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ABSTRACT

A system which is capable of acting as an adaptive binary

detector is proposed and analyzed. Exponential smoothing is used for

estimation of the mean. A technique similar to exponential smoothing is

used for estimation of the variance. The system uses the frame synchro-

nization code as a teacher in order to adapt itself to the character-

istics of the environment. Decision Directed Measurements are used when

the frame synchronization code is not available. The speed and accuracy

of the different techniques are derived in this study. The optimum

location of the initial conditions of the system is also detP_Wined.
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CHAPTER I

INTRODUCTION

This dissertation examines the feasibility of receiving binary

digital communication signals with an adaptive detector which adjusts

ita threshold in accordance with the need of a slowly varying or previ-

ously unknown environment. The emphasis will be upon an adaptive

technique selected primarily for the simplicity of its implementation.

The technique will be analyzed to show how it offers improvement over

making no change in the threshold location of an optimum detector. A

system of this type is needed for use in spacecraft or aircraft systems

where simplicity and small size are important characteristics of a

system.

For the case of a binary system operating in an environment of

additive white Gaussian noise, the optimum Bayes detector consists of

two matched filters, a subtracter, and a threshold device. One of the

two filters is matched to the binary 0 waveform and the other to the

binary 1 waveform. The received signal is applied simultaneously to

the two matched filters. A decision, concerning which symbol was trans-

mitted, is made by comparing the difference of the outputs of the two

matched filters to a threshold. For many communication systems, condi-

tions are often such that the optimum location of the threshold is fixed

and known. However, there are, or may arise, conditions such that the

optimum location of the threshold depends on parameters which are

neither constant nor known. Conceivable examples are: (1) noise whose

1
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mean or variance is subject to change, and (2) matched filters suffering

performance deterioration, a plausible condition especially when active

filt;,rs are used. Such situations present the possibility that a Bayes

t	 detector which is optimum for some specific conditions will have a

higher probability of error than an adaptive system after a change in

the environment.

The proposed system is capable of estimating the optimum location

of the threshold when the unknown or variable parameter is the nonzero

mean of the noise. In the case of unequal probability of transmission

of a binary 0 and binary 1, the proposed system can be used to estimate

the variance of the noise, which may be the unknown or variable para-

meter and is necessary for the calculation of the threshold. When

circuit failure or component drift in one of the matched filters causes

an optimum detector to locate its threshold at a nonoptimum location,

the proposed adaptive system is capable of moving the threshold to

reduce the average difference between the actual threshold and the

optimum location of ;.b^ threshold. These situations are discussed in

detail in Chapter II.

The adaptive portion of the detector receives as its input the

difference of the outputs of the two matched filters. It chooses the

threshold location according to calculations upon past values of its

input. Estimates are made of the mean of the input to the adaptive

detector when a binary 0 is transmitted, of the mean when a binary 1

is transmitted, and of the variance of the input caused by -transmission

of either (but not both) a binary 0 or binary 1. The location of the
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threshold is calculated from these estimates. Recursive equations are

used to estimate the mean and variance. This paper proposes use of the

frame synchronization code as the teacher in a "Learning With Teacher"

mode and use of a "Decision Directed Measurement" technique when the

frame synchronization code has not been located. The original contribu-

tions of this work are (1) the method of estimation of the variance

(Chapters IV and V) and (2) the determination of the effect of various

parameters on the convergence rate for the Decision Directed Measurement

technique operating in conjunction with the estimates of the means

(Chapter VI).

In the past few years the literature has contained many reports

•	 of work on adaptive detectors. Very few of these, however, contain

material pertinent to the system proposed here. Papers by Abramson

(Ref. 2) and by Abramson and Braverman (Ref. 5) were among the first to

deal with adaptive detectors. These papers, concerned with optimal

learning in a random environment, offer estimation techniques which,

with modification, are useful in the proposed adaptive detector. A book

by Hancock and Wintz (Ref. 7) has chapters pertaining to adaptive

receivers and to learning by Decision Directed Measurement. It is

generally concerned with optimum estimation methods. In addition, it

presents results from computer simulations of the various learning

schemes similar to those of Lindenlaub and Mix (Ref. 3). Cooper and

Cooper (Ref. 14) investigate a system using learning without super-
.

vision and estimated means. Groginsky, Wilson, Middleton, Hancock,

Gregg, Millard, and Kurz (Refs. 15 - 17) have described work which has
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been performed on adaptive detectors for operation in noise of unknown

distribution. The present work is concerned with analyzing in detail a

specific, simply implemented, method of adapting the threshold in an

environment of white, Gaussian noise. Since the resulting system is

suboptimum, the available work on optimum systems must be modified and

extended.

The mean is estimated by a technique which was mentioned, but not

analyzed, by Abramson and Braverman (Ref. 5) for the purpose of tracking

a slowly changing parameter. The technique is similar to Kalman

filtering (Ref. 18) except that it is designed on the basis of other

than minimum mean-square error. Abramson (Ref. 2) gives an analysis of

the recursive estimator of the mean for minimum mean-square error.

Lindenlaub and Mix (Ref. 3) give the appropriate coefficients for the

recursive equation in order to get minimum mean-square error for three

specific autocorrelation functions of the slowly changing parameter.

Lin and Yau (Ref. 19) discuss the Bayesian approach to the estimators

and are concerned with minimum risk. Beine (Ref. 20) discusses an RC

averager to estimate the mean which corresponds to the recursive

equation used here. The most complete analysis of the recursive

estimator is given by Brown (Ref. b) and his analysis is used as the

basis for the present work.

Dale (Ref. 21) discusses an estimation of the variance by a sum

of squares. Books by Deutsch and Good (Refs. 22 and 23) treat the area

of estimation theory. No appropriate references were found on estima-

tion of the variance under the requirements of the system being
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investigated. This dissertation shows how an estimate of the variance

can be found by modifying a method used by Brown (Ref. 4) to estimate

means. The method will be analyzed to derive its accuracy.

A search of the literature for an analysis of a system using

Decision Directed Measurement techniques in conjunction with a recursive

estimator revealed none completely suited for detailed evaluation of the

system proposed here. Lindenlaub and Mix (Ref. 3) and Hancock and Mix

(Ref. 10) use Monte Carlo methods to check the convergence of several

learning methods. Henry Scudder (Ref. 6) derives the asymptotic

probability of error for a DDM system which makes estimates only on the

binary 1 signals. Patrick and Costello (Ref. 1) derive the asymptotic

"	 probability of error for estimates on both signals but use the sample

mean with an infinite number of samples as the estimator. The present

work develops a computer program (Chapter VI) for performing a numerical

convolution of the probability densities involved in the system and

makes possible the investigation of how system operation is affected

by various parameters such as signal-to-noise ratio and initial

estimates of the means.

Spragins (Ref. 24) presents a review of the methods of "Learning

Without Teacher" and points out that an optimum method of "Learning

Without Teacher" is impractical. The present system is offered

(Chapter II), from among the many suboptimum solutions to the problem,

as one which is practical and simple to implement.

No construction of hardware has been performed as a part of this

study. Computer simulation has been used for any work requiring

i
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investigation from an experimental viewpoint. The computer has also

been used as an aid in analyzing some areas which were difficult to

evaluate in closed form. Since it is anticipated that this system would

operate in rea: r ime and might possibly be used in a spacecraft or air-

craft, it is desirable that the system be potentially fast and small.

