General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



A QUANTUM MODEL OF COMMUNICATION SYSTEMS

A Dissertation

Presented To

enseet”

the Faculty of the School of Engineering and Applied Science

Vi

University of Viraginia

Cors g,
/)

‘ SN
wY In Partial Fulfillment
N
: 0. the Requirements for the Degree
\
2& Doctor of Science (Electrical Engineering)
3

By
Melvin D. Aldridge
June 1968

N69-19622

E { 02) g (érnn
S i P Gr5 2 Py

{NASA CR'OR TMX OR AD NUMBER) {CATEGORY)




APPROVAL SHEET

This dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Science (Electrical Engineering)

Author

Approved:

Faculty A .1ser

Dean, School of
Engineering and
Applied Science

June 1968




ABSTRACT

The problem of including quantum effects within
existing methods of communication system analysis is
investigated, A mathematical model is postulated for
describing narrow bandwidth systems. Utilizing the Glauber
P representation, the model permits analysis of both real
field detection (measurement of electric and magnetic
field magnitudes) and photon detection., The resulting
equation which describes photon detection is shown to
be consistent with previous work which has been proven
experimentally, \Unique aspects of the postulated model
are its ability to describe both random and deterministic
modulation functions in conventional terms, and its
ability to demonstrate the inapplicability of the "photon
channel” model for describing present-day systems.

An analysis of quantum effects at the transmitter
shows that modulation of the radiated field must take

place by one of two distinctly different processes.

Wave modulation is defined as a process which conveys
information in the amplitude and phase of the electro-
magnetic field. Photon modulation is defined as a process
which conveys information in the exact number of photons
per pulse of the transmitted field (i.e., the "photon

channel" of Stern, Gordon, andi oth-rs). A wave modulated




signal is shown to describe present-day modulation
schemes and, moreover, to yield random photon fluctuations.
It is concluded a wave modulated signal is not capable of
describing a photon modulated signal. In contrast, a
photon modulated signal is shown to possess a completely
random phase fluctuation thus demonstrating the inability
of the "photon channel" to describe presently used wave
modulation schemes. For wave moduiation the Glauber P
function is shown to be identical (with a change of
variable) to the classical joint probability density of
the quadrature components of a narrowband sinusoid
used in conventional analysis. Equations are derived which
"transform” classical probability distributions into
distributions which include quantum effects.

The "partitioning noise" studied by Hagfors and
Bowen is found to constitute a source of noise only in
the "photon channel," The "partitifoning effect" is
shown to merely preserve the Poisson character of photon
counts in wave modulated fields and therefore does
not introduce a noise in present-day systems.

For a wave modulated system with real field
detection it is shown that photon noise can be included in
conventional analysis by adding to the normal input noise,

a noise density of hf_ /2 Watts/Hertz where h {s Planck's




constant and fc is the system carrier frequency.

Use of photon heterodyne detection requires the addition
of an input noise density of hfc Watts/Hertz. The
photon noise is exactly additive Gaussian for real field
detection and approximately additive Gaussian for

photon heterodyne detection. Detection by cJunting the
received photons is shown to yield neither Gaussian nor
Foissonian statistics. However, with an "ideal

measurement process," when the effective received noise

density n is much less than hf., the variance of the

c
counts are found to approach that of a Poisson distribution,
Conversely, when n. 1is much larger than hfc, the
variance approaches that derivable from a classical
analysis,

A channel capacity equation for a wave modulated
system is found which is equal to those derived by

Lachs and Jelsma. The equation is shown to give

capacities less than that derived by Gordon.
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CHAPTER I

INTRODUCTION

Invention of the laser has aroused considerable
interest in the use of the electromagnetic spectrum above
conventional microwaves. Potential improvements due to
highly collimated beams and large bandwidths make very
short wavelength radiation attractive for both space
and earth communication applications. D. Gabor was the
first to point out that use of radio frequencies in the
infrared and visible regions would require a consideration
of photon noise or the quantum properties of radiation
(Reference 1), The study reported herein investigates the
genaral problem of including photon noise within existing
methods of communication system analysis.

Review of Previous Work

Following Gabor's original work in 1950, additional
studies on quantum effects in communication systems were
not reported until 1960. A1l of the works published thus
far fall into one of the two broad categories discussed
below.

Referentes 1 through 13 share the characteristic
of having derivations (and possibly results) that cannot

be related to conventional concepts of amplitude and




phase modulation. Most of these works are concerned only
with the derivation of a channel capacity equation which
includes quantum effects, The usual approach implicitly
assumes that any channel can be considered to convey
information by the exact rumber of photons transmitted

in each frequency-time cell. This mc-el has been called
a "photon channel.” The derivations do not reveal how
quantum effects can be included in the analysis of
conventional communication systems. The most referenced
work in this category is Gordon's second paper (Reference 5).
She and Hagfors have taken issue with certain aspects of
Gordon's work., She (Reference 14, page 4) noted that
Gordon's use of only one sample per frequency-time cell
does not obey the correspondence principle since it is
well known that two samples per cell are required in
classical analyses. Hagfors (Reference 7, page 2) has
shown that Gordon's work neglects the effects of free
space attenuation which introduces a "partitioning noise"
“n the channel., Bowen (Reference 13) has investigated
"partitioning effects”" for the case of large free space
attenuation, HNeither Hagfors or Bowen have discussed

the significance of this noise in conventional amplitude

and phase modulated systems.




References 14 through 18 utilize approaches where
conventional concepts of amplitude and phase as well as
the number of photons evolve from the quantum theory of
free fields. In 1964 C. Y. She and G. Lachs independently
made the first attempts in this direction (References 14
and 15). Simultaneously L. Jelsma was pursuing a
similar path (Reference 16). Also based on quantum
field approaches, Helstrom and Karp have analyzed
specific optical detection problems (References 17 and
18). A1l of References 14 through 18 either directly
utilize or are related to the Glauber P representation of
the "coherent state" (References 19-22). The P
representation was developed for describing the quantum
theory of coherence for optical fields and has been the
subject of several quantum theoretical discussions
(for example, References 23-25). The relationship of the
Glauber P function to a classical probability density
appears to be the key to developing methods for directly
including photon noise within conventional analysis.
Previous neglect of this relationship has created
confusion relative to statements made by Glauber. Ffor
example, Minkowski, et. al. (Reference 26) have cricized
Che's work for his use of the P function because Glauber

does not equate it to a probability density.




She, tachs, and Jelsma did not discuss the
description of modulated fields. Lachs has subsequently
developed a multi-mode description of modulated fields
(Reference 27) which has been applied to the analysis of
a frequency modulated system (Reference 28). The mathe-
matics of the multi-mode field are cumbersome and as
developed by Lachs appear to be useful only for describing
deterministic modulating wave forms,

In addition to the problems outlined above, most
of the works referenced in this section are so strongly
couched in the language and mathematics of quantum theory
that the separation of conventional concepts and those
unique to the quantum properties of radiation are not
well defined, Moreover, no attempt has been made to relate
the consistencies or differences between the "photon
channel” and quantum free field approaches.

Statement of the Problem

In view of the previous work, the study presented
herein is addressed to several specific problems. The
general objective is to develop techniques which permit an
inclusion of quantum effects directly in existing methods
of communication system analysis. This requires the
development of a model which is compatible with the require-

ments of quantum theory but still maintains the conventional




concepts of amplitude and phase modulation, correlation
functions, and tandwidths, The role of the modulation
process at the transmitter must be studied to determine
what meaning, if any, the "photon channel" holds in
describing conventional modulation schemes. The effects
of free space attenuation is studied to determine how the
“partitioning noise" studied by llagfors and Bowen affects
the work shown herein, Since the Glauber P representation
offers the only quantum theoretical method of describing

a field with both classical and guantum concepts, the
relevance of the P function to a classically derived
probability density must be studied. Finally, the results
of this paper will be compared to Gordon's work and his

use of the "photon channel."




CHAPTER 11

A COMMUNICATION SYSTEM MODLL

To include tne quantum properties of radiation in
modern communication theory, a model must be available
which is describavle by the analytical techniques of
communication theory and compatible with the requirements
of quantum field theory. This chapter presents the
development of a model which viill be altered in the next
chapter to include quantum properties. A unique time
sampled description of the field permits conventional
concepts of temporal fluctuations, bandwidths, and
correlations functions to be carried into the quantum
analysis, The inclusion of quantum effects at bcth the
transmitter and receiver will be possible.

