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SUMMARY
Kubn's formulation of irreversible quantum statis-

; tics is applied to electron mobility. In the weak coup-
ling limit the approach to equilibrium is shown to be
characterized, in the lowest order, by a relaxation time.
With the use of Coopersmith wave functicne for hard-core
interactions a characteristic relaxation time is derived
which to "all orders" is independent of the external |
(small) driving force. For the specific application to
mobility the general theory yields the known results of
semi-classical kinetic theory at high temperature and

: low density. For the region of lower temperature and

; higher density the theory gives qualitative agreement

with the anomalous drop 1in mobility found by Levine and
Sanders for electrons in low temperature helium. How~
ever, lack of quantitative agreement indicates a need

for further work on the problem.
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ABSTRACT
Kubo's formuilation of irreversible quantum statis-
tics is applied to electron mobility. In the weak coup-
ling limit the approach to equilibrium is shown to be
characterized, in the lowest order, by a relaxation time.
With the use of Coopersmith wave functions for hard-core

interactions a characteristic relaxation time is derived

which to "all orders" is independent of the external : ]
(small) driving force. For the specific application to

mobility the general theory yields the known results of

semi-classical kinetic theory at high temperature and

low density. For the region of lower temperature and

v higher density the theory gives qualitative agre:ment

with the anomalous drop in mobillity found by Levine and

Sanders for electrons in low temperature helium. How=-

for further work on the problem.
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. I. INTRODUCTION
) It has long been realized that the quantum mechan-
ical analogue to the Boltzmann equation contained two
assumptions of limited and even questionable validity;l

s These are the repeated random phase approximation (RPA)

and the relaxation time assumptiocn (RTA) Recently sev-

- - ——

eral authors have worked at developing a general trans-
port theory that would avoid these assumptions. Van
Hove chose to start with the derivation of the master
(Pauli) equation and showed that RPA could, for various
physically reasonable potentials, be replaced by a much
weaker condition.2 A number of attempts have also been
made starting from the Liouville equation governing the
density matrix P . Greenwood derived an equation for
conductivity in a metal which avoided the use of RPA.3
This formula was evaluated by Edwards for a me.al with ' | |
randomly located impurities to yield the usual solution ;
to the Boltzmann equation.4 Lax also developed a formal 1
theory which avoids use of RPA. For the case of a weak |
scattering perturbation (weak-couplingﬂlimit) and with- 4
oﬁt RTA he obtained the usual transport result and the |

Nyquist theorom.s Kohn and Luttinger have alsc shown

the validity of the quantum mechanical Boltzmann Eq.
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in the weak coupling limit without resorting to RPA
or RTA., They carried their work to third order in the
coupling strength parameter, and for a periodic lattics
with impurities restricted to lattice sites found devia-
tions from standard theory which appear to play a role
in the Hall effect.®

Kubo also treated irreversible processes starting

from the Liouville equation.7

He developed a formal
theory using neither RPA nor RTA. Kubo's theory bears
much the same relationship to Frreversible Statistical
Mechanics as does the partition function to equilibrium
theory. It is an exact, formal theory with (to my know-
ledge) no questionable assumiptions and quite often is
rather difficult to evaluate. This theory has been
applied by Nakano to conductivity in metals who showed
that it gives the Gruneissen formula if one introduces

RTA.8 Chester and Thellung have taken Kubo's formal

theory and applied it to elastic scattering in a metal.9
For the weak coupling limit they obtained results ident-
ical with those of the quantum Boltzmann theory with
neither RPA nor RTA.

In the present work we calculate electron mobility
based on the formal theory developed by Kubo. Neither
RPA nor RTA are used. The weak coupling limit is con-

sidered briefly in lowest order. Our primary concern,

however, is the calculation of electron mobility to nall
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orders'" in the presence of randomly located hara~core
scatterers, We shall see that in both instances the
approach to a steady state is actually characterized
by a single relaxation time which we derive, not assume.

Our choice of a model based on random hard~sphere
scatterers corresponds most closely to the situation in
helium vapor. For low energy electrons, helium has a
positive scattering length, no Ramsauer effect and the
electron-atom interaction is adequately characterized by
a spherically symmetric hard-core repulgion.lo

Electron mobility in helium gas has been experimen-
tally investigated at various times since the early
1920s at temperatures ranging from 77° K to 300° K-ll
The results of these experiments have been effectively
explained by classical kinetic theory. Recently, there
has been interest in electron mobility in low temperature
heiium gas. This was motivated by measurements in liquid
helium where it was found that an electron férmed a sta-
ble dense complex with very low mobility. This led to a
prediction that such a complex would also be stable in
helium gas at sufficiently low temperature and high den-
sity. Measurements to test this hypothesis were made by
Levine and Sanders at temperatures near 4° K and densi-

021 atoms/cm3.12 Under these cone

ties of the order of 1
ditions the mobility was found to be almost four orders

of magnitude lower than that obtained from classical
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kinetic theory of free electrons. A theory based on
formation of a correlated (bubble) state was developed
for t¢his high density=~low temperature phenomenon, but it
failed to account for the transition region at lower den-
sity.

A quantum-mechanical consideration of the properties
of a free electron experiencing hard-core repulsion in an
ideal gas was made by Coopersmith in a calculation of the
equilibrium free energy.l3 By using Kubo's quantum mech-
anical formulation for mobility, we extend this work to
the study of a non-equilibrium property. The first order
results of this effort have been previously reported14
and are reviewed in this work in the course of develop-

ment of the full theory.

All work will be done in units with 47 =m=1,




I1. MOBILITY -~ GENERAL THEORY
The mobility /A of an electron in the direction

of an external electric field E is given byl

p=e"t (4 0 (2.1)

where ¢tr is a trace and .ﬁ} is the electron velocity

along E. A4f 1is the difference between the total
density matrix Py and the unperturbed (E=0) density

matrix p,

Af'::f’T _./3 (2.2)

The Hamiltonian HT for an electron in the pres=-
ence of N scattering centers can be correspondingly

divided into

He=H+AH (2.3)
where
L& (2.4)
H=%.+ :l\f )
AHs=-3eE (2.5)
and

TS L e B T M = i QR IR, AP £~ LA SR D T
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V, = Vi) =V(§-F) (2.6)

As mentioned in the first section, Kubo started

from the Liouville equation

AP
¢ o= LHef ] (2.7)

and for a weak external perturbation obtained the line-

arized adiebatic solution

¢

¢ H

- L; - o - ¢
Af=-iZ ' far e i e e (2.8)

where to is the length of time the system has been

acted on by AH -and the equilibrium density matrix

is given by | 4 !
p=z" exp(-pH) (2.9.a) ;
Z=Ule exp(-AH) (2.9.b)

As expressed in equation (2.8) Af is an average

(integral) over the length of time the system is | :
acted on by the perturbing force. The averaging is

done to the Heisenberg representation of the commutator

of the perturbation and the equilibrium density matrix.

A derivation of equation (2.8) is given in Appendix A. T
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Combining equations (2.1) to (2.9) gives
f = éez"’tz,/a‘t‘w e”‘tHL' },B-MJG‘M% (2.10)
)
This equation will be the starting point for the pres-
ent work.
Kubo actually extended the formal development
of the theory by interchanging the trace and the time
integral. The resulting integrand (including the
trace) he identified as the response function. This
response function can then be treated as an average,
with the trace defining the averaging process. It is
this response function that Kubo and others have used
as the starting point for their calculations.2 While
this procedure has calculational advantages for their
work (e.g. cyclic permutation of operators), it does
not lend itself to thetpresent work. One consequence
of taking the trace first is the elimination of infor-
mation regarding the specific functional form of the
time dependence. Specifically, in the course of cal-~
culating fﬁ we would like to consider the limits of
validity of RTA. Since we expect that the relaxation
time 7 when it does exist is momentum deperndent, /¢

is best formulated in a way that displays this depend-

ence explicitly. We have sufficient freedom to achieve

this since the trace makes the choice of representation

T e T T R T e e e T T o ST T SISO WO YS S
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arbitrary. In light of the above comments the obvious
procedure is to work in the momentum representation
and retain the trace for the last step in the calcula~-
tion. Some simplification accrues as a result of the
above choice, since AQ; is diagonal in the momentum
representation. This follows from the definition of

+, and equations (2.3) to (2.5).

m ilHe, 3] 2 iRk, 3] T (2.11)

In the momentum representation the eigenvalue equation
is

BIA> = A 1#> (2.12.2)
and the normalization is
CEIR'S = SIA-F') CRIE> = S fany (2.12.b)

where p is the momentum operator, k its cdrresponding
eigenvalue, §(A-#’) the Direc delta function and 52
the volume of the system.

The above formulation would yield /l valid only
for a particular spécific arrangement of the scattering
centers, with explicit dependence on the N position
parameters ﬁ s 442 ...~ o The mobility we actu-
ally want is the ensemble (configuration) average over
all possible arrangements. For a system of N random

(uncorrelated) scatterers




N -l
= ’/‘}770(’,/4(":,’2,“"?/) (2.13)

where the bar indicates an 2nsemble average. It will
be assumed that the ensemble average commutes with the
trace and the integration over ¢t.

In the representation in which p is diagonal,
the matrix element P, arising from equation (3.10)
for the case of a free electron (plane wave) with no

scatterers present can readily be evaluated as

-LTp .ae LEk
PiS <Ale ® [3,e "¢ " 14>

2

-t Aif - ] J M -h
=<AIL3,€ JM)zzt;z; KAlC * 1A

, ~Lh L
= -ipAe E CRIRD (2.14)
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Combining equations (-

£2.8) to (2.14) we have

| a -A;,,é; % —
w=epz'Lihe ™ [ALA} (2.15.a)
where |
- - -t H -ﬂH JtH L 1
A=P.ﬁ.4 (4 | € [}’e JE '-4> (201.50b)
The bar was introduced as a notation to emphasize {

the presence in our work of the configuration average. 1
For the remainder of the work we shall omit this symbol o)

with the understanding that configuration averages of A s
<

S £ W SRR T T s RN P e~ S 2 R o e S S
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and @ are implieit in all discussions and will be

explicitly shown in all calculations.
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I11. EXPANSION PROCEDURE

We cannot proceed to evaluate equation (2,15)
directly. This would require the eigenfunction of H,
i.e. the full solution to the N-body problem. Instead,
A will be recast as an average of an exponential
which, as Kubo has shown lends itself to a cluster-
type cumulant expansion.

