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Vr = Vl^e,,l Vtr, re)
	

(2.6)

As mentioned in the first section, Kubo started

from the Liouville equation

^P t	 E H T jr7l
	

(2.7)

and for a weak external perturbation obtained the line-

arized adiabatic solution

.Z -

Y

^fLf cPz`
0

e_^^Htd
H,^-^K^G^tH

I ^

(2.8)

where tE is the length of time the system has been

acted on by A H -and the equilibrium density matrix

is given by

	

P (-t3 H)	 (2.9. a)

	

Z = Vii exp(-13 H)	 (2.9.b)

Aa expressed in equation (2.8) 4P is an average

(integral) over the length of time the system is

acted on by the perturbing force. The averaging is

done to the Heisenberg representation of the commutator

of the perturbation and the equilibrium density matrix.

A derivation of equation (2.8) is given in Appendix A.

>r



7

Combining equations (2.1) to (2.9) gives

-^H	 c' e//

^.G 	 i Z +^ 	Ja	 t e	 [ ^-,	 .^	 --2.10)

This equation will be the starting point for the pres-

ent work.

Kubo actually extended the formal development

of the theory by interchanging the trace and the time

integral. The resulting integrand (including the

trace) he identified as the response function. This

response function can then , be treated as an average,

with the trace defining the averaging process. It is

this response function that Kubo and others have used

as the starting point for their calculations. 2 While

this procedure has calculational advantages for their

work ( ee g- curl i n nermutati on of nperators) , i t does

not lend itself to the present work. One consequence

of taking the trace first is the elimination of infor-
mation regarding the specific functional form of the
time dependence. S pecif ically, in the course of cal-

culating /.4 we would like to consider the limits of

validity of RT,A. Since we expect that the relaxation

time I` when it does exist is momentum dependent:,

is best formulated in a way that displays this depend-

ence explicitly. We have sufficient freedom to achieve

this since the trace makes the choice of representation



(2.11)

Ato

arbitrary. In light of the above comments the obvious

procedure is to work in the momentum representation

and retain the trace for the last step in the calcula-

tion. Some simplification accrues as a result of the

above choice, since 4r, is diagonal in the momentumO

representation. This follows from the definition of

,V'	 and equations (2.3) to (2.5).

In the momentum representation the eigenvalue equation

is

and the normalization is

(2.12. a)

(2.12.b)

where p is the momentum operator, k its corresponding

eigenvalue,	 a-4') the Dirac delta function and .S2

the volume of the system.
The above formulation would yield /.1 valid only

for a particular specific arrangement of the scattering

centers, with explicit dependence on the N position

parame'te!rs ii, 1 ^._ 1, 2, s, ... N . The mobility we actu-

a^ly want is the ensemble (configuration) average over

n .
	 all possible arrangements. For a system of N random

(u.ncorrelated) scatterers



(2.14)
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IV
•f ATr ^ei ^c^Y, r,, 	 rN)	 (2.13)

where the bar indicates an -nsemble average. It will

be assumed that the ensemble average commutes with the

trace and the integration over t.

In the representation in which p is diagonal,

the matrix element Pkk arising from equation (3.10)

for the case of a free electron (plane wave) with no

scatterers present can readily be evaluated as

1.	 :

Combining equations (2.1), (2.3) to (2.5) and

(2.8) to (2.14) A Te have

i^ tE	 "^	 1

l^ G
 - e^3 

Z ~'	 { 3 e	 dtl	 A

where
- 1 ^- K	 -l3 Hl	 c' ^' f-I ..,

(2.1.x. a)

(2.15. b)

The bar was introduced as a notation to emphasize

the presence in our work of the configuration average.

For the remainder of the work we shall omit this symbol

with the understanding that configuration averages of A



to

and th are implicit in all discussions and will be

explicitly shown in all calculations.
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111. EXPAN01ON PROCEDURE

We cannot proceed to evaluate equation (2.15)

directly. This would require the eigenfunction of H,

i.e. the full solution to the N -body problem. Instead,
A will be recast as an average of an exponential

which, as Kubo has shown lends itself to a cluster-

type cumulant expansion.

We start with the matrix a lement, M, in '(2.15 )'

-13H ith+	

(3.1)

11

(3,2)

Define ^rrlx)	 and 91x1	 by

x
G` !X ) = + ^j (") = e xp ("f e	 V e	 (3,3)

and the product	 C^^fx) 4 (x)	 by

x -^
(-x)C; lx)	 e % .,V E-^, e' V+ V) e	 ^^,^	 (3.4)

Note the identityl

ac)	 a
^,	 = e 

u b 
e %p	 e(f 	 M 

.^c 
a 

b-4lb+ 
	 or-d)	 (3.5)

w

— <.^ e	 j=	 ^3, a	 +* 	 a	 Lia
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which is especially useful when [b, cl ;d 0 . Upon

substitution of equations (3.3) to (3.5) in (3.2)

$	 i
"V
	s

Ae	 ^,, ,	 J	 t	 3. s'

•t

=lI^' a 
j { *9'^^t^JC^^^+l 1^c.c-^'^^i> 	(3.7)

Introduce the levelling operator L with the properties

^" lx) ^	 N ^ o^ I

Lf hlx > =	 o	 YI^z	 (3.8)

so that
N

^ ĵ.)^ e 	̂ (3.9)

Equation (3.7) can now be rewritten as

9. c^^l	 9^c^J fir=	yr.^t^ ..
M = <,z l e z el +.,	 L' 3 ' e a ^^ -	 e ' e" W	 l.4>	 (3.10)

Now define an average (signified by ` > ) for any

product of functions of the three parameters fit, 0
by

<f,Ut)^,(0)fc- ^^ = <I i^`°r,c^'t!('^ ^°^f 07)] elfl-^'t1 ^^y 	 3.11	 -a	 l	 ,	 t	 )

so that M can be written as

N	 N

M 	 (3.12) :r

o	 _



13

Finally introduce an ordering operator 0 such that

even for non-conunuting a and b,

^ a^ b ^ pea+b	
(3.13)

°	 and put M in the form

0 CX 	 +	

(3.14)	 .r

In this notation Pkk , equation ( 2.16), becomes

P,4.4 = ^ I>
	 (3.15)

where 1 is the identity operator. We have thus

demonstrated that A is actually the average of an

exponential. It will be useful for us to extend this

average and define

n	
:	

r
^`felt'f^^^^ f?l^^t)^^ P4 <X1e ^^ IiY) C j^ E î ^^Je 1	 .^^ (3. 1.6)

,A clearly meets two of the requirements of being an

average in the cumulant sense. Namely, ,A,(1) = 1

and the moment generating function is well defined.

The remaining requirement, that the moments converge

will be seen to be satisfied for all moments con-

sidered herein. (A summary of the properties of cumu-

lants used in this paper is contained in Appendix B.

A more complete and rigorous treatment has been pre-

sented by Kubo 2)•. Therefore, we can write



14:

A

e x	 .R ` 0^ 9' 
r t^ + g,^ rto + of r• e j 1)

e xp ,^R (0 L ^'	 * ypa) yr-,'t^J^N) }

where .Ac means the cumulant corresponding to A •

Further discussion regarding the cumulant Jac in the

specific context of this work can be found in Appendix

Co The following examples demonstrate some properties

of the simple (non-cumu' lant) average ,A..

A (0c y,(F)9,(M) = A (9, (it) Y,  (P))
J

T r /^1 ^s	 r+	 w_ .^

4.4 ^^^`	 1.3^r	 J8 i2b 00!8)

+A,(0L 3,"Ut)) = o	 (3.19)

P'^^yv- ,^) )

Cq^i,•^^9,^;tlgr^^q^t-;rd -rteY 

r
<41e	 C3,e	 j e 	 IIA> (3.24)

Equations (3.18) and (3.19) emphasize the fact that L

operates on each class of g-functions separately. This

j
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follows from equations (3.12) and (3, 14 )9 Equation

(3.20) illustrates the properties of the g-functions

as defined in equations (3,3) to (3.5).

Substitution of equation (3,17) in equation (2,15)

gives

fez`'	 fix 	 ,^ ^^ exp{,^t`(0L '^ ^D.VO 9tr^^^,tie^11) (3.2 ,

This section started with an expression which

contained the Hamiltonian for one electron interacting

with N scattering centers. This has been recast in

a form which involves instead a summation over n

interactions, each involving one electron and n

scattering centers.
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IV. WEAK COUPLING

In this section we briefly consider the first

order of the c-amula.nt expansion in the weak coupling

limit. We will restrict our analysis to the time

dependent terms and show that the Kubo formulation

yields a relaxation time directly.

Let us consider the time dependent portion I(tE)

of equation (3#21) for n = 1 .

Y(tE) 	
e	

4 
OL9 E y 	 yi ol

(4.1)

Recalling the definition of the g"- function in

(3.3) and using the properties of cumulants we have

A 4 (J;  li-0 - A t (G; uo) -- j = A(4i r)) - 1	 (4.2)

and

where the asterisk denotes complex conjugate.