The Basic Model

Consider the block diagram shown in FiguLre 1,

The modulated transmitter radiates a field of which the
phase or amplitude is being controlled by the information
source. A receiving aperture collects a small portion of
the transmitted field as well as fields arising from
sources of thermal noise. The total received field

is measuvred and demodulated to give an output of the

received information.
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Temporal fluctuations of the field's amplitude and
phase are determined by the information source and the
technique of modulation. Many modulation methods are
Anown and have been analyzed extensively to determine the
resulting characteristics of the radio frequency wave,
Therefore, a mathematical description of the fluctuating
radiated field will be adequate for the purposes of this
paper since this implicitly includes the infirmation
source,

Since quantum effects must be considered at both
the transmitter and receiver, a description of the field
for both cases is presented,

Description of the Transmitted Field

Consider the linearly polarized electric field
ET(F.t) which is prepared in the transmitting aperture
a_. The field in the aperture can be considered

equivalent to the voltage

Er(t) = f/ET(r.t)da, (2-1)
aT

fssuming the process which prepared Eq(t) 1is bandlimited
toc Ay Hertz and centered at fc the carrier frequency
vwhere

My<ef, (2-2)




LT(t) = XT(t)COcht - yT(t)siant (2-3)

where xT(t) and yT(t) are the quadrature modulating

components. Lquation (2-3) can be written in the form

ET(t) = AT(t) COS[wct + BT(t)] (2'4)

where
Ar(t) = Wx2(t) + yr2(t)
T X7 T
-1 yelt)
eT(t) = tan A
xT(t)
Since W; s centered at f_, it follows that x;(t) and
W
yr(t) are bandlimited from zero to 51 Hertz. Therefore
(Reference 45)
Wy
sin T(t - ktT)
xp(t) =2ijT(ktT) - (2-5a)
—%(t - ktT)

. Wy
sin —(t - ktt)
Wy
>—(t - kty) (2-5b)

YT(t) SEEyT(ktT)
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W
sin_%(t - kty)

ET(t) =Zk [XT(ktT)COSth - _VT(ktT)S'lnuct
—;-(t - ktg)
(2-6)

where

T (2‘7)

Equation (2-6) can be translated into the equivalent

circuit shown in Figure 2. If

W NT
GT(u) =1 for - 7 <w< 5
= !w| > 21 (2-8)
2
and
x, " (t) = I-2xplker)a{t - ktg)
then

x
]
—
ct
—
"

[ x"agle - 0

where gT(t) is the impulse response of GT(w) or"

*This development obviously yields an impractical
resuit since no filter output can exist before the input
impulse occurs, In reality, a filter of the form (2-8)
requires an infinite number of energy storage elements and
thus introduces an infinitely long time delay. The time
delay is neglected here for convenience,
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9r(t) = =

i
—
= |
I\,
8
[ep]
—
—
E
S
[14]
Q.
€

Therefore

© YT
xp (t) =‘[“‘ka-|»(ktT)6(r - kty) Zm =zl ) d
—(t - 1)

|

=§£xT(ktT) “T(t o
=z T
which agrees with (2-5a). An identical derivation applies
to yp(t) and the E;(t) in Figure 2 is equal to (2-6).
Description of the Received Field
The voltage equivalent to the received electric

field Ep(r,t) 1in the receiving aperture ap s

B (t) = ffaRER(F,t)daR (2-9)

Assuming the field measurement process is bandlimited to
ho Hertz centered at fc and

Won<<fe (2-10)

it follows that




13

ER(t) xR(t)COSuct - yR(t)sinwct (2-11)

1

AR(t)cos[wct + eR(t)]

where

A(t) =y xZ(t) + y2(t)
1yp(t)
vp(t) = tan ‘;ib(ﬁ

Because wm is centered at fc’ then

W
sin-ggt - ktp)

ER(t) = %; XR(ktm)COcht - yR(ktm)sinmct -
7(!’. - ktm)

(2-12)

where

1
tm = W (2-13),

Since noise fields may not be spatially coherent,
the definition of ER(t) with the integration (2-9)
inplicitly assumes that a specification of Ep(t) includes
any spatial coherence affects over the receiving aperture.
Atmospheric effects may cause the received signal to
also not possess perfect spatial coherence. However, for
the purposes of this paper such effects will be assumed

negligible,
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A circuit analog to (2-12) is shown in Figure 3.
This circuit can be considered a model of the physical
process which measures the incident electromagnetic field

to establish its amplitude and phase, If

w w
m m
G w - ] - —-2-<w<_.2.
m( ) (2-14)
= >l
=0 | w] 3

Then

xg (t) = ZU/FER(T)Qm(t - t)coswcrdr

where gm(t) is the impulse response 0 Gp(w), or

gp(t) dw

"
-
T
o
7
4
Y
.
€

Therefore

xp (t) = -Z;[XR(T) + xglt)cos2uct - 2yR(r)sinwchOchr]

. Wm
Wi sin _f(t N T)dr

2%(t - 1)
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and since (2-10) holds, it follows that

o sin <Dt - .)
' 7 T
—? - T

Therefore xR'(t) is seen to be the result of averaging

over states of xR(t) at other than time t., Since

sin mt
/m t = tm (2’]6)

it is evident that the convolution expresses an averaging
over the equivalent time period t,. Taking the sampler

to yield impulses

* )
x, (t) = :‘_ Eka (kt)8(t - kt)

then

XRn(t)

% 5”‘-2"‘[: - r)
.[XR (T)wm (t - 1)

Zx (kt )sm—?—(t - kty'
—7(t - kt )

An identical derivation applies to yR"(t) proving the
equivalence of the analog circuit to (2-12) and the

process which measures the classical field, In addition to
the measuring process, the receiver can include bandpass

filters before and arter the measurement process as shown
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in Figure 4. G[xamples of premeasurement filters are
optical and wavenuide filters which operate directly on
the electromagnetic field.
Statistical Description of the Samples
If the quadrature components are ergodic, Costas

(Reference 29) has shown that

1 m
k,.
xTE = 1im lfka(t)dt = 1im Y x (”:T) (2-17a)
1 P =
T +m 0 ma>ew i=1

E I

— 1
. k .
ka = 112 l -/o‘_yT (t)dt = 1im

T mew " §

yk(itT)

3|
nMa

1 (2-17b)

where k and m are positive integers, Similar equations
can be written for correlation functions and for the
received quadrature components xR(t) and yR(t).

From the ergodic assumptinn, the moments xTE and yTIE

(and their correlation functions) can be described by
the joint probability density PT(xT.yT) over an

ensemble of transmitters. That is

ok
X7 =-[7;TKPT(XT.yT)dedyT (2-18a)
3
Y1 ’ffkaPT(xT.yT)dedyT (2-18b)
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where each transmitter in the ensemble is modulated by
the proper function to yield the required PT(xT.yT).
Similar arguments can be applied to the measurement
process at the receiver (where the received noise is

assumed to possess ergodic quadrature components) to

yield
k kp( dx,d
PO Xp Pp xR.yR) xpdyp (2-19a)
gk . kp_( )dx, 2-19
.YR .VR R xR"yR XR *./R (2-19b)

where PR(xR.yR) includes both the received signal and
noise. The effects of noise can be isolated by

considering

PR(xR.yR) 'ffPR[(le.YR)l(xsoys)]PS(xs'ys)dedys

where Ps(xs.ys) is the distribution of the received

signal. Then

e I/
XR X Pallxgayp) [ (xgsy )ldxpdyp P (xgsy )dx dyg
XsY |RriR

= f(xR".(xs.ys» Ps(xgryg)dx dyg (2-20)
Xs¥s

vhere <ka.(xs.ys)> is the conditional average of ka

knowing what signal was transmitted. In the event a
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deterministic modulation function is transmitted (such
as a sinusoid), the ergodic assumption can again be

applied to yield

]

oK = 1im L /<xR".[xs(t),ys(t)]>dt (2-21).
0

XR .
T+

Iden.ical derivations apply to yRk and correlation
functions,

The behavior of PT(xT.yT) for describing modulated
signals is an important aspect of the model being
developed herein. The distribution of Xt and Y1
over an ensemble is indicative of their behavior in time
in an actual system, For example, in an amplitude
modulated signal, only the wave amplitude is varied
while the phase remains constant in time. The magnitude
of the phase is unimportant and is merely a function of

an arbitrary time rererence. Amplitude modulation then

requires the quantity <JxT2(t) + yTZ(t) be a function of
time while the ratio yy(t)/x;(t) must be constant with

an arbitrary magnitude. Over the ensemble, PT(xT.yT)
must reflect this requirament. That is, in polar

coordinates

Pr (Apsop) = P (Ap) 8o = op ) (2-22)
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where
A, = yx, 2 + 2
T IVXT g
T = tan'l '{l
T
6(0T - OT.) = Dirac delta function

and oy is an arbitrary constant. This contrasts to
a set of experimental systems where 6T' normally is
random over 2r radians,.

In the case of phase or frequency modulation the
yr(t)

XT(t)

ratio becomes time varfant and J}Tz(t) + y2(t)

remains constant. However, an arbitrary time or phase
reference still must exist so that changes in phase are
equal to those of the information source throughout all
time. Therefore, in general, either amplitude or phase
modulation or their combination requires both X1 and Y1
be well defined over the ensemble used to describe time
averages,

The same conclusions can be applied to the
received signal distribution Ps(xs.ys) since the only
difference between the Ps(xs.ys) and Pr(x yT) is their

relative amplitudes As and AT'




CHAPTER I11
QUANTIZATION OF THE CLASSICAL MODEL

In this chapter a discussion of the requirements of
quantum theory is presented and a method for including
these requirements in the classical model developed in the
treceding chapter is postulated. The resulting model
is shown in this and the next chapter to be consistent with
the quancum requirements and experimentally proven
equations for photoelectric detection. Quantum effects
introduced at tha transmitter are investigated. The
Glauber P representation is introduced and the ciassical
character of the P function determined.

The model postulated in this chapter is unique in
several ways. It is capable of handling both random and
deterministic modulation functions in conventional terms.
Application of the model to the transmitting
process offers the first plausible explanation for the
inadequancies of the "photon channel” for describing
conventional amplitude and phase modulation systems,

For the case of conventional systems, the Glauber P
function is shown to be equal (with a change of variable)
to the classical probability density PR(xR,yR) when

describing the "ideal" receiving process.

22




The Requirements of Quantum Theory

It is well known that electromagnetic radiatinn can
exhibit properties which are indicative of both wave and
particle phenomena. Particle properties are probably
most easily demonstrated by photoelectric or photon
counting experiments. LExtensive theoretical descriptions
of the statistics of photon counting distributions have
been developed using both semiclassical and purely
quantum mechanical methods (References 30-33). Recently
these results have been given experimantal verification

(References 34-36). These works have thown how the

wave properties of radiation are exhibited when the photons
are detected., Less understood is the converse problem.

