
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



r

A QUANTUM MODEL OF COMMUNICATION SYSTEMS

A Dissertation

Presented To

z
the Faculty of the School of Engineering and Applied Science

University of Virginia
Y

ci

a

W In Partial Fulfillment

o,' the Requirements for the Degree

Doctor of Science (Electrical Engineering)

By

Melvin D. Aldridge

June 1968

N69- 1 9622
M
O

E
(ACCESSION NUMBER) (THRU)

lob
IP O[q ICODE)

0 nk-
INABA R OR TMX OR AD NUMBER$ (CAT[OORT)



APPROVAL SHEET

This dissertation is submitted in partial fulfillment of

the requirements for the degree of

Uoctor of Science (Electrical Engineering)

Author

Approved:

Faculty	 ser

Dean, School 0
Engineering and
Applied Science

q

June 1968



ABSTRACT

The problem of including quantum effects within

existing methods of communication system analysis is

investigated. A mathematical model is postulated for

describing narrow bandwidth systems.	 Utilizing the Glauber

P representation, the model permits analysis of both real

field detection (measurement of electric and magnetic

field magnitudes) and photon detection.	 The resulting

equation which describes photon detection is shown to

be consistent with previous work which has been proven

experimentally.	 Unique aspects of the postulated model

are its ability to describe both random and deterministic

modulation functions in conventional terms, and its

ability to demonstrate the inapplicability of the "photon

channel" model for describing present-day systems.

An analysis of quantum effects at the transmitter

shows that modulation of the radiated field must take

place by one of two distinctly different processes.

Wave modulation is defined as a process which conveys

information in the amplitude and phase of the electro-

magnetic field.	 Photon modulation is defined as a process

which conveys information in the exact number of photons

per pulse of the transmitted field (i.e., the "photon

channel" of Stern, Gordon, ani othfrs). 	 A wave modulated



signal is shown to describe present-day modulation

schemes and, moreover, to yield random photon fluctuations.

It is concluded a wave modulated signal is not capable of

describing a photon modulated signal. 	 In contrast, a

photon modulated signal is shown to possess a completely

random phase fluctuation thus demonstrating the inability

of the "photon channel" to describe presently used wave

modulation schemes.	 For wave modulation the Glauber P

function is shown to be identical (with a change of

variable) to the classical joint probability density of

the quadrature components of a narrowband sinusoid

used in conventional analysis. Equations are derived which

"transform" classical probability distributions into

distributions which include quantum effects.

The "partitioning noise" studied by Hagfors and

Bowen is found to constitute a source of noise only in

the "photon channel." The "partitioning effect" is

shown to merely preserve the Poisson character of photon

counts in wave modulated fields and therefore does

not introduce a noise in present-day systems.

For a wave modulated system with real field

detection it is shown that photon noise can be included in

conventional analysis by adding to the normal input noise,

a noise density of hf c /2 Watts/Hertz where h is Planck's



constant and f 	 is the system carrier frequency.

Use of photon heterodyne detection requires the addition

of an input noise density of hf c Watts/Hertz.	 The

photon noise is exactly additive Gaussian for real field

detection and approximately additive Gaussian for

photon heterodyne detection. Detection by counting the

received photons is shown to yield neither Gaussian nor

Poissonian statistics.	 However, with an "ideal

measurement process," when the effective received noise

density n c	is much less than hf c , the variance of the

counts are found to approach that of a Poisson distribution.

Conversely, when nc is much larger than hf c , the

.	
variance approaches that derivable from a classical

analysis.

A channel capacity equation for a wave modulated

system is found which is equal to those derived by

Lachs and Jelsma.	 The equation is shown to give

capacities less than that derived by Gordon.
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CHAPTER I

INTRODUCTION

Invention of the laser has aroused considerable

interest in the use of the electromagnetic spectrum above

conventional microwaves. 	 Potential improvements due to

highly collimated beams and large bandwidths make very

short wavelength radiation attractive for both space

and earth communication applications. 	 D. Gabor was the

first to point out that use of radio frequencies in the

infrared and visible regions would require a consideration

of photon noise or the quantum properties of radiation

(Reference 1).	 The study reported herein investigates the

general problem of including photon noise within existing

methods of communication system analysis.

Review of Previous Work

Following Gabor's original work in 1950, additional

studies on quantum effects in communication systems were

not reported until 1960. 	 All of the works published thus

far fall into one of the two broad categories discussed

below.

References 1 through 13 share the characteristic

of having derivations (and possibly results) that cannot

be related to conventional concepts of amplitude and
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phase modulation. Most of these works are concerned only

with the derivation of a channel capacity equation which

includes quantum effects.	 The usual approach implicitly

assumes that any channel can be considered to convey

information by the exact rumber of photons transmitted

in each frequency-time c0 1. This mc A el has been called

a "photon channel." The derivations do not reveal how

quantum effects can be included in the analysis of

conventional communication systems. 	 The most referenced

work in this category is Gordon's second paper (Reference 5).

She and Hagfors have taken issue with certain aspects of

Gordon's work.	 She (Reference 14, page 4) noted that

Gordon's use of only one sample per frequency-time cell

does not obey the correspondence principle since it is

well known that two samples per cell are required in

classical analyses. 	 Hagfors (Reference 1, page 2) has

shown that Gordon's work neglects the effects of free

space attenuation which introduces a "partitioning noise"

.n the channel.	 Bowen (Reference 13) has investigated

"partitioning effects" for the case of large free space

attenuation. Neither Hagfors or Bowen have discussed

the significance of this noise in conventional amplitude

and phase modulated systems.
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References 14 through 18 utilize approaches where

conventional concepts of amplitude and phase as well as

the number o f photons evolve from the quantum theory of

free fields.	 In 1964 C. Y. She and G. Lachs independently

made the first attempts in this direction (References 14

and 15).	 Simultaneously L. Jelsma was pursuing a

similar path (Reference 16). 	 Also based on quantum

field approaches, Helstrom and Karp have analyzed

specific optical detection problems (References 17 and

18).	 All of References 14 through 18 either directly

utilize or are related to the Glauber P representation of

the "coherent state" (References 19-22). 	 The P

representation was developed for describing the quantum

theory of coherence for optical fields and has been the

subject of several quantum theoretical discussions

(for example, References 23-25). 	 The relationship of the

Glauber P function to a classical probability density

appears to be the key to developing methods for directly

including photon noise within conventional analysis.

Previous neglect of this relationship has created

confusion relative to statements made by Glauber. 	 For

example, Minkowski, et. al. (Reference 26) have cricized

She's work for his use of the P function because Glauber

does not equate it to a probability density.
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She, Lachs, and Jelsma did not discuss the

description of modulated fields.	 Lachs has subsequently

developed a multi-mode description of modulated fields

(Reference 21) which has been applied to the analysis of

a frequency modulated system (Reference 28). The mathe-

matics of the multi-mode field are cumbersome and as

developed by Lachs appear to be useful only for describing

deterministic modulating wave forms.

In addition to the problems outlined above, most

O f the works referenced in this section are so strongly

couched in the language and mathematics of quantum theory

that the separation of conventional concepts and those

unique to the quantum properties of radiation are not

well defined. Moreover, no attempt has been made to relate

the consistencies or differences between the "photon

channel" and quantum free field approaches.

Statement of the Problem

In view of the previous work, the study presented

herein is addressed to several specific problems. 	 The

general objective is to develop techniques which permit an

inclusion of quantum effects directly in existing methods

of communication system analysis.	 This requires the

development of a model which is compatible with the require-

ments of quantum theory but still maintains the conventional
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concepts of amplitude and phase modulation, correlation

functions, and Landwidths. 	 The role of the modulation

process at the transmitter must be studied to determine

what mea,iing, if any, the "photon channel" holds in

describing conventional modulation schemes. 	 The effects

of free space attenuation is studied to determine how the

"partitioning noise" studied by Hagfors and Bowen affects

the work shown herein. 	 Since the Glauber P representation

offers the only quantum theoretical method of describing

a field with both classical and quantum concepts, the

relevance of the P function to a classically derived

probability density must be studied.	 Finally, the results

of this paper will be compared to Gordon's work and his

use of the "photon channel."



CHAPTER II

A COMMUNICATION SYSTEM MODEL

To include the quantum properties of radiation in

rodern communication theory, a model must be available

which is describable by the analytical techniques of

communication theory and compatible with the requirements

of quantum field theory. This chapter presents the

development of a model which will be altered in the next

chapter to include quantum properties. 	 A unique time

sampled description of the field permits conventional

concepts of temporal fluctuations, bandwidths, and

correlations functions to be carried into the quantum

analysis.	 The inclusion of quantum effects at bcth the

transmitter and receiver will be possible.

The Basic Model

Consider the block diagram shown in Figi.re 1.

The modulated transmitter radiates a field of which the

phase or amplitude is being controlled by the information

source.	 A receiving aperture collects a small portion of

the transmitted field as well as fields arising from

sources of thermal noise. 	 The total received field

is measured and demodulated to give an output of the

received information.

6
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Temporal fluctuations of the field's amplitude and

phase are determined by the information source and the

technique of modulation. Many modulation methods are

knot-in and have been analyzed extensively to determine the

resulting characteristics of the radio frequency wave.

Therefore, a mathematical description of the fluctuating

radiated field will be adequate for the purposes of this

paper since this implicitly includes the inf;_^rmation

source.

Since quantum effects must be considered at both

the transmitter and receiver, a description of the field

for both cases is presented.