We now evaluate the simple average
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R
	 it

(4.4)

Expanding the exponential in powers of Vi which is

assumed small

A (4$UO)

14 	 it	 -.fit

I-	 Vill>

.^ -+, 	 2 #Sir a(' (ate tj.i+(^ t '14>> ,^^^ 1^AIV1 	 (4.5)

Elimination of A(G i (it)) between equations

(4.3) and (4.5) gives

,R ^9;^rt1^^.,,R`^9^1•^r^j=^^?^ ► c'1-^1^► 	 ,^_ ,^^	 (4.6)

This integrral is the same expression that enters the

standard derivation of the transition probability in

time dependent perturbation theory. I We can now intro-

duce a • ddhsity of states D(k). Since D(k) and

C.AI>lV^I 	 can both be assumed to be slowly varying

the integral simplifies considerably and we get
Y#

^_	 ^	 ..w_,......,:Fw...^..GY.«:......^.^........4.lif.x*.a..,no... 	
^.:	 ..;. ...««......	 .. ."	 ,. :..uri=r.w

.^....,.....n.:.r.._.^,s., .f ....i.. m..-«'^,n-.::H ..	 N...3avr'.m........:m..r^Y ._asxwr........+._.-i...... _r.+ 	u. d:n._....+......^:n..^+-



2^. j<441Vj1 '>1
2 

N j41Vo-1.X '1 (4.8)
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a

,R` (Yi leo) +X (I 1-Ir)) = a sra; ) D('4) 1 «I V /,151 t	 (4.7)

If all the interactions are eglxivalent, then

u

We substitute equations (4.2), and (4.8) and (2.12.b)

in (4.1) so that

e- 'IT 	
(4.9)

where

and

^' = A//S2	 (4.11)
Actually, the result ,just obtained is consider-

ably more general than our earlier emphasis on mobil-

ity might imply. The conclusions of equations (4.9)

and (4.10) were arrived at independent of any consid-

erations involving A H. it is, therefore, a quite

general property of the linear response by a weakly

coupled system that a steady state is approached via

an exponential decay of the transient effects. This

relaxation proceeds at a rate determined by #7 which

thus constitutes the characteristic relaxation time

I (^^1 ^^ f td t

for the system.	 4



V. MULTIPLE HARD-CORE SCATTERING

After a brief digression in Section IV where we

considered the time dependence in the weak coupling

limit we return our attention to the hard-core Scatter-

ing mobility. This section will consider some of the

properties of the wave functions used to evaluate the

matrix elements that appear in A.

The most general matrix element to occur in the

expansion of equation (3.21) is

- i t H(»,)	 -tM(n, ) i t H(h, I _.
141e	 13)16	 le	 IA,> >	 n,+N., +mi=n 	(5.1)

where

4E! +	 V( rie)
	

(5.2}
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'With the introduction of intermediate states and the

judicious choice of formulae for the commutator we

will see that much of the calculational work will

require evaluation of matrices of the form

^^1e	 1,4>

-	 H(m)

71) 1^ .. 1, e r-,, W r- 	 e	 I fe)	 (5.3)

where
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The hard-core scattering is represented by the

potential

V(r)^
o Y	 r>a	 (5.4)

where a is the radius of the sphereical region from

which the electron is restricted by the scatterer and

for helium can be equated with the scattering length.

For numerical considerations we will use a = 6,2x10-9cm

which is the value obtained by O'Malley in an extrapola-

tion of effective-range scattering theory to zero ener-
1

gyi

It is obvious from equation (5.3) that in order to

proceed we must first be able to solve

(5.5)

An approximate solution of this equation, with H(n)

defined by equations (5.2) and (5.4), was obtained by

Coopersmith as part of the free energy study.referred

to in Section I. 2 The remainder of this section will

present the Coopersmith method of solution as well as
some of the simplifications which occur when it is used

in a cumulant expansion.
The approach underlying the solution is a replace-

ment of equation (5.5) for hard-core interactions by an

equivalent boundary value problem. We can alternately

consider



any ry>u (5. 6, a)
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r	 all ray <a	 (5.6.b)

This is a typical two region problem in wave mechanics.

Y satisfies the free particle equation everywhere in

space except for n excluded spheres of radius a

located at r̀ . On and within the boundaries of these

n spheres 'P must vanish. Because the ensemble aver-
age makes the results independent of the particular

choice of the n scatterers, we can for convenience,

consider the set of scatterers as being labelled 1,

2, ... no The Coopersmith solution then consists of a

generalization of the simple scattering solution, i.e.

a linear combination of a plane wave and n scattered

waves

ei

^'^Le	 +	 A^1^1	 (5.7)

The A
i
(n) are determined from the n boundary con-

ditions that	 be zero on the surface of each sphere.

The choice of exp( 1.4 • re,) for the plane wave part is
a matter of convenience and differs from exp(lkre)
only by a non-physical phase difference. Since every-

thing is expressed solely in relative coordinates we

._ .	 }
	

-	 I	 .-	 -
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will use the term coordinate to mean relative coordd-

inate unless specified otherwise.

As indicated earlier, the significant features of
low energy hard-core scattering are essentially deter-

mined by the S-wave (lowest order partial wave) approx-

imation. This suggests that we perform a multi-centered

S-wave expression to determine the coefficients Aj(n).

We first expand all terms in equation (5.7), except for

i14r	 about C	 andexp(	 e ^ ),	 ^equate the wave^ 	q

function to zero at Ye , = a	 This proces s is repeated
in turn about each of the remaining (n-1) scattering

sites and results in 

eA PI 	Ma	 yI '*	 1A rim

e	 Q scH.^G u. e^y l^)	 A ^^„^ a	 sc .fed	 (5.8)
r,„ a

This is a set of n linear equations, one for each

value of j. The prime on the summation indicates the

exclusion of the term I =j. The solution of this
system of equations in determinantal form is the ratio

of two nxn determinants where the denominator has

elements ast given by

a.^l'Jr
e	 sip'4	 S L'

a., `	
rs t

4ha
^	 1	 S=r	 (5.9.a)

and the numerator has elements a... given by



as,t

ly)
a5

»	 ♦ rs^ stn ,44Z (5,90b)
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In this form each Ai (n) is the sum of y) t

terms. If we now consider

<re ie	 1 ►'e>>

a Film)
(r^Y f r...e^ e	 .,^r,^Y,,^,...r„ j	 (5.10)

it is apparent that the combination '? * V' involves the

sum of more than (n! ) 2 terms. ale, therefore, will

attempt to locate and eliminate as many of the non-

contributing terms as possible before resorting to

explicit evaluation of matrices.

By inspecting the solution for A
i
(n) i;t is seen

that the determinants for A
i
 (m) , where m <n, are

minors of those for A
i
 (n) • The minors are obtained

by covering up the rows and columns in the solution

of A
i
(n) that contain the coordinates of the (n-m)

scatterers that &ppear in H(n) but not H(m). Com-

bining this with the ensemble average employed in Jay

it follows from the separability feature of atimulants

that all terms will vanish unless they contain all n

r

x
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coordinates. This is equivalent to saying (in the
standard language of diagrams) that unless these terms

contain all n coordinates they will be unlinked.

We also note that every element of the determi-

nants which does contain scatterer coordinates has
sin(ka) as a coefficient. This suggests a further

expansion in powers of ka consistent with our mathe-

matical formulation. The gaussian factor exp (-Sk2/2)

in equation (5.1) limits the momentum states which con-

tribute to k to the order of p-k or less. For
ambient conditions this gives ka .4 10 -1 and for the

conditions at which Levine and Sanders did their worts.

(see Section I) ka4 5x10 -3 	With the expansion in

ka equation (5.9) becomes, to lowest order

u c	
9	 S ;t-I  t

rs ,t
Q S t ..

♦ i .^a	 S =^`	 (5.11.a)

and

as,t ^	 t ,^-` r

W
a.,_	

^..

—Aa	 (5.11.b)
x

Thus, the leading non-vanishing term must have at

least n factors of a. We will find later
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(Section VII) that terms proportional to an are

also separable and the leading terms will be propor-

tional to an+1p

4

n	 1	 `
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n

VI. SINGLE SCATTERING MOBILITY

Before proceeding with the full solution for /-Z

we restrict our attention in this section to the first

order effect of hard-core scattering,

Equation (3.21) for /Z , with n N 1 9 is given by

'.R`(9 (n)) t, CRtl^c^r^l ^,R` ^'9 r- ►'t^l

Our first task is to evaluate the various aver-

ages. In first order cumulant averages are equiva-

y
	 lent to simple averages, or

A y(,A)) = A ( I, (w)) j	 0t = 4 1' t  t 13	 (6.2)

To evaluate A we need the solution to the

Schr8dinger equation which for single scattering in

the S-wave approximation, is

(arr)-
a^^Ce •^tj e . Std —h 	]	 (6.3)

To second order in ka this becomes

'lY i re ; ĵ 1 t	 Ce	 i	 r^^ y	 (6.4)
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This leads to the diagonal matrix elements
j

. . +

ISO	 +

J  	 1

4P Cy	

e

"' F	
- ^ ,
K	 ^

;::^67t^.f2) t ,1, ^{I n c^r c^r,	 ` 1 , lYGw r` ^ ,PA" a, M; V0 e	 ^, ^re^; I )f ,^ t E	 .x

A ^' -.^ a	 .R

=Rill> - 2 P-4 0( + 2(977pa2 a^ o ^Qx e e 
x ^ e 

^--

With the definition of A I.n equation ( 3.16) we

obtain

f 1A C Qj1 0' o) +A" 9;!• ''r ^^^pt
.	