How are the particle properties of radiation exhibited when
the wave phenomena are detected (hereafter called real
field detection)? Detection of received signals by an
induced antenna current characterizes the latter problem
and is important in determining quantum effects in
millimeter and submillimeter wave systems.

There has been little discussion in the literature
on a quantum mechanical description of the real field
detection process. Heisenberg (Reference 37) and Bohr
and Rosenfeld (References 38, 39, see also 40) have

consisered the case of taking one isolated measurement
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of the electric and magnetic fields. These works use
hyphotetical measuring systems to demonstrate how the
quantum theory of a free field measurement is consistent
with the quantum properties of the charged matter which
must be used to effect a real field detection. The
referenced works shed little light on how photon noise
affects practical real field measuring systems,

In view of the lack of understanding of the real
field detection process it will be necessary to postulate
a model for the complete description of the transmitted
and received electromagnetic field, The model will be shown
to yield the same photon counting distribution first
derived by Mandel (Reference 30) and later proven
experimentally (References 34-36). It will also agree
with Bohr and Rosenfeld's description of one ideal real
field measurement.

In order to establish the necessary properties of
the model to be postulated, the general requirements
imposed by quantum theory are outlined in the remainder
of this section. In the ensuing discussion the terms
preparation, measurement, and system state are defined
differently than in conventional quantum theory. A
preparation process is defined as an attempt to establish

a system in a desired state. However, after completion
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of the preparation process the system may not exist

in the desired state because of the uncertainty principle
(see discussion which follows). One is able only to
predict in a probabilistic sense the actual resulting state,
In contrast, a measurement process is defined as an attempt
to determine the state in which a system exists prior to the
beginning of the measurement process, However, the
accuracy of the measurement is limited by the uncertainty
principle and one can only gqguess in a probabilistic

sense what the true system state was prior to the measure-
ment, Conventional quantum theory does not give

separate emphasis to the preparation process since it is
argued that the two are identical in principle and
therefore should not be distinguished. However, Margenau
has argued the contrary (Reference 41) and recently
Prugovecki has viewed the distinction as fundamental
(Reference 42). She and Heffner (Refer2nce 43) have

shown how the distinction exists in the mathematics

which describe a conservative quantum harmonic oscillator,
In this paper a consideration of the preparation process

is necessary to account for quantum effects introduced

by the transmitter, a point neglected by previous studies.
The state of a system is defined by two conjugate
quantities rather than only one quantity as in conventional

theory, Such a definition is not new and has been utilized
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by She (References 14 and 43). The newly defined state
still permits one to consider the conventionally defined
state as discussed in the next paragraph,

As noted above, the results of a preparation or
measurement process must not violate the Heisenberg
uncertainty principle., This principle accounts for a
natural limit on man's ability to simultaneously prepare
or measure certain variable pairs which describe the
state of a system, Heisenberg has shown that the limit

is approximately (Reference 37)
apaq ~ h (3-1a)
2s€4t ~ h (3-1b)

where
4 root-mean-square deviation
q position
p momentum
€ energy
t time

h Planck's constant (f = %;)

The uncertainties or root-mean-square (rms) deviations in
(3-1) are of a statistical nature over an ensemble of
systems and are the result of the unavoidable and

unpredictable interaction between the preparation or
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measuring process and the system, For example, consider
an attempt to prepare each ensembie member into the

same state defined by the variabie pair (qo.po).

By Heisenberg's arguments it is physically impossible to
prepare all members into the same state (qo.po). but
rather the best nature will permit is expressed by (3-1),
This does not preclude the possibility, at least in
principle, of attempting to prepare all members into

identical states of either Po Or a (i.e., convantionally

0
defined states). From (3-1a) such an operation would

yield an infinite rms deviation of q or p respectively.
This is an unrealistic result which has long been recognized
(Reference 44), Although a consideration of only one
variable has been successful for most quantum mechanical
problems, the developments which follow in this paper

will use harmonic oscillator states which require both

p and q be well defined over an ensemble.

In many cases one does not wish to prepare all
ensemble members into identical states (q,,p,). For
example, the statistical description of a noisy system
can give rms deviations larger than those in (3-1),
llowever, the excess uncertainty over h is, in principle,
controllable by man while that expressed by (3-1) is
not controllable and must be an inherent part of quantum

theory. For example, one can control the amount of noise
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emitted from a thermal noise source via control of its
physical temperature, but no such control is possible over
the uncertainty of (3-1). In the sequel, sources of
uncertainty will be referred to as "classical" or "quantum"
in orgin, the latter noting the uncontrollable

uncertainties introduced by the unpredictable effects of the
preparation or measurement process.

Following an attempt to prepare a system into some
state an attempt can be made to measure the resulting state,
However, the measurement process is also subject to the
uncertainty principle making it impossible, under any
circumstances, for one's knowledge to exceed that allowed
by (3-1). Again this does not preclude the possibility of
making a perfectly accurate measurement of either p or
q for the example given above., However, such an operation
yields no knowledge of q or p respectively. It should
be noted that the uncertainty relation (3-1) has been shown
to be consistent with the quantum theory of free fields
(References 39 and 40).

Dirac (Reference 44) has not only required measure-
ments to be taken instantaneously, but he has noted that the
unpredictable interaction between the measuring process and
the system being measured requires a new wave function to
describe the system immediately after the measurement. The

form of the new wave function is important in establishing
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how the unpredictable interference of the measuring process
affects the accuracy of all subsequent measurements., She
(Reference 14) is apparently the only worker to have
considered this problem in detail. Specifically, he
analyzed the case of measuring the position and momentum
of a lossy harmonic oscillator which possessed a
Lorentz shaped bandwidth, When the measurement was
performed with the most accuracy possible (i.e,, with
minimum uncertainty), She showed that after the measurement
the oscillator must be in a "coherent state" (see page 41
for definition). Utilizing the new system wave function
(as defined by the "coherent state") a second measurement
was performed, The accuracy of the se-ond measurement
was foudnd to be degraded by the first measurement.
Moreover, the effect of the first on the second measurement
was found to decay as the impulse response of a Lorentz
shaped filter, i.e,, the effect was dependent
on the time interval between the two measurements. It
follows that the effect of a measurement on the accuracy
of subsequent measurements can be represented by an
appropriate impulse excitation (in the variable being
measured) of the lossy oscillator,

A measurement of field energy at any time instant
(received field power averaged over a finite time period)

must yield only values which are integral multiples of

/
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hfc where fc is the frequency of radiation. This
accounts for the well known postulate of Planck and permits
the description of photon counting experiments (hereafter
called photon detection),

A cumplete description of the field preparation and
measurement processes must utilize a mathematics which is
self consistent with both the classical wave properties
of fields and the nonclassical particle properties.

This, of course, is the general goal of quantum theory.
The problem is one of finding a quantum mathematical
description within which classical characteristics

can be easily identified as opposed to purely quantum
phenomena, The importance of this requirement is
demonstrated with the following example., (Consider a field
which is prepared (transmitted) with a classical state of
well defined amplitude and phase. At the receiver, the
field measurement can take place by either the classical
real field detection process or the quantum mechanical
photon detection process. In either case the classical
characteristics of the transmitted signal must be
identifiable in the description of either detection
process in order to determine the quantum effects in the

system,

— A

|
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The requirement of self consistency of quantum
descriptions with classical phenomena is embodied in
Ehrenfest's theorem and the correspondence principle.
Ehrenfest's theorem requires that over an ensemble of
systems which include quantum effects, the average value
of quantities with classical counterparts must equal the
corresponding average values over an equivalent classical
ensemble (one which does not include any quantum effects).
The correspondence principle requires that in t-e limit
h+o the quantum statistical distribution of quantities
with classical counterparts must equal the corresponding
classical distribution, An example of a quantity which has
no classical counterpart and to which the above requirements
cannot be applied is photon number,

The Postulated Model

Now that the description of a classical model
and the basic requirements or quantum theory have been
established, quantum properties can be included.

The classical model already meets three of the
quantum requirements. That is: (1) the transmitted and
received field can be descrived at discrete time instants
without loss of information; (2) preparation or measurement
processes can be considered to occur instantaneously in
the form of impulse functions; and (3) 1in the absence of

any preparation or measurement process the system evolves
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in time in a casual manner. In addition, the statistical
properties of the transmitted and received fields are
expressed in an ensemble sense thus establishing the
ensemble needed to define the classical properties in a
quantum description of the model,

The remaining quantum requirements are fulfilled bv
postulating that the bandiimited preparation or measure-
ment of each term in the summations (2-6) and (2-12) is
equivalent to the preparation or measurement of a quantum
mechanical oscillator of frequency f.. The ensemble of
systems used to define the classical distributions
Pr(x7syr) and Pp(xg,yp) can be extended to the postulated
model by considering an equivalent ensemble of quantum
harmonic oscillators. Eoquivalence of the two ensembles
is established by Ehrenfest's theorem and the correspondence
principle, If PQR(xR.yR) is the distribution defining
the results of measuring xp and yp over the quantum

ensemble, by Ehrenfest's theorem

./7;RPQR(XR’yR)dedyR 3-[7;RPR(XR.yR)dXRdyR (3'23)
~[/_;'RPQR(xR,yR)dedyR 3_17;RPR(XR'YR)dedyR (3-2b)

By the correspondence principle

PR(XR'yR) = 1im PQR(XR.yR)
h+o (3-3)




33

The extension of the ergodic assumption to the
quantum ensemble in the postulated model implicitly
assumes that the unpredictable effect of a quantum
mechanical preparation or measuring process on the
communication system dves not affect subsequent preparation
or measurement operations. This is consistent with the
foilowing: (1) the preparation and measurement processes
are taken to be bandlimited operations; (2) samples are
considered only at the Nyquist rates (2-7) and (2-13); and
(3) the cuantur effects of a preparation or measurement
process are instantaneous at the time of the sample and can
be represented by an impulse of appropriate strength

(in the variable being measured) as concluded from She's
sinx

work, Since the impulse response of Gy(w) and

Gnl{w) s zero at all other sampling instants, it follows
that the unpredictable effect of a preparation or
measurement process does not affect subsequent preparation
or measurement processes. This is obviously an idealized
case resulting from the use of an unrealizable bandwidth
iimited preparation or measurement process. The results
are in any case consistent with the work of She for
sequential measuremen!s and that of Bohr and Rosenfeld

for the case of one isolated measurement. Moreover, for

the case of photon detection the -esulting model will be
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shown to yield the photon counting distribution first
derived by Mandel and subsequently proven experimentally,
Therefore, within the constraints of the model postulated
herein, the visualization of each term of (?-6) and
(2-12) as a physically independent, zero bandwidth
oscillator is permissible, Fulfillment of the remaining
quantu% requirements will be demonstrated in the sequel.