This requirement has influenced the method of operation selected for the

system.

At the present time, there is no universally accepted test for

determining whether a system is an adaptive system or a learning system.

The system being investigated here probably fits under most definitions

of an adaptive system rather than that of a learning system. This

system has a specific procedure for adjusting the threshold as a

function of the past history of the input signal and does not attempt

to recognize situations that it has previously encountered.

a



CHAPTER II

DISCUSSION OF TOTAL SYSTEM

A detector that is optimum in the Bayes sense for binary signals

in additive, white, Gaussian noise (Ref. 7, p. 49) is shown in Figure 1,

where

w(t) = input to the detector = Ac s i (t) + n(t)

Ac = channel gain

sl (t) = signal representing a binary 1

so (t) = signal representing a binary 0

n(t) = noise

b = optimum bias

This optimum detector decides that a binary 1 was sent if u ^ 0 and

that a binary 0 was sent if u < 0 by use of

	

u = WT(Sl - So) - b	 (2-1)

where

2

b = an to K + 2 Ac (S1TS - So So 1 + NT(S1 - So)	 (2-2)
Ac 	 /

In these equations the capital letters are matrices (Ref. 7,

pp. 231-243) representing the functions of time shown in Figure 1. The

superscript T indicates the transpose of the matrix. The factor K

is a decision boundary which appears in the Bayes calculations and is

7



w
O
a+
ud̂
.1

d
b

it
r.
vd
A

W
O

d
M
O
u
u

u

I

O
OC
vdW

v v

r-1	 O
10	 GI

W	 W
C	

N

W	 W
A	 A

O	 O

nl	 v

O	 O

8



9

qo
K =

1 -qo

for the cost of an error in detecting a binary 1 equal to the cost of an

error in detecting a binary 0 where qo is the probability of trans-

mitting a binary 0. The mean of the noise is represented by N, and

ant 
ib the variance of the noise. It is consistent with (2 - 1) to

say that the detector decides that a binary 1 or binary 0 was trans-

mitted by determining if WT(Sl - So) is greater than or less than the

threshold, b. The adaptive detector employs as its threshold an

estimation, 0, of the optimum bias based on past history of the

difference

X = WT(S1 - So)

The estimated threshold, 0, is obtained by first averaging the estimate

of the mean of X when a binary 1 is transmitted and the estimate of

the mean when a binary 0 is transmitted, and then adding the ratio

Q 2
n (the estimated variance of the noise divided by the estimated
Ac

channel gain) multiplied by In K; thus

a2

0 = 1 E (XJW = AcSl + N) + E (XIW = AcSo + N} + n Zn K (2-3)
2	 p

C

The only characteristics of the system which must be known are K, the

waveforms s1 (t) and so(t), and the fact that the noise is additive,



10

white and Gaussian. The mean and variance of the noise and the channel

gain can all be unknown or slowly-varying parameters.

In order to show that p corresponds to the optimum bias for

perfect estimates of the means and variance, the expression for p

(2-3) is rearranged to yield

2

p = 2 E((AcSl + N)T CS1 - So)} + E ((AcSo + N)T (Sl - So)) + 
an

 In KJ	
`	 Ac

= 2 AcSl S1 - AcSlT So + N S1 - 1GTS
0
 + 

AcS1TSl - AcS T o

Q2

+NS1 -N So + n In 
A

C

2

= 2 Ac L1TS1 - oTSo + N CSl - S	
Q

ol + a In K	 (2-4)
1	 c

which agrees with (2-2). Since the estimations are not perfect, the

adaptive detector is actually a suboptimum receiver.

a2

The ratio n in equation ( 2-4) is shown in Appendix I to be
Ac

estimated by

an2 _	 variance of (AcSo + N)T (Sl - So)
- -	 (2-5)

Ac E (AcS1 + N)T (Sl - So^ - E(Ac So + N)T (S1 - 
SO^

The method of estimation of the means and of the variance are discussed

in Chapters III and IV, respectively. The above analysis shows that the

adaptive detector derives an estimate of the optimum location of the
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threshold when the channel gain and mean or variance of the noise are

unknown. The value of the decision boundary K must be known for this

situation.

For the special case of K = 1, the adaptive detector can also be

used to increase the reliability of the receiver by making it possible

to relocate the threshold in the event of a degradation in one of the

matched filters in an optimum detector. The degradation would cause the

optimum detector to be operating with the threshold at a nonoptimum

location. The equation implemented by the degraded optimum detector is

u = WT(Sl + e - So ) - b

where a is the change in one of the matched filters. The threshold of

the degraded optimum detector differs from the optimum location by an

amount, d, given by

d = WTe = (AcSi + N)Te ; i = O, 1	 ( 2-6)

In order to restore the threshold to the optimum '.ocation, it is

necessary to determine a and subtract it from the term (S1 + e - So).

The adaptive system can be used to improve this situation when it is

not practical or possible to determine a and to make the necessary

adjustments. This specific adaptive system is limited to situations

of K = 1 for degradations in the matched filters because the estima-

tion techniques used here do not give an accurate estimate of the

variance when the input is degraded. Other estimation methods may
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permit this system to be used for K # 1, but they have not been

investigated here.

The followii,g analysis is included to show that the adaptive

detector locates its threshold at

p = b + E (d)

fog, perfect estimations of the means.. For calculation of 0 according

to (2-3), with K = 1, the input is

X = WT (Si 
+ E - So)

and the estimates of the means are given by

E{XIW = AcSl + N) = E((AcSi + 1q)T (Si + e - 
So))

= A 
c 

S 1 T S 1 - A 
c 

S I T S 0 + N- (S1.- So) + (ACS, + Iffe

E{X (W = ACS. + N) = EI(AcSo + N )T (Si + e - So))

= AcsoTS1 - AcSo So + N (SSl - So , + (AcSo + . ) C

The threshold according to ( 2-3) is

(2-7a)

(2-7b)

a_

	

	 T

2Ac 
(S1T S1 - oT So) + WT(Sl - So) + 2 [ACS, + AcSo + PN] e

( 2-8)

This differs from the optimum threshold given by (2-2) for K = 1 by

the amount of the last term which is shown to be the expected value of

d, the distance to the optimum location of the threshold. For equally
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probable signals, K = 1, the expected value of d is obtained from

(2-6) to yield

E{d}	 F,^(	 `/	 T
- 
1 

— llAcSl + N)TE) + EllAc So + K^TE^ 2 ^AcSl + Yo + 2,T^ e

This corresponds to the last term of equation (2-8).

The degraded optimum detector implements

U = WT (Sl - So) - b + d

The adaptive detector, With perfect estimation, implements

u=WT(Sl -So) -b+d-E{d)

Since d - ECd) is less than d on the average, the adaptive detector

is closer to the optimum location of the threshold than the degraded

optimum detector. This results in a suboptimum detector but would offer

improvement for sufficiently large values of d over the continued use

of the degraded optimum detector.

The input to the adaptive detector has been called X, which

represents a matrix. In practice, the input is the sampled output of

the subtracter at the end of a bit time. The input to the adaptive

detector is, therefore a sequence of values, xi ; each value represents

the processing of a single bit by the matched filters. Bit synchroni-

zation is assumed for this study.

For proper operation of the adaptive detector, it it necessary

to perform separate estimates of the mean of x when a binary 0 has
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been transmitted and of the mean of x when a binary 1 has been

transmitted. For this to be accomplished, it is necessary to know

whether the transmitted signal was intended to be a binary 0 or binary 1

in order to know which estimator to update.