Description of the Transmitted Field

Consider the linearly polarized electric field

E T (r,t) which is prepared in the transmitting aperture

a_.	 The field in the aperture can be considered

equivalent to the voltage

E T (t)	
ff E

T (r,t)da T	(2-1)

a-,

Assuming the process which prepared E T (t)	 is bandlimited

to A T Hertz and centered at f 	 the carrier frequency

w r;ere

WT<<fc	 (2-2)



9

	

L T (t) = x T (t)cosw c t - Y T (t)sinw c t	 (2-3)

where x T (t) and Y T (t)	 are the quddrature modulating

components.	 Lquation (2-3) can be written in the form

	

E T (t) = A T (t) cos[w c t + O T (t)]	 (2-4)

where

AT(t) =	 x T 2 (t) + YT2(t)

6T(t) = tan-1 YT(t)

XT(t)

Since W T is centered at fc, it follows that x T (t)	 and

Y T (t) are bandlimited from zero to ZT Hertz. Therefore
(Reference 45)

W
sin 2T(t - ktT)

x T (t) =ExT(ktT)	 (2-5a)

k	 WT( t - ktT)

sin WT (t  - ktT)

Y T (t) = EY T ( k tT) W

k	 -y 
T 
(t - kt T )	 (2-5b)



_ 1

tT	 WT
(2-7)

10

IX	

sinWT(t - ktT)
E T (t) = ^	 T (kt T )cosW c t-y T (kt T )sinA c t 

W^ 
2(t - ktT)

(2-6)

where

Equation (2-6) can be translated into the equivalent

circuit shown in Figure 2. 	 If

G T (^) = 1	 for -	 2T	
T^^,^	 2

(2-8)= 0!W1 >	 T
2

x * (t) = 
1 ExT (ktT )b(t - ktT)

T	 WT k

and

then

XT (t) = f x T * (T)g T (t - t)dT

where 
9T 

(t)	 is the impulse response of G T (w) or*

^T7is development obviously yields an impractical
result since no filter output can exist before the input
impulse occurs.	 In reality, a filter of the form (2-8)
reouires an infinite number of energy storage elements and

introduces an infinitely long time delay. The time
y is neglected here for convenience.
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00

	 jwt

g T (t)	 'j.G l (w)e	 dw

w
sin —7t

= W T	
T

Therefore

a	 wT

	

x T ^(t) =	 T - ktT) sin —,f(t 	
dT

k	
'T(t - t)

=
^x (kt ) sin 7(t - ktr)

T	 T w

k	 2(t - ktT)

which agrees with (2-5a).	 An identical derivation applies

to YT(t)	 and the	 E T (t)	 in Figure 2 is equal to (2-6).

Description of the Received Field

The voltage equivalent to the received electric

field	 E R (r,t)	 in the receiving aperture	 a R 	is

E R (t) _ A R E R (r,t)da R 	(2-9),

Assuming the field measurement process is bandlimited to

W m Hertz centered at f 	 and

W m <<f c	(2-10)

it follows that
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L R (t) = x R (t)coswc t - y R (t)sinw c t	 (2-11)

= A R (t)cos[w c t + 0R(t)]

where

AR(t) =	 x R 2 (t) + YR2(t)

^ R ( t) = tan -1 .Ab. .

R

Because W
m
 is centered at f c , then

sin	 (t - ktm)
E R (t) 	 xR(ktm)coswct - yR(ktm)sinwct

k	 —y(t - ktm)

(2-12)

where

t 	 = 1 Wm	 (2-13).

Since noise fields may not be spatially coherent,

the definition of E R (t) with the integration (2-9)

inplicitly assumes that a specification of E R (t)	 includes

any spatial coherence affects over the receiving aperture.

Atmospheric effects may cause the received signal to

also not possess perfect spatial coherence. However, for

the purposes of this paper such effects will be assumed

negligible.
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A circuit analog to (2-12) is shown in Figure 3.

This circuit can be considered a model of the physical

process which measures the incident electromagnetic field

to establish its amplitude and phase. 	 If

W	 W
Gm(W) - 1	 - -7

(2-14)

W

Then

mf
x R ' (t) = 2 J ER(T)gm(t - T)cosWCTdT

where g m (t)	 is the impulse response oc Gm(w), or

jWt

g m (t)
L

G m(w)e dw
TT-r

sin
w
—mt

W
M wm
-7t

Therefore

XR ' (t) =	 r [x R ( T) + xR(T ) cos2wcT - 2yR(T )sinwCTcoswCT]

W sin 
Wm

(t - 
T)dTm

-^(t - T)
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and since (2-10) holds, it follows that

on	 sin w
x R

1
(t) = WmLxR(')7(t

T  
dT

wm 	 (2-15)t - T)

Therefore x R (t)	 is seen to be the result of averaging

over states of x R (t)	 at other than time t.	 Since

W
sin mt

LWm
	dt = tm	 (2-16)

-7t

it is evident that the convolution expresses an averaging

over the equivalent time period tm. Taking the sampler

to yield impulses

x R * (t) _	 Ex R ' (ktm ?a(t - ktm)

Wm k

then
^1 	

wm
*	 sin	 T

L

	 t -
x R (t)	

xR (T)Wm m (t - T), dT

^x (kt 
) sin^ t - ktm';

k R	 m Wm
ktm)

of

An identical derivation applies to y  (t) 	 proving the

equivalence of the analog circuit to (2-12) and the

process which measures the classical field. 	 In addition to

the measuring process, the receiver can include bandpass

filters before and alter the measurement process as shown
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in Figure 4.	 Examples of premeasurement filters are

optical and waverjuide filters which operate directly on

the electromagnetic field.

Statistical Description of the Samples

If the quadrature components are ergodic, Costas

(Reference 29) has shown that

T	 m

x^	 lim	 fx k (t)dt = lim	 xk(itT)	 (2-17a)

T	 T 	 '	 o T	 m+00 m i= 1

YT

	

k = lim 1 
fo
y k (t)dt - lim	 M y k(itT)

^-'°° t 	 T	 m-+^ m i = 1	 (2 - 17b)

Similar equations

and for the

nd yR(t).

x= and YT
—

described by

over an

where k and m are positive integers.

can be written for correlation functions

received quadrature components x0 t) a

From the ergodic assumptinn, the moments

(and their correlation functions) can be

the joint probability density 	 PT(xT,YT)

ensemble of transmitters. That is

xTT -ffXT k PT(XTPYT )dx T 
dy T	 (2-18a)

YTk =ffy T k P T (x T ,Y T )dx T dy T	(2-18b)
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where each transmitter in the ensemble is modulated by

the proper function to yield the required PT(xT'yT).

Similar arguments can be applied to the measurement

process at the receiver (where the received noise is

assumed to possess ergodic quadrature components) to

yield

x R k + ffx R 
kP R (x 

ROYR 
)dx 

R 
dy 

R
	 (2-19a)

YRk = ffy 
R 
kP 

R 
(x R oy R )dx 

R 
'<j 

R
	 (2-19b)

where P R (x R ,y R ) includes both the received signal and

noise. The effects of noise can be isolated by

considering

PR(xR.YR) =ffpR[ (x R*YR)I(XSIYS)IPS(Xs§Y s )dx s 
dy s

where P s (x s sy s )	 is the distribution of the received

signal.	 Then

xRk	 ff [4  x R kP R [(x R .Y R )I( x S .Y s )J dx R dY R PS(xS,Ys)dxsdysxsysR

HOR k . ( x s .Ys )> P s ( x s oy s )dx s dy s 	(2-20)

xsys

where	 <x R k ^(x s sy s )>	 is the conditional average of xRk

knowing what signal was transmitted. 	 In the event a
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deterministic modulation function is transmitted (such

as a sinusoid), the ergodic assumption can again be

applied to yield

r
X R 	 lim T 

Px
R k ,[ X S (t),y s (t)]>dt	 (2-21),

t	 0

Identical derivations apply to yRk and correlation

functions.

The behavior of P T (x T ,yT ) for describing modulated

signals is an important aspect of the model being

developed herein. The distribution of x T and YT

over an ensemble is indicative of their behavior in time

in an actual system. For example, in an amplitude

modulated signal, only the wave amplitude is varied

while the phase remains constant in time. The magnitude

of the phase is unimportant and is merely a function of

an arbitrary time reverence. Amplitude modulation then

requires the quantity	 x T 2 (t) + yT 2 (t)	 be a function of

time while the ratio YT(t)/XT(t) must be constant with

an arbitrary magnitude. Over the ensemble, PT(xT,yT)

must reflect this requirement.	 That is, in polar

coordinates

P T o (A T o0 T ) = P T I (A
T 
Me 

T  - 
0 
T 

I )

	 ( 2-22)



where

AT = xT + YT 2

- YTeT = tan 1 x
T

a(t)T - 0
T 1 ) = Dirac, delta function

and OT'	 is an arbitrary constant. This contrasts to

a set of experimental systems where 
eT1 

normally is

random over 21T	 radians.

In the case of phase or frequency modulation the

YT(t)ratio	 becomes time variant and xT 2 (t) + y2(t)

xT(t)

remains constant. However, an arbitrary time or phase

reference still must exist so that changes in phase are

equal to those of the information source throughout all

time. Therefore, in general, either amplitude or phase

modulation or their combination requires both x 	 and YT

be well defined over the ensemble used to describe time

averages.

The same conclusions can be applied to the

received signal distribution P s (x s ,y s )	 since the only

difference between the P s (x s ,y s )	 and PT(x YT)	 is their

relative amplitudes A s and AT.
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CHAPTER III

QUANTIZATION OF THE CLASSICAL MODEL

In this chapter a discussion of the requirements of

quantum theory is presented and a method for including

these requirements in the classical model developed in the

preceding chapter is postulated. The resulting model

is shown in this and the next chapter to be consistent with

the quantum requirements and experimentally proven

equations for photoelectric detection. Quantum effects

introduced at tha transmitter are investigated. The

Glauber P representation is introduced and the classical

character of the P function determined.

The model postulated in this chapter is unique in

several ways.	 It is capable of handling both random and

deterministic modulation functions in conventional terms.

Application of the model to the transmitting

process offers the first plausible explanation for the

inadequancies of the "photon channel" for describing

conventional amplitude and phase modulation systems.

For the case of conventional systems, the Glauber P

function is shown to be equal (with a change of variable)

to the classical probability density P R (x R ,y R ) when

describing the "ideal" receiving process.

22
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The Requirements of Quantum Theory

It is well known that electromagnetic radiation can

exhibit properties which are indicative of both wave and

particle phenomena.	 'article properties are probably

most easily demonstrated by photoelectric or photon

counting experiments.	 Extensive theoretical descriptions

of the statistics of photon counting distributions have

been developed using both semiclassical and purely

quantum mechanical methods (References 30-33).	 Recently

these results have been given experimental verification

(References 34-36). These works have shown how the

wave properties of radiation are exhibited when the photons

are detected. Less understood is the converse problem.

How are the particle properties of radiation exhibited when

the wave phenomena are detected (hereafter called real

field detection)? Detection of received signals by an

induced antenna current characterizes the latter problem

and is important in determining quantum effects in

millimeter and submillimeter ,vave systems.