; Quantum Effects at the Transmitter

The first step in transmitting information in a
communication system is that of preparing the electro-
magnetic field to be transmitted. By the rodel postulated
in the previous section this is equivalent to an attempt
to prepare an ensemble of . intum harmonic oscillators
into states deterr’~:d by the information to be
transmitted and the method of modulation. <{(iassically,
cnly the amplitude and phase of the emitted wave can be
controlled by the modulation process. When quantum
effects are introduced the energy levels of the mechanical

osciliators become quantized. That is
50 = phuw. (3-4)

vhere GQ is the energy level corresponding to n photons
of the radiated field and is the amount of energy

associated with one samp:e prepared by the transmitter, At
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least within the framework of the postulated model, the
number of photons transmitted in each sample becomes a
new variable which could be modulated by the information
source, This will be called "photon modulation”" in
contrast to the modulation of the field's wave properties
which will be called "wave modulation."

The term "photon modulation" as defined above
is more restrictive than may first appear. To illustrate,
one may wish to consider a coherent light beam modulated
by the opening and closing of a shutter as a type of
pho*on modulation since the flux of photons emitted
from the transmitter has indeed been modulated. However,
in this example, one cannot predict with good accuracy
the exact number of photons emitted during each sample
whereas the wave amplitude can (as will be shown later
in this section). It follows that the transmitted
information is contained not in the number of photons but
in the wave amplitude. Photon modulation, as used herein,
defines only the case where the transmitted information is
contained in the exact number of photons emitted (not the
emission rate).

As outlined in the introduction, the work of Gordon
¢ind others implicitly assume that in any channel

the number of photuas in each field sample describes
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the transmitted information. This obviously is photon
modulation as defined above.

Before presenting the quantum properties of the
prepared (transmitted) field samples, it will be convenient
to make a change of variable. First consider a classical
mechanical oscillator which is equivalent to cne term in
(2-6). The equations of motion of the oscillator as a

function of position qy and momentum py at time zero are

pT(t) cos wct - w qp sin wet (3-5a)

Pr

a;(t) = qreos w .t + PI_ sin wet (3-5b)

wc

It follows that the classical oscillator energy is

22)

€1 = $(pg? + v lag (3-6)

which is the energy available for the one prepared sample
of the transmitted field being described by the oscillator,
Since the dimension of (2-6) is voltage and the effective
averaging time per sample is ty, an equivalent oscillator

can be defined as

_yT i
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& ;l(xzo 2yt (3-8)
T AN Y1 T

Consider an ensemble of unit mass quantum harmonic
oscillators which have been prepared in an arbitrary state.
Ensemble averages or the position and momentum are given
by reference 46 as (the subscript T is dropped from

qQ and p for convenience)

<q> = %Zl}':‘:\(n +*VCh 4 qC dcos(u t +0p oy - 3,) (3-9)

<p> = -‘IZ’ﬁwc En:\’n + llcn + ]anSin(wct + @n + ] - ¢n)
{3-10)

2, « h_ L
<q®> wc[N+2.

+ 2N+ N)(n + 2)C, , 2Cpleos(2u .t + 0 4 2 - 0 )]
n
(3-11)

<p2> = ﬁwC[N + %

-Zn:\l(n + 1)(n + 2)|C, & chlcos(cht tel 4ot ¢n',‘]
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where ICnI2 {s the probability distribution of the

number of photons or
- 2
P.(n) = |C |

where

N = P (n)
Egn L n

Richter, et. al., have shown that <p> and <q> attain

their maximum amplitude only when (Reference 46)

¢n + ] - @n = ¢ (3"3)
for all n, and
P (n) = N =N (3-14)
n nt

which is a Poisson distribution with average value of N,

When (3-13) and (3-14) hold, the ensemble averages become

<q> =‘/§ﬁﬂ cos(uct + ¢) (3-15)
we

<p> = -‘/2f)ch Sin(wct + ¢) (3-16)

2. . 28N 2 f
<q°> = 20 cosf(y. t + o) + -
we “e 20, (3-17)
2 'ﬁwc
<p2> = 2hu N sin (wct + ¢) + (3-18)
c 2




39

These describe an ensemble of harmonic oscillators which
are in near synchronism, The lack of perfect synchronism

exists because of the uncertainties

(Aq)2 = oqz = <q2> - <q>2 = 2.%- (3-]9)
c
h
(8p)@ = opz = <p2> . <p>? - %—c— (3-20)

which conform to the minimum uncertainty relation
Aqu = g (3-2])

Therefore, when an attempt is made to prepare each
ensemble member into identical states of amplitude and
phase, not only does the nosition and momentum possess
the minimum uncertainty (3-21), but the number of photons
possess a Poisson distribution. By the postulated model
this corresponds to an attempt to transmit a wave of which
the amplitude and phase remain constant in time.

Similarly the statistical distributions over the ensemble

of oscillators correspond to unpredictable fluctuations

in time of the variables concerned., The fluctuations of
position and momentum are normally negligible since the
transmitted wave is many times larger. However, the

photon fluctuations are very significant and can be measured
for the case of single mode laser radiation (c.f.

References 34 and 35). Photon fluctuations cannot be made
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negligible since the variance is equal to the average
value, thus any increase in the traunsmitted signal
proportionally increases the variance of photon counts.
Therefore, from the definitions of photon and wave
modulation given earlier two conclusions follow: (1) the
above situation describes a wave modulated signal, and
(2) a wave modulated signal cannot be used to describe a
photon modulated signal.

Consider the photon modulation counterpart to the
above example. Each time sample of the field must contain

the same number of photons N. Then

Icnl = én.N
P (n) = 52 (3-22)
n n, N
where 6n N is the Kronecker delta function. From
(3=-9) to (3-12)
«p> = <q> = 0 (3-23)
p2> = hu (N + 5) (3-24)
o K3
<q®> = D (n + %) (3-25)
“e

These averages describe an ensemble of harmonic oscillators
where the phase ¢ is equally distributed over 2n radians,

Therefore a photon modulated signal possesses a random
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phase modulation which is independent of the transmitted
signal level. That is, a signal produced under the
constraints of photon modulation (as defined earlier)
possesses an unpredictable phase from one sample to the
next and therefore is not capable of describing a wave
modulated signal, The latter conclusion follows from
the requirements of amplitude and phase modulated signals
discussed at the end of Chapter II. Wave modulation
describes all known continuous wave, modulation schemes.
Only a pulsed modulation process which controls the number
of photons per pulse could fulfill the photon modulation
requirements, It appears that all present day schemes are
basically wave modulation since no physical process for
generating a photon modulated field has been demonstrated.
The remainder of this paper will be devoted primarily to
wave modulation., A discussion of a photon modulated system
will be given in Chapter V to place the work shown herein
into proper perspective with the "photon channel"
model,
The Glauber P Representation

Before proceeding to an investigation of the
magnitude of quantum effects in a wave modulated communica-
tion system, the Glauber P function must be introduced and

its relationship to classical functions determined.
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The "coherent state" was named by R. J. Glauber in
his application of the minimum uncertainty state of the
harmonic oscillator to the study of the quantum theory
of optical coherence (Reference 19-22). Both Glauber and
Sudarshan (Reference 47) recognized the usefulness of a
diagonal representation with the "coherent state" for
describing some general field states. Glauber developed
an extensive mathematics around the diagonal form which is
now known as the Glauber P representation.

Lachs has shown that by using the P representation,
the probability distributions for position, momentum,
and photon number for an ensemble of unit mass oscillators

are (Reference 48)

“(p - \Zheo ap )2 .
pp(p) =f/P(a|) ] exp (p c ¢l ) dza

\,ﬂf’lwc ﬁ“c (3-26)

-(q - ¥&h o4, "2
Pq(Q) =.[y;(d.) ! exp (s ‘C;; R ) dza'
qnﬁ/wc filwe (3-27)

2n
Ppln) =.[/;(u) lﬁ+——-exp(- Ialz)dza (3-28)

where P(a) Glauber's P function (a shorthand notation for

the joint function of ap and ux)
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J-—‘(mcq + Jp) = ‘1R + Jal (3'29)

dlq = dag da

She and Heffner's work can be extended as shown in

Appendix I to give the joint probability density

)2 ( -dZ‘ﬁiu a ')2
Pqalasp) -/]P («') F|- Vr:; “R P c I

Z‘ﬁ/wc 2hu,

ala'  (3-39)

The P representaticn 15 important since it yields
the joint probability density PQ(q.p) which by
Ehrenfest's theorem and the correspondence principle must
contain classical properties of the ensemble of oscillators
as well as the quantum properties. If the classical
distribution Pc(q.p) used in describing conventional wave
modulated systems can be identified within the P function,
a set of equations will result which “"transform" the
classical probability density into distributions which
contain the quantum effects.