This system operates on digital communication systems in which

the data are transmitted in serial fashion over a single channel. In

a system of this type a known sequence of bits, called the frame

synchronization code, is normally inserted into the sequence of data

bits in order to synchronize the decoder located at the receiver with

the encoder located at the transmitter. After synchronization has been

obtained, the proposed system uses the fact that during transmission of

the frame synchronization code, the correct decision is known. The

system knows from the synchronization code if the received signal was

intended to be a binary 0 or a binary 1 and updates the appropriate

estimator. This is a form of Abramson's "Learning With Teacher"

(Ref. 2) where the frame synchronization code is the teacher.

Since the "Learning With Teacher" scheme cannot be used during

the transmission of actual data, the system may either cease its

estimation until the appearance of the next synchronization code or

may use some form of "Learning Without Teacber." The operation of the

system before the synchronization code has been located also requires

the use of "Learning Without Teacher" since the correct decision is not

known. The proposed system uses a Decision Directed Measurement (DDM)

technique similar to that discussed in Reference 3, page 13. In DDM,

a decision is made with all available information and assumed to be
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correct. The decision determines which estimator is to be updated.

Incorrect decisions are possible in DDM and cause the system to converge

slower than a "Learning With Teacher" system. There are other tech-

niques of "Learning Without Teacher," but the DDM technique appears ^o

offer the best combination of convergence rate and implementation

simplicity as shown by Lindenlaub and Mix (Ref. 3, pp. 13-37).

The DDM technique operates in su!7h a manner that the expected

value of the estimate of the mean when a binary 1 is transmitted moves

to the mean of all signals above the threshold. This estimate of the

mean is not unbiased when a binary 1 is transmitted because some of the

signals above the threshold are due to the transmissior of a binary 0

and some of the signals due to the transmission of a binary 1 fs'1

below the threshold. Therefore, it is necessary to use the DDM

technique only to move the threshold so that enough correct decisions

can be made to enable the frame synchronization code to be located. The

DDM scheme should not be used after the frame synchronization code is

located. The "Learning With Teacher" scheme is required to give an

unbiased estimate of the conditional means.

The analysis of the estimation techniques can be performed

without knowing if the inputs are coming from the "Learning With

Teacher" scheme or from the DDM scheme. The estimators are only

required to perform computations on the data given to them. The

"Learning With Teacher" or DDM technique performs the function of

deciding which estimator receives each individual input sample. The

convergence and accuracy of the estimations are derived as functions
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of the input data, and this analysis applies for both the "Learning

With Teacher" and DDM cases.

Three specific problems associated With this adaptive detector

are analyzed and are discussed here. These three are:

1. Estimation of the Mean

2. Estimation of the Variance

3. Operation of the system when controlled by the Decision

Directed Measurement technique.

Both the estimation of the mean and the estimation of variance are

performed by recursive equations. The estimate of the mean is

accomplished by use of exponential smoothing (Chapter III). A technique

similar to the exponential smoothing method is used for the estimate

of the variance (Chapter TV). Computer simulation is used to study the

operation of the Decision Directed Measurement technique and the

estimation methods (Chapter VI).

Figure 2 shove a block diagram of the system discussed here. The

input to this system is a sequence of random values; each value

represents WT(Sl - So) for a single bit. The threshold decision

element examines each random value. If the random value is above the

threshold, the output is the decision that the bit is a binary 1. If

the value is below the threshold, the output is a binary 0. The

threshold computer determines an estimated value of the threshold by

calculating the terms in ( 2-3) from the two estimates of the means and

from the estimate of the variance. The resulting value of the threshold

is furnished to the threshold decision element. This is equivalent to
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estimating the bias, b (2-2). The estimators use the input data to

make estimates of three of its properties. The control block determines

which estimators are updated. The sync detector looks for the frame

synchronization code in the output of the threshold decision element.

If the sync detector has properly located the frame synchronization

code, the control block is directed to use the frame synchronization

code to determine which set of estimators to update. If the sync

detector has not located the frame synchronization code, the control

block is directed to use the decisions of the threshold decision element

to determine which set of estimators to update. This latter case is

called Decision Directed Measurement.

The properties of interest in this investigation are accuracy,

speed of response to step changes in the input, complexity of equipment

required to implement the system, and required calculation time.

Techniques have been selected which appear to require simple implementa-

tion and which have potentially low calculation times. In this investi-

gation, the accuracy and speed of response are found to be variables

which must be traded off against each other.



CHAPTER III

ESTIMATION OF THE MEAN

Description of the Method

One of the tasks which the adaptive detector must perform is the

estimation of the mean of the received signals representing a binary 0

and representing a binary 1. These signals are (AcSo + N)T (Sl - So)

and (AcSl + N)T (Sl - So ), respectively. For this reason, there are

two estimators of the mean in the adaptive detector; logic circuits

determine which of the two is updated. The estimators are identical,

hence, an analysis of one can be extended to the other. The input to

the estimator is a sequence of values which represents the received

data. This sequence of values consists cf the differences of the out-

puts of the two matched filters at the ends of transmissions of

successive bits. As previously mentioned, the technique for estimation

should be simple, accurate, and capable of reacting quickly to abrupt

changes in the characteristics of the input.

The technique selected for estimation of the mean is exponential

smoothing which was introduced and analyzed by Brown (Ref. 4). He uses

the follaf"ing equation for the estimation of the mean with m written

for (1 - A):

xk. Axk-1 + ( 1 - A )xk; k = 1 , 20 	 ( 3-1)

where

19
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xk = kth estimate of the mean

xk = kth data sample

A = recursive constant; 0 < A < 1.0

The input to the estimation equation is a series of values, x i , which

are considered to be samples of a random function. The task of the

estimator is to estimate the mean, E(x), of the random function, where

the mean is defined by

E(x) = J cO xp(x) dx

where p(x) is the probability density of x. Requirements for use of

the above definition of the mean are given on page 64 of Reference 8.

The estimation begins with an initial guess, x
0 , 

of the mean of

x. This value is used in conjunction with the first data point, xl,

to compute the next estimate, xl , of the mean. This process is

continued as each succeeding input sample is applied to the estimation

equation. Calculations are simple and quickly made because only two

multiplications and one addition are required. Storage is needed only

for xk_l.

Analysis of the Method

Since the input, xi , to the estimator is a random variable, the

estimated mean also is a random variable. The mean and variance of the

estimated mean are used to determine the accuracy of the estimation.

For proper operation of the estimator, the mean of xk should be

asymptotically unbiased (Ref. 8, p. 463), that is, the mean of xk
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should approach the actual mean of the input as the number of samples

handled approaches infinity. The variance of xk is an indication of

the error of the estimate and should be as small as possible. Unfortu-

nately, small variance of the estimated mean is achieved at the expense

of reaction time to abrupt changes in the mean of the input as will be

shown in Figure 3.