There has been little discussion in the literature

on a quantum mechanical description of the real field

detection process.	 Heisenberg (Reference 37) and Bohr

and Rosenfeld (References 38, 39, see also 40) have

considered the case of taking one isolated measurement
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of the electric and magnetic fields. 	 These works use

hyphotetical measuring systems to demonstrate how the

quantum theory of a free field measurement is consistent

with the quantum properties of the charged matter which

must be used to effect a real field detection. The

referenced works shed little light on how photon noise

affects practical real field measuring systems.

In view of the lack of understanding of the real

field detection process it will be necessary to postulate

a model for the complete description of the transmitted

and received electromagnetic field. The model will be shown

to yield the same photon counting distribution first

derived by Mandel (Reference 30) and later proven

experimentally (References 34-36).	 It will also agree

with Bohr and Rosenfeld's description of one ideal real

field measurement.

In order to establish the necessary properties of

the model to be postulated, the general requirements

imposed by quantum theory are outlined in the remainder

of this section.	 In the ensuing discussion the terms

preparation, measurement, and system state are defined

differently than in conventional quantum theory. A

preparation process is defined as an attempt to establish

a system in a desired state. However, after completion
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of the preparation process the system may not exist

in the desired state because of the uncertainty principle

(see discussion which follows). 	 One is able only to

predict in a probabilistic sense the actual resulting state.

In contrast, a measurement process is defined as an attempt

to determine the state in which a system exists prior to the

beginning of the measurement process. However, the

accuracy of the measurement is limited by the uncertainty

principle and one can only guess in a probabilistic

sense what the true system state was prior to the measure-

ment. Conventional quantum theory does not give

separate emphasis to the preparation process since it is

argued that the two are identical in principle and

therefore should not be distinguished. However, Margenau

has argued the contrary (Reference 41) and recently

Prugovecki has viewed the distinction as fundamental

(Reference 42). She and Heffner (Reference 43) have

shown how the distinction exists in the mathematics

which describe a conservative quantum harmonic oscillator.

In this paper a consideration of the preparation process

is necessary to account for quantum effects introduced

by the transmitter, a point neglected by previous studies.

The state of a system is defined by two conjugate

quantities rather than only one quantity as in conventional

theory.	 Such a definition is not new and has been utilized
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by She (References 14 and 43). The newly defined state

still permits one to consider the conventionally defined

state as discussed in the next paragraph.

As noted above, the results of a preparation or

measurement process must not violate the Heisenberg

uncertainty principle. This principle accounts for a

natural limit on man's ability to simultaneously prepare

or measure certain variable pairs which describe the

state of a system. Heisenberg has shown that the limit

is approximately (Reference 37)

opaq ti h	 (3-1a)

4A  ti h	 (3-lb)

whe-e

A root - mean - square deviation

q position

p momentum

6 energy
t time

h Planck's constant (ii = Z,r)

The uncertainties or root-mean-square (rms) deviations in

(3-1) are of a statistical nature over an ensemble of

systems and are the result of the unavoidable and

unpredictable interaction between the preparation or

i	 ^
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measuring process and the system. 	 For example, consider

an attempt to prepare each ensemble member into the

same state defined by the variable pair (go,po).

by Heisenberg's arguments it is physically impossible to

prepare all members into the same state (g o ,p o ), but

rather the best nature will permit is expressed by (3-1).

This does not preclude the possibility, at least in

principle, of attempting to prepare all members into

identical states of either p o	or q 	 (i.e., conventionally

defined states).	 From (3-1a) such an operation would

yield an infinite rms deviation of q or p respectively.

This is an unrealistic result which has long been recognized

(Reference 44). Although a consideration of only one

variable has been successful for most quantum mechanical

problems, the developments which follow in this paper

will use harmonic oscillator states which require both

p and q be well defined over an ensemble.

In many cases one does not wish to prepare all

ensemble members into identical states (g o ,p o ).	 For

example, the statistical description of a noisy system

can give rms deviations larger than those in (3-1).

However, the excess uncertainty over h	 is, in principle.

controllable by man while that expressed by (3-1) is

not controllable and must be an inherent part of quantum

theory. For example, one can control the amount of noise
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emitted from a thermal noise source via control of its

physical temperature, but no such control is possible over

the uncertainty of (3-1). 	 In the sequel, sources of

uncertainty will be referred to as "classical" or "quantum"

in orgin, the latter noting the uncontrollable

uncertainties introduced by the unpredictable effects of the

preparation or measurement process.

Following an attempt to prepare a system into some

state an attempt can be made to measure the resulting state.

However, the measurement process is also subject to the

uncertainty principle making it impossible, under any

circumstances, for one's knowledge to exceed that allowed

by (3-1).	 Again this does not preclude the possibility of

making a perfectly accurate measurement of either p or

q for the example given above. However, such an operation

yields no knowledge of q or p respectively. 	 It should

be noted that the uncertainty relation (3-1) has been shown

to be consistent with the quantum theory of free fields

(References 39 and 40).

Dirac (Reference 44) has not only required measure-

ments to be taken instantaneously, but he has noted that the

unpredictable interaction between the measuring process and

the system being measured requires a new wave function to

describe the system immediately after the measurement. The

form of the new wave function is important in establishing
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how the unpredictable interference of the measuring process

affects the accuracy of all subsequent measurements. She

(Reference 14) is apparently the only worker to have

considered this problem in detail. 	 Specifically, he

analyzed the case of measuring the position and momentum

of a lossy harmonic oscillator which possessed a

Lorentz shaped bandwidth. When the measurement was

performed with the most accuracy possible (i.e., with

minimum uncertainty), She showed that after the measurement

the oscillator must be in a "coherent state" (see page 41

for definition).	 Utilizing the new system wave function

(as defined by the "coherent state") a second measurement

was performed.	 The accuracy of the second measurement

was found to be degraded by the first measurement.

Moreover, the effect of the first on the second measurement

was found to decay as the impulse response of a Lorentz

shaped filter, i.e., the effect was dependent

on the time interval between the two measurements.	 It

follows that the effect of a measurement on the accuracy

of subsequent measurements can be represented by an

appropriate impulse excitation (in the variable being

measured) of the lossy oscillator.

A measurement of field energy at any time instant

(received field power averaged over a finite time period)

must yield only values which are integral multiples of
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hf c where f 	 is the frequency of radiation.	 This

accounts for the well known postulate of Planck and permits

the description of photon counting experiments (hereafter

called photon detection).

A complete description of the field preparation and

measurement processes must utilize a mathematics which is

self consistent with both the classical wave properties

of fields and the nonclassical particle properties.

This, of course, is the general goal of quantum theory.

The problem is one of finding a quantum mathematical

description within which classical characteristics

can be easily identified as opposed to purely quantum

phenomena. The importance of this requirement is

demonstrated with the following example. 	 Consider a field

which is prepared (transmitted) with a classical state of

well defined amplitude and phase.	 At the receiver, the

field measurement can take place by either the classical

real field detection process or the quantum mechanical

photon detection process.	 In either case the classical

characteristics of the transmitted signal must be

identifiable in the description of either detection

process in order to determine the quantum effects in the

system.
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The requirement of self consistency of quantum

descriptions with classical phenomena is embodied in

Ehrenfest's theorem and the correspondence principle.

Ehrenfest's theorem requires that over an ensemble of

systems which include quantum effects, the average value

of quantities with classical counterparts must equal the

corresponding average values over an equivalent classical

ensemble (one which does not include any quantum effects).

The correspondence principle requires that in t e limit

h-o the quantum statistical distribution of quantities

with classical counterparts must equal the corresponding

classical distribution. An example of a quantity which has

no classical counterpart and to which the above requirements

cannot be applied is photon number.

The Postulated Model

Now that the description of a classical model

and the basic requirements or quantum theory have been

established, quantum properties can be included.

The classical model already meets three of the

quantum requirements. That is:	 (1)	 the transmitted and

received field can be descriued at discrete time instants

without loss of information; (2) preparation or measurement

processes can be considered to occur instantaneously in

the form of impulse functions; and (3)	 in the absence of

any preparation or measurement process the system evolves
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in time in a casual manner. 	 In addition, the statistical

properties of the transmitted and received fields are

expressed in an ensemble sense thus establishing the

ensemble needed to define the classical properties in a

quantum description of the model.

The remaining quantum requirements are fulfilled by

postulating that the bandlimited preparation or measure-

ment of each term in the summations (2-6) and (2-12) is

equivalent to the preparation or measurement of a quantum

mechanical oscillator of frequency f c . The ensemble of

systems used to define the classical distributions

PT(x T ,y T ) and P R (x R ,Y R ) can be extended to the postulated

model by considering an equivalent ensemble of quantum

harmonic oscillators. 	 E q uivalence of the two er:sembles

is establ i shed by Ehrenfest's theorem and the correspondence

principle.	 If	 PQR(xR,yR)
	

is the distribution defining

the results of measuring x R and YR over the quantum

ensemble, by Ehrenfest's theorem

ffx RPQR(xR,YR)dxRdYR = ffX R
P R (x R ,Y R )dx R dy R	(3-2a)

ffYR P QR (x ROYR )dx R dy R = ffXRPR(xR,yR)dxRdyR 	 (3-2b)
By the correspondence principle

P R( x RIYR) n lim PQR(xR,YR)

h+o	 (3-3)
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The extension of the ergodic assumption to the

quantum ensemble in the postulated model implicitly

assumes that the unpredictable effect of a quantum

mechanical preparation or measuring process on the

communication system dues not affect subsequent preparation

or measurement operations. This is consistent with the

following:	 kl)	 the preparation and measurement processes
are taken to be bandlimited operations; (2) samples are

considered only at the Nyquist rates (2-7) and (2-13); and

(3) the quantum effects of a preparation or measurement

process are instantaneous at the time of the sample and can

be represented by an impulse of appropriate strength

(in the variable being measured) as concluded from She's

work. Since the 
sinx 

impulse response of GT(W) and
x

G m (w)	 is zero at all other sampling instants, it follows

that the unpredictable effect of a preparation or

measurement process does not affect subsequent preparation

or measurement processes. This is obviously an idealized

case resulting from the use of an unrealizable bandwidth

limited preparation or measurement process. The results

are in any case consistent with the work of She for

sequential measurements and that of Bohr and Rosenfeld

for the case of one isolated measurement. Moreover, for

the case of photon detection the °esulting model will be
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shown to yield the photon counting distribution first

derived by Mandel and subsequently proven experimentally.