The mathematical properties of P(a) have been
the subject of much discussion (References 23-25). These

works have centered on the purely quantum theoretical
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properties of P(a) rather than the possible classical
meaning it may possess. This particular aspect of the
development and use of the "coherent state" has been a
stumbling block to a simple interpretation of the
equations (3-26) through (3-30).
Glauber has noted that, in general, P(a) is
not a probability density. Moreover, he allows P(a)
to be interpretable as a probability density only in an
approximate sense and never as an equality. Quoting from
Glauber (Reference 21, page 2776)
"The function P(a) mignt then be thought

of as playing a role analogous to a probability

density for the distribution of values o over

the complex plane. Such an interpretation may...

be justified at times. In general, however,

it is not possibie to interpret the function

P(a) as a probability distribution in any

precise way.... When the “unction P(a)

tends to vary little over...large ranges of the

parameter a ..., P(a) will then be interpretable

approximately as a probability density."

To study the classical properties of P(a) one

can use the correspondence principlz and find 1lim PQ(q,p).
h-+o0

To do this it is convenient to make the change of variable
(3-29) and express P(a) as a function of q and p.

It follows
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P(a) daRdul = PG(q.p)dqdp (3-31)

dap =W =% 4q

da, = d
I VEEZ; P
Then
2. _ 1
d%a = =& dgdp

P(a)]a =J“°q= 2 P.(q,p)
R 2h G'"*
ay = ] p
17 JPae

Equations (3-26) to (3-28) and (3-30) become

v 2
Pep(P) ’./];c(q'.p') ! exp{- ngi—g-l:]dq'dp

mhe C

c (3-32)
- ' L] 'l ( - .)2 ' s
PQqfa) _ly;s(q P ) exp[; —3———3——f]dq dp
\’ﬂﬁ/w N/ w
¢ /uc (3-33)
p (q.p) =//;’ (q'.p') %5% - ‘q b q.)z - ‘P bl P'lz d ld )
e G " 2f/ g 2he, 9 °p

(3-34)
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wca® + p2\"
' ' “e wcqz ¥ pz ' 1
Pn) =4 JP.(q ,p ) - — exp|- - dq'dp
¢ (3-35)
By the correspondence principle
P.n(P) = Yim pop(p) (3-36)
cp h+o QP
pcq(q) = ;12 PQq(9) (3-37)
Pclasp) = lim Po(a,p) (3-38)
h-+o

Since the limits on the integrals are over all possible p
and q, they are independent of h. If PG(q,p) is also

independent of h, then

pcp(P) =/PG(Qop) dq (3-39a)
P.(asp) = P.(q,p) (3-39c¢)
where the relation
: 1 - (x - x)?
lim exp =8 (x - x7)

9+0 Vchz 202
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was used, The fact that PG(q.p) must be independent of
h for the constraints placed on the quantum description
can be seen by the following argument. By the
correspondence principle a calculation of the second
moment of p and q must yield the classical second
moment plus a quantum uncertainty proportional to h.
The model used herein has already taken the ensemble to
be one of minimum quantum uncertainty. Therefore any
dependency of PG(q,p) on h could not affect the
magnitude (3-21), but only the ratio of uncertainties
in p and q. Previous analysis (Reference 49) using
the maximization of entropy as a criterion for a least
biased estimate has shown that there is an equal balance
of uncertainty between p and neq when the onily
constraint is the product (3-19). Furthermore, Lachs
(Reference 15) has shown this condition satisfies the
energy-time uncertainty relation (3-1b), It follows that
Pgla,p) 1is independent of h since this condition
satisfies the above requirements in equations (3-32) and
(3-33).

Therefore, the Glauber P function PG(q,p)
becomes equal to the classical distribution P.(q,p)
when describing a field which is known i1 classical

terms and is being prepared and measured by ideal processes.
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The substitution of Pc(q,p) into (3-32) to (3-35)
yields the set of desired equations which transform the
probability density of Pc(q.p) to those which include
quantum effects,

Part of the arguments used here are similar to those
of Mandel and Wolf (Reference 25). However, they
required only the equality of averages as in Ehrnferst's
theorem to show that when an all pesitive P(a) exists,
there must also exist a classical function which gives
the same averages. They failed to point out that P(a)
possesses a definite classical meaning as required by the
correspondence principle as discussed above,

It should be emphasized that the classical or
guantum character of P(a) 1is determined only by the
preparation process and has nothing to do with the
eventual measurement of the field. The measurement
process may also be of either a classical or quantum
character depending on the type of field-matter interaction
process used at the receiver. In the conventional
device, an electron current is induced in synchronism with
the received electric field. The induced sinusoidal
variations are filtered, amplified, possibly heterodyned,
and then subjected to some form of amplitude, phase, or

power Jdetection. This is equivalent to a measurement of
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p and q and is described by equation (3-34), The
operation will be referred tc as a "real field receiver"
or "real field detection." In contrast, the "photon
receiver of detector” responds only to the discrete
photons in the received field. This is a measurement of
and is described by (3-35). The photon receiver still
responds to wave properties since (3-35) is a function

of Pgla,p).

n




CHAPTER 1V
WAVE MODULATED SYSTEMS

Amplitude and phase modulated communication systems
were shown in the preceding chapter to be wave modulated
systems, Furthermore, the Glauber P representation was
found to provide a description of wave modulated systems
where PG(q.p) can be equated to the classical Pc(q,p).
In this chapter an investigation of free space attenuation
effects is followed by a derivation of the equations which
describe both real field and photon detection situations,
The effects of photon noise relative to classical
Gaussian noise are determined and a channel capacity
equation is found and compared to Gordon's work.

The Effects of Free Space Attenuation

Before discussing the effects of free space
attenuation on the results of the preceding chapter, a
significant difference between Equations (3-32), (3-33), and
(3-34) must be recognized. Consider the case where the
desired classical field is of definite amplitude and

phase, or

Pcla,p) = 6(a - qg)élp - pg) (4-1)

which gives in (3-32), (3-33), and (3-34)

50
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(4-2)

PQqla) = —— exp|- —— (4-3)

Palasp) = oz expl- - (4-4)

cpz _?g = (ap)? (4-5)

(aq)2

Q
0
1

1]

which is the minimum uncertainty (3-23). However, (4-4)

yields
Upz Bﬁwc = (Ap)2
(4-6)
cqz = ﬁ/wc = (AQ)Z
or
Lqap = h (4-7)

which is twice the minimum uncertainty (3-21). As shown
by She and Heffner (Reference 43) the uncertainty

principle applies to both the preparation and measurement
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processes, Therefore (3-3¢) and (3-33) must apply when a
preparation into a "coherent state" is followed by a
perfectly accurate measurement of either p or q alone
(which eliminates any possible knowledge of the other
variable)., Etquation (3-34) must apply then when both p
and q are measured following the preparation thus
giving twice the minimum uncertainty as shown in (4-7).

Note that (3-34) applies when the oscillator is
dissipationless between the preparation and the measurcment
processes., In the case of a communication system, the
magnitude of the received field is much less than the
total prepared field at the transmitter because of free
space attenuation,

Since the field evolves in time in a classical
manner after the preparation process, it follows tnat the
uncertainties of quantum origin introduced at the
transmitter will be attenuated in the same manner as
classical variations of the field. By assuming either the
transmitted signal is sufficiently larae or that the
free space attenuation is sufficiently great, the quantum
noise introduced by the wave medulation process at the
transmitter will be negligibly small at the receiver,
Therefore, it follows that for real field detection of a

wave modulated field, the statistical distribution is

given by the joint probabjlity density




(a0 - ﬂ')z (p - p)?

i‘u'(q.p) = f:‘ﬁ'/"c(".'p.)“p - - - dq'dp'
/wc ﬂwc

(4-28)

where the minimum uncertainty (3-21) holds rather than
(4-7),

In the case of photon detection Hagfors has shown
quantum mecnanically (Reference 7, pane 11) that the
number of photons received is affected by free space

attenuation as described by the binomial distritution

‘<=.___r\—”._—_n -V. -
Pn(n!d) N - n)!v (1 ) (4-9)

where Pn(niM) probability that n photons will be
received knowing that exactly ™ photons
were transmitted;

v power attenuation coefficient.

For the wave modulated system the number of
transmitted photons cannot be known with certainty and
obeys (3-35) which is a Poisson distribution with a
randomly varying average value. LaTourette and Steinberc
have shown that a Poisson distribution followed by a
Lionomial operation gives another Poisson distribution

(rReference 50)
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Ppnin) = Ao exp(- MNv) (4-10)

where N averagec number of photons transmitted. Therefore,
the distribution (3-3%) applics at the receiver with tne
average values as determined by classical analysis,

It should be noted that the above conclusion is
concurrent with the assumption of She and Jelsma
(References 14 and 16), namely, the trancmitted siqgnal
is sufficiently large that quantum effects at the
transmitter are negligible. However, She apparently did
not discriminate between the uncertainties which arose
from preparation at the transmitter and measurement at the
receiver until his later work {(Reference 43). Therefore,
She's original paper (Reference 14) essentfally uscs
Equation (3-34) rather than (4-8).