The mean of xk is derived as a function of k in order to

show that the estimation is asymptotically unbiased. For a stationary

input, Appendix II shows that the mean of xk is

E{xk) = A  2  + all - A) (1 + A2 +	 + Ak-1)

where a is the mean of the input data, xi . Since JAI < 1.0,

lien Ak x = 0
k -► o	 o

and

lim (l + A + A2 + --- + Ak-1) = 1
k -+oo	 1 -A

Therefore,

lim EJxk} = a	 ( 3-2)
k ->

This demonstrates that the estimation of the mean by the exponential

smoothing method is asymptotically unbiased. For nonstationary inputs,

the analysis of the estimation technique still applies if the input

changes very slowly with respect to the response time of the estimation.
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The variance of x,, is also derived in Appendix II and is found

to be

•	 k-1
\^

variance of zk = (1 - A) 2 02 ) (A 2 ) 1

i =o

where a2 is the variance of the input, x i . The limiting value of the

variance is found to be

lim variance of A = (1 - 4) 2 a2 1 
2	

= r
l - A\ 02	

(3-3)
k-4oo	 1-A	 1+A

Some observations can be made at +his point. Since the estima-

tion equation is linear, the estimate of the mean is Gaussian if the

input data are Gaussian (Ref. 9). The estimation technique is not

limited to input data with a Gaussian distribution and should be able

to operate on any distribution for which the mean exists. However, the

probability density of xk would be very difficult to calculate for

distributions other than Gaussian. The Cauchy listribution is an

example of a distribution which could not be used here since none of

its moments exist (Ref. 8, p. 157). If the characteristics of the data

are not time-varying and if the estimation began with an initial

estimate xo , the actual variance of Xk is always less than the

asymptotic value. This can be seen from the fact that only positive

terms are added to the variance as k increases. The limiting value

of the variance of A can be made as small as desired by making A

closer to 1.0. Since the variance of the estimate is an indication of

the error, the estimator can be made as accurate as desired.
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In order ti) determine the speed of response to a step input, it

is necessary to determine the transfer function of the estimation

technique. The transfer function is determined in Appendix II and is

found to be

H(z) = (1 - A)z
z - A

The time constant associated with this transfer function is

t = -T
c	 In A

The time constant also can be expressed as the number of samples

ns =
-1
In A

This value, ns , is positive since 0 < A < 1.0 which means that the

logarithm of A is negative. It has been shown in Equation (3-3) that

A should be as near 1.0 as possible in order to reduce the variance

of the estimate. However, A should be near zero in order to reduce

the time required to respond to a change in the input characteristics.

A potential user of this system is required to make a tradeoff study

in order to determine the optimum value of A for his particular

application. The variance of $k and the time constant, ns , are

plotted in Figure 3 to aid the user in his selection of A.

An example which illustrates one procedure for selecting A

follows: Due to the application of an adaptive system, it is required

that the estimate of the mean be able to react in not more than 100
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Figure 3.- Variance and time constant of the estimation of the mean.
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samples to a step change in the mean of the data coming into the

estimator. The accuracy of the estimator should remain as high as

possible. After five time constants, the mean of the estimated mean has

moved to within 99 per cent of the final value. This means that the

estimator should have a time constant of 20 samples. Choosing A = 0.95

gives a time constant of 19.5. For this choice of A. the asymptotic

variance of the estimated mean is 0.0256 times the variance of the

input data.

Two other techniques which were considered for estimation of the

mean are a sliding window and a running calculation of the sample mean

of all previous samples. The running calculation of the sample mean

j	 is a calculation of the sample mean using all previous samples. It is

not practical since it must take into account the number of previous

samples, which could possibly exceed the capacity of the computer used

for the computation during long periods of operation. It is also slow

to react to changes in the data characteristics if the number of

previous samples is eery large. The sliding window method uses a fixed

number of samples and computes their sample mean. The variance of the

sample mean is ^ (Ref. 11, p. 246) where d2 is the variance of the

input and n is the number of samples in the window. Tn order to

have the same variance of estimated mean for exponential smoothing,

Equation (3-3), and • a sliding window,

: (l -A)a2
`	 n	 1 + A
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and

n = 1 + A
1 - A

From consideration of the general range of accuracy and speed require-

ments,	 will probably be

0.9<A<1.0

The following table shows the value of n required as a function of A

in order to enable the sliding window system to have a variance equal

to that of the recursive system:

A	 ns	 n

0.9	 9.491	 19
.95	 19.497	 39
.99	 99.502	 199
999	 1000	 1-999

The table also shows the corresponding time constant, ns, of the

recursive equation. All effects of the previous characteristics of

the input disappear from the sliding window technique when n samples

have been processed after the step change; meanwhile the exponential

smoothing technique has undergone approximately two time constants.

If the initial estimate for both estimators is zero and the final

estimate is 1.0, the expected value of the recursive estimate moves as

(1 - e't'tc ). The expected value of the sample mean of the sliding

window moves linearily between zero and 1.0. For the recursive

estimator, the integral of the difference between the final value and

the actual value is



2.7

r W	

( 1
	cl

dtERROR = J	 1-	 - e
_ t It 

J
0

00 (e tItc) dt=^o
= tc

The same calculation for the sample mean of a sliding window is

2tc

ERROR =
10
	1 

2tc 
dt

= t	
t2 2tc

0

= 2tc - tc

= t 

This shows that the integral of the difference between the final value

and the actual expected value of the mean is the same for the recursive

estimator and the sample mean of a sliding window. However, the amount

of equipment required for implementation of a sliding window technique

due to the requirement of storing and labeling hundreds or thousands of

previous samples removed the sliding window technique from further

consideration in this application.

For updating the estimators during the frame synchronization

code, it may be practical to use the sample mean of the synchronization

code block as the estimator. However, this is not advantageous when

It
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operating in the DDM mode because if blocks of n samples are used in

this mode to calculate the sample mean, the system must use the old

estimate for n samples while waiting for a new estimatie. This results

in additional error as will be shown below. The recursive estimator

with variance equal to that of the sample mean has moved two time

constants closer to the new location than the sample mean during the n

samples. The expected value of the sample mean of a block of n

samples remains at zero for a time equal to 2t c and then ,jumps to 1.0.

The integral of the difference for the sample mean of a block of n

samples is

( 2t 
ERROR = 

J	
(1 - 0) dt

0

= 2t 

This shows that the use of blocks of n samples yields more error than

use of either a recursive estimator or a sliding window. The same

results are obtained for any location of the step change with respect

to the location of the block of n samples. The recursive estimator

has an additional advantage over the calculation of the sample mean

since the accuracy of the recursive estimator can be changed by simply

changing a single constant. A change in the number of samples used is

required to change the accuracy of the sample mean.



CHAPTER IV

ESTIMATION OF THE VARIANCE

A technique similar to the estimation of the mean is used for the

estimation of the variance. The equation used is

ak2 = Bak-12 + 1 C B (xk - xk )2 	0-1)

where

ak2 is the kth estimate of the variance

xk is the kth estimate of the mean

xk is the kth data sample

B	 is a constant and B < 1.0

C	 is a constant

This equation uses an initial estimate of the variance, a 02 , plus the

received data sample and the present estimate of the mean in order to

make a new estimate of the variance. The constant C will be

determined later and is required to make this technique converge to

the proper value, that is, to remove the bias of this estimate.

If xk is replaced by its equivalent given by (3-1), a more

usable form of (4-1) is obtained for Qk2:

^ 2..	 2	 (1 - B)	 ^	 _	 2
ak - Bvk-1 +	 C Exk - Axk-1 xk + Axkj

_	
2

= Ba
k-12 + 

A 1̂ C B) [
xk Xk J2	

(4-2)

29
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This equation for ak2 leads to faster calculation than the preceding

one since it employs xk-1 instead of xk . This calculation can be

performed in parallel with the kth estimate of the mean instead of

having to wait until Xk is calculated.