We start with the matrix element,M, in (2.15)

. ={tH -AH, (CH
Mz <qre Ire e A (3.1)

3 / » N
SEEAE V) e s y) CEEY)

=<Ale e # e 14> (3.2)

Define G;(*) and g¢,(x) by

2 2

G X)Z 1+ 8,(x)= ex/a('.lz"e%—‘v;e-%éd’*" (3.3)
and the product G'.(vt) G, (%) by
G'.lx)G‘lr) = exp [_'—J:re ﬁ;éu/, +lj)e-%;‘/4] (3.4)
Note the identity1

' eaa(b-l-c)= Cab exp (./;ae”‘dc eb»¢ 4a) (3.5)

AN s

L

[t
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which is especially useful when [b,c]J# 0 ., Upon
substitution of equations (3.,3) to (3.5) in (3.2)

2

- .._ll‘ﬁ _Ml 4 ] -
M=<4le a;ﬁ%’("ﬁ“’c ‘]?’;G,-(ﬂ)] e"iif' g.wmh (3.5)
ri Ty gL 4! -
- chie Lo gudl, S L frogol] g e )

Introduce the levelling operator L with the properties

" {.f”(x) s neo,l
so that
> g
ﬁf, (1tg)= er ¢ (3.9)

Equation (3.7) can now be rewritten as

-ite* & o (1¢) —ﬂa £9.00) q:;;,;’;’g.(.m "

M=cAle Zg™¥ 3,67 ¢m " e 14> (3.10)

Now define an average (signified by { > ) for any

product of functions of the three parameters <£it, B

by

-t t : - 4 l%f’ , -
et EG-) S chle gl [3e #f,m)Je £CO14> (3,11)

so that M can be written as

'2,??““ 2”7(/3) £ gi-v0)
M={¢&’ e et ) (3.12)
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Finally introduce an ordering operator O such that

even for non-commuting a and b,
e e =0¢ (3.13)

and put M in the form

) L Lg0t) + 3,0 + §t-02)]
M=(0e, ) (3.14) "

~ In this notation Py, equation (2.,16), becomes

&4=(2> (3015)

where 1 is the identity operator. We have thus

demonstrated that A is actually the average of an
exponential. It will be useful for us to extend this

average and define

ol e 7%
A £, (B ) 5 Bﬁﬂe‘%h‘ﬂ[},eé‘fﬁov]e HEIE> (3,16) \ 1
i
A clearly meets two of the requirements of being an 1
average in the cumulant sense. Namely, A(l) =1 *
and the moment generating function is well defined.
The remaining requirement, that the moments converge
will be seen to be satisfied for all moments con-
sidered herein. (A summary of the properties of cumu- |
lants used in this paper is contained in Appendix B. {

A more complete and rigorous treatment has been pre- |

sented by Kuboz). Therefore, we can write

y

L

%0

PP Sy ecrengryne-d ooy - PAPRNBEE i I S AN | W ey TR ot e A yrmaT— . 29 " e P T NS TR U WSO TE ORRMAIAG M
p:
o,
: . , g

<
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A= 4 (06 E L5006 +9;(0) +g;00)])
- L

» R ol
cexp (A (0eF LB TP 5T )y

-;ex,v{ﬂ‘(OLf i {

net el

g g gD

where AC means the cumulant corresponding to R .

Further discussion regarding the cumulant A% in the
specific context of this work can be found inr Appendix
C. The following examples demonstrate some properties

of the simple (non-cumulant) average K.

A (OLGIPIG (1) = R (41i0g,4p))
n"‘/f. 4-‘?({:*“)]'-. _‘..ﬂ(.é“'v‘L if!..n. - - - W
= g4 CAIE L7,¢€ Je &> (3.18)

Al0LI* ) =0 (3.19)

ALOLG 1) 3,1-¢)F,, =00 G () G, (1) g, (-i1))

2 A (5,100 3,08) (P13, (- )3, (-it) G, (7))

o = EHR ) V) itF Y V,)
= Fas <41€ [3,¢ Je 14> (3.20)

Equations (3.18) and (3.19) emphasize the fact that L

operates on each class of g-functions separately. This
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follows from equations (3.12) and (3.14), Equation
(3.20) illustrates the properties of the g-functions
as defined in equations (3.3) to (3.5).

Substitution of equation (3.17) in equation (2.15)

gives

1 '*/—’i‘t ¢
p= ezt £ [Car exp{ROLEHE ogged))} (3.21)

This section started with an expression which
contained the Hamiltonian for one electron irteracting
with N scattering centers, This has been recast in
a form which involves instead a summation over n
interactions, each inwvolving one electron and n

scattering centers.

e

O O S ORI 0 - o Y WU WPl S WL . 3 U W™ = Pome o e T
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1V. WEAK COUPLING

In this section we briefly consider the first
order of the cumulant expansion in the weak coupling
limi¢., We will restrict our analysis to the time
dependent terms and show that the Kubo formulation
yields a relaxation time directly.

Let us consider the time dependent portion I(tE)
of equation (3.21) for n=1.,

¢ ¢ (1 fed
I(TE)=[ 'dft eﬁ (0L/‘§C$lt)+z( r)])

¢ RE(Gt0) + AC(9;0-0)]
=/ ’aﬂteéf he) ' (4.1)

Recalling the definition of the g-function in

(3.3) and using the properties of cumulants we have

Adtet) = AS(Gien) = | = Alaptn) = | (4.2)
and
. ¥
Ré(geim) = LA (g 00)] (4.3)

where the asterisk denotes complex conjugate.

We now evaluate the simple average

AR S . KR RO UPSI SRS S TSI o TSI AU

. A\ )
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]

AlG;60) = B, ¢Rle exp(-f'd4 € V;e%{)f},e“]e 1A

1 2

- - ~t Iy £ -M -
=<1:4>’<4/e7m(-,{:ae4'\48 “)1A> (4.4)

Expanding the exp.nential in powers of Vj which is

assumed small

A (Gi)

P W B PP
:-.<Zu>'<2¢1-f,dae%‘\4e sd([tee Ve )y 1B
= = t<SRIRICAIV;1ED

Pt g s AS[EEER)]
+(2<hIR)) f/‘ ,(&“ﬁlz>, (L.;:Ja)l (4.5)

Elimination of .A(Gj(it)) between equations
(4.3) and (4.5) gives

2 Sin[LEA]]

0 (4.6)
(E4")

. e . 4 e 70 B
ﬁ'(%(:t)hﬁ (y/(-:ﬁ):(mfau tapre

e

This integral is the same expression that entéfs the
standard derivation of the transition probability in
time dependent perturbation theorx]' We can now intro-
duce a'4§hsity of states D(k). Since D(k) and
<2I\/@lf'; can both be assumed to be slowly varying

the integral simplifies considerably and we get

N - N

I L e T

T e ot R G N oo e R 5t W
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- w13,
RE(G000) + A (g -000) = 2 WGRTS" DA [CRII AL L (4.7)
1f all the interactions are equivalent, then

?f-/"- [<RIGIES] = v |[<AIVI RS (4.8)

We substitute equations (4.2), and (4.8) and (2.12.b)
in (4.1) so that

te ~Y.
It)~[dt e 7 (4.9)
where
= (2am)p p(A) [RIV IS (4.10)
and

Actually, the result just obtained is consider-
ably more general than our earlier emphasis on mobil-
ity might imply. The conclusions of equations (4.9)
and (4.10) were arrived at independent of any consid-
erations involving AH. It is, therefore, a quite
general property of the linear response by a weakly
coupled system that a steady state is approached via
an exponential decay of the transient effects. This
relaxation proceeds at a rate determined by 7T which
thus constitutes the characteristic relaxation time

for the system. ’

—
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V. MULTIPLE HARD-CORE SCATTERING

After a brief digression in Section 1V where we
considered the time dependence in the weal: céupling
limit we return our attention to the hard-core scatter-
ing mobility. This section will consider some of the
properties of the wave functions used to evaluate the
matrix elements that appear in WA.

The most general matrix element to occur in the
expansion of equation (3.21) is

“l.tH("l) ”ﬂH(”g) [tH(”l’ 2

(Ale [3,¢ le 42 MA+N 4y =N (5.1)
where

z“ n
Hin}= —;ﬁ +/§=:/ V(r}e) (5.2)

with the introduction of intermediate states and the
judicious choice of formulae for the commutator we
will see that much of the calculational work will

require evaluation of matrices of the form

. =xHn)
Chie 14>
—t'.Z'.F ('I";'_. -~ Hn) ;
=)’ f a7 47 € e Chie ife) (5.3)
where

T T TR

f
}
|
i
|




T T R N i 5 Sl el e e TR YT R TTIT e o
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The hard-core scattering is represented by the
potential

o0 r<a

Vir)=
O 9 F>a (5.4)

where a 1is the radius of the sphereical region from
which the electron is restricted by the scatterer and
for helium can be equated with the scattering length. A
9
c

For numerical considerations we will use a = 6.2x10 “cm

tion of effective~-range scattering theory to zero ener-

1
8y

It is obvious from equation (5.3) that in order to

proceed we nust first be able to solve

which is the value obtained by O'Malley in an extrapcla=~
Him) ¥ (R 57, T = EW (R F, R Fa) (5.5)

An approximate solution of this equation, with H(n) I
defined by equations (5.2) and (5.4), was obtained by 1
Coopersmith as part of the free energy study referred
to in Section I.Z The remainder of this section will
present the Coopersmith method of solution as well as
some of the simplifications which occur when it is used
in a cumulaont expansion. )
The approach underlying the solution is a replaée-
ment of equation (5.5) for hard-core interactions by an
equivalent boundary value problem. We can alternately

consgider

ST

Ot \\ - . . y \\
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any f#,>4 (5.6.a)

all f,< (5.60‘3)

This is a typical two region problem in wave mechanics.
VY satisfies the free particle equation everywhere in
space except for n excluded spheres of radius a

located at ¥ . On and within the boundaries of these

+

n spheres Y must vanish. Because the ensemble aver-
age makes the results independent of the particular
choice of the n scatterers, we can for convenience,
consider the set of scatterers as being labelled 1,
2,+0. n. The Coopersmith solution then consists of a

generalization of the simple scattering solution, i.e.

a linear combination of a plane wave and n scattered
waves
,--i l#r.
p - e -l , ‘
AT AR AR e R Z A G (5.7)

The Aj(n) are determined from the n boundary con-
ditions that ¥ be zero on the surface of each sphere.
The choice of exp(i#'Fe,) for the plane wave part is
a mattef of convenience and differs from exp({A‘F.)

only by a non-physical phase difference. Since every-

thing is expressed solely in relative coordinates we

g
!
?