Analysis of Quantum Effects

Since the time sampled field model utilizes the

voltages xg and Ya to describe the measured quantities

it is convenient to make the change of variable

p = xRVtm (4-11a)
q = By (4-11b)

“Ye

which yields
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= — tm
Poi(X,0y,) = 2EP (q,p) B (4-12)
RYTTRYIR tn Y p = XRJEH-
P ) = =£P _(q,p) =Zd‘}itm (4-13)
X oY, = q,.p c =
R R™R th G = 5 ¢?—
RY " m
Substituting thesze into equations (3-35) and (4-8)
pRJ(XR.yR) ='/]‘PR(XR lJ'R )
. - )
e = R R
2n( zcwm) ﬁwcwm ﬁwcwm
(4-14)
2
xe + 2" ) )
“Tho W, Xt Yy
P(n) = PR(xR.yR) c'm expl —————| dxgdy,
n! Zﬁucwm )
(4-15)
vhere tm = %—
m

These two equations express one of the main results of this
paper. They transform the probability density PR(xR.yR)
derived from classical theory to distributions which

include the quantum effects. Equation (4-11) holds for

the case of real field detection whereas Equation (4-15)

|
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describes the results of photon detection. With
tquations (4-14) and (4-15) one can use the equations
derived from a classical analysis of the time sampled
model to calculate the magnitude of photon noise,

In Figure 4 it was shown how bandlimiting filters
may be placed before and after the actual field
measurement process. The bandwidth Wg was defined as
operating directly on the field prior toc its measurement,

vhereas operates on the measured values., If ¥

b 0 o
is the minimum bandwidth requireu by the modulation

spectrum, it follows that
Wy > H (4-16),

The finite bandwidth um of the measurement procass
should alsc be

> W (4-17)

for the same reason. In the following examples, the
choice of relative values for wF, wM, and wo will be more
for convenience than practicality in order %¢ demonstrate
the desired properties of the detection processes.
rowaver, the use of Equations (4-14) and (4-15) within
the framework of the postulated model permits any

combination of these bandwidths to be analyzed.
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In order to determine the effects of photon or
quantum noise relative to conventional noise, take

PR(xR,yR) to consist of the received signal Ps(xs,ys)

and an additive "white" Gaussian noise of power W

ncF

which ytelds

Palxgayp) ='[/;‘S(xs.ys)

exp (xg - xg) (YR - ys)
Zr”ch 2n W

dx dy
S (SR
F ZnCHF > (4-18)

where n. is the spectral power denrsity of the incident
noise field,

Real field detection.- Substitution of (4-18) into

(4-14) yields the double convolution

pQR(XR'yR') :'-/‘-/‘Ps(xs'ys) f"/'
s

XsY Xp YR

1
exp j (XR - X
2rn W
c

F ZHCWF

exp oo
Znhucwm Nw Gxp dyp dxsdyS




which reduces to the single convolution

PQR(xR.yR) i/gﬁg(xs.ys)

- (XR - ’(S)Z - ()’R - .YS)Z

dedyx (4-19)

iherefore, the output of the measurement process yields the
signal, the classical noise of bandwidth wF, and a
Gaussian noise of power ncwm. Since the quantum noise
results from the "interference” of the measurement

process with quantities ceing measured and is representable
by an impulse function in the sampling process, it

must be "white" or ever', distributed over the bandwidth
W.. Since (4-16) and (4-17) hold, the effective input

ncise power density is

nje = (0t —7F) (4-20)

Therefore, for the case of real field detection in a wave
modulated system, quantum noise enters as an additive
Gaussian input noise of density ﬁmc/2 watts/Hertz,

Tnis conclusion is true only to the extent that (4-17)
holds., That is, an upper limit on the total! amount of

quantum noise that can be introduced by the measurement

R e
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process is imposed by wm. Practically W, must be

finite, but if W is allowed to become infinitely
large an infinite amount of quantum noise power is
introduced. This is just another example of the so-called
"zero-point field catastrophe" in quantum field theory for
which there is no physical explanation. However, the
model utilized herein is useable only for describing
narrow bandwidth systems and therefore as Hm is
increased, the model's ability to describe a modulated
signal breaks down much before the "zero-point field

catastrophe" becomes important.

Photon detection.- The effects of photon noise

cannot be as easily generalized for photon detection as
was found possible for real field detection. HNot only must

two types of photon detection (direct and heterodyne) be

analyzed, but the nonlinear character of counting

distribution (4-15) causes the relative magnitudes of

the bandwidths Wes wM, and W, to affect the relative
magnitude of photon and conventional noises. The effect
of bandwidths ”F and wo has been investigated by
Mandel (Reference 30) for the case of photoelectric
detection where the assumption wm»m is valid for most

practical systems. Appendix Il shows that the model used

herein yields the same counting distribution derived by
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Mandel and which has been proven experimentally
(References 34 - 36).

In view of the previous werk, tho purposes of this
section are to show some of the important properties of
the photon detection process, to demonstrate how the
effects of photon noise can be analyzed with the postulated
model, and to determine if the effects of photon noise
can be included in a conventional analysis in a simple
manner,

For the case of additive Gaussian noise, substitution
of (4-18) into (4-15) yields at the photon counter

output (neglecting W, for the moment)

f/P (xgsy) ff 2exp (xR-ys)z-(yR_ys)Z
mn

chHF
XPZ + sz n )
ZHchm XRZ + .VR
exp|- ————— | dxpdyg{ dxsdysg 4-21)
n! Zﬁchm (4-

To understand the behavior of photon noise in (4-21),
consider the part of Equation (4-21) in braces. This is
tne conditional probability distribution of the number of

received photons knowing the classical received siqgnai

(xs.ye). That is
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2 .
exp (xg - ys)" -(yp - ys)Z
Palntixgay )] -
n s 2“” N .
29 W,
c |
X< + y,© )
R TR 4 3
A T/ exp kT dx,d (4-22)
n! 2he Wy, R4 -
' c

The average and variance of (4-22) are calculated in

Appencdix IIl and found te¢ be

2
A /\5 nCHF
‘_n A Y ) = A T +
SAC 2 rron I (4-23)
Vl 2 Z 2 2
z ? PN e + i + s n'HF |
niAs T SR W 2ho Fo W T Wy Faoy| (4024 %
i
. B
where A 2 |

= +
s Xg Is

These equations show how the photon detector
behaves as a classical square law device with the addition
of a "shot noise" (shown in brackets in 4-24), Rice
(Reference 51) has analyzed the square law deiector and
identified the first two terms in (4-24), The first ternm
arises from "mixing" between the sinusoidal field and the
noise field, and the second term from "mixing" between i

spectral components of the noise. The Poisson "shot noise"

is well known to yield a "white" noise spectrum,
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Two examples of photon detection will be analyzed,
First take the case of a direct detection of the field,
Consider a system which transmits a signal of constant
amplitude AS for tF seconds, Uctection of AS is

accomplished by counting the number of photons received

during ihe ty second interval, For convenience assume the

"ideal situation cxists, that is

and time synchronism is known, Equations (4-23) and

(4-24) apply. To discern the relative effects of photon

(4

and classical noise, rewrite (4-24) as

a

S
2 = + 1
n n
2 ¢ (§ + ]) 14 ¢ (_ N (4-26)

n = fl(uc hi

where

2
As

2-'\ch

and is the receiver input signal to noise ratio.

If Poisson statisti-s were applicable for describing

ne

the photon counts, only the term WZ_(% + 1) would appear

in (4-26). The additional factor is due to the

fluctuating amplitude of the incident field and could be

calculated by treating the photon detector as a classical

et oo 60 L AR
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square law detector, The magnitude of this term relative
to one, is an indication of the accuracy of utilizing
Poisson statistics to analyze dircct photon detection,

That is, if

ner < (4-27)

Poisson statistics will provide anm accurate description of

the variance of the photon counts., lNowever if
nc‘n‘s'aﬁu (4-28)

the counting statistics must be found through Equation
(4-22), If
nc>>ﬁwc (4-29)

the "shot noise" can be neglected and the photon detector
can be treated as a classical square law device where
the ﬁ‘c factor is included.

Therefore, the effect of the "particle" and "wave"
properties of radiation is determined by the relative
magnitude of the received noise power density e to
the energy of one quantum at the operating frequency,

It is seen that the popular method of analyzing photon

counting detection techniques with the Poisson distribution

is dependent on the requirement (4-27), More generally,

the exact counting distribution is given by (4-22).
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If
wo~wm (4-30)

the additional effects of W, can be included in the
analysis by averaaing W /¥y samples together, fote
that the correlation between adjacent samples must be
taken into account,

As stated earlier, in cases more practical than the
above example (W,>~), the relative magnitude of WF

and W, can effect the inequalities (4-27) to (4-29).

In the case

W (4-31)

F>ho

larger will be required for wave effects to be

¢
significant in the output,

The following general observation can be made about
these results, The photon detector behaves as a
classical square law device with an additional noise in the
output, i.e., the photon or shot noise, The resulting
counting statistics are neither Gaussian nor Poissonian
and no simple method has been found for including quantum

effects in the analysis of direct photon detection.

Hext consider the photon detector vhen used as a

"mixer," In addition to the received signal and noise, an
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incident local oscillator field must be present for the
photon detector to behave as a "mixer." This case is
analyzed in Appendix IV and output signal-to-noise ratio

in bandwidth W, about the intermediate frequency is shown

to be
>0, s (4-32)
c
vihere
P received signal power

nWe received noise power in bandwidth Vg,
In deriving (4-32) it was assumed the local oscillator
power is much larger than PS and Wg is much less than
the local osciliator frequency. It is shown in Appendix IV
that fiu W 1is the Poisson "shot noise" arising from the
local oscillator field. Since the Poisson distribution
approaches a Gaussian distribution for large average values,
it follows that the photon noise fio Wg in (4-32) 1is
approximately additive Gaussian, Therefore quantum effects
in photon heterodyne detection enters conventional

analysis as an equivalent input noise of density ﬂwc

watts/Hertz, These results agree with Oliver (References

52 and 53),

L
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A Channel Capacity Lquation

Shannon's channel capacity equation

P

= s [
o NF logz(l + E;WF) (4-33)
is true when n W is the power for additive Gaussian
noise (Reference 44), Since the photon noise was found
in (4-19) to be additive Gaussian for real field
detection, the capacity including quantum effects is
Ps

fue (4-34)

(nc + —E—)WF

CQ=WF ]092 1 +

This capacity can readily be shown to disagree with
Gordon's results. Consider the case for no classical

noise nc and

ﬂwc
Ps>>-—é-—NF (4-35)
Equation (4-34) becomes
2 P
Cq = Wg 1092 (4-36)
‘ﬁw NF
\ €

and under the same conditions, Gordon has shown his

capacity equation yields (Reference 5)

AR Mg e
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F
S
Cg “F ]092 K;:W; + ]nge
-
8 7 (4-37)
- We |lo ZPE__ + 1 2
F L %%\Ra vy )t 992 2
e J
Therefore
Cg > CQ + 0.44NF (4-38)

which shows that the capacity derived by Gordon is larger

than the capacity derived herein.
Lachs and Jelsma (References 15 and 16) have
arrived at (4-34) by similar arguments while She

obtained a different result (Reference 14), The reason

for She's disagreement was noted on page 54.