^K'r
+1}C ^Kr'̀ ^ f (K'?'- I)S(KTI)^' KT",,7;, ^ras s^•S^ro ;'

R[I + UK- '+ x K"L k) O (K^lvj) " ^^
/n}^K !)C- ]

r-•

x
is {x) /►d j/	

a
Cos

S tx1:,^'P s
^

Dix)= f ^^ Lo

(Fresnel integrals)

(Dawson function)

and the following dimensionless variables have been

introduced

(6. 10.  a)

T = Irlp
	

(6.10. b)
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A=a113 
i	

(6.10. c)

R = 2L 771a/9	 (6.10. d)

The intervening steps for the above results are pre-

sented in Appendix E.

Expansion of the Fresnel irit4grals I shows that

for K2T>> 1 the RHS of equation (6.6) approaches

TIT where '1''' = (2RAK) - l • Thus we find that, just

as in the case of weak coupling, a relaxation time has

appeared as a direct consequence of the theory.

If we limit ourselves to 2RA{< 1 (low density-

high temperature , e . g . on$ atr4. t 4nd.12 0Q° 1) and assume

that the gaussian factor restricts the contributing

values of the momentum to K ^ v 1, then in these cir-

cumstances 'TE 3'"r and the RHS of (6.7) is = I. In

these circumstances

8 e R
	 " 

3 CO	 -2AR KT13 V.1 p ^ X	
3 f	 rr m
	 (6.11)

where m is the electron mass, c9 is the product of

temperature and the Boltzmann constant and G' is

the quantum-mechanical low energy hard sphere cross
'Ils'}Vw	 M Ysection 2 1 G=µnay 	 The normalization Z wa8.^. p

"
^ WWW

by Coopersmith3 to be given by Z=exp(-R). Equation

M-11) is exactly the same as the result obtained from

classical kinetic theory,4
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VII. EXPANSION OF CUMULANTS

In this section we will examine the nth order

cumulant expansion and consider the effects upon it
4arising from the' levelling operation, CwUlant separ-

ability and the thermodynamic limit.

Each individual cumulant entering the expansion

of equation (3.21)

is necessarily of the form

Nx N,
,fl ( 0 L ,^ 1 9. ^^^ -^ 9^ (P) Tr ^^^<<t^)	 9	 ^^,^ h, ° n3 = n	 (7.2)

XI h

An essential feature of cumulants for the considera-

tions in this section is that R`(fr9+ ) is expanded as a

sum of products, each of the form 1r J9 ( ,e gy^ )	 The

prime on TT indicates thet the product is subject to

the restriction F1 .̂I = n	 •

detail in Appendix B.

This is discussed in more

Let us first consider those terms where one of

the nj =n and the other two are zero. The levelling

operator will equate to zero any .A which contains a

repeated subscript. However, some terms will remain

P
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from a cumulant with repeated subscripts provided the

repeated subscripts ;ire distributed Among the it's

such that there is no repetition of a subscript within

a single A	 (See Appendix C). As defined in equa-

tion (3.16), 3Q has a normalization proportional to

^^> r,. n-1	 The ensemble average o f ,R (^9N«	 ) introduces

a factor proportional to	 Thus each term of

the nth order cumulant is proportional to Sj "n . As

mentioned earlier, the dependence of A 4 o.z a partic-

ular set of scatterers is eliminated when the config-

uration average is taken. Thus, the n summations

over the subscripts are just the number of ways of

, choosing the different subscripts out of N • This is

N(N-1) ... (N-n+l) when all n subscripts differ, and

i3(N-i)... (I3 -xn+i j when only m, (mcn), different subscripts

appear. Now we combine the results for N and n above

and go to the limit of large N and 12 , N/_Q = / .

For the case where all n subscripts differ we have

( NI.0) n =, n	 However, when there are only m differ-

ent subscripts we have Nm/,n which in the limit of

large N and	 is vanishingly small. Such terms

need not be considered further.

It remains to consider the terms for which two

(or all three) of the nj are non-zero. If one or

more subscripts are repeated within a single set of
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ni subscripts there will be no contributions. This

follows from the same reasoning as above and these

terms will not be considered further. This leases

those terms in which there are only m< n different

subscripts, but with no subscript repeated within any

single nj	In this instance the same considerations

used above show that there are terms proportional to

jam	 Since there are n scattering interactions

involved, the non-separable (linked) term of lowest

order in a must have at least n' factors of a .

If n> m+1 these terms are of lower order in a than

we consider here. If n=m+1, these terms are in gen-

eral separable in the cumulant sense as is shown in

Appendix H. The exceptions are A4 (Y; Vt)?j Q ))

and its complex coniugate	 VVY, v) 9; l- <<J)	 with con-

tributions ^. ja2	 vq (9; 9 (-i-N)	 is zero because
it contains an odd function to be integrated over a

syq .Ietric region. The former terms are considered

further in Section VIII and Appendix I. The latter

term is shown to vanish in Appendix J. As a conse-

quence of the above we can rewrite equation (3.21) as



_-AA tr,
p r f3 e Z A[-& e i J, 'P e

12

Y-ler)	
if

x e%P(A^JIL!L

}:j	 } (7.3)

Since most of the complexity of cumulgnt expansion

is present for n=3 we have compiled all n=3 terms,

in figure 7.1. They are listed together with a summary

of the highlights of the above discussion and refer-

ences to the locations of additional relevant material.

It has also been shown by Coopersmith that another

simplification arises from the angular part of the in-

tegration required to express the coordinate matrix

elements in terms of the wave f-ur-:ction, namely, from

f S9 stns Y* r	 (7.4)
From equations (5.7) for ? and (5.11) for	 A.j	 we see

that all coordinates enter *'"V multiplicatively as
either spherically symmetric scattered waves,
(kr) -I exp(:Likr), or plane waves, exp(+ik-r). Since

the only angular dependence in Y Y is in the plane

waves, the integration of expression (7.4) transforms

the plane wave part of 'Y ) ? into scattered waves.
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ti y

1r	 ^ tjor ^ r
J ^9 s<^B E

Thus the exponentials in Y *Y' can be written as a

single-exponential of the sums and differences of

coordinates, exp (ik Z7 ± rj ) . Considering the various

ways of obtaining combination X f 1j	leads to the

conclusion that all such terms cancel unless they are

&E r , i.e. positive definite or negative definite.
Since _P4t ? is real these will be expressable as sines

and cosines of sums of coordinates.

There are two types of terms which occur in 	 *'.

They-either arise from the product of a plane wave and

a -scattered wave or the product of two scattered waves.

The latter terms must necessarily contain at least one

coordinate in the exponential which has the opposite

sign from the rest and will cancel those of the former

terms in which the argument of the trigonometric func-

tion is not positive definite. An explicit demonstra-

tion is given in Appendix D for the case n =2.



a

VIII. EVALUATION OF AVERAGES

In this section we present the explicit results

necessary for the evaluation of the exponential in

equation (7.3)4

	

r'—	 oo i T-9, 3 N{ (F9^ ê}  }+—' r[X owy v +VO4i.!-^ 01 	(8.1)d	
V 4 („ ^:	 ^L f C^^^^ 	 ^^^1 l ^^ Lj rl1	 J 2 fs/	 /

We will first consider the averages and then the summa-

34

tions of the above ex1

Let us introduce

A Vyj (00	 and

part of vq Q"T9 (a)) which

this notation

pression.

the notation A OK ) to represent

a') to repre sent that

is proportional to am	In

(L Ei Yi,`)]

From the arguments of Section `v we know that

m>, n	 Two values of m will actually be needed,

namely m=n and m=n+1 	 The terms m=n alone are

insufficient because ,A («; a") = o	 , as will be seen

below. However, this does not ma ke 	 irrele-

vant as it does contribute to the expansion of A„ (a,a"4')e
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Let us consider

,ft„ (^ t ) _ (P,^ ,S '' f ..ffry ^Qrj <I l e ^
	

^ ^ r'I C3, ŷ/T3=^-^^1^^► . >	 (8.3)

,^ z	
(^a+ Vi

( S2"^Ii1IG>) ' ^°	 3 '"fn cPr} C1^1G°	
ps	

IJ4>	
(8.4)r^

..„.,, 
.t ^

^ 	"	 ^..	 •^i^4'l^'.-r^-1 I
le P

it(.2 rV) .^
e	 J ' • 77' ^t'j 1'^ cDe, f' 	 l	 ! Y,^^^

	