FE T — R a————— S N P R T i e s e A S =~ 54D 21
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will use the term coordinate to mean relative coord-
inate unless specified otherwise.

As indicated earlier, the significant features of
low energy hard-core scattering are essentially deter-
mined by the S-wave (lowest order partial wave) approx-
imation., This suggests that we perform a multi-centered
S-wave expression to determine the coefficients Aj(n).
We first expand all terms in equation (5.7), except for

Lﬁgl)"exp(iﬁva,), about F, , and equate the wave
function to zero at F,=*2 . This process is repeated

in turn about each of the remaining (n~-l) scattering

sites and results in3
eF i 4 A e, & ‘A e on 4
sinkha 4 H.(n o+ (n) SN fa
j a ¢ z“ E y ‘,;.z'}”a (508)

This is a set of n 1linear equations, one for each
value of j. The prime on the summation indicates the
exclusion of the term Jf=j. The solution of this
system of equations in determinantal form is the ratio
of two nxn determinants where the denominator has

elements a given by

st

dhe,,
e Sin fa
ast
| ~ ha
-’ e , S=t (5.9.&)

and the numerator has elements Qs, given by
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In this form each Aj(n) is the sum of n|{

terms. If we now consider

. =xH
{p1e 17D
- ‘* - - - - ‘«H(”) -t - . -’
=foR ViR BBl e W(E;EEFE)  (5.10)

it is apparent that the combination ¥Y*¥ involves the
sum of more than (n!)2 terms. We, therefore, will
attempt to locate and eliminate as many of the non-
contributing terms as possible before resorting to
explicit evaluation of matrices.

By inspecting the solution for Aj(n) it is seen
that the determinants for AJ.(_m), where m<n, are
minors of those for Aj(n). The minors are obtained
by covering up the rows and columns in the solution
of Aj(n) that contain the coordinates of the {(n-m)
scatterers that &ppear in H(n) but not H(m). Com-
bining this with the ensemble average employed in A,
it follows from the separability feature of ctimilants

that all terms will vanish unless they contain all n

e gyt e e Y SR S TSRS S N B b o et R IR e SR e e ot i e i b i B 2
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coordinates. This is equivalent to saying (in the
standard language of diagrams) that unless these terms
contain all n coordinates they will be unlinked.

We also note that every element of the determi-
nants which does contain scatterer coordinates has
sin(ka) as a coefficient. This suggests a further
expansion in powers of ka consistent with our mathei
matical formulation. The gaussian factor exp (-sk2/2)
in equation (5.1) limits the momentum states which con-

¢

tribute to k to the order of B * or less. For

ambient conditions this gives kas$ 10"1 and for the
conditions at which Levine and Sanders did their work

(see Section 1I) ka615x10"3 . With the expansion in

ka equation (5.9) becomes, to lowest order

O . iAhe
L =R 9 SHEL
rﬁt’ |
A5y = |
e
| + {Aa 9 S=T (5.11.a) ‘
|
and
p
raﬁ ‘' t#F )
(h '
asr = J j R
l. ’rg‘ - [}
|- Az e g L= (5.11.b)

Thus, the leading non-vanishing term must have at R ¢

least n factors of a. We will find later ; é




95 ‘

(Section VI1) that terms proportional to a" are

also separable and the leading terms will be propor-

tional to an+1 .
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VI. SINGLE SCATTERING MOBILITY
Before proceeding with the full solution for M
we restrict our attention in this section to the first
order effect of hard~core scattering.

Equation (3.21) for g, with n = 1, is given by

-8 £ A (5m)

“(9ure $la ¢
pepezfoh £ ¥ich [t A

%
 dter (6.1)

Our first task is to evaluate the various aver-
ages. In first order cumulant averages are equiva=-

lent to simple averages, or

A(gw) = Al @) 5 =3t (6.2)

To evaluate A we need the solution to the
Schridinger equation which for single scattering in
the S-wave approximation is

, 'Ry
:'.I'P,j -ifa A hy
- @

Y}(E;6)=(aﬂﬁ44[e sznﬁgxfj- ] (6.3)

To second order in ka this becomes
(A, K

- - -3/.? ‘I.E' ' e
Yk F)=am  [e ¥ - (1-cha) S ] (6.4)
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This leads to the diagonal matrix elements

L ()
Q[ iy e s

SR ET) (B4

= (FWN) ] dE F, Hi0 @ (F1e | fer)

. Ko (=Te)y o, e, ) ’
=(ema) [ [ PF b, JF0 € e f y{f'(r, ke '3‘ Yk n)
..[(“b 2Max + 2(2m)%? *h = fwj e e ]e (6.5)

With the definition of A in equation (3.16) we

obtain

;;.“ LA(94in) + A (G 0]
= Z2RATCTL)C (KTY +(0T-1) SIKTY) + KT, T feos £7-5u0 €77 (6.6)

3 AC(5i00)= - RYI+ AT 20 k) D (k) = (/mP (i l)a’*(‘J} (6.7)

where !
x 2
oC(¥)=[4/y cos Jgﬁ- (Fresnel integrals) (6.8.2) ‘,
X o, 2 ‘
3‘(7:)3[4’; 51”1?- (6.8.b) '
x ? ‘
D(X)=I?fo‘f# 34 (Dawson function) (6.9) 1

|
and the following dimensionless variables have been i
|
|
|

introduced
KA (6.10.a)
T=t/R » T=T/03 (6.10.b)
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Aza/p" (6.10.c)
R=allfas (6.10.d)

The intervening steps for the above results are pre-
sented In Appendix E.

L shows that

Expansion of the Fresnel integrals
for K212>l the RHS of equation (6.6) approaches
T/T where T = (2RAK)™* . Thus we find that, just
as in the case ¢ weak coupling, a relaxation time has
appeared as a direct consequence of the theoxry.

1f we limit ourselves to 2RAK1 (low density=-
high temperature; e.g. onelanﬁ-g@ndL3063xﬂ and assume
that the gaussian factor restricts the contributing
values of the momentum to K~v1, then in these cir-

cumstances Tp YT and the RHS of (6.7) is= 1. 1In

these circumsgtances

-R, ".&' o -:QARKT
= €C A (g1 2e ? - _4de

where m 1is the electron mass, § is the product of
temperature and the Boltzmann constant and (¢ 1is

the quantum-mechanical low energy hard sphere cross

2, C=4ma’ . The normalization 'Z was SROWE"

3

section

by Coopersmith” to be given by Z=exp(-R). Equation

(6+11) is exactly the same as the result obtained from

classical kinetic theory.4
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VII. EXPANSION OF CUMULANTS

In this section we will examine the nth

order
cunulant expansion and consider the effects upon it

arising from the levelling operation, cumulant separ- .

ability and the thermodynamic limit.
Each individual cumulant entering the expansion

of equation (3.21)

A (EwOLL % [0 + 500+ G¢i0]T) (7.1)

W, . 2 71 .
ACOLITGEO TG @I G0) 5 msmin=n  (7,2)

24 -y

is necessarily of the form J
l
An essential feature of cumulants for the considera- 1
tions in this section is that .ﬂ‘(ﬂ;?;) is expanded as a
sum of products, each of the form ;T’ﬂ(jz?&) . The |
prime on TT indicates thet the product is subject to |
the restriction %,m=n . This is discussed in more 1
detail in Appendix B.

Let us first consider those terms where one of {
the n, =n and the other two are zero. The levelling A |

operator will equate to zero any A which contains a

repeated subscript. However, some terms will remain

T — R TPV ST —E Ty - o S S R o8 o e e e a WA T A
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from a cumulant with repeated subscripts provided the
repeated subscripts iare distributed among the A's

such that there is no repetition of a subscript withkin

a single A . (See Appendix C). As defined in equa-
tion (3.16), A has a normalization proportional to
Ky~ The ensemble average of ﬁ(ﬁ;g& ) introduces
a factor proportional to Q0! « Thus each term of

th srder cumulant is proportional to 7% . As

the n
mentioned earlier, the dependence of A° on a partic-

ular set of scatterers is eliminated when the config-

uration average is taken. Thus, the n summations

over the subscripts are just the number of ways of

¢hoosing the different subscripts out of N . This is

N(N=1)ee+(N=n+l) when all n subscripts differ, and

erent subscripts

appear. Now we combine the results for N and {2 above

and go to the limit of large N and 2 , N/)=p,

For the case where all n subscripts differ we have

(NP =p™ . However, when there are only m differ-

1

!

ent subscripts we have N'/7 which in the limit of 1
large N and {2 is vanishingly small. Such terms

need not be considered further. ‘

1t remains to consider the terms for wiitich two l

(or all three) of the n, are non-zero. If one or

more subscripts are repeated within & single set of

-
<

bR RS RIS [T T e o e S e oy e - oer g weiv et A O S oV T o aa g T SIS RTE I S S PSS Gl asorapiain sy
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n; subscripts there will be nc contributions. This
follows from the same reasoning as above and these
terms will not be considered further. This leaves
those terms in which there are only m< n different
subscripts, but with no subscript repeated within any
single n, . In this instance the same considerations
used above show that there are terms proportional to
P"‘. Since there are n scattering inteiractions
involved, the non-separable (linked) term of lowest
order in a must have at least n°' factors of a .