CHAPTLR V
PHOTON MODULATED SYSTEMS

As discussed in the Introduction, many of the
investigations on quantum effects in communication systems
% assume that information capacity of a field is related to

; the specification of numbers of photons, i.e., photon
modulation as defined in Chapter III., Gordon (References
5 and 8) and Deryugin and Kurashove (Reference 9) have

‘é argued (without proof) that their approach is independent

of the modulation scheme in establishing a limit on

channel capacity. However, the work in the preceding

chapter has already shown that Gordon's capacity is too
large for the description of conventional amplitude and
phase modulated systems. The purpose of this chapter is
to point out in what sense photon modulation has any
physical meaning in contrast to conventional wave
modulation,
The Photon Modulated Source

The basic properties of the photon modulated field
was investigated in Chapter III. Those results will be
reviewed as applied to the model developed in Chapters Il
and 111, Rather than controlling the quadrature variables

xT(ktT) and yT(ktT) in each term of (2-17), photon

68
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modulation controls the number of photons of each field
sample., In the bandwidth W;, only one sample (of the
number of photons) every t, seconds is required to
describe the photon modulated field, This contrasts to
the two samples (xT and yT) required for describing the
wave modulated field. She (Reference 14) was the first
note this discrepancy in Gordon's work, i.e., its failure
to obey the correspondence principle. The work in
Chapter IIl has shown that this difference exists because
photon modulation (as defined herein) has no classical
counterpart and cannot, under any circumstances,

describe a wave modulated field. No physical means has
been demonstrated which can prepare a field containing

a prescribed number of photons.

The quantum model utilized herein implicitly
requires all photons to be the same frequency fc. Gordon
(References 5 and 6) also imposed the same requirement,
However, through the use of the energy-time uncertainty
relation (3-1b), Bowen (Reference 11) has extended
the "photon channel” to include frequency uncertainty
effects due to the channel's finite bandwidth, He
notes that the energy of each emitted photon must be

uncertain by the amount

&= hiy

Ot oo
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where NT is the bandwidth of the transmission process as

defined in Chapter 1I, This yields in (3-1b)
: Weat =1

which agrees with (2-7) if at and the time between
samples ty are equated. This is a reasonable result,
since ty 1is the effective averaging time of the
bandlimited transmission process.
Utilizing the energy-time uncertainty relation,
% bowen shows that the results of Gordon (Reference 5)
é are correct only for the narrow bandwidth condition

l-JT<<fc

Therefore, the description of the "photon channel" by
the postulated model is consistent with the same narrow
bandwidth restriction (2-2) required for describing

vave modulated systems,

The Effects of Free Space Attenuation

Hagfors has analyzed the effects of free space
attenuation on a photon modulated signal. Using a quantum
theoretical analysis he showed that if exactly M photons
were transmitted, then the probability of receiving n

photons is the binomial distribution (Reference 7)

3
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P (n|m) = m! vl - V)m T (5-1)
n n):

nT{m -
where v is the power attenuation coefficient due to
free space attenuation., Hagfors concludes that free space
attenuation introduces a "partitioning noise" which
was not included in Gordon's work. Therefore, the actual
capacity of a photon channel will be less than that
predicted by Gordon. The work in Chapter III has shown
that the "partitioning noise" does not affect the wave
modulated system, but merely preserves the Poisson
character of the photon distribution.
Channel Capacity

From the arguments presented in this paper, it is
concluded that Gordon's capacity derivations (Reference 5)
apply only to a photon modulated system in which no power
loss is incurred between transmitter and receiver, Later
works by Gordon and others (References 8 and 11) have
noted that the results apply only to a lossless channel,
However, no one seems to have recognized that basic
differences exist between wave and photon modulated
systems,

Hagfors (Reference 7) and Bowen (Reference 13) have
attempted to find the capacity for a general photon

channel which includes partition noise (but neglects

v AR A S b
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external noise sources). Hagfors encountered mathematical
difficulties which prevented a general solution, He

did analyze a ternary system and demonstrated how the
partition noise has a strong effect on the optimum
statistics for the transmitted signal., Utilizing the
partition function formalism of statistical mechanics,
Bowen was able to study the asymptotic condition of

large attenuation. He fouad that for a large rate of
received photons the channel capacity approaches one-half

that derived by Gordon for the condition of no thermal

noise.
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CHAPYLR VI
CONCLUDING REMARKS

The problem of including quantum effects within
existing methods of communication system analysis has been
investigated. In contrast to previous works, a unique
model was postulated for including the quantum properties
of radiation at both the transmitter and receiver. The
rrode]l was shown to be consistent with certain requirements
of quantum theory and to yield a description of photon
detection which agrees with previously derived and
experimentally proven equations.

From the differing characteristics of fields
prepared by the transmitter it was concluded that
modulation of the radiated field must take place by
one of two distinctly different processes., Wave modulation
was defined as a process which conveys information in the
amplitude and phase of the electromagnetic field.

Photon moddlation was defined as a process which conveys
information in the exact number of photons per sample

of the transmitted field (i.e., the "phcton channel"

as defined by Stern, Gordon, and others). A wave modulated

signal was found to describe present day modulation

schemes and, moreover, to yield random photon fluctuations,
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It was concluded a wave modulated signal is not capable of
describing a photon modulated signal and therefore

cannot describe a “"photon channel.” 1In contrast, a photon
modulated signal was found to possess a completely

random phase fluctuation thus showing the inability of the
"photon channel" to describe presently used wave
modulation schemes. No physical process has been
demonstrated which can produce photon modulated electro-
magnetic field.

For a description of wave modulated signals with the
postulated model, the Glauber P function was shown to be
identical (with a change of variable) to the classical
joint probability density of the quadrature components of
a narrowband sinusoid used in conventional analyses.

Using this fact, equations were derived which "transform"
classical probability distributions into distributions which
include quantum effects,

The analysis of "partitioning noise" developed by
Hagfors using the "photon channel" model was applied to
the postulated model, The partitioning effect was shown
to yield a noise only in photon modulation systems.

For a wave modulated signal, the effect merely preserved
the Poisson character of the photon distribution during

free space attenuation and thus demonstrated the consistency

of wave and particle pictures of radiation phenomena.
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For a wave modulated system with real field
detectiorn it was shown that photon noise can be inciuded
in conventional analysis by adding to the normal input
noise, a noise density of hfc/2 Watts/Hertz where h is
Planch's constant and fc is the system carrier frequency.
Use of photon heterodyne detection was found to reauire
the addition of an equivalent input "white" noise of
density hfC Watts/Hertz, The photon noise was shown
to be exactly additive Gaussian for real field detection
and approximately additive Gaussian for photon heterodyne
detection., Detection by counting the received photons
was shown to yield neither Gaussian nor Poissonian
statistics. However, with an "ideal measurement process,"
when the effective received noise density Ne is
much less than hfc. the variance of the counts were
found to approach that of a Poisson distribution,.

Conversely, when n is much larger than hfc.

c
the variance approached that derivable from a classical
analysis.,

A channel capacity equation for a wave modulated

AR50 .5 A S 0 A i

sy.tem was found and shown to give capacities less than

that derived by Gordon.
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APPENDIX I

. CXTENSION OF SHE AND HEFFNER'S
WORK 10 INCLUDL THE GLAUBER P FUNCTIOHN

- Using the Dirac notation (Refercnce 44), the

following symbols are defined for this appendix only:

> ket vector

<1 bra vector

a photon annihilation operator
§ at photon creation operator

p- density operator

In Reference 43, She and Heffner prove that if
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sl e

st

p = a'><a’

then

SRR T T TR T

2 2
] ] - - q' e n!
- > = X -
h alo]a ?;ﬁe ] i%ﬁ7;§_l (g ch )

which they interpret as being a joint probability density
describing a system which has been prepared into the state
{(q'yp') and subsequently measured as accurately as
permitted by the uncertainty principle.
The above can be extended to include Glauber's P é

function. From Reference 21, Equation (7.6)

p = /] P(a')]a'><a'ld2a'

%<alola> =.[f P(“')Liﬁ%glzldzﬁ' (1-1)

stz

Therefore,

mmmmwmwmmm@mmm

vhere

I<ala'>|2 s <glu'><a'|u>

= exp[]a - a'|?]

from Reference 21, Equation (3.33). But from

ot anb A RWAL o .ot e

Equation (3-29)

e,
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|<(\‘(\'>l2 = exp[- __U_;L__—_ - QR.)Z - ( E . 01)2
huc 1’27“%

f o] Sl M CRR el

Zh/w Zﬂwc

R N

(1-2)

Substituting (I-2) into (I-1) yields (3-30).