Therefore, within the constraints of the model postulated

herein, the visualization of each term of ('-6) and

(2-12) as a physically independent, zero bandwidth

oscillator is permissible.	 Fulfillment of the remaining

quantum requirements will be demonstrated in the sequel.

Quantum Effects at the Transmitter

The first step in transmitting information in a

communication system is that of preparing the electro-

magnetic field to be transmitted. By the r rodel postulated

in the previous section this is equivalent to an attempt

to prepare an ensemble of . intum harmonic oscillators

into states deter p ',4d by the information to be

t r ansmitted and the method of modulation. Classically,

only the amplitude and phase of the emitted wave can be

controlled by the modulation process. When quantum

effects are introduced the energy levels of the mechanical

oscillators become quantized. That is

eQ = nfiw	 (3-4)

where 6Q is the energy level correspondin g to n photons

of the radiated field and is the amount of energy

associated with one samp:e prepared by the transmitter. At
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least within the framework of the postulated model, the

number of photons transmitted in each sample becomes a

new variable which could be modulated by the information

source.	 Th i s will be called "photon modulation" in

contrast to the modulation of the field's wave properties

which will be called "wave modulation."

The term "photon modulation" as defined above

is more restrictive than may first appear. 	 To illustrate,

one may wish to consider a coherent light beam modulated

by the opening and closing of a shutter as a type of

photon modulation since the flux of photons emitted

from the transmitter has indeed been modulated. However,

in this example, one cannot predict with good accuracy

the exact number of photons emitted during each sample

whereas the wave amplitude can (as will be shown later

in this section).	 It follows that the transmitted

information is contained not in the number of photons but

in the wave amplitude.	 Photon modulation, as used herein,

defines only the case where the transmitted information is

contained in the exact number of photons emitted (not the

emission rate).

As outlined in the introduction, the work of Gordon

ind others implicitly assume that in any channel

the number of photuas in each field sample describes
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the transmitted information.	 This obviously is photon

modulation as defined above.

Before presenting the quantum properties of the

prepared (transmitted) field samples, it will be convenient

to make a change of variable. 	 First consider a classical

mechanical oscillator which is equivalent to one term in

(2'-6).	 The equations of motion of the oscillator as a

function of position q T and momentum PT at time zero are

PT(t) = PT COS Wct - W c g T sin W C t	 (3-5a)

q T (t) = g T cos W c t + PT	 sin W c t	 (3-5b)
We

It follows that the classical oscillator energy is

eT = 2(pT2 + W c 2g T 2 )	 (3-6)

which is the energy available for the one prepared sample

of the transmitted field being described by the oscillator.

Since the dimension of (2-6) is voltage and the effective

averaging time per sample is t T , an equivalent oscillator

can be defined as

PT = x  
^tT
	 (3-7a)

q T = we ,	 (3-7b)



37

F T = 2(XT 2 + y T 2 ) t T	 (3-8)

Consider an ensemble of unit mass quantum harmonic

oscillators which have been prepared in an arbitrary state.

Ensemble averages or the position and momentum are given

by reference 46 as (the subscript T is dropped from

q and p for convenience)

<q>_ f̂i F n + lIC n + 1 C n Icos(w c t + 0 n + 1 - Vin) (3-9)
C n

<p> _ - 2itiw c F n + 11C Cn
	n 	

n + 1	 jsin(w c t + o n + 1 - On

(3-10)

<q 2 > _	 [N + 1

w 

+ E (n + 1)(n + 2)IC n + 2 C n Icos(2w c t + O n + 2 - On)]
n

(3-11)

<p 2 > = liw c [N + 2

- F (n + 1 )( n + 2 )lC n + 2 C n Icos(2w c t + t  + 2 - 4n'l
n

(3-12)
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where	 ICn12	 is the probability distribution of the

number of photons or

Pn(n) : ICnI2

where

N =EnPn(n)
n

	

Richter, et. al., have shown that <p> and 	 <q>	 attain

their maximum amplitude only when (Reference 46)

O n + 1 - On = m	 (3-13)

for all n, and

Pn(n) = n
n 

e-N	 (3-14)

which is a Poisson distribution with average value of N.

When (3-13) and (3-14) hold, the ensemble averages become

<q> = cos(w t + 0)	 (3-15)
^, c	 c

<p> _
c

2 W 
c 
N sin(w; t + m)	 (3-16)

	

< q2> = 
2nN cos 2 (w t + 0) 

+ 2w 
	 (3 - 17)c

fiw
<p 2 > = 2fiw N sin 2 (W c t + m) +	 c	 (3-18)

c	 2
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These describe an ensemble of harmonic oscillators which

are in near synchronism. The lack of perfect synchronism

exists because of the uncertainties

	

( Aq ) 2 = oq2 = <q 2 > - <q >2 = ,^ l	(3-19)
c

	

( Ap ) 2 
= 0p2 = 

<p2> - <p>2 = 
i1 W

^	 (3-20)

which conform to the minimum uncertainty relation

o g A p = 2
	

(3-21)

Therefore, when an attempt is made to prepare each

ensemble member into identical states of amplitude and

phase, not only does the position and momentum possess

the minimum uncertainty (3-21), but the number of photons

possess a Poisson distribution. By the postulated model

this corresponds to an attempt to transmit a wave of which

the amplitude and phase remain constant in time.

Similarly the statistical distributions over the ensemble

of oscillators correspond to unpredictable fluctuations

in time of the variables concerned. The fluctuations of

position and momentum are normally negligible since the

transmitted wave is many times larger. However, the

photon fluctuations are very significant and can be measured

for the case of single mode laser radiation (c.f.

References 34 and 35).	 Photon fluctuations cannot be made
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negligible since the variance is equal to the average

value, thus any increase in the trai,sim i tted signal

proportionally increases the variance of photon counts.

Therefore, from the definitions of photon and wave

modulation given earlier two conclusions follow: 	 (1)	 the

above situation describes a wave modulated signal, and

(2) a wave modulated signal cannot be used to describe a

photon modulated signal.

Consider the photon modulation counterpart to the

above example.	 Each time sample of the field must contain

the same number of photons N. Then

J C n I a an,N

P n (n)	 any N	 (3-22)

where a 	 is the Kronecker delta function. From

(3-9) to (3-12)

<p> = <q> = 0	 (3-23)

<p 2 > = hw c (N + ^)	 (3-24)

<q 2 > = W (N +)	 (3-25)
c

These averages describe an ensemble of harmonic oscillators

where the phase o	 is equally distributed over 2n radians.

Therefore a photon modulated signal possesses a random
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phase modulation which is independent of the transmitted

signal level.	 That is, a signal produced under the

constraints of photon modulation (as defined earlier)

possesses an unpredictable phase from one sample to the

next and therefore is not capable of describing a wave

modulated signal.	 The latter conclusion follows from

the requirements of amplitude and phase modulated signals

discussed at the end of Chapter II. 	 Wave modulation

describes all known continuous wave, modulation schemes.

Only a pulsed modulation process which controls the number

of photons per pulse could fulfill the photon modulation

requirements.	 It appears that all present day schemes are

basically wave modulation since no physical process for

generating a photon modulated field has been demonstrated.

The remainder of this paper will be devoted primarily to

wave modulation. A discussion of a photon modulated system

will be given In Chapter V to place the work shown herein

into proper perspective with the "photon channel"

model.

The Glauber P Representation

Before proceeding to an investigation of the

magnitude of quantum effects in a wave modulated communica-

tion system, the Glauber P function must be introduced and

its relationship to classical functions determined.
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The "coherent state" was named by R. J. Glauber in

his application of the minimum uncertainty state of the

harmonic oscillator to the study of the quantum theory

of optical coherence (Reference 19-22). 	 [loth Glauber and

Sudarshan (Reference 47) recognized the usefulness of a

diagonal representation with the "coherent state" for

describing some general field states. 	 Glauber developed

an extensive mathematics around the diagonal form which is

now known as the Glauber P representation.

Lachs has shown that by using the P representation,

the probability distributions for position, momentum,

and photon number for an ensemble of unit mass oscillators

are (Reference 48)

2

p p(P) =	 P(a'j	 1	
exp -(p - 21iwc aI ) d2a^

 ff 	 nf^wC	 TI c	 (3-26)

p q( q )	 P(a^)	 1	 exp	 we	 R	 d2a

nf I/W/w C	
fi /wc	 (3-27)

lal 2nP n (n) -
ff

	

p (a) T exp(- jai 2 )d 2 a	 (3-28)

where P(a)	 Glauber's P function (a shorthand notation for

the joint function of a R and ai)
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a '	 1	 (Wc q + JP) _ aR + JaI (3-29)
rfiwc

d 2 a = da R daI

She and Heffner's work can be extended as shown in

Appendix I to give the joint probability density

P (q.P) =ffp(a ) ,CxP - (q
	 i	 a R ' ) 2 - (P - 21iW c aI )2

inn	 2 fl/wc	 2fiwc

d 2 a'	 (3-30)

The P representation i:, important since it yields

the joint probability density 	 P Q (q,p) which by

Ehrenfest's theorem and the correspondence principle must

contain classical properties of the ensemble of oscillators

as well as the quantum properties. 	 If the classical

distribution	 P c (q,p)	 used in describing conventional wave

modulated systems can be identified within the P function,

a set of equations will result which "transform" the

classical probability density into distributions which

contain the quantum effects.

The mathematical properties of P(a) have been

the subject of much discussion (References 23-25).	 These

works have centered on the purely quantum theoretical
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properties of P(a)	 rather than the possible classical

meaning it may possess. 	 This particular aspect of the

development and use of the "coherent state" has been a

stumbling block to a simple interpretation of the

equations (3-26) through (3-30).

Glauber has noted that, in general.	 P(a)	 is

not a probability density. Moreover, he allows P(a)

to be interpretable as a probability density only in an

approximate sense and never as an equality. Quoting from

Glauber (Reference 21, page 2776)

"The function P(a) mignt then be thought
of as playing a role analogous to a probability
density for the distribution of values a over
the complex plane.	 Such an interpretation may...
be justified at times.	 In general, however,
it is not possible to interpret the function
P(a)	 as a probability distribution in any
precise way....	 When the -unction P(a)
tends to vary little over... large ranges of the
parameter a	 ...0	 P(a) will then be interpretable
approximately as a probability density."