If n>m+l these terms are of lower order in a than
we consider here. If n=m+l, these terms are in gen-
eral separable in the cumulant sense as is shown in
Appendix H. The exceptions are A°(§ g m)

and its complex conjugate  A(G(p1G(-¢t) with con-
tributions ~ Lo’ . A(G et g ee)) is zero because
it contains an odd function to be integrated over a
syretric region. The former terms are considered
further in Section VIII and Appendix 1. The latter
term is shown to vanish in Appendix J. As a conse-

quence of the above we can rewrite equation (3.21) as

PRS2

R T T e T A e e e T T S s A e

T A T 1 B UG S~ NS See Vo U e wo e
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pepezn [a e [y

 exefREHLIE Jeel v el 9l ]

[z u'r)Z,(/s) + Z.(A)Z(-"ﬁ_] )} }

{
+—
2}” (703)

Since most of the complexity of cumulant expansion
is present for n=3 we have compiled all n=3 terms
in figure 7.1l. They are listed together with a summary
of the highlights of the above discussion and refer-
ences to the locations of additional relevant material.

1t has also been shown by Coopersmith that another
simplification arises from the angular part of the in-
tegration required to express the coordinate matrix

elements in terms of the wave Ffunction, namely, from

f(f@ sine V¥ (7.4)

" From equations (5.7) for ¥ and (5.11) for A,,J. we see

that all coordinates enter ¥ ¥ multiplicatively as
either spherically symmetric scattered waves,

(kr)'l exp(xikr), or plane waves, exp(4ik:#). Since
the only angular dependence in V¥V¥ 4is in the plane
waves, the integration of expression (7.4) transforms

the plane wave part of ¥ ¥ into scattered waves.
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ﬂ' .‘.{Z.F ‘.ﬁk -(..‘r
f j@ Stne € = e - e
° ‘0'4'.

Thus the exponentials in V*¥ can be written as a
single exponential of the sums and differences of
coordinates, exp(ikZ#t; ), Considering the various
ways of obtaining combination = % h leads to the
conclusion that all such terms cancel unless they are
*Z' K , i.e. positive definite or negative definite.
‘ Since V*¥ is real these will be expressable as gines
and cosines of sums of coordinates.

There are two types of terms which occur in ]V*V.
They either arise from the product of a plane wave and
a scattered wave or the product of two scattered waves.
The latter terms must necessarily contain at least one
coordinate in the exponential which has the opposite
sign from the rest and will cancel those of the former
terms in which the argument of the trigonometric func-
tion is not positive definite. An explicit demonstra-

tion is given in Appendix D for the case n=2.

o . iyt N T — prrmysrey et TR ) O N R R 0 T S R (T s Y R T M =N 23 U I ST PR K
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VI1I. EVALUATION OF AVERAGES
In this section we present the explicit results
necessary for the evaluation of the exponential in

equation (7.3).

A L{LEg Bl B g 29000 +foge] ) (8.1)

We will first consider the averages and then the summa-
tions of the above expression.
Let us introduce the notation WA,(%) to represent
fl(}[":'i,- (o) and R,(x;2”) to represent that
m

part of ‘ﬂgﬁz@v which is proportional to a . In

this notation

\flc(L[}é ‘7},(“)]”) = /V(N-l)""(lv"'n-*l)ﬂ: (=) (8‘2)

Trom the arguments of Section V we know that
m2n . Two values of m will actually be needed,
namely m=n and m=n+l . The terms m=n alone are
insufficient because A, (#;a")=0 , as will be seen
below. However, this does not make A,(x;2") irrele-

vant as it does contribute to the expansion of A.(x;2™').

o e L e O I T f s gy vty s g i
B BT Sy B £ o X S AV R ey " e . T FI I PP N
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Let us consider

- R -'1'f(
Antit) =Ry S ff 05 <Fre

2 2

-\ "%& = 2 “‘t(%’*‘l a
(RIS e ./’"/'}:T,J"} Chi1e R (8.4)

Y -"-g-‘f N e e ‘I'Z'(’.':"'e"_ "[t(‘;ﬁt*fv;)
=5""e ﬁf}gln«ﬂwﬂpe (T le I

The contribution to (A.lit;a") from the coord-

inate matrix element is

> TR Y ? +re [
4 i " i g 4 & F Senhllast st b (8.6)
so that
, h
Anlit;a) = (-2Tail/) (8.7)

”'H)

while the contribution to A, (it a is

< N7
. TS fos Rt bt byt
4m-0a" pinfdh ke 7 “”*éf’,’:.‘f ,,._,r 'rn,"i (8.8.a)

and

2

(-]
g™ n ba f hpe * % DRt ¥ bt e o Vasy i Vit b
'm 2/ %o ‘2' K; e *;n-l,mrhe"l‘mmu tm,»;;'in-a,n ';o ]

(8.8.b)
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so that

" i At
P10} = 2UELEIPE). {@ J"‘ , - ")e#

LIRS

i nel nel ﬁ:t_;\"
- [ AL - ]e

(8.9)

Equation (8.3) is A.(¢) as defined in equation
(3.16). Equation (8.4) follows from equations (2.12)
and (2.14). Equation (8.5) is the transformation from
momentum to coordinate representation. Expressions
(8.6) and (8.8) follow from the discussion of Section
V. (Additional details may be found in Appendices D
and F. (8.6) and (8.8) are ex“ensions to general n
of expressions (F.3) and (F.4) for n=3). The inte-
grals in R.H.S. of equation (8.5), with integrands
given by expression (8.6) and (8.8), are evaluated in
Appendix G.

In a similar manner we have

LTV A AV -

A= SV [T 45 Kie " (3,6 ZR AENY
AL (KB, plEe 7 )
1id) c) - /
= (5% )f/’”W di. e (hte ¥ (8.10)
AdB;a") = (-amap/q) (8.11)

R L AR e gony eyt
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el -a7Pa) O.f 8 n oy a2y 43’ )
Rulpsa) = Hal2te M{a‘ fd’z[m;f) Froe ) (8.12)
The last average we have to evaluate is

-it(ed +V;) -p(£+V) w’

A (Gng o) B, [ 4 e e B (8.13)

:'u‘m. e -t (L)) -ﬂ(ﬂﬁw)f Y ML VJ A4+,

==((B, )k &)(8 14)
““/?53"6 Yo oplhpme™ 615

1

The identity™ for the commutator of an operator

A with the density matrix
,‘:/'”(_ J:-Z’€ L&A C AR (8.16)

was used to go from equation (8,13) tp equation (8.14)

where A is the time derivative of A. The transition

from equation (8.14) to (8.15) is presented in detail
in Appendix H.
The remaining averages in expression (8.1) are

obtained by complex conjugation, since

¥
A l-ct) =[An(0t)] (8.17)
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ALGP G-00) = LA(5000 Gm)] ™ (8.18)

We note that the cumulant separability of
ﬂ,,(“ia") for n>l follows from equations (8.8)
and (8.11) which show that

Ay (%527 =[ﬂ:(°‘3“)]” (8.19.a)

We also note that

A (itya) + Af (it ya) = A, (t;e) + A («tia) =0 (8.19.b)
Apse)=Alp3e)=-2Tpae/a (8.19.¢)

1t now remains to perform the various summations
indicated in (8.1). As discussed in Section VII the
n-fold summation over j from 1l to N, gives
N(N-1)...(N-n+l) which goes to N" in the limit nf
large N . Thus, performing these summations has the
effect of replacing N™° by F" in (8.8), (8.1l1),
(8.14), and (8.19.c).

The final procedure remaining is the summation

over n of the cumulant expansion.
| Clips MH
%W’ﬂn (it;2"")

. -l . (8. 20)
=5 3 i ! Z’En IT P A, (c¢52%) A (c5d")
Al 4 N
P 4




o 4 ! ] 3 3
=3 w2 e A frsd? )yl Luditsel] (8.21)

nri n AL (n )" )“_',{}gt;_‘ (“l) m,‘,
=i
22 A I Neg +!
"‘,.2; fo 3100~F) zﬂ» (it 7) [A, (858)] (8.22)
ve WU1X7 R
:%/ae [+ (RR+4%)(t- A>e ~28 ] (8.23.a)
exp (- ge/a)
similarly

= L Apia)
:,,”?R L(’M? [H (2@+p ["3)8

1&

"3) fﬁ} (80 230b)

In writing equation (8.20), the standard expression
for the cumulant . xpansion (see App. B) has been modi-

fied by separating out one A to demonstrate explicitly

n+l

the proportionality to a and inserting P to
indicate that we must include all the permutations of
the remaining A's that satisfy this propcrtionality.
Equation (8.21) is a rearrangement of the summation
which contains explicitly the combinatorial factor
arising from P and also makes use of equation (8.19),
Equation (8.22) follows from equation (8.21) as a con-
sequence of the properties of the Stirling number of
the second kind (see Appendix H). Equation (8.23) is

a straighforward summation of equation (8.22) with the

A's eliminated by using equations (8.7) and (8.9).
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The remaining cumulant is

);Jz‘(z IAE g';[ﬂ (56013400) = Algtie) A(3 ) ] (8.24)

The second term of R.H.S. is smaller than the first by
a factor of 071 gince each A is~0"l and there is
only a single summation ~ N . Therefore, the second
term is negligible in the limit of large N and {) ,
In the preceding sections we saw that the cumulant
expansion is equivalent to an expansion in £ and the
S=wave approximation with its related expansion in ka
introduced a further expansion into each cumulant.
Our approximation scheme now consists of locating the
leading term in a for each power of f and summing
these over all powers of [ . 1In this sense we are

solving the problem tu ‘'all orders."
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IX. RESULTS AND DISCUSSION
As a consequence of the work in Sections V, VII
and VI11I, equation (3.21) for the mobility can be ex-

pressed in terms of cumulant averages by
. R Y o
M :.-e/sz“‘v;{J&, e ? L ‘It
»
x exp[S AL ALt Pl (852" ) + ik it i)

+ LA (G0gm)s Alfngeco)) + NAUsa)] ]
(9.1)

Upon replacement of the cumulant averages by the explicit

expressions obtained in Section VIII, we have

hopoe, . K —f(BRK) T, -p(p R KT
/tzf—(f%afowkk"e‘e i feﬁe v . (9.2)
where
F=f+f,

(9.3)

1,

||

N” c n+l
> = A, (pia™)

4]

= AR{(K* k) DK} ~(@."+@ ) D(@-) +(@-2@ &%) D(@.)