(8.5)

	

The contribution to Ajet; a")	 from the coord-

inate matrix element is

^ 17 Hpa"YJ 1	 e-	
re i +1".+	

(8.6)
r•^ r

so that

A" ! 't; a), ) = ( -;z Ira i t/f2 )^	 (8.7)

whil-e the contribution to	 A. (it; a" )	 i s

- r164

/t n l-1) )fO +1 e 	1	 cos	 (G

	

, , + K.' 	 +&r*^„e	
8Yl ! Yl,r ^^ 

1	 2 —,^ 	 r rs-- ^--^'	 ( . 8. a)
e, ,^	 w-,,n "c

and

	

^	
D

n,(- ^„
,2 

try s '
H-1 Po 

p̀ 2SI h ^^^^ f ... rw.,	 ,
n . 	 r	 8.8. b^^^'tl	'^,rl^••r^l-/,INrMC^^M,IMtl^M1,,,M/i^1^M.,.Nrl1MI 	 (	 )
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so that

1^- et)2 »a (-z r'Pa M	
A'P

f WACOV	 ON'*'] e
(8.9)

Equation (8.3) is A , (" t) as defined in equation

(3.16). Equation (8.4) follows from equations (2.12)

and (2.14). Equation (8.5) is the transformation from

momentum to coordinate representation. Expressions

(8.6) and (8.8) follow from the discussion of Section

V. (Additional details may be found in Appendices D

and F. (8.6) and (8.8) are extensions to general n

of expressions (F.3) and (F.4) for n=3). The inte-

grals in R.H.S. of equation (8.5), with integrands

given by expression (8.6) and (8.8), are evaluated in

Appendix G.

In a similar manner we have

^_
f Tr ^0^ ,4 I	 'Cis ^^'/^(-'-i 	V ?	 , ► ,

t,

-^ •f -r-)..	 _13	 Via
e (S2	 ) ^• f '^ri fir, ^Pr,	 SIR le r,y 

8.10C	 )



(8.17)
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/^]E 3(8.12)

The last average we have to evaluate is

	

^^ <<^,y,rr^)^(P P")"'f^,. frrdr «^e `^^ L^^^[	
^l^^^J
  e i )	 (8.13)

i	 j	 .^	 j

•i (P,^.R)"^^"fcP (1^^e	 e	 ^^' aC	 c°	 Q(8.14)

V	 ai	 t

a 	 e	 [f da	 -;i. ^°	 +13 ' J, ^^^ (^ ^^*) ^ z (8,15)0

The identity  for the commutator of an operator

A with the density matrix

H	 - N (3
^► N • ••^+W

L	 jN^^J	 - -t^^ fan	 ^P ( 8.16 )

was-used to .go .from equation ( 8.13) tp equation (8.14)

where	 is the time derivative of A. The transition

from equation (8.14) to (8.15) is presented in detail

in Appendix H.

The remaining averages in expression (8.1) are

obtained by complex conjugation, since



38

*	 (8.18)

We note that the eumulant separability of

(o(; a")	 for n >1 follows from equations (8.8)

and (8. 11)  which show that

AN ( cc ; a") = [A (°<! a)] h	 (8. 19. a)

We also note that

Al (it; a) *vqi (- c'Y ,a) = ,i,(t't;a) -"tQr(-it;a) = D	 (8. 19. b)

J c
( 13 ; Q) A 0 v- a ) = _ 27T/3 a /S2	 (8.19.c)

It now remains to perform the various summations

indicated in (8.1). As discussed in Section VII the

n-fold summation over j from 1 to N, gives

N(N-1)... (N-n+l) which goes to Nn in the limit of

large N . Thus, performing these summations has the

effect of replacing -Q -n by P" in (8.8), (8.11),

(8.14), and (8.199c).

The final procedure remaining is the summation

over n of the cumulant expansion.

I	
`ot. aN^hl

_	 40-1^^ ( 8.20)

.. L 11;	 (-j l -^) j	 k 1, 1 ^,^y 6t , Q ) 3qJM,1 l al")
w !lsl	 ^sl fir.„

s



15.	 y• r	 CA cif Q.

Z YO.# si

(8.2 1)
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A „ fti• $,tN ^)^	 N f

	
)[

	

(8.22)

RA  9010 RAs

(^ Ot 4.42)(et-,')e - A	 -2e ] (8.23. a)
13 7r	

e

,e

h	 M ^^

t	 6?;s 6?04)	 a	 (8.23. b)
=011;wqx,

	

OP	 d4	 C
In writing equation (8.20), the standard expression

for the cumulant ttaansion (see App. B) has been modi-

fied by separating out one A to demonstrate explicitly
"-L7

the proportionality to a1`Ti and inserting P to

indicate that we must include all the permutations of

the remaining .it's that satisfy this proportionality.

Equation (8.21) is a rearrangement of the summation

which contains explicitly the combinatorial factor

arising from P and also makes use of equation (8.19)o

Equation (8.22) follows from equation (8.21) as a con-

sequence of the properties of the Stirling number of
a

	

	
the second kind (see Appendix H)• Equation (8.23) is

a straighforward summation of equation (8.22) with the

.R ► s eliminated by using equations (8.7) and (8.9)0

-\ 1	 "IN
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The remaining cumulant is

R`(9tI	 rr)9v) ,11 '^^' )J Qi (p ))^	 (8,24)

The second term of R.H.S. is smaller than the first by

a factor of S2 " 1 since each A	 is .vSl~l and there is

only a single summation ..^ N . 'Therefore, the second

term is negligible in the limit of large N and fl .

In the preceding sections we saw that the cumulant

expansion is equivalent to an expansion in f° and the

S-wave approximation with its related expansion in ka

introduced a further expansion into each cumulant.

Our approximation scheme now consists of locating the

leading term in a for each power of P and stunming

these over all powers of P , in this sense we are

solving the problem tv "all orders."
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s

IX. RESULTS AND DISCUSSION

As a consequence of the work in Sections V,'VII

and VIII, equation (3.21) for the mobility can be ex-

pressed in terms of cumulant averages by

t

1^
X e^tPrG,..,^^N ^l ^' ILM+l, r3 Lw ^^ 4' „+t^ ^.Aw t I1^w+^^

(9.1)

Upon replacement of the curiaulant averages by the explicit

expressions obtained in Section VIII, we have

....L^./ii-- as	 ^^^ k^'e~.^^_ 
f 

^,R,k	 R,Kl T^^ @-^l/^,^71	 (9.2)

where 0

= f, +
(9.3)

M

Ac

A R K	 Q_+ K`') D^Kj -( 	 + a"') ^^'-1 (^+" a + ^-04 -;^ D(Q^)

i	
Ca

3Yn- [,2 R K ws ^	 _ (^ _ Q^ '^ a ^^ J }	 (9.4)

and fp is the time independent part of the second

term on the RHS of equation 0.1)



42

2 7W/8' R'l 7W^ A e f ^R ^`	 ^. e	 (9.5)

Similarly

F= F, +P;.	 (9.6)

:.24PITQ,CS(af Tin)+C'(QJ--r1-;"r)j

K[S(k' T/^r) ^- C^k /n ^^ " Q4 ^.S(u^^-C (4,.

R • "CosR/.)C( - //r )+ (st'jiRT +co3Rr)SCa: I03

(si n TO,"- GOS TV) 3	 (9.7)

K' i 7	 ^,	 1

r2 = a(^^) ` RA ^ f WA (13 ¢a^ 	 e	 (9.8)

and
a

Q.• = K`±2R	 (9.9)

Equation (9.4) follows from (8.22) and (8.9) while (9.7)
follows from (8.22) and (8.7).

It is in^eresting to note that for all physically
reasonable values of the parameters f 2 <<f 1 and F2<< F1.
Thus no cumulant with repeated subscripts contributes to

the results.
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When we expand C(X) and S (x) asymptotically we find

that for Q,2 4T

	

F .2 R4 (R+ K") 
T	

(9.10)
In general there is a large region in which this is sat-

isfied. Typical values for a mobility experiment are

10 -1 ^ 2RA(R + K2 )_: '̂z < 102 and 10 7 < Tg < 10 10 . Thus we

again (as in Sections IV and VI) find that after an in-

terval small compared to the duration of the experiment,

the transient effects die out and the system approaches

a steady state exponentially. We therefore make the

identification -df the relaxation time as

T	 aRA(R4K,)i=	 ( 9.11)

i .

We note that where K>>R (e.g. one atm. and 300 0 K) equa-

tion ( y .11) reduces to the first order result

T = (2RAK ) -1 . As before, this relaxation time result

was obtained independent of the specific form of 6H.

Figure 9.1 shows exp ( f ) as a function of K for

selected values of R. In each instance the function

looks like a step function with the step located vary

near K=0 and the step height dependent on R. For R^01

(e. g. oneI atm. and 3000 K),	 exp ( f ) = 1, as was the' case in

the first order calculations ( see Section IV). The inte-

grations indicated in equa tion. ( 9.2) were performed nu-

merically using a Simpsc} zj" R3	 for the K integration
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and a Gauss-Laguerre procedure for the T integration.