To study the classical properties of P(a) one

can use the correspondence principlIc and find lim PQ(q,p).
h-o

To do this it i s convenient to make the change of variable

(3-29) and express P(a)	 as a function of q and p.

It follows
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P(a) danda i = P O (q,p)d g d p	(3-31)

w
da^^ 	

A 
dg

	

da i =	 1	
d 21-Wc

Then

	

d2a =	 dgdp

	

P(a)aR
	 q = 2 PO(q.P)

	

a=	 1	 p

	

I	 we

Equations (3-26) to (3-28) and (3-30) become

PQ P (P)	 PG(q.P 	
u,C

	

I
)	 1	 exp	 ^=--e—^-2 

d  d 

	

nfl	 ^wC
(3-32)

	

PQq(q) =ffpG(q'*P') 	 1	 exp - (q - Q')2 d 'd

7r K

.

 t/wc	 q P

(3-33)

PQ(q.P) =ffpG(q'.P') e jg 
=—g—)2 -	 ' 2 d 'd

	

2fi/wc	
2,hwC	

q P

(3-34)
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W C q2 + 
p2 n

wcg2 + P2

P n ( n )	 PG(q.p')	 !c	 exp -	 dq'dp'
n .	 2i=i w

c	 (3-35)

By the correspondence principle

Pcp(P) = lim P QP (P)	 ( 3 -36)
h-o

P cq ( q ) = " M PQq(q)	 (3-37)

P c (q,p) = lim P Q( q .P)	 (3-38)
h-o

Since the limits on the integrals are over all possible p

and q, they are independent of h.	 If P G (q,p)	 is also

independent of h, then

P cp (P) = fPG (q,P) dq	 (3-39a)

Pcq( q ) = fpG(q.p) dp	 (3-39b)

P c( q .P) = P G ( q .P)	 (3-39c)

where the relation

1	 (x - xl)2
lim	 exP	 = b(x - xi)
° io 2,rv 2	2v2
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was used. The fact that P G (q,p) must be independent of

h for the constraints placed on the quantum description

can be seen by the following argument. By the

correspondence principle a calculation of the second

moment of p and q must yield the classical second

moment plus a quantum uncertainty proportional to h.

The model used herein has already taken the ensemble to

be one of minimum quantum uncertainty. Therefore any

dependency of P G (q,p) on h could not affect the

magnitude (3-21), but only the ratio of uncertainties

in p and q.	 Previous analysis (Reference 49) using

the maximization of entropy as a criterion for a least

biased estimate has shown that there is an equal balance

of uncertainty between p and	 , c q when the only

constraint is the product (3-19).	 Furthermore, Lachs

(Reference 15) has shown this condition satisfies the

energy-time uncertainty relation (3-lb). 	 It follows that

P G (q,p)	 is independent of h since this condition

satisfies the above requirements in equations (3-32) and

(3-33).

Therefore, the Glauber P function PG(q,p)

becomes equal to the classical distribution	 Pc(q,p)

when describing a field which is known ii classical

terms and is being prepared and measured by ideal processes.
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The substitution of	 P c (q,p)	 into (3-32) to (3-35)

yields the set of desired equations which transform the

probability density of P c (q,p)	 to those which include

quantum effects.

Part of the arguments used here are similar to those

of Mandel and Wolf (Reference 25). However, they

required only the equality of averages as in Ehrnferst's

theorem to show that when an all positive P(a)	 exists,

there must also exist a classical function which gives

the same averages.	 They failed to point out that P(a)

possesses a definite classical meaning as required by the

correspondence principle as discussed above.

It should be emphasized that the classical or

quantum character of P(a)	 is determined only by the

preparation process and has nothing to do w i th the

eventual measurement of the field. The measurement

process may also be of either a classical or quantum

character depending on the type of field-matter interaction

process used at the receiver.	 In the conventional

device, an electron current is induced in synchronism with

the received electric field. 	 The induced sinusoidal

variations are filtered, amplified, possibly heterodyned,

and then subjected to some form of amplitude, phase, or

power Jetection.	 This is equivalent to a measurement of
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p and q and is described by equation (3-34). 	 The

operation will be referred tc as a "real field receiver"

or "real field detection."	 In contrast. the "photon

receiver of detector" responds only to the discrete

photons in the received field.	 This is a measurement 	 of n

and is described by (3-35).	 The photon receiver still

responds to wave properties since (3-35) is a function

0f	 PG(q.p).



CHAPTER IV

WAVE MODULATED SYSTEMS

Amplitude and phase modulated communication systems

were shown in the preceding chapter to be wave modulated

systems. Furthermore, the Glauber P representation was

found to provide a description of wave modulated systems

where P G (q,p)	 can be equated to the classical 	 Pc(q,p).

In this chapter an investigation of free space attenuation

effects is followed by a derivation of the equations which

describe both real field and photon detection situations.

•	 The effects of photon noise relative to classical

Gaussian noise are determined and a channel capacity

equation is found and com p ared to Gordon's work.

The Effects of Free Space Attenuation

Before discussing the effects of free space

attenuation on the results of the preceding chapter, a

significant difference between Equations (3-32), (3-33), and

(3-34) must be recognized. Consider the case where the

desired classical field is of definite amplitude and

phase, or

Pc(q.P) = a ( q - g s) a ( p - Ps)	 (4-1)

which gives in (3-32), (3-33), and (3-34)

50
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Pup(P) =	 1	 exp - p -- .SL	
(4-2)^,^	 c

P4q( q ) =	 1	
eXp_ (q	 q s^	 (4-3)

V f̂i c	 f/wc ]

P ( q .P) =	 1	
(q	 q s) 2 - (P	 Ps)2

Q	 T-17exp
	 (4-4)

2fi /W c 	 2fi1^

Equations (4-2) and (4-3) yield

Ii W
a 2 =	 c
P	 ^ 

= (op)2

0 2 = 'h
	

= (aq)2q	
2W

C

which is the minimum uncertainty (3-23).

yields

apt = flW c = (ap)2

a q 2 = M/W c = (eq)2

or

LgAp = fi

(4-5)

However, (4-4)

(4-6)

(4- 7 )

which is twice the minimum uncertainty (3-21). 	 As shown

by She and Heffne r (Reference 43) the uncertainty

principle applies to both the preparation and measurement
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processes.	 Therefore (3-3L) and (3-33) must apply when a

preparation into a "coherent state" is followed by a

perfectly accurate measurement of either p or q alone

(which eliminates any possible knowledge of the other

variable).	 Equation (3-34) must apply then when both	 p

and q are measured following the preparation thus

giving twice the minimum uncertainty as shown in (4-7).

Note that (3-34) applies when the oscillator is

dissipationless between the preparation and the measurement

processes.	 In the case of a communication system, the

magnitude of the received field is much less than the

total prepared field at the transmitter because of free

space attenuation.

Since the field evolves in time in a classical

manner after the preparation process, it follows that the

uncertainties of quantum origin introduced at the

transmitter will be attenuated in the same manner as

classical variations of the field.	 By assuming either the

transmitted signal is sufficiently large or that the

free space attenuation is sufficiently great, the quantum

noise introduced by the wave modulation process at the

transmitter will be negligibly small at the receiver.

Therefore, it follows that for real field detection of a

wave modulated field, the statistical distribution is

given by the joint probability density
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(q P)%/^^c(`1 .P )ex p -	 -	 dg dP
ft/W c 	 iiWC

(4-8)

where the minimum uncertainty (3-21) holds rather than

(4-7).

In the case of photon detection Ilagfors has shorn

Quantum mecnani cal ly (Reference 7, pane 11) that the

number of photons received is affected by free space

attenuation as described by the binomial distribution

P (n1i-1) s 	 r'i	 ^n(l	 ^)	 (4-9)
n	 n!(M --7)—!

where	 P n (ni.1 1)	 probability that	 n	 photons will be

received knowing that exactly M photons

were transmitted;

V power attenuation coefficient.

For the wave modulated system the number of

transmitted photons cannot be known with certainty and

obeys (3-35) which is a Poisson distribution with a

randomly varying average value. LaTourette and Steinberc

have shown that a Poisson distribution followed by a

bionomial operation gives another Poisson distribution

(Reference 50)
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I1

!' 11 (nIM) = • ^W"	 exp(- 11v)	 (4 - 10)

where N average number of photons transmitted.	 Therefore,

the distribution (3-35) applies at the receiver with the

average values as determined by classical analysis.

It should be noted that the above conclusion is

concurrent with the assumption of She and Jelsma

(References 14 and lb), namely, the tran s mitted signal

is sufficiently large that quantum effects at the

transmitter are negligible.	 However. She apparently did

not discriminate between the uncertainties which arose

from preparation at the transmitter and measurement at the

receiver until his later work (Reference 43). 	 Therefore,

She's original paper (Reference 14) essentially uses

Equation (3-34) rather than (4-8).

Analysis of Quantum Effects

Since the time sampled field model utilizes the

voltages x R and y 	 to describe the measured quantities

it is convenient to make the change of variable

p = x R^	 ( 4 -lla)

q	 y	 (4-ilb)
c

which yields
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Y^r_
W	 q = V ` m

P Ri (xR•YR) =
	 cf, 

^q.p)	 U'c	 (4-12)

	

1	 tm U	 p = x R tm

t m

PR(xft'Y^t)	 tmPG(q.p) q
	 We
__ Yk	

(4-13)

p xO m

Substituting these into equations (3-35) and (4-8)

P RQ ( x R S y R )f fP R (x R  + ;R )

2
exp	 (xR - xR )	 (yR - yR)2

dx^dy

	

2n (1 c Wm )	 fiwcWm	 fiw W	
.	 R

2	 c m

(4-14)

2

(x 

R 
+ YR 

2 n	

+
Z	 2

P n( n ) = f
x	 Y

PR"R.YR)	
T-i Wm	

exp R
	 R	

dx,,dyP
n .	 2'h w W m

(4-15)

where t = 1M	
Wm

These two equations express one of the main results of this

paper.	 They transform the probability density PR(xR.YR)

derived from classical theory to distributions which

i nclude the quantum effects. 	 Equation (4-11) holds for

the case of real field detection whereas Equation (4-15)
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describes the results of photon detection.	 With

Equations (4-14) and (4-15) one can use the equations

derived from a classical analysis of the time sampled

model to calculate the magnitude of photon noise.