[ -g—i -a _C;’,;
+Br[2Rk7G1ET < (1-a7) e ¥ ] } (9.4)
and fp 1is the time independent part of the second

term on the RHS of equation (8.1)

e — g B P sre T
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PURTE U =Y
= :a(m)”‘RAe{'[aVa zr_i;yv ¢ * (9.5)
Similarly
F=heh (9.6)

o " [
F=sm 4 [AS e v ps s )]

=2 AR{TO[S(@T) +C (0. /T )]
rk[S(kITR) - C(kiTR)] - @[S (a/T7)-C (077)]

- @.'V‘[(szn RT - cosRTYC(@. V77 ) + (senRT +cosk7')5(0./5—fr-)]

,ﬁ};; (S(‘”.TQ..; -coS TQ:)} (9. 7)
. KT A
Fo=a@mn™RAe* [ fr(p+ar " e 2 (9.8)
and
@: SKk'*aR (9.9)

Equation (9.4) follows from (8.22) and (8.9) while (9.7)
follows from (8.22) and (8.7).

It is interesting to note that for all physically
reasonable values of the parameters f2<< f, and F,&F,.
Thus no cumulant with repeated subscripts contributes to

the results.
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When we expand C(x) and S(x) asymptotically we find
that for Qf_<< T

= 204 (Re?) T (9.10)

In general there is a large region in which this is sat-
isfied. Typical values for a mobility experiment are
1071¢ 2RAR + k%)%2< 102 ana 107< 1< 1010 . Thus we
again (as in Sections IV and VI) find that after an in-
terval small compared to the duration of the experiment,
the transient effects die out and the system approaches
a steady state exponentially. We therefore make the
identification of the relaxation time as

- Yy
T I=2R/4(R+K')/ (9.11)

We note that where K»R (e.g. one atm. and 300° k) equa-
tion {(9.11) reduces to the first order result
T = (ZRAK)"'1 » As before, this relaxation time result
was obtained independent of the specific form of AH.
Figure 9.1 shows exp(f) as a function of K for
selected values of R. In each instance the function
looks like a step function with the step located vary
near K=0 and the step height dependent on R. For R~1
(e‘.g. one atm. and 300° x), exp(f)=1, as was the case in
the first order calculations (see Section 1V). The inte-
grations indicated in equation {9.2) were performed nu-

merically using a Simpsen‘s suilz for the K integretion

M UM T PSR g N oy ettt et O
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and a Gauss-Laguerre procedure for the T integration.
In the former it was necessary to assume that the gauss-
ian factor exp(-Kz/Z) provided an adequate cut-off, as
exp(f) becomes strongly divergent for large K. This is
a reasonable restriction as the inclusion of large K

is equivalent to considering contributions from high
energy electrons which is physically unrealistic and con-
trary to our mathematical restriction KA1 .,

Figure 9.2 shows ¢# vs. , for a temperature of
3.96° K. The circles are ,the experimental results ob-
tained by Levine and Sanders. The dashed straight line
is the semi-classical theory given by equation (6.11).
The broken line is the first order result obtained by
numerical integration of equation (6.1l) with the A 'sg
expressed by (6.6) and (6.8). The solid line is the
full result obtained by numerical integration of (9.2).
Sirnice the integral of (9.2) is a function of the dimen-
sionless parameter R = 2mPap, it followse that the solu-
tion at any other temperature (i.e. B) is a simple
translaticn (in pP) of the above result.

At lower densities the experimental mobility
approaches that predicted by the thecretical calculations
for free energy. The high density region is understood
in terms of the formation of a correlated, or "bubble",
state. However? the transition regig& in which there is

a large drop in # for a fairly small increase in f has

A e e e e - IR A T L e
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not been explained. Calculations based on a transition
from free electron motion to correlatéd motion predict
a transition that is much too sharp.l Our calculation
indicates a decrease in M4 that is gualitatively cor-
rect (i.e. the theoretical and experimental curves
have similar slopes) but the result is quantitatively
wrong (i.e. it occurs at too low a density). We do not
see any modification of the theory or improvement on the

hard~-sphere model that cculd cause the theory to coincide

quantitatively with the experiments.

It is rather interesting to- find that our theory,
which considers only free states, yields a mobili;& which
becomes, vanishingly small. The severe drop in # only
appears when all higher order (multiple scattering) terms

of the cumulant expansion are included and comes from

1
l
J
exp(f) (see figure 9.1) which in turn comes from . ‘
EAH,e'BHJ . In the formulation of the theory this is 1
the interaction of the external prrturbing force with
the equilibrium (4H=0) density matrix. Howeﬁer, the 1
physical process causing this rapid change in # 1is not

1

clear. One possibility is that our result is somehow re-

lated to the Anderson transition2 whereby conduction goes - s
to zery in certain random systems. Another pocsibility

might be the appearance of some ordering in the system.

Both of these suggestions are highly speculative, but do o
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indicate directions in which this study might be pursued

further.
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X. CONCLUSION

We have applied cumulant theory to Kubo's formula-
tion of irreversible quantum statistical mechanics. 1In
the weak coupling limit we saw (Section IV) that in lowe
est order the approach tolsteady state is always charac-
terized by a relaxation time. Similarly, fog‘hard core
interactions we found that with the use of Coopersrith
wave functions we derived a characteristic relaxation
time independent of the specific nature of the inter-
sction, AH. For the specific application to mobility,
AH = -zeE, we found that the general theory yielded

the well known results of semi-classical theory at high

temperature~low density. For the region of lower temper-

ature and higher density the theory was shown to give
qualitative agreement with the anomalous results of ex-
periment. However, the quantitative disagreement indi-

cated a need for further work on this problem.
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APPENDIX A
KUBO'S LINEARIZED ADIABATIC SOLUTION
OF THE LIOUVILLE EQUATION'
The density operator 2. (in the notation of

Section 11) obeys the Liouville Equation

i 9 < [y, p] (An1)

This is expanded as

i £ (prap)=[Hean; Praf]

=[HF]+ [Hy OF] + [AHsF] + [ aHHAf] (A.Z)‘

The equilibrium density matrix f° satisfies
"g-f' = EH s ]
and in a linear approximation we can neglect [aH,4P]

Thus

(:34;..4? = [aHsF] + [Hs0F] (A.3)

Wz now solve for Af

s e

O NSO TP W 4 et 1T i stsaeenisiue resipmese e SR | TSI
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CHAP + ¢ fraP v apH = [aHyF]

- l.fH ('Z"H -l‘f/'/ (.fH

e fele ape )e =-i[aHsF]

A -t'H

+ vt
-t , (CH
e Af’el H:-z'/;‘/f e [aHsr]e

(A.4)

where to is that time at which Llt):=f s AP(t)=0

This gives

S ~t-¢'IH (e -¢')H
dp--i[dt'e [aHyPle

which with the variable changes (t=t!')->t and

(t"to)"tE , becomes

Z, -(tH JtH

AP=-i[dt e [44sr] €

[P R I Y oo COMPTP IV A T o Sttt s, S ol ) T

(A.5)

(A.6)
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APPENDIX B
CUMULANTS - GENERAL THEORY™
This appendix summarizes the properties of cumu-
lant theory that are used in this work. Cumulants are
also sometimes referred to as semi-invariants or (in

complex form) characteristics.

The defining equation for the cumulants of x 1is

ﬂ‘(e“-—/)=4”nﬂ(€f?‘) (B.1)

where A is a normalized average and A° is the cumu-

lant average corresponding to the simple (non-cumulant)

average Jf . Both sides of the equation (B.l) can be |
expanded and coefficients of like powers of § equated.

This leads directly to

ALU) = Al = (B.2)
AHX) = A ) (B.3) |
A ) s A(x) = A (%) (B.4)

ATx) = A(x*) -3 A A (x) + 2 A () (B.5) R

. bt s i e e e A - M i
upemmg———— ety 2 rw— A AR R R T T SR S e e L o = "
’ 1
se h\ i
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A (xY) = AY) -[# A Alx) + 3R]+ 12 Al AX) -6 A%x) (B.6)

and so on.

Straightforward extension to multiple variable gives

ALY = g AT (8.7)

which yields the following relationships:

ﬂ‘('xaya):"/q(Xfyl) ~ﬂ(7‘l)ﬁ(7(n-) (B‘g)
RGHT) = A% %) = [RIZDA (%) + Rv )Rl %) +A00) A (%))

+ 2 R)A(%) R (%y) (B.9)
and so on.