As was done in the case of the estimate of the mean, the mean

and variance of the estimate of the variance are determined. The

constant, C, will be selected to force the mean of the estimate of the

variance to converge to the actual variance of the data being sampled.

The variance of the estimate serves as an indication of the average

error of the estimate.

The mean of the estimated variance is calculated for several

values of k. Enough terms are used in order to recognize the series

being generated. The general expression is then written_, and the

limiting value is determined. Thus,

- B	 2
a12 = B o2 + A

2( 1C B [xl - Xo1

and

EQ112} = BQo2 2+ A	 1C - B E xl
2
 - 2xl'Z	+ xo2

= BQo2
2 ,+ A	 ^C - B [E(x12)

J

_2of lxl +xo

2
= BQo2 + A	 1 - B a2 + Q2 - 2axo + xo2

C

= Bo2 + A2 11- 1 _ B) V + (a - Xo)2I`
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The same techniques are used to calculate EQ 22), which gives

	

2	 2	 2Q22 = BQ12 + A lC- B 
Ex  - x

11 = 
B[B-o2 

+ A 1C- B (xl - Xo^

+ A2(1 C-B) 
CX2 - A2  - 

(1 - A)Xlj 2

B2^
 2 + A2B(1C B)	 2	 +x1 - 2x1xo 

02 + A2 - B)	 2 + A(1C	 [X22X 2O

	

[	 J

+ (1 - A)22X12 - 2Ax2xo - 2(1 - A)xlx2 + 2A(1 - A)xlxo1

and

2f	 2 ( - )
E 1a22^ = B Cr + A B lC B [E(XJ2) - 2 of 

VI. -^ + xo2

A2 (1
C- B) 

[EC221 + A2xo2 + 
(1 - A)2E(X12) - 2A20E(x2)

- 2(1 - A)E{xlx2) + 2A(1 - A )xoE(Xl-

The data samples are considered to be independent so that

E(xix j) = E(xi) E(x j) for i # i

This yields

	

E{v22) = 
B2QO2 + A2B(lC- B) Ca2 +	 - 2axo + Xo2] + 

A2(1C - B) a2

=

+

+ Q2 + A2x
0 
2 + (1 - A)2 (a2 + 02 ) - 2Aax0 - 2(1 - A)a2

+ 2A(1 - A)axo
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= B2Q 2 + A2(1 - B) 
C(1 + 

B ) a2 + (1 - A)2a2
o	 C

+ (A2 + B) ( a _ xo )2

If these same techniques are used, the mean value of Q32 and 
Q24

can be determined:

E
\^32

B3Qo2+A21C- B I(,+B+B2)Q2+ ^1+A2 +B)(1 -A)2a2

+ ( A 4  + A2B + B2) (a - xo 12

E042} = B4a0 + A2 1C - B 1(l + B + B2 + B3 ) a2 + C(1 + A2 + A4)

+ B(l + A2 ) + B2] (1 - A) 2a2 + (A6 + A4B

+ A2B2 + B3) (a - xo 12

From these four mean values it is possible to recognize the general term

of this series as

k-1	 k-1

E ^k2) = Bkdo2 + 
A22 (1.0 B) a2 X Bi + (a _ x0)2	 A21Bk-1-i

=0

k-2	 k-2-j

+ (1 - A) 2a2 	BJ	
A21

J
j =0	 j =0

(4-3)

The next problem is to find the value of E{ak2) as k approaches

infinity. Since I B I is less than 1.0,
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lim Bka02 = 0
k -+ w

and

-1

lim C2 	Bi =	 1
k -+ ^	 1 - Bi=o

The limiting value of the next term in (4-3) is found from

k-1

(a - g
o` 2	 A21Bk-1-i = (

a - o) 2 
Bk-1 + A2Bk-2 + A4Bk-3

i^

+ ••• + A2k-2

It is known that

0<A<1

0 < B < 1

Let

A<C2<1

B<C2<1

If C2 is substituted for A and B in the above series, the

resulting series is greater term by term than the original series

involving A and B. If the limiting value of the series of C p is

shown to approach zero, the limiting value of the series of A and B

must also approach zero. Thus,

k-1	 k-1

^" 21 k-1-i	 k-1	 1C2 C2	= C2	C2
i=o



34

This is a truncated geometric aeries whose partial sum, B  (Ref. 13),

is

1- C 
2 
k C

2 
k-1 C2

 2k-1

sk = C2k-1 	=
1-C2 	1-C2

Since C2 < 1,

lim s k = 0
k -> oo

Therefore,

k-1

lim(a - x

	

k ^	 o)2	 A21Bk-1-i = 0
\\	

i=o

The last term in (4-3) is

k-2k-2-j

(
1 - A)2Q2 X BJ
	 A21 = (1 - A) 2Q2 r 1 + A2 + A4 + ...11

J-0	 i=o

• A2k 4 ) + B(l + A2 + A4 +

• A2k-6) + B2(l + A2 + A4 + •••

• A2k-8 ) + ... + Bk
-3 (l + A2) + Bk-2]

The limiting value is

k-2k-2-j

	

lim (1 - A)2Q2 
X 

B^	 A21 = (1 - A) 2a2 (1 + A2 + A4
k —+ co

J-0	 i=o

2+ •••^^1 + B + B + •••^
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_	 1-A2Q2

1-A2)(1-B)

_	 (1 - A) Q2
(1 + A)(1 - B)

These expressions are inserted into the equation for E fQk2)

in order to find the limit as k approaches infinity. Thus,

1 im EOy 2) = A2 1 - B	 2 + (1 - A) a2
k -► co	 k	 C	 1 - B	 (1 + A) (1 - B)

= A2a21 + j_ A =a2 F 2A2
C	 1+ A	 C 1+ A

In order for this limit to converge to the actual variance, a2,

of the function being sampled, We must have

_ 2A2
C 1 + A

The value of C obtained above is inserted into the estimation

equation (4-2) to give

Qk2 = BQk-l2 + (1 - B)21+ 	 A) 

L k - 
Xk- 

l]

 

2	
(4-4)
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CHAPTER V

DERIVATION OF THE VARIANCE OF THE ESTIMATED VARIANCE

The variance of the estima*ed variance is also of interest since

it gives an indication of the error of the estimate. Due to the

complexity of the procedure of calculating the variance of the estimated

variance for the general case, the derivation is performed here only for

input data consisting of samples taken from a Gaussian distribution with

mean of "a" and variance of "021f . However, the to^hnique of estimation

described in Chapter IV is not limited to this case; it applies to any

probability distribution whose mean and variance exist. If the moments

of a variable are expressed in terms of the mean and variance of the

variable, it is found that moments of order greater than two are

dependent on the probability distribution of the variable. The

variance of the estimated variance is a function of the probability

distribution since it involves moments of order greater than two. The

moments of a Gaussian variable are shown in Appendix VII.

Since the equation used for estimation of the mean is a linear

equation, the estimated mean has a Gaussian distribution if the data

have a Gaussian distribution. The term, (xk - zk-1 ), is the difference

of two terms, each of which has a Gaussian probability distribution.