In the former it was necessary to assume that the gauss-

ian factor exp(-K 2/2) provided an adequate cut-off, as

exp(f) becomes strongly divergent for large K. This is

a reasonable restriction as the inclusion of large K

is equivalent to considering contributions from high

energy electrons which is physically unrealistic and con-

trary to our mathematical restriction KA K l .

Figure 9.2 shows f vs. P for a temperature of

3.960 K. The circles are ;the experimental results ob-

tained by Levine and Sanders. The dashed straight line

is the semi-classical theory given by equation (6.11).

The broken line is the first order result obtained by

numerical integration of equation (6.1) with the -A Is

expressed by (6.6) and (6.3). The solid line is the

full result obtained by numerical integration of (9.2).

Since the integral of (9.2) is a function of the dimen-

sionless parameter R 2vp as, it follows that the solu-

tion at any other temperature (i.e. S) is a simple

translation (in f) of the above result.
At .lower densities the experimental mobility

approaches that predicted by the theoretical calculations

for frame energy. The high density region is understood

in terms of the formation of a correlated, or "bubble",

state. However,, the transition region in which there is

a large drop in	 for a fairly small increase in. f' has
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not been explained. Calculations based on a transition

from free electron motion to correlated motion predict

a transition that is much too sharp. I Our calculation

Indicates a decrease in etc that is qualitatively cor-

rect (i.e. the theoretical and experimental curves

have similar slopes) but the result is quantitatively

wrong (i.e. it occurs at too low a density). We do not

see any modification of the theory or Improvement on the

hard-sphere model that could cause the theory to coincide

quantitatively with the experiments.

It is rather interesting to-find than our theory,

which considers only free states, yields a mobility which

becomes vanishingly small. The severe drop in 1 4 only

appears when all higher order (multiple scattering) terms

of the cumular.t expansion are included and comes from

exp (f) ( see figure 9.1) which in turn comes from

E8 H,e-PHJ . In the formulation of the theory this is

the interaction of the external perturbing force with

the equilibrium (a "H=0) density matrix. However, the

physical process causing this rapid change in p is not

clear. One possibility is that our result is somehow re-

lated to the ,Anderson transition  whereby conduction goes

to ze^:o in certain random systems. Another possibility

might be the appearance of some ordering in the system.

Both of these suggestions are highly speculative, but ao



4s

indicate directions in which this study might be pursued

further.
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X. CONCLUSION

We have applied cumulant theory to Kubo's formula-

tion of irreversible quantum statistical mechanics. In

the weak coupling limit rqe saw (Section IV) that in low-

est order the approach to steady state is always charac-

terized by a relaxation time. Similarly, for hard core

interactions we found that with the use of CooperstAth

wave functions we derived a characteristic relaxation

time independent of the specific nature of the inter-

action, AH. For the specific application to mobility,

QH = -zeE, we found that the general theory yielded

the well known results of semi-classical theory at high

temperature-low density. For the region of lower temper-

ature and higher density the theory was shown to give

qualitative agreement with the anomalous results of ex-

periment. However, the quantitative disagreement indi-

cated a need for further work on this problem.
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APPENDIX A

KUBO I S LINEARIZED ADIABATIC SOLUTION

OF THE LIOUVILLE EQUATION I

The density operator JO, ( in the notation of

Section II) obeys the Liouville Equation

^^r - CO T J T	 (A.1)

This is expanded as

2- (P+4f) =[H+4H)^f+Afj
dt

The equilibrium density matrix P satisfies

^ 4*p = CH IF]

and in a linear approximation we can neglect EL H> A P]

Thus

vQf = [p H sf] + [M )Af	 (A.3)

We now solve for 4 f

"IN
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_app + f, 4r+ 4,P H = [4H )PJ

^tH	 -i^`H itM
are	 C4N^1'^

c



(B.2)
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APPENDIX B

CUMULANTS - GENERAL THEORY 

This appendix summarizes the properties of cumu-

lant theory that are used in this work. Cumulants are

also sometimes referred to as semi-invariants or (in

complex form) characteristics.

The defining equation for the cumulants of x is

,.,q ` ( e ? x-. 1) = .p n ,A (e 
f 

x)

where A is a normalized

lane average correspond°ln^

average A _ Both sidesv -

expanded and coefficients

This leads directly to

(B.1)

average and ,A` is the cumu-

to the simple (non-cumulant)

of t.&w - vquiv ►̂t ion (B^ 1) cuLA i.Je

of like powers of	 equated.

A ` W : AM
	

(8.3)

A"N'9 - A (x') -A a(X)
	

(B.4)

tA"(x') = A(%') - 3 A (x') A M 
+ ;L

	 (x)
	

(B.5)
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A"(x q)	 * 3A2WJ1 * 1,2,A(x'),J jM — a A'I(x) 	 (B.6)

and so on.

Straightforward extension to multiple variable gives

which yields the following relationships:

A((x,x3) = A(x,x,) -A(x,),A(x.)	 (B-8)

,p 
`c x, x^ x^) A (x, xs x ,) - [,fit (x,1,R (x, x,) + sey, )Ax, x)) ^-,Rlx>>,^ lx- X► ^.^

+ 2 ,.R cx•l„R (X=) ^R (x= )
	

(B.9)
and so on.

A general expression for ,R ` (x x t "'X,,	 where no

variable is present to a power: greater than one is

g	 '	 ^_. X1( 4_, x

The summation in (B.10) means the sum over all possible

arrangements of the set of n variables in q subsets.

Much of the utility of cumulant theory in many-body

studies comes from its "separability" property which can

be stated as follows: A cumulant will be zero if one

(or more) of its variables is statistically .;independent

I .	 of the other variables.
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As an example of separability we consider equation

(B.9) with x1, separable. Separability of xl , implies

A IX,-x 3 ) V A( XI) (X))	 (B, 11. b)

+A (Y,YIxl) ,A(x-),f WIXI)	 (B.13,.c)

Using equations (B,11) in equation (B.9) gives

,^1`(x,x ► xx) =,iQt^,)6Rlk.x,) - [,A(Y,),AIx.k)) # A(Xs),AtX,)Alx?1 +,.?(WVgIY,)A(XJj

q- 2,R (Y,)AN.)A()(1)

^a
	

(B. 12)

F
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APPENDIX C

CUMULANTS` - IN THE PRESENT CONTEXT

The four step prescription for disentangling equa-

tion (3.17) is; expand the exponential, order the re-

sulting products, expand the cumulants in terms of the

corresponding simple averages, and lastly, apply the

levelling operator.

A specific example of this procedure is

391(0eL9,-1)

C

(C.1)

where

9_ 91 1"t) +g((; ) + 9!-('t)

wr.	 as_a,.e•=xr-,^w..ee..^ 	 r:..arfi-:-.x;-^	 'a. ..s.^' . .ziearexsr^-rt^.esw
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A typical, expression that would require both order-

ing and levelling might be found in the third term of RHS

of equation ;C.1) where the ordering 'would consist of

(C.2)

The RHS of equation (C.2) can be expanded in terms of

simple averages by

6 G (ok y4odo ! ! ^ q (^))

A^L	 -e19H af^^^ "'[,R^^ I^^^'t^^^, lw:^4^/ -#^v9(L Jx^r^^ 3 w(L7N(10yi.IM)]

+ 2 A(L y„ I id) ,R2(L 9„ (o))	 (C.3)

Finally, application of L to RHS of (C.3) gives

,/4^(0^ V„1!'J j^l^^^^N^^•^^.r "'^
L 

H1/Mr^^,^l^^^^ ^9
M^/^^^ C/`1^ll^f^/)^/al ^A/^^ (C.4)

In general, the operator L must be applied af ter
the cumulant has been expanded. In the above example

this means that L can be applied to RES of equation

(C.3) but not to RHS of equa. Aon (C.2). Otherwise the

surviving terms in RHS of equation (C.4) would be lost.

In the present work, however, one could safely commute

the cumulant expansion end levelling procedures because

the surviving terms, as in RHS of equation (C.4), turn

out to be negligibly small. This last point is discussed

in Section VI.
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APPENDIX D

TRIGONOMETRIC FUNCTIONS OF COORDINATES

We noted in Section VII that the arguments of the

trigonometric functions entering the coordinate matrix

elements are all positive definite. We consider this

matter further in this appendix which contains an expli-

cit demonstration of the feature for n_-2.

e e proceeding	 e	 a	 aB for pr ec .ding let us introduce some notation dn

collect: some relations found elsewhere but needed for this

presentation

( , .,4 r='t

af¢ = 
a^ r	 ' SO 	 gas* :-- at 	 (D.1)

^,.^ = i^4^z	 (D.2)

1	 Q^^

r^'► 	 ! -tail a,x
Ltai	 1 +Q2,t

1 '^ Qu

Qa	 +aa^
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Ide 5[NB (.'	 asst - a'sr
.fir*	a,s	 ( D .5)

We will also use the following schematic notation for

locating terms in the determinants. A circle at the

location of an element indicates that the element contri-

butes to the result when the determinant is expanded.