A general expression for A (%%¥.X»)  where no

variable is present to a power greateir than one is

c " g+l 4 m;
A (%% e 7(,,)'-'2__7 (-1) (r-/).'Z: I‘:ﬂ(ﬂ, Koy ) (B.10)

The summation in (B.10) means the sum over all possible
arrangements of the set of n variables in ¢ subsets.
Much of the utility of cumulant theory in many-body
studies comes from its 'separability" property which can
be stated as follows: A cumulant will be zero if one
(or more) of its variables is statistically independent

of the other wvariables.

e R TR R e i s N P A S o
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As an example of separebility we consider equation

(B.9) with x,, separable. Separability of x,, implies

Lﬂ()‘l)") "ﬂ(“c)ﬂ()ﬁ) (Bolloii)
\ﬂ(\(:')(;)'t J?(Xa)ﬂ(x:) (Bo llob)
A (nvax;) = A ) AxXs) (B. ll.c)

Using equations (B.ll) in equation (B.9) gives

A% % %) = AV)ANN) = LA Alvexs) + A)ANIAN) s R DA AR)]

+ 2 AR M)A (%)
0 (B.12)
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, APPENDIX C
CUMULANYS' - IN THE PRESENT CONTEXT
The four step prescription for disentangling equa-
tion (3.17) is: expand the exponential, order the re-
gulting products, expand the cumulants in terms of the
corresponding simple averages, and lastly, apply the
levelling operator.

A specific example of this procedure is

Mx

-

Ao )

=ROLL (] + % [2 417+ #6851 1)

4

=ZAoLg) e B E A0LGS)
*':"s‘é,:éﬂ‘(ot %47 (C.1)
where
9= glt) +q(p) + F(-t)
.

SN N
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A typical expresslion that wduld require both order-
ing and levelling might be found in the third term of RHS

of equation 7C.l) where the ordering would consist of

AL G w3 5.4m) = RE(L 500119, (0) (C.2)

The RHS of equation (C.2) can be expanded in terms of

simple averages by

AoLd p) 9,000 ()

= A(L 9,03 (p) ~[ALL G0 QLG 171) 3 3 A(L G, () A (KA

+2 A(L9,00) A (LG ») (c.3)

Finally, application of L to RHS of (C.3) gives

A0L G, mT,ct19.m) = - 2[R(%mR(4 03, () nﬂ(%"'r')ﬂ‘{],.wﬂ (C.4)

In general, the operator I must be applied after
the cumulant has been expanded. In the above example
this means that L can be applied to RHS of equation
(Ce3) but not to RHS of equstion (C.2). Otherwise the
surviving terms in RHS of equation (C.4) would be lost.
In the present work, however, one could safely commute
the cumulant expansion and levelling procedures because
the surviving terms, as in RHS of equation (C.4), turn
out to be negligibly small. This last point is discussed

in Section VI.

I&w PRI P S oy g T = T R e L : : /=



APFENDIX D
TRIGONOMETRIC FUNCTIONS OF COORDINATES
We noted in Section VII that the arguments of the
trigonometric functions entering the coordinate matrix
elements are all positive definite. We consider this
matter further in this appendix which contains an expli-

cit demonstration of the feature for a=2.

Before proceeding let us introduce some notation and
collect some relations found elsewhere but needed for this

|
presentation |

l'.‘l‘"
e - 4
A, = a} ’ sET 3 Ry = Ly (D.1)
gss [ (:._.ea. (DOZ)
[ Q,
."'4 - - "'h
e T e (0.3)
2 - N .
A’( ) # Yy l+au Qia
Qa | +Qax
]+£Z:,k I
-“A};z_ o “z 7).
* e — dz, e
) =g DQA'
As @) 7T I'+al a; (D.4)
a;’; |+d;r




- 4 .
i- ! .r (’I’;r -‘/';r *
‘é f‘; e - e - a‘f - a“t

iﬁ';t' - Qs (D‘s)

f:t”o sing €

We will alsc use the following schematic notation for
locating terms in the determinants. A circle at the
locatiorni of an element indicates that the element contri-
butes to the result when the determinant is expanded.

The angular integration of "

» L muk

~-wfi(2) -
e Wl hr) (D.6)

ole  1EY=[2R Y (3T,
is |

bt - )
AR

/ ;.,Al(z)@,’ "'/L("We’l} (Do 7)

’

Yy

T 3 .
Lda sth @ [e.M “ +/’,“(2) d‘;; +/4:(2)ﬁ;,][g

Let us consider the particular cross product

rr, -kl
Ldo scng € A (2)a,, (D.8)

and look for those. terms containing indices 1 and 2 and

proportional to az and a3 (see Section VII for fur-

ther discussion of this point). The terms we want are

1
4
1

b NN oot o gy p= o s e e e O A T i TN .

o | N\ Y
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T ~ «H‘;
..f:aﬂe sind @ l ef ‘0 , '?“e'/

::-f: o s(né e {( a,,1 )(Ha.,)(lm,,) +(I+a,,_)(l a:) fam

v gt .
= ((4a) ["(aea'ae“z)au Roty{1-ay=a5) + (aﬂ-ae":)al:ae'l-} (D.9)
let us look at the exponentials contained in R.H.S.

l"(k!: +r“'f rf'l) !
alaam a,l, = e (Do 3,,0)

l% ("‘ Vea * hz + '}q)
Qys 21, Qe':=> € (D.11)

CA(Fe, + 21, + Vouy)
aia., =>e (D.12)

. (A Yot 2 b 4 k) |
Qg1 Gy Aoy = € (D.13)
The coordinates in (D.10) and (D.l2) are positive
definite while (D.1l) and (D.l13) are not. We will locate
the complex conjugate to (D.l0) and show how it combines

and also the counterpart to (D.ll) to show that it cancels

Let us look for az aﬁcam « The only other
¥
source for a}z‘ is from the scattered wave A, (a) a},
or -
™ "A'Pell " * '
[ do smoe” © priaray, (D.14)
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which gives
0
. (Reu ~@er ) la ' a*
(ARa ,o I 2 (D.15)
o
b
from which we can pick out
lt'\la)_'dz a,;&f; (‘4‘&”4‘&;1) (D-lé) ,

The other cross-product of this scattered wave is

m "
j;/g scn@ A, (2) d:z A 2) a,, (D.17)

which gives |

LA 0 0 @
10/6’ sing Jl_o_‘)?,'—a'e*z{ ‘la :‘, + {: o’l }ae., (D.18) J
from which we can pick out i
J
("ﬁa)ﬁlae’: A, Ry =2 mf Qi Ry (D.19) 4

Combining the first term of R.H.S of (D.9) with {
(D.16) and (D.19) we find that the exponentials with

ordinates of mixed signs cancel, and we are left with

20 [47 i h (bt it b)) = @ com At bt )] (p.20) 1

VA N N 1

S
UMV SR
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APPENDIX E
INTEGRALS, FIRST ORDER

Equations (7.6) and (7.7) are obtained as follows:

A, = ,2% [A(gun) + A(Gpt-c0)]

- S[A(Gua) s A ft-in))]

)20

X

[A(Gm) =1+ A(Gte)) =[]

4]

1&‘:\ B R |

£ ~) - =V Y Wl 'QE-A oL -
=2 (VB[ di[chie” T e 1T 135

=

<<

\

\

Lot -Be AHEhy)
+¢hle P [30e "e :Z> JF]

0 f o il R HE) it gy
=%-,{(ﬂfu)fd’3[e {#l€ "W+ e e ¢ ’;,2:)]-2]
Similarly

A, = Z”ﬂcfz- (n))
e

y -p4"- L (8
=2 [(eange¥) ',;7’); [ chie™ "1as 1]
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Thus we need to evaluate

L. (8 Y)
= [dF <Ale “1i>
- o - b -~» lad 1+V‘ -~ - by
=fd'}'/‘{'éf6(r€’<ﬁlﬁ>‘<}’¢le /)lr¢'><?¢’44>
3 -t (BmFor) .ot (LM V.
N R LA (A VAT tie
where
, e (Eeh)
(Fle 170

. RYY: _"‘z'ei S "%&/ “-‘,.,.'.‘:. ‘A F ‘.'"Z'g.,,
Z(am)|dh | € ShRAR e v el A (1~ ‘*"‘)T' |

RSP SRy A
xanifdfe Te

-ih’
(zzr)’l fJ/[Aa 5‘”4{("9”' ) +A G coma A (¥, +I;,,)]e a

u.- L 3 r ""“ '
g el [ 2l J ](?—")’/‘e-_(%‘”
= (2m) @ *‘(zrr)’ bty “J+ k) )(;;Jm,) «

o

1‘
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Eliminating th2 matrix element in °<kk we have

~xd’
4s = SUCAIAYE ®

~(rer)’

4({2,,)0; f/,-f/k sinke smﬂr[)jrw) ‘f’(f“"] -

-

<[] Oy (cond- <ok - afi] ¢

33‘%%2,1‘;‘*“‘]{)“fc{¥e pos,(-x +a,[/+;*r][d”é g%an-‘k}

: , -2 WA
S TR S AT

or

—oegt?
(= Qe ~’A[<./2‘zz> - B (,,,,,,‘[_{rﬁ(,e et ]]

With the substitution of ¢4, for the momentum diagonal
matrix elements of A, and A, above, equations (7.6)

and (7.7) are obtained directly.
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APPENDIX F
COMBINATORIAL FACTORS

In this appendix we show how to locate the parts of
the expanded determinants which enter into equations
(8+2)., This involves the explicit functional form of the
integrand as well as the combinatorial factor associated
with the number of ways of obtaining equivalent terns.

It will be convenient to introduce the following
simple diagrammatic notation for the terms to be consid-
ered., G5, » S#C 1is represented by a straight line
labelled s and t at the two ends. Repeated subscripts
are attached &: their commor. point. 8gg is represented
by a dashed loop attached to the point labelled 8 . In
this notation the term proportional to a2 in equation
(D.10) is shown in Fig. F.l.a. Those proportional to
a3 in equations (D.10) and (D.12) are shown in Fig.
F.2.8., Complete congideration of n=2 would have turned
ﬁp the additional terms indicated by the diagrams in Fig-
ures F.l.b and F.2.b.