APPERNDIX 11
DELRIVATION OF MANDEL'S PHOTON COUNTING DISTRIBUTION

The purpose of this appendix is to derive via the
model postulated in Chapter IIl the photon counting
distribution first found by Mandel (Reference 30) and
subsequently verified experimentally (References 34-36).

Let the receiver output filter W, be an ideal
integrator over a time period to where tgo/t, is an
integer k. During to’ there are k samples taken
by the receiver. The total number of photons, ng,
counted during t, determines the integrator output.
The resulting probability distribution of Ny is found
by considering all the possible combinations of counts
in each of the k samples that yields nr.

From the postulated model each sample for photon
detection is represented by the energy level of a
harmonic oscillator., Glauber has shown that the joint
probability distribution of energy levels between many
separate oscillators whose states may be statistically

dependent is of the form (Reference 19)
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‘r + Pn(n]oounonk) =/f‘ﬁpR[(xR]"yR])"“’(ka.yRk)]

2 2\n
K (?R1 + ygit\" xei2 + yp:
ZIiN N Ri Ri
i cm - dxpi¥oi
i = . eXP | - T RiVRi

where Pp[(),...,(}] is the joint probability distribution
between the k samples as determined from a classical
analysis, For convenience, write the above equation in

the form

2 2
Xpi~ * Ypj

k ~~he.N.
1 w
P(n].-oo'n )gﬂf"'ﬂnT! H cm
" kT gl i1 e

) -
Xpi  * ¥R12

k
fﬂ‘ expi- Z Mo W PR[(XR]'.VR])o----o(kan.VR])]
= i=1 c'm |

k
n dxpidyR{

vihere
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Note that the term in braces is precisely one term of an

expansion of the quantity

2\1N
3 )
i= Zﬂwcwm

Since

pnT("T) ‘%%[Pn("lm' an.....nkm)]

where the summation is over all the possible combinations

of (nyp "Zm""'"km) which yield

i )Y Mim

it follows that

2 2 n
[ixm*)‘m T ¢ xgi? * vyl
R .
ParinT) /ff Bl S I T
nT! i = wc m
k
PR[(XR]o.YR])o'oooo(kao.VRk)]i I.! ]de‘idyRi
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By the ergodic assumption this is equal to

k. Ag (tl) "
(2‘1 25 tn k ARZ(ti)
(nT) = Hm exp ; m>dt

7¢n

where

sz(ti) + sz(t‘i)

[ad
-
~—
n

(ad
"

t+ ity

-
"
Zl-ﬂ

m
Utilizing the assumption made by Mandel, i.e.,, the response
of the photoelectric process is sufficiently short that

Nm”wF

wm>>w°

and by defining

K, 2
Ag (ty)
Ut,ty) = 1im ¥ R 1

t*01=]2'hwcm

t+t

0
/ ARZ(t]) 1
t Zhwc dt
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yields

T »em

r nT
Paring) = Hml’IELt’::.?_)_]. exp[-U(t.to)]dt
o !

which is the distribution derived by Mandel.

§
5
3
3
=
=
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APPENDIX 111

DERIVATION OF PHOTON DETECTOR EQUATIONS

Repeating equatiun (4-22)

-

(XR © 35) - (.YR - yS)z

Palnixgsye) ..[I e:g Zncky

xp? + yg?\" 2
ﬁchm XR + ,‘;‘R
— e xp | ——— dedyR

nl 'ﬁwcwm
The averages are calculated as follows:

‘no(xsoys)’ 'ann[nl(xsn.)'s)]
n

- xs) - (yg = ¥¢) ]

e [
'jyrf;;%WF ZncWr

ARZ * yRZ)n
Rt o 2

Zi"W‘:ZI(*R + 9g%) ;

-(xg - xg)% - (yg - ys)?

exp dxpdyg




] i

2
Ag neWF

<n'AS> " ZMCN * 1“‘c

where Asz = xsz + ysz

nZy(xgoy5)> = TP [nl (x0y,)]

)2[

o (xR - xs) - (yg - ye)
f/mﬂr ZneW
CF

Z" _zlﬁﬂ_L. exp -( ) dedyR

Zﬂm Wn

e )
* L J
Zﬁw W ZﬂucNm

-(xg - Xs)z - (YR - Yx)z

dedyR

ex
2n_¥W
ancHF Ne*F
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) 1 4, 5, 2,2 4
T —r—— 2 +

-

“(xp - %)% - (yg - ye)?

ex
7;;%WF l 2ncWF dxpdyp
+ <n.As>
] 2 2 4
F el 3 W + 6x Wg + x
(Zhwgh Y200 M) * BXsTacke * X
v 2(x? ¢ aip) (y 2 #nde) ¢ 3(ncHp)?

+

4
Gyszﬂch + yS ] + <n.AS>

1 4 2 2
= ————[Ag *+ Bn W ALT + B(ycWE)T] + <n,Ag>
(T MHy) 2 F
Then
o’ |hg = —— [As4 + Bagheh” + BlacHp)®
|7s (Zﬂwcwm)z
]
+ Zﬁwc(Asz + chNF)wm - (AS + 4Asznch

+ 4(chF)2ﬂ

e St RStk
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APPENDIX IV
DLRIVATIUN OF PHOTON HETERODYNE EQUATIONS

The purpose of this appendix is to derive the
output signal-to-noisc ratio for a photon detector when
used as a mixer, In addition to the received signal and
noise, a local oscillator field must be incident on the
detector for mixing to occur., The total received voltage

is

ER(t) = ES(t) + EN(t) + ELO(t)
where £ g(t) is due to the local oscillator. Taking
ELO(t) to be sinusoidal with constant amplitude and phase

Eglt) = x gcos(ue + wp)t = y gsin(u, + wp)t

“I

where fg = Qﬂg = frequency of the intermediate amplifier,

Rewriting in the form (2-11)

Eolt) = Applcos(ugt + 6 glcos wet - sin(ogt + o g)sin wct]

where

N 2 2
Ao *© J"LO * Y10

Yo
XLo

tan']

8Lo
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Therefore

Eq(t) = [xs(t) + xp(t) + ALocos(wIt + eLO)]coswct
-[ys(t) + yp(t) + ALosin(mIt + oLo)]sinwct

The photon detector will respond to the function

ARZ(t) = xg2(t) + yp2(t)

A2(t) + ayP(e) + a2

+ Ixg(t)xy(t) + y(t)yy(t)]
+2A o{[xs(t) + xy(t)Icos(urt + o )

flyg(t) + yy(t)Isin(uyt + o, o)}
(Iv-1)

It is assumed that

(fl - ;£)> ZNF

so that only the terms in braces in (IV-1) yield an output
in the intermediate frequency bandpass. In the postulated
model, the bandwidth of the measuring process W, must be

wide enough to pass both the signal and noise inputs and

the local oscillator frequency. That is

W W
% (e %)
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1
t, <
"oa(f ¢ 2E)
2
since
]
t -
moW

The samples yield an output of bandwidth extending from
zero to W,/2 Hertz.

Define the output voltage for the 1 th field sample
to be
n(itm)

t
m

V(itm) =

where n(itm) is the number of photons counted during the

i th sample. By the ergodic assumption, it follows that

<Nn>
viit,) = ¢t
From equation (4-15)
T -8 2
th) =t nPn(n)
n =20
<xR2 + -VR2 n

RATL 2 4 yp?

1 c m Xp Ya

= a— P (X » ) n ® | commt—————
‘:J/R Re¥p) 2y exp[ (zmcum )] dxgdye

2 + ‘
/]( ZT\NC ) R(XR’yR)dedyR
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By (2-21)

] - Agé(t)
VITE,T = Tha_  xg2(t) + ype(t) = “2hug

From (IV-1) and assuming the signal and noise are

uncorrelated,

p W p
2, D F L0
r +
Vit ) = he, wg + iﬁ:
where m
Ps = sz received signal power
y ANz(t)
n =
c'F 2 received noise power
At o2
p s —— incident local oscillator power
Lo 2

From the form of (IV-1) it follows that the desired output

signal power (excluding noise) is

A A e C
< . 1(?&).“5&1 . ,fofs
° z 'ﬂwc (T’lwc)z

Consider now the total output noise power. From (IV-1)

it is apparent that the bandlimited noise around fg

il e

will contain the power
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N = l(f‘LoAN(”)2 LI
oc 7 zﬁwc)z

h)c

in the same manner as the signal. The photon noise can

be found from the second moment of V(t)

2 + sz n
<n?s / Zﬂwc -
VE(ity) © g 2 " Pglxgayg) Tn’
2 2
Xp< + Y
exp[-(lR R ]dedyR
Zﬁwcwm

x 2 4 yR2>2 : xRZ + yR2>
e dxpd
Zﬁuc tn 2 Prxgsypldxpdyg

But from equation (2-21)

xg“(t) + ypé(t) ¢ Viity)
VZ(it ) = +

Zﬁwc tm

SR e

The last term is the photon or shot noise which has a
W
m

the photon noise density fis

"white" spectrum extending from zero to - Hertz. Therefore
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I
1
i

< 1
= ,
o

2
= 2VIET = fgm (Pg #+ ncMp + Pio)

c

‘12
ra33

The output shot noise in the bandwidth wF about fl

is nghg. The total output noise around f1 becomes

2
N T e——— .
0 (T‘“‘c)z [PLo"c”F + MC(Ps + nch + PLO)NF]

Therefore the output signal-to-noise ratio is

2P, P
s (T'wc)3
i
(g2 [PLo cMF * Mec(Ps + mcle + P olW]
t 3 Ps
P ncWg
N + Mo (1 + 2 ¢ &L
c'F c Flo  PLo
But in practice
PL0>>PS
PLO>>ncWF

yielding
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