In Figure 4 it was shown how bandlimiting filters

ray be placed before and after the actual field

measurement process.	 The bandwidth W F was defined as

operating directly on the field prior to its measurement,

whereas 1, 0 operates on the measured values.	 If W0

is the minimum bandwidth requireu by the modulation

spectrum, it follows that

W F 3 1110	 (4-16).

The finite bandwidth ►!m of the measurement process

should also be

Wm > W0	 (4-17)

for the same reason.	 In the following examples, the

choice of relative values for W F , W M , and W 0 will be more

for convenience than practicality in order to demonstrate

the desired properties of the detection processes.

rowaver, the use of Equations (4-14) and (4-15) within

the framework of the postulated model permits any

combination of these bandwidths to be analyzed.
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In order to determine the effects of photon or

quantum noise relative to conventional noise, take

P R ( x R , y f2 )	 to consist of the received signal	 11 ( x sty s)

and an additive "white" Gaussian noise of power ncWF

which yields

PR(xR.YR) ffP 
s 
(xs.ys)

	ems	

2

_ - 
( x R - x s ) - ( Y R - Ys)2 

dx d Y
	2rncWF	

29cWF	 2n W	 s	 s	 (4-lam)
c F

where n c	 is the spectral power density of the incident

noise field.

Real field detection.- Substitution of (4-18) into

(4-14) yields the double convolution

P QR (X F, gy R ) =.	 J P s ( x s . y s ) f.f.
xsys	 xR yR

ex	
(xR' - x s ) 2 - (y R ' - ys12

'TncWF --
	 2ncWF

- (x R - xR1)2 - ( y R - YR')2

	

2^fiw
c
p W m	Mw	 dxR ,dyR, dxsclYs

2(—S 4Jm)
L
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which reduces to the single convolution

11QR(xk.yh) ff s(xs lys)

x s ) 2 _ ( y j^ - ys) 2

e x p ---	
W	

—

( ,W	 +
C 

F 	 ^^; )
2 m	 dxsdy	 (4-19)

iri w	 x
( n c W F + _2c 1,1 m )

Therefore, the output of the measurement process yields the

signal, the classical noise of bandwidth	 W F , and a

Gaussian noise of power n c W m .	 Since the quantum noise

results from the "interference" of the measurement

process with quantities ceing measured and is representable

by an impulse function in the samplinq process, it

must be "white" or ever,; distributed over the bandwidth

,%' m .	 Since (4-16) and (4-17) hold, the effective input

noise power density is

fi w

n RF = (' ' c + —TL )	 (4-20)

Therefore, for the case of real field detection in a wave

modulated system, quantum noise enters as an additive

Gaussian input noise of density tu) C 1 2 watts/Hertz.

This conclusion is true only to the extent that (4-17)

holds.	 That is, an upper limit on the total amount of

quantum noise that can be introduced by the measurement
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process is imposed by Wm'	 Practically Wm must be

finite, but if W in	 is allowed to become infinitely

large an infinite amount of quantum noise power is

introduced.	 This is just another example of the so-called

"zero-point field catastrophe" in quantum field theory for

which there is no physical explanation. 	 however, the

model utilized herein is useable only for describinq

narrow bandwidth systems and therefore as 1.1 m is

increased, the model's ability to describe a modulated

signal breaks down much before the "zero-point field

catastrophe" becomes important.

Photon detection.- The effects of photon noise

•	 cannot be as easily generalized for photon detection as

was found possible for real field detection. Not only must

two types of photon detection (direct and heterodyne) be

analyzed, but the nonlinear character of counting

distribution (4-15) causes the relative magnitudes of

the bandwidths W F , WM , and W. to affect the relative

magnitude of photon and conventional noises. The effect

of bandwidths W 	 and W 	 has been investigated by

Mandel (Reference 30) for the case of photoelectric

detection where the assumption Wm+00 is valid for most

practical systems. Appendix II shows that the model used

herein yields the same counting distribution derived by
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Mandel and which has been proven experimentally

(References 34 - 36).

In view of the previous York, th,, purposes of this

section are to show some of the important properties of

the photon detection process, to demonstrate how the

effects of photon noise can be analyzed with the postulated

model, and to determine if the effects of photon noise

can be included in a conventional analysis in a simple

runner.

For the case of additive Gaussian noise, substitution

of (4-18) into (4-15) yields at the photon counter

output (neglecting W o for the moment)

•	 Pn (n) = ffp s (x s . y s )    ff eX	 -(xR-ys)2-(YR-ys)2
^ 	 2 ,r--	

2 n WxsY s	 RYR	 c F	 c F

x 2 +	 2 n
YP,	 R
W^	 xR2 + YR2

n!
	 exp - 

2^im W
dxRdy R dxsdYs	

(4-21)
C m

To understand the behavior of photon noise in (4-21),

consider the part of Equation (4-21) in braces.	 This is

the conditional probability distribution of the number of

received photons knowing the classical received signal

(x s ,y s ).	 That is
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I' nl x	 cam_ _(xR - YS)	 Ys2 -(YR ..	 )2
n [ ( S^ys)^ ffl,n 1

c	 f	 2 !1 c 1.1 E_

	

x	 +	 n

ti	

7-Y
(;	 2	 2

n i	 2ti	 W	
dxRdyl,	 (4-22)

c

The average and variance of (4-22) are calculated in

Appendix III and found to be

2
Asnc1.1F

`.n,{',s> = 211w
C W m + wfi 7Gm	 (4-23)

	

^,	 2	 ^	 2
2	 = 2nc"'F	 As	 ncWWF	 As	 n, r1F

s	 fi^cWm 2fiW

 W)+(

lw c Wm	 '^wcWm	 fi^^cllp,

c

21)Z
where As = x s ` + y 

These equations show how the photon detector

behaves as a classical square law device with the addition

of a "shot noise" (shown in brackets in 4-24).	 Rice

(Reference 51) has analyzed the square law detector and

identified the first two terms in (4-24). 	 The first terry

arises from "mixing" between the sinusoidal field and the

noise field, and the second term from "mixing" between

spectral components of the noise.	 The Poisson "shot noise"

is well known to yield a "white" noise spectrum.
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Two examples of photon detection will be analyzed.

First take the case of a direct detection of the field.

Consider a system which transmits a signal of constant

amplitude A s	for t 	 seconds.	 Detection of A s	is

accoriplishea by counting the number of photons received

during the t F second interval.	 For convenience assume the

"ideal situation exists, that is

	

W n = W 	 (+-25)

and time synchronism is known.	 Equations (4-23) and

(4-24) apply.	 To discern the relative effects of photon

and classical noise, rewrite (4 , 24) as

2	 r c	 S	 \	 nc 2 N + l

°n	 Ttwc (t + 1)	 1 + nwc	 (4-2E)

	

//	 j + 1

where
2

S _ As
PJ	 2ncWF

and is the receiver input signal to noise ratio.

If Poisson statisti^s were applicable for describing

the photon counts, only the term 
fi 

Sy( S + 1) would appear

in (4-26).	 The additional factor is due to the

fluctuating amplitude of the incident field and could be

calculated by treating the photon detector as a classical
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square law detector. 	 The magnitude of this term relative

to one, is an indication of the accuracy of utilizing

Poisson statistics to analyze direct photon detection.

That is, if

r,c': < fill, c	 (4-27)

Poisson statistics will provide an accurate description of

the variance of the photon counts.	 However if

n^ lhw c 	 (4-28)

the counting statistics must be found through Equation

(4-22).	 If

nc>>tjWc	 (4-29)

the "shot noise" can be neglected and the photon detector

can be treated as a classical square law device where

the hr, c	factor is included.

Therefore, the effect of the "particle" and "wave"

properties of radiation is determined by the relative

magnitude of the received noise power density n 	 to

the energy of one quantum at the operating frequency.

It is seen that the popular method of analyzing photon

counting detection techniques with the Poisson distribution

is dependent on the requirement (4-27).	 More generally,

the exact counting distribution is given by (4-22).
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	 (4-30)
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the additional effects of 1-1 0	can be included in the

analvsis by averaging W m
 /W

0
 samples together. dote

that the correlation between adjacent samples must be

taken into account.

As stated earlier, in cases more practical than the

above example (W r, —, ), the relative magnitude of WI

and W 0 can effect the inequalities (4-27) to (4-29).

In the case

W F > W 
0
	 (4-31)

larger nc will be required for wave effects to be

significant in the output.

The following general observation can be made about

these results. The photon detector behaves as a

classical square law device with an additional noise in the

output, i.e., the photon or shot noise. 	 The resulting

counting statistics are neither Gaussian nor Poissonian

and no simple method has been found for including quantum

effects in the analysis of direct photon detection.

Next consider the photon detector vhen used as a

"mixer."	 In addition to the received signal and noise, an
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incident local oscillator field must be present for the

photon detector to behave as a "mixer." 	 This case is

aiialyzed in Appendix IV and output signal-to-noise ratio

in bandwidth W,	 about the intermediate frequency is shown

to be

^" =	 I's	 (4-32)tJ o 	( n  
	 + fig )WF

c

where

Ps	 received signal power

n c W F	received noise power in bandwidth WF.