The eguivalence between the determinant notation of
Appendix D and the diagram notation above is shown expli-

citly for n=3 in figures F.3 to F.l1l0. The determinant

shown is the one resulting from the angular integration

o U e-rae

o PN
ey enbe WP
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n » Pae
J;Jc siné ei[ P;'AJ (3)e,, (F.1)

The general structure of VY ¥ as the ratio of
determinants leads to the following conclusions. There

are n! equivalent terms ~ "

and having all n scat-
tering indices. This corresponds to the n! ways of
permuting the n indices among the n vertices exclud-
ing the fixed end points, e and e' (see figures
F.3.b and F.4.b)., There are two classes of terms ~a
having all n scattering indices. There are the terms
identical to those above except for the addition of a
dashed loop. As there are n vertices available for
the loop, there are n(n!) such terms (see figures F.3.a
and F.4.a). Finally there are the terms which consist of
a line of n' vertices between e and e' with an
attached loop containing (n-n') vertices aside from the
one shared witli the line. For each n' such that
1¢{n'€ n-1, there are n'(n!) equivalent diagrams. This
can be seen as n! was of arranging the vertices, given
a specific shared vertex for the loop and line, and n'
choices for the shared vertex (see figures F.5.b to
F.10.b).

The diagrams of figures (F.3.b) and (F.4.b) repre-

sent equivalent integrals, as do thonse of (F.3.c) and

(Fozﬂ'oC), (FOS) to (F08) and (Fog) and (FolO)o With the

P ettt AT OE ISR, | Gt e g A v e
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aid of these figures, and recalling the definitions of

equation (5.1ll.a) we see that

- ¥-0 e e -2‘:21" o b mb b
Jok V(650,00 ) e * Wi, E,E) (F.2)
contributes
g ~£‘/’:s',é’(lr Vat Fis+ Frer)
- 3 5/ 2 (N ot Vip+ Gyt 300
4Ta 3.[{/448 e s (F.3)

to  A(¢ja’) and

2

»o ""‘4
¥ 2 os (b + ¥, + Byt b
-ymma’” 3! dh L e 3£ £ et Viat st Ge
#m L "n"n V,, Ku'

scn R Ve+ Fu+2 Vs + bhet)
Ve, hz ';: ':e‘

+ 2

+ SnA(ttbhathyt Kot he) ]
Feitia K r)) Vie'

~
|
(1]
B~

N

to A;(%;a¥)

LA
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APPENDIX G

INTEGRALS ~ ALL INDICES DISTINCT; ntt

ORDER

This appendix contains the integrations necessary to
go from equation (8.5) to (8.7) and (8.9). The presentéa-
tion is based on the work done by Coopersmith in his study

of the free energy.l There the essential calculation was

-ﬂmnsz/a[m/ﬁy,i:(g,e |Fe )

sz---f}:'rl/r;‘e

where the trace was evaluated in coordinate representa-
"ion. In the course of that analysis it was necessary to
utilize the Fourier Integral Theorem. In our notation
this is equivalent to

- /3H(»)

V"ef‘“f,ff/?(éle [fer)

o P Hiw) . D .
N AL AR AT b A >AIR

W p o =BHM
= f“"z[:z‘rr)’ {f;“: 4F (hle

The bracketed expression appears as the basic building

(£

block for our present work. Therefore, we are able to
adapt his solutions provided we are careful to select it
in a form in which the final step (iee.jn&l ) has not been

taken.
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Let us proceed to evaluate the integral obtained
from equations (8.5) and (8.6)

(-fa)" ‘eﬁié SLRUAL I ' """t.'zi‘!"l :

L Ll n: e o ‘4 e sinkS
R"-’,ZTT"IZ f"cﬂf’/fet/gm'j;fﬂj
where SE(Vu"’ bt rn-:m*rne'?
First we consider
l. _s'-

" S alt

- 75 ()
f,d’l,{e 3 inAs T ,[Me cosls = »-7;-(75:'/‘8

This gives .
(’4'0’:"'@‘) -5

B" " U
- v Tr JF J" 7 4 e
R" “M’)m'ﬂ f !}:' ’ ¢ /re A0 ¢ Veron tne! S

. %, -3/0 ":fiél "
B, = g (zm) it) et (-ynfa) nt

ntl relative coordinates and n+2

As there are

variables of integrat®*on we can transform to new variables

and redefine s

H+!)

s=>2£lj
-s*
..(n-o-l) +H - W ' ,
R, =B f'ﬂl‘c/r,se sinhr

The method of solution is as follows: 1t is clear

that the effect of the n+l integration could be ex-

qually well by using a linear differential oper-

pressed e
ator {:“ such that




Ru= By £ 4 exp(-ct4'/a)

it is therefore sufficient to find the effect of perform-

ing this operation. An equivalent expression for

k exp(-de/Z) was seen above to be
g =
‘ﬂc 2 _mu.'fds Se .S'tnv(S‘

50 that we can let .«:=S$- and write

2
Y 00 ..__S_’_ no
=B A7 [ [ du s e FFsendy A" sonba

b.

g

=g, 4im “{“f/r.f i se T ginkr sinhu

" k-2A

3

= B,1 Kim (1k}'l£" /;;Sf:{l’ Y e.—m[cos[;(s "(""")"]"“5‘(‘54'Uf'.()}'}}

k>4

S

=By fim k' fc/s se (4% k) (4 sinks = kamks)

, ot -4l (ki h")
(1"‘) h(t'f')’/‘ j;'m 7(‘"4 e ‘ﬁ( ’ - f )
= Bh 2 K~A b kl"'l;

-t e_')"z‘(kit“) )

J
7 78 J n I_
=8, 6L Lo [ a2 5 f4E ( K> A

‘4'0?-2‘) A

_p, G e fa/x e

2 K=

A e i TR T eV T T
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Contemplating the initial expression defining ~&"
we note that

Va7 h H 4’/'!'/'H
['de T =P (£ ct)E L M iF

- Thus X
, am) L (e e ".'ffz‘ a 2 ., o a
2B, EEL e [ aa A R4, ey)

=
However, we also note that

7 , _ .
[ dr 2 P& ) 20, (47, 0t)

where Q, 1is also a polynomial with n terms. But

Qn-l must equal Pn; therefore Pn can contain only one

non-zero term and from explicit consideration of P2 (not
shown here; see reference (l)) we see that thies is the
highest power of (it), namely an(it)w”l . This gives

the recursion relation

. Pu-
a, = 2 (n=1)

s0 thdt we have

<t
(&”)”‘ (l'f');h (lct)" e 2

. n
R, = B &7 7 =(-anpacdt)

In a similar manner we now evaluate the integral

arising from equations (8.5) and (8.8.a)
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Zn(,:-s}::') o 'ﬂﬂ

¢ = aa(vfa)'n nj

"= Tam* SL f”‘/"/"/"r
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’:w,n rer 7o

-.S -5
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2l ~l)e
T () /‘< )

¢f'4 a (;”r)
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g A ) R A (=it
& N(~2Tfu) {
= T am € 777 4, ('t ) €

The remaining integral is the one arising from equa-

tions (805) and (8.8.b)

"
— 2 & (. a ”, 2 f‘t‘] 7 2 Z
TWE T rr)"f!i z "I T ‘/V* A, AV

-;'10(7"’;;0) ~l"k‘
) 2 [ ok ke Zsenks

b, Y rmmne'nmi r"'a”r'"" °

where now s 1is defined by

S=(h,th + Faetym* r",fpmmm*...r‘,,m+ N )

|
|
1‘
4

LK
nel
T, = aB,[S2(vn) "] :Z L f fd'ka’r“m} i, L8 b7,
e"'F‘EO*I/M =Rl Fe') "rﬁ;
'3‘ o ~l M&e'”ﬂmu rlmv ner/ se
m¢! neR - S"‘
ma o, JT sin Ay [T Sén Ky T
= Dn f"'/l'-’:. J'i ’_4’“! ' LT 4
o a Bh ”.I -
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APPENDIX H
E SINGLE REPEATED INDEX; n > 2
| We show in this appendix that where there are n
scattering interactions and only m=n~l different scat-
tering centers the corresponding A is separable to
order a .

Let us consider a set {m}{ of m different indices
divided into three subsets {my} , {my! and {mg} such
that {my} and {mg} have one index in common. Thus fm;}
contains the indices l,2...9...ml; m, contains m,+1,
My+2, sees My4my; mg contains my4my+l, my4mo+2...om,V .
This particular choice is convenient but not .iecessary
for the rnasults to be obtained. Specifically, we have
to consider that part of 1 which has all n inter-
actions represented and is proportional to a . I is
defined as

V) e ZM) tEr gV
( {,,,,];[}’eﬂ(.z ‘z“%]e HI};>

I, is represented diagramatically in figure H.l.a. The

topographical factor associated with how many ways we can

e

1
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obtain this integral for a given m 1is

", )"MZH'";OM)
= (m-1) 2 m (-1
z") ( =1 g’ ? (¥ JeMpm !