The angular integration of

a
•K

(D. 6)

f

is

Ir

f dm s«, o [^`	 * fl, 	 (44A][e	 i'A ()ae, *A,(,,)aeto,	 (D.7 )

Let us consider the particular cross product

J ef9 sc »9 a	 /y, (;t) ap,, (D.$)

and look for those terms containing indices 1 and 2 and

proportional to a2 and a3 (see Section VII for fur-

ther discussion of this point). The terms we want: are

0
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7T	 ., ^ 1^,1'e,	 o	 0
.. 

Jo
d o Ste dp e	 ^ ( i ^ ^ a tl ^ Gl.e.^

o

s	 -f da si ►, a e,- a„	 ) (!ta„)^^ma,y) +tlra^L)(^-a,= )-ae,

(D•9)

let us look at the exponentials contained in R.H.S.

,.4
Ct,ex a ^,j a^,^	 e	 (D. ^^ ,a )

ati& $ .I 4Q, 1=4a 4Q, 1=4 e 	 (D. 11)

ae,a«a^^^ ==> e ( ^^0 a,^t; , +* /) 	
(D. 12)

,4 (— vex 4 .2 1-11 + tell
(D. 13)

The coordinates -.n (D•10) and (D.12) are positive

definite while (D.11) and (D•13) are not. We will locate

the complex conjugate to (D.10) and show how it combines

and also the counterpart to (D.11) to show that it cancels

Let us Look for aiC2 2 * ate+,	 The only other
source for Oft	 is from the scattered wave A a

or
f, d	 re^'o se)ip 

eel	
A^ ^)Qe	 D.14

A

1

1	 A
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which gives

i4 a
41	 01

	

 I 0 0 1 	
ea

from which we can pick out
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(D.15 )

n

	

a)" aar a1 Lae tl +tx ,r+Gtaz)	 (D. 16)

The other Lzross-product of this scattered wave is

rr

fo do s()i	 aea 41 (2) ae'J	 (D. 17)

which gives

f	 S(*M&	 a

7r 	 d	 c	 a

Ii
10 01
	

e 1 ° 01	 10 ° I	 (D' is )
from which we can pick, out

^^ a) ~ ^ a^^ ar^ ^^+i 
_ 

a•a 670, Qe , l 	 (D. 19)

Combining the first term of R.H. S of (D.9) with

(D. 16) and (D.19) we find that the exponential s with

ordinates of mixed signs cancel, and we are left with

_r
2 a [.4	 4 (e,. f e. ^. -t ^,,/ ) - a eo-a .4 ( Ve. -/- to a + ?Oe - / ) ] 	(D. 20)

w	 ``
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APPENDIX E

INTEGRALS, FIRST ORDER

Equations (7.6) and (7.7) are obtained as Fo llows:

At(

Z [A' q.c^t^) -,Ja `(q^ l-^^J)]

w
	

to, rJ) 4	 (^.e.,-0)
pi

IV

s^

a ♦ 	 r.d11 e 1	 L	

4 

2
IV	

Nor 4.

vo

Vi	

Ed	
(f2NL vi

dP, [e	 I e	 1-44 + e	 2

Similarly

N
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Thus we need to evaluate

oC	 {1 e Mali; ^ 1.4^^ J
:. fir,	 dY,	 tid y +"^ -pe(4^+ V.) r -	 ^ ^l'l'	 ^s><

,p F; p rf f pe	 ffe I e	 I e" >

where

s f oP^r	 ^ (+^ 4 r^ e '	 (fie ^y )

y

	

1 ^ (^	 r t L ^I 1	 ^ L	
^` 

LL4	 1^

(.270, pm e	 - (t+rrta/ . .^.^ e 
= Le "41-44), --;j

ey

- 1 - 4 - (re - re,

O (2 n'` l fd	 e

.^ 2
	
^ql^a Si H ,^( re + r + c^'	 (r

Tr yl e e o	
y e ,f ^	 ej s y^

t d	
rZ fi`,js^ ^!

2 rr)` ^ ^ a +^ Ladt^ j ^ a^^r4 ,^ r^-fi t •^f.	 t	 ^



0

Eliminating th6 matrix element in O( 
kk 

we have

°4 4-4	 Sx l414 > e

o	 S14-14 $I " dki[

KTAPIT 	 o

Cw Ix

 X 

a l.^1	

4f

 '4	 e COS4% + a[/

o	 9 d4't

or

o^ro + xa`	 xta

With the substitution of °(*A for the momentum diagonal

matrix elements of A and BRA above, equations (7.6)

and (7.7) are obtained directly.
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,APPENDIX k'

COMBINATORIAL FACTORS

in this appendix we show how to Locate the parts of

the expanded determinants which enter into equations

($.2). This Involves the explicit functional form of the

integrand as well as the combinatorial factor associated

with the number of ways of obtaining equivalent terns.

It will be convenient to introduce the following

simple diagrammatic notation for the terms to be consid-

ered.	 a,,,	 ) Sge is represented by a straight line

labelled	 s and t	 at the two ends. Repeated subscripts

are attached ,. their common point@ ass is represented

by a dashed loop attached to the point labelled s . in

this notation the term proportional to a2 in equation

(D.10) is shown in Fig. F.l.a. Those proportional to

a3 in equations (D.10) and (D.12) are shown in Fig.

F,2.a. Complete consideration of n-2 would have turned
y

up the additional terms indicated by the diagrams in Fig-

ures F.1.b and F.2.b.

The equivalence between, the determinant notation of

Appendix D and the diagram notation above is shown expli-

citly for n=3 in figures F.3 to F.10. The determinant

shown is the one resulting from the angular integration

C
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{	 ^ ^ Sol$ e 	 to
	 (F. 1)

The general structure of	 as the ratio of

determinants leads to the following conclusions. There

are n1 equivalent terms /%., a ;) and having all n scat-

tering indices. This corresponds to the n i ways of

permuting the n indices among the n vertices exclud-

ing the fixed end points, a and e l ( see figures

F . 3 . b and F . 4 . b) . There are two classes of terms ^1a  "01

having all n scattering indices. There are the terms

ide+itical to those above except for the addition of a

dashed loop. As there are n vertices available for

the loop, there are n(n!) such terms (see figure s F.3.a

and F.4.a). Finally there are the terms

a line of n' vertices between a and

attached loop containing ( n-n' ) vertices
one shared with the line. For each n'

1; n'< n-1, there are n'(n!) equivalen

can be seen as n! was of arranging the

which consist of

e l with an

asides frort, ttie
such that

C diagrams. This

vertices, given

a specific shared vertex for the loop and line, and n'

choices for the shared vertex ( see figures F. 5. b to
F.IO.b).

The diagrams of figures (F. 3. b) and (F * 4. b) repre-
sent equivalent integrals, as do these of (F.3.c) and

(F.4.c), (F . 5) to (F . 8) and (F.9) and (F.10). With the
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aid of these figures, and recalling the definitions of

equation (5.11.a) we see that

f A'	 ^^^ re 1 , ^i e3 a	 T^ r rC^ j r, î 	)	 (F . 2)

contributes

z

— Y rT Q 3 3!f GU ,I¢ e..^ 
Si H..^ Ve,+- ^; a + f'ss+1'3r^)

(F.3)

to	 A(oe aa') and

r!' L

	

]].a 
y 

3!J 
^/^ ,,^ e	

[3 L 
cos . '̂ (r,^, r L *

y
^,+ rep)

+^	 ee l ei. ra, K e

r; r '-,

+	
4 (r.,+ r,+ V., + r, ) + the

rk, r,L r., r., rd-	 1

to Jig ( o^ y a")

1
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APPENDIX G

INTEGRALS - ALL INDICES DISTINCT; nth ORDER

This appendix contains the integrations necessary to

go from equation (8.5) to (8.7) and (8.9). The present'

Lion is based on the work done by Coopersmith in his study

of the free energy# 1 There the essential calculation was

t1t f,4 Tr
f . i	 J	 o

where the trace was evaluated in coordinate representa-

., ion. In the course of that analysis it was necessary to
utilize the Fourier Integral Theorem. In our notation

this is equivalent to

f  t4 ;e f"'ft  d ei ^r
e I e./3"lr1

1 Ye•>

P1 [CTWJ a f f w ep ^

rr	 rr	 r r fTr do^ < e '	 I -, ^ o --e 1,4b a I
45TW	 re

The bracketed expression appears as the basic building

block-for our present work. Therefore, we are able to

adapt his solutions provided we are careful to select it
in a form in which the final step 	 has not been
taken.
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Let us proceed to evaluate the integral obtained

from equations (8.5) and (8.6)•

-4-(-P	
er.,, TT cPw ^ Ae'ri.