In deriving ( 4 -32) it was assumed the local oscillator

power is much larger than P s and W F is much less than

the local oscillator frequency. 	 It is shown in Appendix IV

that 'fiL., c W F	is the Poisson "shot noise" arising from the

local oscillator field. 	 Since the Poisson distribution

approaches a Gaussian distribution for large average values,

it follows that the photon noise f1w c W F	in (4-32) is

approximately additive Gaussian. Therefore quantum effects

in photon heterodyne detection enters conventional

analysis as an equivalent input noise of density 11wC

wattslfiertz. These results agree with Oliver (References

52 and 53).
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A Channel Capacity Equation

Shannon's channel capacity equation

C = W F log 2 (1 + n- '
 
S

—	
(4.33)

c F

is true when n c W F is the power for additive Gaussian

	

noise (Reference 54).	 Since the photon noise was found

in (4-15) to be additive Gaussian for real field

detection, the capacity including quantum effects is

C = W log 1 +

	

Ps
Q	 F	 2	 (n	 iiwc)W	 (4-34)

c + 2
	

F

This capacity can readily be shown to disagree with

Gordon's results. Consider the case for no classical

noise n c and

fi w
ps»	 2 c W F 	(4-35)

Equation (4-34) becomes

	

C	
2(fl

Z Ps
Q	 W F log	 (4-36)

 w WNk c F

and under the same conditions, Gordon has shown his

capacity equation yields (Reference 5)
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F
C g	WF log2
	 Ws

	+ log le

(4-31)
2Ps

eW F
 log2 rcWF + 1092 2

Therefore

Cg	 C  + 0.44W F	 (4-38)

which shows that the capacity derived by Gordon is larger

than the capacity derived herein.

Lachs and Jelsma (References 15 and 16) have

arrived at (4-34) by similar arguments while She

obtained a different result (Reference 14). The reason

for She's disagreement was noted on page 54.



CHAPTCR Y

PHOTON MODULATED SYSTEMS

As discussed in the Introduction, many of the

investigations on quantum effects in communication systems

assume that information capacity of a field is related to

the specification of numbers of photons, i.e., photon

modulation as defined in Chapter III. Gordon (References

5 and 8) and Deryugin and Kurashove (Reference 9) have

argued (without proof) that their approach is independent

of the modulation scheme in establishing a limit on

channel capacity. However, the work in the preceding

chapter has already shown that Gordon's capacity is too

large for the description of conventional amplitude and

phase modulated systems. The purpose of this chapter is

to point out in what sense photon modulation has any

physical meaning in contrast to conventional wave

modulation.

The Photon Modulated Source

The basic properties of the photon modulated field

was investigated in Chapter III.	 Those results will be

reviewed as applied to the model developed in Chapters iI

and III.	 Rather than controlling the quadrature variables

x T (kt T )	 and y T (kt T )	 in each term of (2-11), photon

68
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modulation controls the number of photons of each field

sample.	 In the bandwidth WT , only one sample (of the

number of photons) every t 	 seconds is required to

describe the photon modulated field. This contrasts to

the two samples (x T and y T ) required for describing the

wave modulated field. She (Reference 14) was the first

note this discrepancy in Gordon's work, i.e., its failure

to obey the correspondence principle. The work in

Chapter III has shown that this difference exists because

photon modulation (as defined herein) has no classical

counterpart and cannot, under any circumstances,

describe a wave modulated field. No physical means has

•	 been demonstrated which can prepare a field containing

a prescribed number of photons.

The quantum model utilized herein implicitly

requires all photons to be the same frequency f c . Gordon

(References 5 and 6) also imposed the same requirement.

However, through the use of the energy-time uncertainty

relation (3-1b), Bowen (Reference 11) has extended

the "photon channel" to include frequency uncertainty

effects due to the channel's finite bandwidth. He

notes that the energy of each emitted photon must be

uncertain by the amount

a E - hWT
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where W T is the bandwidth of the transmission process as

defined in Chapter 1I.	 This yields in (3-1b)

W T nt ^-- 1

which agrees with (2-7) if At and the time between

samples t T are equated.	 This is a reasonable result,

since t T is the effective averaging time of the

bandlimited transmission process.

Utilizing the energy-time uncertainty relation,

Gowen shows that the results of Gordon (Reference 5)

are correct only for the narrow bandwidth condition

WT<<fc

Therefore, the description of the "photon channel" by

the postulated model is consistent with the same narrow

bandwidth restriction (2-2) required for describing

wave modulated systems.

The Effects of Free Space Attenuation

Hagfors has analyzed the effects of free space

attenuation on a photon modulated signal. Using a quantum

theoretical analysis he showed that if exactly M photons

were transmitted, then the probability of receiving n

photons is the binomial distribution (Reference 1)
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P (nom) -	
m!	

vn(1 - Om - n
	

(5-1)
n	 n. m - n

where v is the power attenuation coefficient due to

free space attenuation. Ilagfors concludes that free space

attenuation introduces a "partitioning noise" which

was not included in Gordon's work. Therefore, the actual

capacity of a photon channel will be less than that

predicted by Gordon. The work in Chapter III has shown

that the "partitioning noise" does not affect the wave

modulated system, but merely preserves the Poisson

character of the photon distribution.

Channel Capacity

From the arguments presented in this paper, it is

concluded that Gordon's capacity derivations (Reference 5)

apply only to a photon modulated system in which no power

loss is incurred between transmitter and receiver. Later

works by Gordon and others (References 8 and 11) have

noted that the results apply only to a lossless channel.

However, no one seems to have recognized that basic

differences exist between wave and photon modulated

systems.

Hagfors (Reference 7) and Bowen (Reference 13) have

attempted to find the capacity for a general photon

channel which includes partition noise (but neglects
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external noise sources). llagfors encountered mathematical

•	 difficulties which prevented a general solution.	 He

did analyze a ternary system and demonstrated how the

partition noise has a strong effect on the optimum

statistics for the transmitted signal. 	 Utilizing the

partition function formalism of statistical mechanics.

Bowen was able to study the asymptotic condition of

lar g e attenuation.	 lie found that for a large rate of

received photons the channel capacity approaches one-half

that derived by Gordon for the condition of no thermal

noise.



CIIAP'i ER VI

CONCLUDING REMARKS

The problem of including quantum effects within

existing methods of communication system analysis has been

investigated.	 In contrast to previous works, a unique

model was postulated for including the quantum properties

of radiation at both the transmitter and receiver. The

rodel was shown to be consistent with certain requirements

of quantum theory and to yield a description of photon

detection which agrees with previously derived and

experimentally proven equations.

From the differing characteristics of fields

prepared by the transmitter it was concluded that

modulation of the radiated field must take place by

one of two distinctly different processes. Wave modulation

was defined as a process which conveys information in the

amplitude and phase of the electromagnetic field.

Photon modulation was defined as a process which conveys

information in the exact number of photons per sample

of the transmitted field (i.e., the "photon channel"

as defined by Stern, Gordon, and others). A wave modulated

signal was found to describe present day modulation

schemes and, moreover, to yield random photon fluctuations.
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It was concluded a wave modulated signal is not capable of

describing a photon modulated signal and therefore

cannot describe a "photon channel."	 In contrast, a photon

modulated signal was found to possess a completely

random phase fluctuation thus showing the inability of the

"photon channel" to describe presently used wave

modulation schemes. No physical process has been

demonstrated which can produce photon modulated electro.

magnetic field.

For a description of wave modulated signals with the

postulated model, the Glauber P function was shown to be

identical (with a change of variable) to the classical

joint probability density of the quadrature components of

a narrowband sinusoid used in conventional analyses.

Using this fact, equations were derived which "transform"

classical probability distributions into distributions which

include quantum effects.

The analysis of "partitioning noise" developed by

Nagfors using the "photon channel" model was applied to

the postulated model. The partitioning effect was shown

to yield a noise only in photon modulation systems.

For a wave modulated signal, the effect merely preserved

the Poisson character of the photon distribution during

free space attenuation and thus demonstrated the consistency

of wave and particle pictures of radiation phenomena.
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For a wave modulated system with real field

detection: it was shown that photon noise can be included

in conventional analysis by adding to the normal input

noise, a noise density of hf c /2 Watts/llertz where h 	 is

Planck's constant and f c is the system carrier frequency.

Use of photon heterodyne detection was found to require

the addition of an equivalent input "white" noise of

density lif c Watts/Hertz.	 The photon noise was shown

to be exactly additive Gaussian for real field detection

and approximately additive Gaussian for photon heterodyne

detection. Detection by counting the received photons

was shown to yield neither Gaussian nor Poissonian

statistics. However, with an "ideal measurement process,"

when the effective received noise density n c is

much less than hfc , the variance of the counts were

found to approach that of a Poisson distribution.

Conversely, when n c is much larger than hfc,

the variance approached that derivable from a classical

analysis.

A channel capacity equation for a wave modulated

system was found and shown to give capacities less than

that derived by Gordon.
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APPENDIX I

EXTLNSION OF SIZE AND HEFFNER'S

WORK 10 INCLUUL THE GLAUL•'ER P FUNCTION

Using the Dirac notation (Reference 44). the

following symbols are defined for this appendix only:

1 >	 ket vector

<A	 bra vector

a	 photon annihilation operator

a + 	Photon creation operator

P	 density operator

In Reference 43. She and Heffner prove that if

W q + JP
aia> = ala> It c 	In>

21f W c

*	 ^cq	 JP
<aia

+
 = <ala = <ai

r

W q' * JP'
ala'> = a'ia'> =	

c	
^a'>

W^

*	 W of • JP#
<a' i a + _ <a' i a ' _ <a ^^	

C

?1
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P 2 
ia ,><a 'i

tlien

_	 _	 2	 2

" ^ Z15wC

which they interpret as being a joint probability density

describing a system which has been prepared into the state

(q',p') and subsequently measured as accurately as

permitted b y the uncertainty principle.

The above can be extended to include Glauber's P

function. From Reference 21, Equation (7.6)

P = ff P(a')Ia'><a'Id2a'
Therefore,

h<alpla> =
	 P( Q 1) 

[̀Un a >	 a	 (I-1)

where

I<ala1>I2 a <aIa'><a'Ia>

= exp [la - a'I 2i

from Reference 21, Equation (3.33). But from

Equation (3-29)
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<ajn' >j 2 = exp- (P= - O R ' 2 - --
 	2

,	 2T1wc

( ' 
2	

2
\Q -^ R )	 p - 2hw^al

= exp -	 -

Zfi/w	 2fiwc

(I-2)

Substituting (I-2) into (I-1) yields (3-30).
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APPENDIX II

DLRIVATION OF MANDEL'S PHOTON COUNTING DISTRIBUTION

The purpose of this appendix is to derive via the

model postulated in Chapter III the photon counting

distribution first found by Mandel (Reference 30) and

subsequently verified experimentally (References 34-36).

Let the receiver output filter W o be an ideal

integrator over a time period to where to/t m is an

integer k. During t o , there are k samples taken

by the receiver. The total number of photons, nT,

counted during t o determines the integrator output.