The probability of the difference is also Gaussian. The square of this

difference has a chi-square distribution with one degree of freedom

(Ref. 11, pp. 250-253)•

. --	 1
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In order to investigate the probability distribution of the

estimated variance it is necessary to examine several estimation steps

using

a2- Bv 2 + (1-B) 1+A)	 2
k - k-1	 Cxlc xk-1

The initial guess, 02 , has a delta function for a probability distribu-

tion since it can have only one value. The distribution of a12 is the

weighted convolution of a delta function and a chi-square distribution

with its origin shifted. The equation for a22 is a weighted sum of

alt and (x2 - xi) 2 . Because of, the estimation technique xl is not

independent of 
alt 

and is fixed exactly when 
a12 is determined.

However, x2 is independent of either 
a12 

or xl . The distribution of

a22 is 
a weighted convolution of 

[(X2

the chi-square distribution represent-

ing 
alt 

and the distribution p 
	
- A ) 2 1^ 2̂ , which is a chi-square

distribution with its mean a function of a12 . The probability distri-

bution of any estimate of the variance by this recursive equation is a

weighted convolution of the distribution of the previous estimate and

a chi-square distribution whose mean is determined by the previous

estimate of the variance. The probability distribution of the estimate

of the variance is not determined since it is not practical to make a

detailed calnulation. Although the distribution of the estimate of the

variance is not derived, its variance serves as a indication of the

error of the estimate. The error decreases as the variance decreases.
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Using the deinition of variance, the variance of vk2 is

variance of Qk 2 = E aka} _	 (Qk2
J J

E 
(rE.,

,k-1 +2	 (Xk
2 (1 - B)(1 + A) 	 _^2 2

E 	 Xk-1)

..	 2	 (1 - B)(1 + A)	 _ ^ l2
E2 BQk-1 +	 2	 (Xk Xk-1,

= B2E C	 + B(1 - B)(1 + A) E((Xk Xk-1) 2 _12

+ (1 - B) 2 (1 + A) 2 E
	 -'k-1

l4 - B2E2 ^ 2
((Xk	 1	 ok-1

- B(1 - B)(1 +A) E vk_12 E 1`	 Xk-112
L

(1 - B) 2 (1 + A)2
 .2((	

^	 2
 Xk-1)

2	 ^ ^+ _ E2 ^Z
k-12)]B E ak-1 

+ B(1 - B)(1 + A) E ( - Xk_^2 ok-1

E ((Xk Xk-1) J 
E ok-1jj

+ (1 - B)2 (1 + A)2 L	 -
	 l	 E2- ^ ^})

4	 (Xk 
X
k-1/ 	 ((Xk Xk-11
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= B2 (variance of 'â'
k-l2)

+ B(1 - B)(1 +A) FE2
^

xkk-12 - 2xkxk-lck-12
L

+-12ck-12 - E((xk xk-112 E ^ck-12)

1-B2	 )2+ (	
) (1 + A [variance of ( 	 l2
 \xk xk-lJ

= B2 (variance of Qk-12^

2	 2
+ (1 - B) 1 + A) variance ofll2

(xk xk-l)']

+ B(1 - B)(1 + A) (a2 + Q2) E ck-12

2.. 21
- 2a E('k-lok-1 + E xk-1 ck-1 1

E (xk - xk-1)2 E ak-12	 (5-1)

This last step can be made since 
"k-12 

and xk-1 are independent of

xk
 -

Let k = n where n is large enough so that all terms in the

equation for (variance of ^k	(V
exce.)t (variance of 

ak-12) 
nave

become infinitesimally close to their limiting values. The convergence

of each of these terms is shown in the appendices by the derivation of

their limiting values. Ir Appendix III these are
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lim variance(xk - xk_1) 2 = ao	 (5-2)
k -> co	 `	 ( 1 + A)

and

2

	

lim E ((xk - xk_1) 2 = 12+ A	 (5-3)
k -4 oo

Appendix IV shows that

lim E
-Zak-12 = aa

2	(5-4)
k -> 00

Appendix V shows that

lim E	 2Q 2 
= a2a2 + 1 - A + (1 - A)2(1 - B) a4

'Sc-1 k-1	 1 + A	 (5-5)
k -> oo	 (1+A)(1 - AB)

By the choice of C in Equation ( 4-2) we have insured that

lim E ck-12 = c2
	 (5-6)

k -+ Go

Substitution of Equations ( 5-2) - (5-6) into Equation ( 5-1) yields

2	 2	 4
	variance of arn2 = B2 (Variance of an-1 + (1 - B) (1 + A)	 $a 2

 (1 + A)

+ B(1 - B) (1 +A) (a2 + o) o - 2a (aa2) + a
2 c2

1- A	 1 - A)2(1 - B)	 4 _ 2a2 
/ 2
	 -7)	+ 1+A+ (i +A)( 1 -AB) a	

( 
l +AJa (5

= B2 variance of an-12) + 2(1 - B) 2 4a



+ B(1 - B)(1 + A) [a
2 
a
2

+ 04 - 2a2 
o2 + a2 Q2

+1(
( 1 - Al 4	 (1 - A) 2 (1 - B)	 4 _ 2v'
1+A c - (1+A)(1 -AB	

v	
r+ A

= B2 (variance of an-12 ) + 2(1 - 
B)2o4

+B(1- B)(1+A)CF4+(l+A)a4

+(1-A)21-B) 
Crff- 2c4

(1 + A) (l - A B)	 1 + A

= B2 (variance of an-12) + 2(1 - B)2a4

+ B(1 - B)(1 + A) 
204 + (1 - A) 2(1 - B) Q4
1 + A (1 + A)(1 - A2B)

_ 2v4
1 + A

= B2 (variance of an-12)+ 2(1 - B)2a4

41

+ B(1 - B) 2(1 - A)2 Q4
1 - A2B

(5-8)

The method of determining the limiting value of variance of ant is to

insert some constant, M, for (variance of an-12 ). Several terms are

determined in order to recognize the series being generated. Thus,

n n 2
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variance of an-1
2
 = M

_ 2

variance of Qn2 = B2 M + (1 - B) 2 B(1 2) + 2 v
1	 -A B

variance of Qn+l2 = B4 M + (1 + B2)(1 - B)2 B1 A + 2 c4

1 - A B

2

variance of Qn+22 = B6 M + C1 + B2 + B4 C1 _ 
B\2 B(1 - 2) + 2 v4/	

1 - A B

The general term is

2	 ^
variance of on+j2 = B2(j+1) M + (1 - B)? B 1 - 2) + I Q4	 B21

1 -AB	 -j	 1=o

The limiting value is

lim (variance of Q 2) = M lim B2(,j+l)
Go	 j	 00

2
+ (1 - B)2 B1r - - 2) + a	

21
lim	 B

1	 A B	 ,j -^
i=o

Since
3

lim	 B21 = 1 2 for 
I 
B < 1.0

j	 i=o	 1-B

lim B2(j+1) = 0 for I B I < 1.0
.^ o0

2
lim (variance of a 21 = (1 - g)2 B 1 - A) + 2 	 1	 04

i NCO	 n+j	 1 -AB	 (1	 )
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lim (variance of 
ak J

= lim (variance of on+ 21
-400	 j -4 00

_(1- B1 B1 - A2 +2 v4	 (5-9)
- 1 + B J 1 - A2B

No attempt is made to apply the standard mathematical tests for

convergence due to the complexity of the series. The method of

derivation used above shows the convergence of the series since the

starting paint has no effect on the limiting value of the sequence and

the limiting value is determined.