Ly can be rewritten as
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2
TEA
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ik ( “ Fass)
x € e V(/” {m‘;)m,u,mu

Aok "'in
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where { my{ contains the indices wy+my+l, My Mo +2; ¢ o0 o My
In the last step we introduced a Fourier transform
{nopened the ring") so that 1, is now indicated diagram-
matically in figure H.l.b. This figure also shows the

transformation to relative coordinates which gives

R T
pans Gl ey o FET DR

I,g,("t ”)E -ﬁ?ﬁ‘,;‘l‘ ’TJ,-‘('} € ¢ (“t./fs;"f),s.'
' . 5 A ”)'Z' ’3
LETEESE [T e " vip s,
. -4, Ny r
- S"),’s.' ) l‘z‘)%;‘ ,
If;“" )= %—:,'7 Z fff;’ AV ¢ ’ VN et fsi3)

The coordinate matrix elements are given by equation

(7.6) which is this notation is V(it,{z}) , 50 that

e,e!
~(Zr

Sy S~/ $a o .
_ey e (un) (sy-1)! f“.f 2 (S 2/
L, = o om e | Jdy sonkn (2 k)€

’

3

~bb wh
where K’'=4-4"

This multiple integral is evaluated in Appendix G

(as part of the evaluation of Rn ) with the result

$a-! ‘A:iwa
I, = =47 (-avap/n) g

/\ P S Y

O o o e e e m—




, Similarly
| .
* 5 :)'(-w) ! .:!’:f“
| L7 ;_p_ Tam ) 4K ‘rf /TT & *Esmlfgg”m,{«y( ke
1
o " SV ket - KA
| -"SIZ_! (5.2) (aa) 4T / [ t-AY) , T (¢t 3)8
“vE QM ww(s 00T -

S

v Sl"\)
: s W6 A lrtox) - 2 pem e S 51 00) (ve )
- —#7(s-2) (-ama) a(/)e e " f_m/ 2')1)2; (s-v)! VI

- ..R“”

i “l e .41(‘.'t')‘) "—k':—’ll S
~ -:—I/W(—arra/jz)s' f dx e e 7 ait)

where K = (k-kn)

The evaluation of IS is completely analogous to
3
I, Wwith s, replaced by s, and (it) replaced by
1
(~it). When the above integrals are collected together

we have

- Wy -
T =(-2ma it sa)™ '(-zﬂa/s/ﬁ) (-21Ta cz)"

-k 4Y) -ak' '“’"'if(lcz_‘i))

ga  fiwm . J p,gu(l=E ) L(/-e‘ o
X P.(am)¥ A ‘0’7-;./;,’{( K-A* ¢ e

Comparison of the coefficients on the upper line
. with equations (8.7) and (8.11) shows that the. simply
linked indices factorize and are therefore cumulantly

separable. The lower line is the contribution from tlie

F e s o . T ——— -

RS M S st ssp ot ataistaprmary 2
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repeated index and the integral is the reclosing of the

link at Yo
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APPENDIX 1
SINGLE REPEATED SCATTERING INTERAGCTION ~ fa’
In this appendix we look at that part of
which is proportional to az and contains the dual
effect of Vj . This immediately restricts us to the
product of functions of (it) and B, each proportional

to one power of a .

For this appendix we define AEA (§1tin)

S EGY)  Lp(Bey;) e

AP, D) (25 (Rle [3, Je "1k (1.1)
(R e [ (e T E Y GHEN, fd»e(”%,ek(""%/?)
(1.2)
d‘
(RN 2 |7 [mdu [, [48 V6t VB, V), 4 A V), 4
(1.3)
. *°‘(€-+V) -,
Vi), =(L1e 4
ok < T e"ﬂ/?*if'ﬁ

-h -

2 ' aa
=€ S(AA) = Tamye ¢ ( AL

gt s .. [ —

oy St TR NS o ot g e O S ,M..MM._&'%‘“ ey J... S
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-LE4%4")
tgfmfwfaf[/xm/ﬂ(' v )

. ..‘4‘(4‘1_41) -‘“'.“:).F 2-(1‘:"4(‘) o o > -
~B4,, - -4y ) Ay, § (A4
x[é 1(' : & )6 € Stk Ao, S(AA)

:("‘ -—4(4.14'—‘ ;)F
;(,{ -A)
4"J(Xf,s)e ( ) e
. BUL) | pdR )T
4 2 e o J]
;(44)?”5(#4)«4 é’_’l( VA )e

(1L.4)

+ €

‘. it ~U'-A")E
- fwzf/x{e [ 4xe

. 4‘_ "' b 4 a "(“"(Ia)#
x[f‘:lye( ")"_/"/g//e ]}
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_wiath (4 00 —’:“(x-f)fj-' 7"‘;‘"!’"4’*") (1.7)
"aﬂ)va‘ffl’llfe ,4,6 .
-‘ﬁ——# «‘/e o) (1.8)
tQ .
“an) 4 f‘/ f"ff (3-4+x)**
__-ma 14 2 9 .
(W)’" 4ok ¢f d'o(/”f‘)”‘ (1.9)
" L‘£ 42
wdf 'O
Foa Al "f’f 4 m G f"’f ’fwn”'] (1.10)
-aca'J‘; /3 (s -p*)e "
= m" Fa [f P A f tm/v ] (1.11)

In equation (I.2) we have introduced an identity

1

for the commutator. Equation (I.4) is obtained by

371
The last term in (I.5) vanishes because of Ky, which

|
of a from the product V(B)klkay(~2)k2ksv(a)k K. i
makes the integrand an odd function over the symmetric 1
region of integration. The order of integration is
changed in going from (I.6) to (I.7). (1.9) follows 1
from (1.8) with the change of variables x-y=p, y=q .
The complex integration in (I1.9) is taken along the real ‘
axis from (-q) to zero and along the imaginary axis from | |

zero to (it). A further interchange of the order of in-

tegrations gives (I.1l1l).
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APPENDIX J
SINGLE REPEATED SCATTERING INTERACTION;
NON=-CCNTRIBUTING
We use the same technique as in Appendix I and
select the term proportional to a® which contains both

the (it) and (-it) aspects of the interaction.

A (Gtie)§i-ct)

. . SCHRN V) -pf MMV
= (G,0) 'fa"r;(d-le‘ Jh'[;,e Je +'u>

gt -t
= (B QYA (8 Vi), (g e T ) Victlyy

The above is clearly seen to vanish as soon as we
recall (see Appendix 1) that, in order a, V(a),,,, is
an even function of k and k' . This makes the integral
over dR' wvanish as a result of the oddness of its inte- 4

grand,
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APPENDIX K
1

STIRLING NUMBER™ OF THE SECOND KIND
The multinomial coefficient Mq is the number of

ways of partitioning 4 different objects into m,. subsets

each icontaining k objects

% % _
My = T 5 2 A=t

The Stirling number of the Second Kind S(j) ig

defined as

$)

Thm-g
z m‘ =j.

It satisfies the summation relation

.} (
(-l)g },! Sz ))=‘
#=o

Thus from equation (8.21) we have

¢
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APPENDIX L
CUMULANT SUMMATION
Equation (8.23) is obtained from (8.22) as follows:
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Argument of ./ N, Q,p dependence Contribution of s/ to p  Location of discussion
and calculation

gjitigyitig it p3 ~p3at Section VI, VII, VIIT
g j(B)gk(B)gl(m Appendices E and F
gj{-ithgy-ithgy (-1t

g7lit NI 3 None (levelled) Section VI
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| Appendix I |
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g(it)gBlgy(-it p None (~pa3) Section V1 )
Figure 7.1 - A listing of all n = 3 terms arising from the expansion of y by cumulants, 4 é
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Figure 9.1 - exp(f) versus K for four values of R.
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—- — — Semi-classical theory
5 Present work; full theory
100 —— =~ Present work; first order
- \\ Temperature, 3,96° K
104 5
- OO
- o \
_ 6 \\
3 Q@ N\
10 = \\
. N
o 3 \\
e AN \\
_ o \
= 100k @
- 8
— O
10 = )
= @)
- @
i O
_ O
1 2 o
— O
n &
I &
1071 I N A 1 S Y P Y Y B N P B Y
1019 10%0 1021 10%2

P

Figure 9.2 - Mobility u (cm/Vsec) versus number density p
(atomslcm3) at constant temperature for a = 0, 62 A.
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Figure F. 1 - (a) Diagram corresponding
to equation (D 12). (b) Equivalent
diagram for n = 2, not considered in
Appendix D,
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Figure F.2 - (a) Diagrams corresponding to
equations (D, 11) and (D, 13). (b) Equiva-
lent diagrams for n =2, not considered
in Appendix D,
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Figure F.3 - (a) Schematic notation whereby the elements of the determinant ‘

which contibute to equation (E. 4) are indicated by encirclement. (b) Equi- |
valent djagram notation for term ~a’. (c) Equivalent diagram notation for |
term ~a4, | {




9%
1+ap a2 811 ~ 3]
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i
a3 a3 1 +ag;
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e'213ce 1
o' 4

' 213e e 213e ¢e213e¢
(c)

Figure F.4 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E.4) are indicated by encirclement, (b) Equi-
valent djagram notation for term ~a®, (c) Equivalent diagram notation for
term ~a™,
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a’)l ]+ 322 323
23] 432 L+ass
(a)
2
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e 3 1 ¢

Figure F.5 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E.4) are indicated by encirclement. (b) Equi-
valent diagram notation for term ~a-.
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1+ay) a)p 3e1]” %'l
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1+ay a2 93
31 1+ 2y 3
%31 a3 [0+ a33
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2
L 4 O 2 ]
e 3 1 ¢ 1
(b) 14
Figure F. 6 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E,4) are indicated by encirclement, (b) Equi-
valent diagram notation for term "83.
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1]+ ay a2 1] ~ 3]

%1 L+ 2 317" 212

o 3] a3 313 ~ 813
ke 1+ap a2 a3
91 [1]+ ay, 23

ag) a3 1+ a33

(a)

1
[ 4 4 Q *
2 3

e' e

(b)

Figure F. 7 - (a) Schematic notation whereby the elements of the determinant

which contibute to equation (E,4) are indicated by encirclement. (b) Equi-

valent diagram notation for term ~a3.
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Figure F.8 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E. 4) are indicated by encirclement, (b) Equi-
valent diagram notation for term ~a-.
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1+ap ayp a3
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Figure F.9 - (a) Schematic notation whereby the elements of the determinant
which contibute to equation (E. 4) are indicated by encirclement. (b) Equi-

valent diagram notation for term 3’
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[+ a1 212 811 ~ 31]
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Figure F, 10-(a) Schematic notation whereby the elements of the determinant
wnich contibute to equation (E.4) are indicated by encirclement, (b) Equi-
valent diagram notation for term ~a°,
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Figure H.1 - Diagram representation of I,,. (a) Initially.
(b) After the Fourier transform.
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