The resulting probability distribution of n T is found

by considering all the possible combinations of counts

in each of the k samples that yields nT.

From the postulated model each sample for photon

detection is represented by the energy level of a

harmonic oscillator. Glauber has shown that the joint

probability distribution of energy levels between many

separate oscillators whose states may be statistically

dependent is of the form (Reference 19)
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Pn(nl,...,nk) = ff JfPRI(XRl9YRl)9...•(xRk.yRk)]

x L +	 2 ni
k	 Ri	 yRi	 2	 2
n	 hwcWm	 xRi + yRi

i = 1	 n i	 "P - 2?iw,Wm	
)dxRiyRi

i'

where	 PR[(),...,()]	 is the joint probability distribution

between the k samples as determined from a classical

analysis.	 For convenience, write the above equation in

the form

xRi2 + yRi2

1	 k	 w

nT 1 ff	 i	 1	 n, ..

k x Ri 2 + yRi2

	

exp -i E l	 21tiw c Wm	PRL(xR1'yR1)9....9(xRk9yRl)1

k

i	 1 dxRidyRi

where
k

nT	 i ^ lni
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Note that the term in braces is precisely one term of an

expansion of the quantity

k	 x Ri 2 +	
2)1
 nT

i	 1	 2hwcWm

Since

PnT)( n	= F[ P n (n lm , n2m,....nkm)]
T	 m

where the summation is over all the possible combinations

of (n lm • n2m•••••nkm)	 Which yield

nT =
	

i	 lnim

it follows that

k xRi 2 + Y Ri 2 nT	 2	 2

T

k x	 + y
P (nT) ff ..ff  i ^ we m 	 expI

i

 
E

Ri	 Ri

nT 	 n 	 a 1	 we m^T.

k

PRL(xR1+YR1)•....,(xRklyRk)]i = 1dxRidyRi
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By the ergodic assumption this is equal to

nk AR 2( ti)	 T

	

T	 - c tin
	 (to

P nT (n T )	 liniT	 i= 1 n !c
	

exp 	 Rt dt
T	 o	 T	 i= 1 2?Iw	

m

where

A R 2 (t i ) - x F 2 (t i ) + YR2(ti)

t i = t + itm

t = l
m Wm

Utilizing the assumption made by Mandel, i.e., the response

of the photoelectric process is sufficiently short that

Wm"WF

Wm"Wo

and by defining

AR2(ti)t
U(t,t )	 lim

tm-o i = 1 2fiWc m

t+to
AR2(t1)

=	 dt1
t	 2h  c



yields

F

P nT( n T) - limb (U(t•to » nT exPL•U(t0t0)]dt
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which is the distribution derived by Mandel.



APPENDIX III

DERIVATION OF PHOTON DETECTOR EQUATIONS

Repeating equation (4-22)

pn( nlxsoys)

r_(xR _ xS)2 _ (yR _ Ys)2

t.

=	 ex	 f
,rn c F L	 2ncWF

xR 2 + YR 2 n

liwcwm	 xR2 + OR

n1	
exp	

]iw c Wm
	dxRdyR

The averages are calculated as follows:

'n j (xs 0 y s )> =FnPn[nl(xs#ys)]

n

-(xR - x s ) 2 - (yR 
_ ys)2

ff

ex

T 7w"c 
F	

2ncwF

IxR2 + yR 2
l 

n	
x 2 + 

Y
1°c m / exp - R	 R 

n	 n	 ZfiWW
	 ^xRdYR

c m

_ ^ (xR2 + YR2)
c m

-(xR - xs) 2 - (y R - ys)2
ex	 dxRdyR

2 ^ c W
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C(x s 2 + n c W F ) + (Ys 2 + ncWF)J
c m

_ A s 2	 nc WF
`n'As>	

211wcWm + wc m

where As  = x s 2 + YS 

<n2.(xs.Ys)> _ Fn2PnCnI(xS.Ys)J
n

ex	
-(xR - xs) 2	 ( YR	 Ys)2

_	
n 	

2ncWF

R 2 + YR n	2 	 2
271wcWm	 xR + YR

n	 n!	
exp	

211wcWm	 dxRdYR

ff
xR2 + YR 2 2

	

	 xR2 + YR2

Z1iw
c
Wm 	 21iwcWm

-( xR - xs)2 - (YR _ Yx)2

exp
men	 2nWF	 dxRdYRZ ,WF	 c
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n •

	

1	 (x 4 + 2x R 2ya 2
 + yR4)

(21fv► C W 2m)	
R

[-(XR - xs) 2 - ( YR - ys)2

*^

	

c 
W
F	

2RCWF	 dxRdyR

+ <n,As>

(2"hw^Wm)2[3(^^WF)2 + 6x 2sV► CWF + 
X 4s

+ 2(x s 2 + n
c W F )(Ys 2 + lc W F) + 3(nCWF)2

+ 6ys217CWF + y
s 4 ] + <n,A >

s

	

1	 [As4 + 81qcWFAs2 + 8(nCWF)2] + <n,As>

( ^C m) 2

Then

an t I
S

A	 1	 IAs4 + 8 "c W FA s2 + 8(ncWF)2
(2n^ C W ) 2m

+ 27iw C ( A s 2 + 2nCWF ) Wm - (A s4 + 4As2l'CwF

+ 4(nCwF)2A



2

	

2n I A 	 2 nC WF	
As2	

+ 
(;,cWF 

2+	

As	
+ 

ncWF

	

s 	 21iw^Wm	 liwcWm
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APPENDIX IV

DERIVATION OF PHOTON HETERODYNE EQUATIONS

The purpose of this appendix is to derive the

output signal-to-noise ratio for a photon detector when

used as a mixer.	 In addition to the received signal and

noise, a local oscillator field must be incident on the

detector for mixing to occur. The total received voltage

is

LR(t) = E S (t) + E N (t) + ELO(t)

where E LO (t)	 is due to the local oscillator. 	 Taking

E LO (t) to be sinusoidal with constant amplitude and phase

E LO (t) = x LOcos(wc + w I )t - YLO sin (wc + wI)t

where f I = (rrl-)-frequency of the intermediate amplifier.

Rewriting in the form (2-11)

E LO (t) = A LO [cos(w I t + e LO )cos w c t - sin(wIt + 6 LO )sin wct]

where

ALO = x L0 2 + J`LOZ

8 LO = tan-1
Y LO

xLO

1	 f
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Therefore

E R (t) _ 1" s (t) + X N (t) + A L ocos(w I t + oLO)]coswct

-[y s (t) + y N (t) + A L osin(u) I t + oLa)]sinwct

The photon detector will respond to the function

A R 2 (t) = X R 2 (t) + YR2(t)

= As 2(t)+ A N 2 (t) + ALO2

+ L X s( t )XN( t ) + Ys(t)YN(t)J

+2A
LO

{[Xs(t) + X N (t)]cos(w I t + eLO)

+ EYs(t) + YN (t)Jsin(w T t + eLO))

(IV-1)

It is assumed that

fI - ^ > 2W 

so that only the terms in braces in (IV-1) yield an output

in the intermediate frequency bandpass.	 In the postulated

model, the bandwidth of the measuring process Wm must be

wide enough to pass both the signal and noise inputs and

the local oscillator frequency. That is

—7(f I + -)
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1	 s

or

tm <	 1

2(f I + WF)

2

since

t  a W1m

The samples yield an output of bandwidth extending from

zero to W m/2 Hertz.

Define the output voltage for the i th field sample

to be

n(itm)
V(itm)	

t
m

where n(it m ) is the number of photons counted during the

i th sample. By the ergodic assumption, it follows that

<n>
V itm 	t 

From equation (4-15)

tm = t 	 nPn(n)
n = 0

xR2 + yR 2 n

x2 +y2

Lmffp
	 -R ( x R , y R ) En	

nl m
	 R	 R	 dxRd 

R
exp	

(
2'"wcWm	

Y

2	 2

=f xR + yR PR(xR'YR)dxRdYRf MC

--- -- - - 	 -----— --^---_: _t _ 	•,^



By (2-21)

I

	
AR2(t)

V t^^ - = xR2(t)  + y112(t) = 2Aw
c

From (IV-1) and assuming the signal and noise are

uncorrelated,

Mt

P S

	 nib +
m	 c	 c	 c
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where

A

	

P	 =

	

s	 2

A^t )
	n c F	 2

AL O2

	

P LO	 2

received signal power

received noise power

incident local oscillator power

From the form of (IV-1) it follows that the desired output

signal power (excluding noise) is

_ 1 LOA s (t)	 = PLOPs

So	 -hWC	 2(?IWc)2

Consider now the total output noise power. From (IV-1)

it is apparent that the bandlimited noise around fI

will contain the power
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1 a LOA N	 PLOncWF

	

N o c f\ n— ,
	

2 )j

in the same manner as the signal. The photon noise can

be found from the second moment of V(t)

2 +	 2 nx R	yR
2

V̂  ^n 2 t^ffPR(xR+YR)^n2 2tiWcAm
m	 tm	 m	 n,

	2 	 y 2

exp _ X  + R
	

dxRdyR
2TiwcWm

xR 2 + yR 2ff I 	 1	 (XR2;6+  yR 2

 
+ tPR(xR•YR)dxRdYR2fiWc	 m	 ` 2c

But from equation (2.21)

x R (t) + YR (t)	
2	

V(itm)

V 2 (i tm)	 2Tiwc	 +	 tm

The last term is the photon or shot noise which has a

:	 "	
kJ

white" spectrum extending from zero to WM Hertz. Therefore

the photon noise density is



V t

ns	
Wm	 = 2V t = ^-- (i' s + n c W F + i'LO)m	 c

The output shot noise in the bandwidth W 	 about fI

is ncW F . The total output noise around f 	 becomes

	

N o 	 2	 [P	 +► W + ?iw (P + n w + P	 )W

	

°	 2	 LO c F	 c s	 c F	 LO F

Therefore the output signal-to-noise ratio is

2P P
LO

s o	 Chwc )

Wo =
C(^ w ) 2 (P LO cWF + 

"hw c (P s + ^cW F + PLO)WFI

Ps

n c W F + liw c ( I + Ps + Pc F)
LO	 LO

But in practice

PLO»Ps

PLO"ncWF
yielding
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so	 Ps

T°	 nc + I$wc)WF
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