A calculation which adds to the credibility of this derivation

is that of the estimation of the variance when the mean is known

exactly. For this case A is equal to 1.0 and the equation for the

variance of the estimated variance reduces to

limo (variance of v^2) = (1 +B) 2v4 for A = 1.0	 (5-10)
j

This can be checked by actually calculating the mean and variance of the

estimated variance with the mean known exactly. Thus,

°k2 - 
BQ

k-12 + (1 - B) (xk - a)
2	(5-11)

and

(%2)
_Q2

E
	 0

E Q12) = B o2 + (1 - B)c2



E (a22) = B% 0  + (1 + B) (1 - B) a2

E (̂ 2323^ 
= 
B 2 

+ (1 + B + B2 )(1 - B)a2

The general term is

k-1

E ak2 = B Qo + (1 - B) a2 
E 

Bi

J=O

Since B < 1.0

lira B Qo = 0 for ( B < 1.0
k

and
k-1

lim	
Bj = 1 1 B 

for B I< 1.0
k -+ co 3 =o

Then,

lira E ak2 =(1-B)02(
1

1 BJ=a2
k —^ co

The variance of the estimation is determined by

variance of a 2 = 0
0

variance of 
a12 

E alb+	
E2 alt

The variances for several values of k are

variance of alt = (1 - B) 2 2a4

44
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variance of Q22 = 2(1 + B2 )(1 - B)2Q

variance of 
a32 

= 2(l + B2 + BI) (1 - B)201

-	 The general term is

k-1
variance of ak2 = 2(1 - B)2c4 

Z
 B2J

J=o

The limiting value is

lim	
Q

variance of	 2 = 2(1 - B) 2Qk	 o	
k

C 1 - B^) 211+ BB) c

This equation checks with that obtained by letting A = 1.0 in the

general equation ( 5-9)•

As was found in the estimation of the mean, the limiting value

of the variance of the estimate can be made as small as desired by

making the estimation constant, B, closer to 1.0. Since the estimation

of the mean is used.in the est tion of the variance, the constant A

also has an effect on the limiting value of the variance of the

estimated variance. Again, A should be near 1.0 in order to make the

variance of the estimate small.
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CHAPTER VI

DECISION-DIRECTED-MEASUREMENT ESTIMATION TECHNIQUE

Description of the Method

The three previous sections of this dissertation presente r. an

analysis of the estimation of the mean and of the estimation of the

variance. The proper operation of these estimators requires that the

correct answer of the decision be known so that the proper estimator

can be updated. When the system is first operated in a g'-ven situation,

the location of the frame synchronization code is not known. The system

is required to move the threshold until enough correct decisions can be

made in order to locate the frame synchronization node. A form of

"Dec-sion-Directed-Measurement" similar to that described by,Lindenlaub

and Mix (Ref. 3, P. 13) is used to control the system during the search

for the frame synchronization code. This scheme is examined, in the

pages which follow, only for the cases requiring estimates of the mean,

that is, for equally probable signals. It can be employed for cases

requiring estimation of the variance, but an analysis of this situation

is not included here.

The Decision-Directed-Measurement (DDM) is used as outlined by

the following sequence: (1) An initial guess is made of the mean, yo,

of the received signal when a binary 0 is transmitted and of the mean,

xo , of the received signal when a binary 1 is transmitted. (2) A first

selection, P o, for the threshold is made according to

P = xo + yo	 (6-1)0	 2

46
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This is used as the threshold in order to decide whether the first

sample, xl , is a binary 0 or 1. If x  is judged to be a binary 0,

y
0 

is updated using the exponential smoothing equation,

Y1 = AYo + ( 1 - A) xl 	 ( 6-2)

and the revised estimate of the threshold, 01 , is

y

1

 + x
01 =	 2 °	 ( 6-3)

If, however, x  is judged to be a binary 1, x  is updates', by use of

xl = Axo + '1 - A))xl	( 6-4)

and the revised estimate of the threshold is

pl 
= Yo xl	

(6-5)2 

As more and more samples are processed, the estimated threshold moves

toward the optimum location, which is the intersection of p(x1o) and

p(xll), and eventually gets close enough to allow so many correct

decisions that the frame synchronization code may be located. When she

code is located, the "Learning With Teacher" scheme is employed.

Analysis, Mathematical

Some questions which should be answered are:

1. Does the esti.mated threshold, in fact, move toward the

optimum location?

2. What factors affect the convergence rate of the threshold?

N'.
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3. What is optimum point for initial guess of the threshold

location?

To answer these questions, it is helpful to examine some probability

distributions. Figure 4 shows the probability density of the received

signal, the initial guesses of x 0 and A , the corresponding p0 and

the actual means, AO and A1, given by

AO = ' xiP (xi I o^ dx1 	(6-6)i
and

A,.. =
J 

J	 xip (xi i 1) dxi 	(6-7)
W

Since any xi 2 p0 is judged to be a binary 1, and any x i < p0 is

,judged to be a binary , the r.onditionai. probabilities are

P(0) P(xll o )	 P(l) P(Xlj 1)

f

p^x
l
^xl > p0^ f	 +	 ul(xl - po) (6-8)

oo p (xl ( o) dxl 
	

P (xi 11) d l
p0	 J po 

and

P(0) P(XlI o)	 P(1) P( Xl l 1)
P(Xl Ixl < po)	

o

= 

rp
	

+ 
p

o

u7 
( p0 - xl) (6-9)

J ^ p (Yl 
1 o) dxl

J^ o, p ( xl 11) dxl

where ul (z) is a unit step (ul = 1	 for	 z > o	 and	 ul = o	 fol

z < o).

Figure 5 is a plot of p(xl lxl ! p0) and p(xl lxl < 00).
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Yo Bc xo	 Ao	 Al	 x

Figure 4.- Operation with initial estimates.
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I	 I	 P(xIx > Bo)

x

I	 I	 I	 I	 I
I
I	 I	 I	 I	 I

I	 I	 I	 I	 1

I	 I	 I	 I	 1

i	 I	 1	 I	 1

I	 I	 I	 I	 I

o so o Ao	 Al	 x

Figure 5.- Probability density of first sample after decision.
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For x1 given by (6-4), the calculation of its probability

density requires the conditional probability for xl given by (6-8).

Since x  and X1 are independent, the probability density of X1

given that xl ? po is a weighted convolution of p(x0
) and

p(xl
) _ p(xllxl >0

0 ), (Ref. 11, p. 189). Similar techniques are used

to determine p(yl) with the condition of Xl < 0o . The shapes of

p(xl lxl > 00 )
 
and p(yl lxl < po l are shown in Figure 6. The new

threshold is	 \

Axo + (1 - A))x1 + yo
=	

2	
for xl > po	(6-10)

^l xo + Ayo + (1 - A) xl

2	 for Xl < Oo	 (6-11)

This includes the possibility that 1  is not updated if the signal is

decided to be a binary 0 and that yo is not updated if the signal is

decided to be a binary 1. The probability density of 0 1 is obtained

by a weighted convolution of p(xo), p(xl) , and p(yo ) with appropriate

use of the probability that xl > ao and the probability that xl < 00.

The process is repeated when the second sample, x 2, is received with the

added complication that 01 has a probability density. If both Xl

and x2 are decided to be binary 0's, the calculation of 02 will

still use xo as the estimate of Al.