', f oPJ^ /^ ^°	 s	 s

where	 S = rid + ell

First we consider s

J ts/T .^ e 
s 

Si m.4s	 fo

This gives	
_^.^ (►'c-re^)

8	
r N	 a	

s e 
:^-

_ _ h	 f, , .f 
Tr 

^r ^PPe ^^^+

	

(q tr #Js
j 	j,-,j	 KC, raz	 r-M 	 Y»r^

0;70 -iIi (<t)
-31s P	 (-NRpa)" N

As there are n+l relative coordinates and n+2

variabless of integrat" on we can transf orm to new varlagle s

and redefine s

M♦1

	

s= ^ ry	
S1

Tf car 	TIT
 y s e 	 S H Y+

J ^:I

The method of solution is as follows: It is clear

that the effect of the n+l integration could be ex-

° pressed equally  well by using a linear differential oper-

NO
ator	 such that^,^
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It is therefore sufficient to find the effect of perform-
inging this operAtion. An equivalent expression for
k exp(-Itk2/2) was seen above to be

_^ =	 s l

.I+!'	 (7t l►)'
^' i(-̀;-̂ /s1, ^s S e ms- s c ' YJ S

so' that we can let ,& : S- r and write

0	 b

a .Pi g k -^^" f 44 r, f, du se^ `r KY, s^0 4'a
k-^h

^^yy
s 

=
.a»	 t	 ^

B„ f	 ecs	 + (k-4) V
k 	 o ^fsf car s e	 {^os[^s ^(^^k,^J-	 ,(^s 

C.	 _ S _
^ f	 ..z ^ e

^? 	 k "^ ^ ^ ^^ s ^ „k s - k.^.ti►,

K

« V 771	 -Z(t'f -^^	 _ K 
L S

^	

Z

^^ i^s Ct t1 3^	 N	 s	 2

W.



fib

Contemplating the initial expression defining
we note that

- rte:	 ; -1

f4".	
a	

I y^ 1	 f ^'^^	 ^•Gfr all	 / H'!

Thus,

However, we also note that

it

J	 a ^ ^1	 /"y^ 1 ^P ^ l  ^ ii l ^ .:^ QH C ./^ i^ l ^"/

where Qn	is also a polynomial with	 n	 terms.	 But

Qn_l must equal P n ; therefore P  can contain only one

non-zero term and from explicit consideration of P 2 (not

shown here; see reference (1)) we see that this is the

highest power of (it), namely a n(it)N-1 gThis Ives

the recursion relation

so thdt we have
d^f	 x

. h N!

In a similar manner we now evaluate the integral

arising from equations (8.5) and (8.8.a)

I %

-„...,.:..'+-- ...d..,..._,...,-.^..,... ...... ,.,...... ,	 ...,.	 :.....,+.. ^.:::̂̂ +°fr"%^.^.^-..r..^ b.w.::',.^._,....^...-»...w.,.,-R....d.:w,^_._ 	 .r....+-^ ..-_”.-•-+	 s•-• x	 .x'..M. ,..._.....mH-.«-.,..r.....-,- ,.-..
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^"`	 ,	 J f rr ^r. I coe,	
rk

 
F, 4,

_s

	

s	 0
ztif^^^ .^ e	 CoSS	 - S'	 ^^`	 (	 `2 diet

	

C.4 rT' d r+ ^^ ^r^ + e
APT

	

^y10 
r
Sl
	 ^t^	 •	 tee r +	 h,^,N r«s'

x

d^t^)^)^zCAri^
-tea LO 

a (-wrfo V nr t2^ it - r)
CN

zr

s„ - cN	 f f rr ^Yy e
r, T

slo 4k
r

S
L

f^s e ^`'^ s i 114

x}

	

f	 Lo
14	

0

s

d	 Lo
757	 fo

 —4 
a
(r't - ;I1)

LZ

off,
[f 	

^t^t 
- ^a)	 a

s



where now is defined by
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The remaining integral is the one arising from equa-

tions (8.5) and (8.8.b)

M

2 CL

 (a
e ^ ^	 ,^^ TI' p^Y ap r^ c^Y^,11'1

8	 _^	 cPk i<e 'siv,Ks

S- ( Yll t r ,+•, r*-$,"I rN1t, *kW, Will I+	 Im )

Tt, I-- a 8,,[SZ on)""'I 17 457) f. lie ed ,̂W4.1, 	ce", A A,

" t„ r„ ... r	 s e

Hf^
rr

,,
,Vol

rR r i ^►^ r̀
M4'A

r i ^ K Yj _S A
-r-^,

e

 
fj

s=
Tit _ ^„
 IV V,

co

 

d1r, ^ ^ Ys Se ^`'` s^„-4r Sihkra
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w _ p,, l c^'^ l fit 'I'` f
ret

 ̂  ^, ^ ^ ,^^" ""' ^^"^ ,̂.,.._..,,x e '' / ^^ p	
/

DOW

2
f	 ei't	 — e

 s	 P bq-0101-W-2){

7:	 m ^ h't::12='f,,q,IT)o	 yH -^
	 (M-01

►a	 rr^	 ^}

^ A fr /}
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APPENDIX H

SINGLE REPEATED INDEX; n > 2

We show in this appendix that where there are n

scattering interactions and only m=n-1 different scat-

tering centers the corresponding; ,A is separable to

order an .

Let us consider a set { mi of m different indices
divided into three subsets f mll , I m2l and f m3 l such

that { mil and t m31 have one index in common. Thus t mil

contains the indices 1,2000^00. m1 ; m2 contains ml+1,

mi.+2, 0000 m l+m2 ; m3 contains m l+m2+1, m1+m2+2.9..m,i3.

This particular choice is convenient but not aecessary

for the results to be obtained. Specifically, we have

to consider that part of I which has all n inter-

actions represented and is proportional to an . I is

defined as

R ... fTr ale	 D) e	 e

Ta 10

is represented diagramatically in figure H.l.a. The

topographical factor associated with how many ways we carp
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obtain this integral for a given m 4s

fff 114

IJ	can be rewritten as

.1M

r	 t/ Tr	
n1	

1 "W1 r rMf

,F $I
 (:

where

{rrie

IT
	 e	 W bJIJ/F^^1Nil

7 ((..t	 J

	

60	 IV

Qjot 1 Y J

7% 17i 40-Ox ).4 f, f fpI 	 .

X LO^l^'^ ►"^^^^far{^i^`ct ^^f^`

l l	 f1Mfl^>M+x

	

x 
e-i	 Item -ho	

V(13 1 IMA3)pf fi,W061

J ^► 	 J

i i)
Iqt 3, M+ 'V

J	 J	

`/



(as part of the evaluation of Rn ) with the result
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where j mjI contains the indices in l+m2+1, ml+m2+2 3 . - m,,?,

in the last step we introduced a Fourier transform

("opened the ring") so that I,j is now indicated diagram-

matically in figure H+ 1. b. This figure also shows the

transformation to relative coordinates which gives

am' fw#  xr,«^

St	
-to 

y ^^	 ^	 7 1 J

J I pi	 04

1	
^	

-„	 .,	 s,

1	 ^!-^ !	 l i .^	 Is,

The coordinate matrix elements are given by equation

(7.6) which is this notation is V(it,{ D ee , , so that

ti44

s I S,-/	 $ z	 "' S 	
""L

-p' Y e-i^,)s a tyrra Tr gee, s^„ k'n (Z P) a a/^
r`S^ J 	 /3 (K )	 p I: i	 t	 r ^ cl

where K'= -4 `-.d

This multiple integral is evaluated in Appendix G

1	 -

S3 
17	 13 ISt
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Similarly

s,•a), (-N^)st Ct
^s , `7.1 ,R (^7l) `(i r1	 J^'	 fol

,	 c^ rTr si ^ J^ ^7r sin 'Yj (2:r•^ G

t^s

_ ^ t r'xll E•a)ra)s'•NIT ('	 ^	 (t t - A ^,.

F
	 s

1)S
-'	 ^si'^^^^"^ITa)S' !

	 ^ f	 ;^^t `AL/ ^^-'-	

-E^t^ ►^ ^` ^	

-5f

4i 1 IJ► a. ) 0 -A

At

G7	 P^^ 
	 ^tY`,A',	 -'°'k^ ^

tt )
S,".2

Tr 

where K = (k_k" }

The evaluation of x s is completely analogous to

Is
1 

with s1.., replaced by s 3 and (it) replaced by

(-'it). When the above integrals are collected together

we have

1 Z (—a rra [t /,n )" 0 -1 t,— a rra ii/—a ) 	 (-a rra i't)W,

E d jL ri+
pie

	

1,4 1)	
L I

 

it0c "r))

	

 i	 k - a	 aa	 t- sy s

r	 Comparison of the coefficients on the upper line

with equations (8.7) and (8.11) shows that the simply

linked indice's factorize and are therefore cumulantly

separable. The lower line is the contribution from the
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repeated index and the integral is the reclosing of the

link at .v.

0

P
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APPENDIX I

SINGLE REPEATED SCATTERING INTERACTION ti pau

In this appendix we Look at that part of

which is proportional to a 2 and contains the dual

effect of Vi . This immediately restricts us to the

product of functions of (it) and S, each proportional

to one power of a .

For this appendix we define ,R = ,/Q (9; ^c1q ln1)

L

	

"^ car,	^'^,	
^Z+-V^)

PIA ^ e	 it	 _	 .

(I.2)

i ^a 	 V 1"14, V(P) ^.4, V ^- a) .4j A j V (A)f PAS?) ^ f ^ ^ J	 ,.4

4

(a )	 ale (
	 i)1.4

2ee	 y

a

1

_

14 	
i \ -	 _	

""IN
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e	
P	 ^̂ 	 ^/	 y J.	 J J	 1 I^ s
.E^	 f

AVI

1	 .^ `,e11 i J(, ^)	
/ ,. ;^ •• ^ ^,	

,^ ^ art/,^
, -	 /^A [ `^ ' *s "• ^'iQ9 

a •. std l"1^"

	

/	 + -	 e	 .Ie 3

IL	 X	
Y

(x.4)

	

- e	 -^ i-e

	

^	 N	 I

.i^

—	

la`

♦ e 1 	 s-^=/ i (4 s j s^ ' ., eke1.:: a p	 ^F	 / ^r s	 D^

/.4	 1 — — s('?tlFfs)

(x:5)

4 IL it

	

[(j	 Jo

r ^ 
e - (^ 4,,') ^ _ a	 -64 ` ^') Iif	 f w,` ^	 1

(I.6)
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,A it I ^ A'

^4 If, fo ^^_	 x)

J^e
2

C	 /s 4.4 0 7'	 /^ /^ t

;yam; duo ^d f g	 -^^	 d'^ ('/^	 ^^zrj	 ,^	 + ,f ,l	
'.	 .'_._/%	

( r .10 )

i

^,^ LJo ^f' (^ # ^ ' J. d ^ l /sue p ''' ^ 	 x • 11

In equation (I.2) we have introduced an identity

for the commutator. ) Equation (I.4) is obtained by

taking one power of a from V(it)kkl and one power

of a from the p;woduct V(S)klkeaV(-a)k2k3V(a )k3k1

The last term in (1.5) vanishes because of k lz which

makes the integrand an odd function over the symmetric

region of integration. The order of integration is

changed in going from (I.6) to (I.7)0 (I.9) follows

from (I.8) with the change of variables x-y=p, y=q .

The complex integration in (I.9) is taken along the real

axis from (-q) to zero and along the imaginary axis from

zero to (it). A further interchange of the order of in-

tegrations gives (I.11).

---.-_ ­
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APPENDIX J
Q

SINGLE REPEATED SCATTERING INTERACTION;

NON-CONTRIBUTING

We use the same technique as in Appendix I and

select the term proportional to a2 which contains both

the (it) and (-it) aspects of the interaction.

;. (P ,S2) y^fa^ry (,al	 ^ r3,	 ^e	 e je

*(P	
4.44p 	

,s

The above is clearly seen to vanish as soon as we

reca
ll 

(see Appendix I) that ! in order a t V(a )k k ', iS

an even function of k and k' . This makes the integral
over dlct' vanish as a result of the oddness of its inte-

grand.

V

G



81

APPENDIX K

STIRLING NUMBER  OF THE SECOND KIND

The multinomial coefficient Mq is the number of

ways of partitioning a. different objects into m k subsets

eachtcontaining k objects

The Stirling number of the Second Kind S ( j ) is
defined as

It satisfies the summation relation

y=a

Thus from equation (8.21) we have

Tr

n 4
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APPENDIX L

CUMULANT SUMMATION

Equation (8.23) is obtained from (8.22) as follows:

M	 Aze f :.	 tH-f)! ^i

a	
0.7	

"
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O . 
it
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>L M f . o	 k

	

x {a d d, da u t-A	 e

4 [fee p"" (e)"'I
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Argument of • S/ N, 51, p dependence Contribution of dc to µ Location of discussion
and calculation

g j(it)gk(it)gl(it) p3 Np3a4 Section VI, VII, VIII

gj090090) Appendices F and F
gj(-it)gk(-it)gt(-it)

9 30t) NI p3 None (levelled) Section VI

g? (It)g j(a)

91( it)g j(-It)

g^ V

g jO,	 i ((3)

g j (l3)gj(-itl

g1(-it)
gj(i3g?(-it)

g j( R)g j (-It)

9?(it)gk00 N2IS23 None (levelled) Section VI

g? (it)gk(a)

91(loclo-it)

g j(it)gk(a)

g j (R 900)

g?(D)gk(-It)

g j(it)gk(-it)

g j((i)gk(-it)

g j(- it)gk( -it)

g j(it)gkVgI( =it) p3 None (separable) Section VI
Appendix I

g j(it)g j(P)gk(-it) p2 None ( separable) Section VI

g j(It)gkVg j(-it) Appendix I

g j(it)gk(R)gk(-it)

g j(I0g j (i)g j(-it) p None (— pd) Section VI

Figure 7.1- A listing of all	 n = 3 t:. nos arising from the expansion of µ by cumulants.
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I

Figure 9.1 - exp(f) versus K for four values of R.
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O	 Levine and Sanders; experiment
----- Semi-classical theory

Present work; full theory
105 	------ Present work; first order

Temperature, 3.96° K

104 	O
OO

®

	

103	 ^ \^
. o

	

102 	QD

O

	

10	 O

O

O

1 0

O

10-11	 l	 i	 l i l	 1 11	 I	 .	 I	 I	 I 1	 CWk	 I	 i,I
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	 1022
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Figure 9.2 - Mobility µ (cm 21Vsec) versus number density p
(atomslcm 3) at constant temperature for a = 0.62 A.
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e'	 1 2 e	 e' 2 1 e
(a)	 (b)

Figure F.1 - (a) Diagram corresponding
to equation (1).12). (b) Equivalent
diagram for n = 2, not considered in
Appendix D.
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e' 1	 2	 e	 e' 2	 1	 e
2	 1

e'	 1	 e	 e'	 2	 e

	

(a)	 (b)

Figure F.2 - (a) Diagrams corresponding to
equations (D. 11) and (D.13). (b) Equiva-
lent diagrams for n = 2, not considered
in Appendix D.
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ika

a21	 1 + a22	 ae'2 - 412

a 31	 a32	 ae'3 - ae'3

1 +a ll	 a12	 a13

a21	 a23

a 31	 a32	 1 + a33
(a)

e l l 2 3e
(b)

e' 1 2 3 e	 e' 1 2 3 e	 e' 1 2 3 e

(a)

Figure F.3 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E, 4) are indicated by encirclement. (b) Equi-
valent diagram notation for term —a 3 (c) Equivalent diagram notation for
term --a4.
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1+all112	 ae'1-1e'1

	

121	 1 + a22	 1e'2 - ae'2

	

-ae3 x —

 a 31	 a32	 ae'3 - ae'3

ika	 1 +a ll	 112	 a13

a21
	

1+a22

ail	
a32

(a)

e'2 13 e
(b)

e' 2 1 3 e	 e' 2 1 3 e	 e' 2 1 3 e

(c)

a23

1+a33 ^

I	 '.'

Figure F.4 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E.4) are indicated by encirclement, (b) Equi-
valent diagram notation for term —a3 (c)(c) Equivalent diagram notation for
term —a

a
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_;t
	l+all	 a12	 ae'1-ae'1

n

	

a21	 ^+ a22	 ae12 - ae'2

=;E

	

"ae3a31
	 a32	 ae'3 - ae'3

x
ika	 1[fl+ all	 a12	 a13

	

a21	 1 + a22	 a23

	

a 31	 F321	 1 + a33

(a)

2

e	 3	 1	 e'

(b)

Figure F.5 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (EA ar3e indicated by encirclement. (b) Equi-

9
valent diagram notation for term va .
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ae' 1 ! 
a'el l

-ae3 x
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sC121	 q1 + a22	 ae,2 - ae'2

a 31	 132	 ae'3 ae'3

	

1 + a ll. a 12	 a13
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1+a22
	

a23 I

a31
	

a32

	

D + a33 ^

(a)

2

0----0-0 ---*
e	 3	 1	 e'

(b)

Figure F.6 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (EA ar3e indicated by encirclement. (b) Equi-
valent diagram notation for term –a .
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1
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(b)

Figure F. 7 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E,4) are indicated by encirclement. (b) Equi
valent diagram notation for term —a .
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(b)

Figure F.8 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (EA) a 3 	by encirclement. (b) Equi-

3valent diagram notation for term —a .
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-ae3 X

ika

a2l []1 + a22 ae 1	 a'e'2
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1 +a ll a12 a13a

a21 1 + a22 a23

a 31 032 1 + a33	
i

(a)

2	 1
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Figure F.10-(a) Schematic notation whereby the elements of the determinant
which contibute to equation (E.4) a3 indicated by encirclement. (b) Equi-
valent diagram notation for term va .
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Figure H.1 - Diagram representation of Iv. (a) Initially.
(b) After the Fourier transform.
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