It can be seen that a mathematical analysis of this problem in

:losed form is virtually impossible since it involves repeated

convolutions of truncated probability distributions. No general

analysis of a DDM system has been located in the literature. With the
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Ago + (1 - A) Bo ii	 Aao + (1 - A) A1
x

Az0 + 1 - A) Ao

APO + (1 - A)Ao

Figure 6.- Probability density of estimated means after processing
of first sample.
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exception of a "hang-up" for the case of no noise, there have been no

cases postulated or discovered experimentally in this investigation or

in the literature for binary signals for which the DDM system does not

converge. The possibility of the "hang-up" is discussed and eliminated

later in this report. The DDM system is designed so that the estimate

of the mean of the binary 1 moves to the mean of all signals above the

threshold and the estimate of the mean of the binary 0 moves to the mean

of all signals below the threshold. The threshold divides the range of

received signals into two portions so that the average of the estimates

of the two means is equal to the boundary between the portions.

Computer Analysis

A general purpose digital computer is found to be useful for the

investigation of some of the characteristics of the system. Since it

is intended that digital techniques be used in the final hardware, the

range of inputs to the decision element is converted from analog to

digital format. Therefore, the range of inputs is separated, in effect,

into 2n discrete partitions where n is the number of bits used in

the digital word. By matting use of this partitioning of the input

range, it is possible to perform a numerical convolution of the

probability densities on a digital computer.

For the calculations here, the input range is divided into

64 levels (n = 6). This value is selected as providing about the

minimum resolution required and as being small enough to reduce the

required computer time. The probability densities p(o)p p(1), p(xIo),
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and p(xll) are selected for the particular test case, calculated for

each of the 64 partitions, and inserted as inputs to the computer. The

initial estimates, 
1  

and yo, are also selected and inserted as

inputs. The computer uses xo and yo to set up a 64 x 64 array

representing p(xo , yo ). The indices of the array represent the

amplitude of the variables and the value stored in a given location

represents the probability. The computer then uses each possibility

of input with each possibility of threshold to generate p^xl , yl). The

process is ran.,ated in order to determine p(xi, y i) . The average value

of the threshold (as a function of number of samples) is calculated and

is used as an indicator of the convergence of the threshold. Appendix

VI shows the computer program used with some typical numbers as inputs.

Effect of Choice of xo and yo on Convergence Rate

The first characteristic of the system to be investigated is the

effect of the initial guesses, 
1  

and yo, on the convergence rate.

Since 0  = (xo + yo )12, there are many choices of x  and yo which

yield the same 0o . For this test all of the inputs to the computer

program except xo and yo remain unchanged; xo and yo are varied

with the proper relationship so that 
0  

remains constant. Figure 7

shows a plot of the average value of the estimated threshold location

versus the number of samples processed as a function of xo and yo.

Several other cases have been run on the computer but have not been

shown here since the results of Figure 7 are typical of those in the

other cases. It can be observed in Figure 7 that the fastest convergence
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is obtained when x0 is as small as possible and y0 is as large as

possible. This seems strange since x0 is the estimate of the mean

of the received signal when a binary 1 is transmitted. However, this

has been found to be true in all of the cases which have been

investigated.

The following explanation is offered for this property. For

xl _> 00 , only x0 is updated. From (6-1),

y0 = 
200 - 

x0	 (6-12)

Using this with (6-4) yields

xl + yo
^l =	 2

Ax  + (1 - A)xl + 200 - x0

(1 - A) (xi - xo/
+ ^0	 (6-13)

The change, AP, in the threshold is

AO=a1 - 00

= (1-A) (xi -xol (6-14)

For xl < 0
0 , only yo is updated. From (6-1),

x0 = 20
0 - y0	 (6-15)
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Using this with ( 6-2) yields

x  
+ yl

al -	 2

20  - ŷo + Ay  + (1 - A)xl
2

(1 - A) 
xl	

+
y

The change, chi, in the threshold is

AP 01

(1 - A); xl - 
yo)

2	
(6-17)

If 0o is less than the optimum location of the threshold, AO should

be as large a positive value as possible. According to (6-14) and

(6-17), xo and yo should both be as small as possible. Since

pp = Cxo + yol/2, one must be large if the other is small. Since the

received signal is decided to be a binary 1 with greater probability

than to be a binary 0, (6-14) is applicable more often than (6-17) and

x  is selected as small as possible without regard to yo.

Conversely, if 0  is greater than the optimum location of the

threshold, op should be as large a negative value as possible. There-

fore, xo and yo should be as large as possible. Since the received

signal is judged to be a binary 0 with higher probability, (6-17)

applies more often. Therefore, yo has more effect and is selected as
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large as possible. This reasoning gives the same results as had been

observed from the computer runs; that is, xo should be small and yo

should be large. For the case of no prior knowledge of the signal

characteristics the optimum location of 0  appears to be the center
of the input range. This means that 1  is the smallest possible

input value and yo is the largest possible input value.

Effect of Other Parameters on Convergence Rate

This section contains observations of the relationship of the

convergence rate to other variables, such as:

1. Separation of the mean, Al, of binary 1, from the mean, Ao,

of binary 0.

2. The variance of the noise; that is, the variance of p(xIo)

and p(xjl).

3. Separation of initial estimate of mean and actual mean.

A method is devised for measuring the convergence rate. Figure 7 shows

that, for optimum location of x  and yo , the movement of the average

value of the estimated threshold has the appearance of the exponential

charging of a capacitor. Although the curve for this system is not

exactly an exponential, the number of samples required to move

63.2 per cent of the distance between 0o and the actual threshold is

called a time constant and is used to compere different systems.

Figure 8 shows a plot of the time constant versus the deviation

of the noise for three different values of A  and A1 . The estimation

factor, A, the initial estimate, Oo, of the threshold and the optimum
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Figure 8.- Time constant of mean of estimated threshold.
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location of the threshold are held constant for this test. The initial

estimates, x  and yo, are located at the points found to be optimum

Cxx= 1; yo = 64) according to the discussion following equation (6-17).

It had been hoped that the convergence rate could be expressed

as a function of the estimation constant, A, and of a signal-to-noise

ratio defined as

A
SWR 

= aia °
	 (6-18)

n

where an is the deviation of p(xlo) and p (xll). Figure 8 shows

that the convergence rate does not depend on A, A l , Ao, and an in

such a simple way. For example, for A l = 50, o = 20, an = 6, and

A = 0.85,

SNR = 50 - 20 _^ 5_ _

with Figure 8 showing that

	

Time constant = 10.32 samples	 (6-19)

Also for, Al = 40, A  = 30, an = 2,

sxx=	 2
40-30=5

Figure 8 shows that

	

Time constant = 2.47 samples	 (6-20)

Thus, it can be seen that the convergence rate is different for two

cases which have the same signal-to-noise ratio. This investigation
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is not carried any further due to the amount of computer time required

to generate each point on the curve and due to the large number of

curves which are required to determine the effect of Ao, Al , 5o , and

other variables on the convergence rate.

Comparison With Learning With Teacher

The convergence rate for the Learning With Teacher scheme can be

compared to the convergence rate of the DDM technique for those cases

shown in Figure 8. For the case of Learning With Teacher for equally

probable signals, the threshold is computed by

xi + yk	
6-21)

pi =	 2

Since xi and yk are estimated by z,cursive equations with the same

:	 time constant, pi will have undergone one time constant when both x^

and yk have undergone one time constant. It takes twice as many

samples for both x^ and yk to undergo one time constant so that the

time constant (measured in "number of samples") of pi is twice that of

either x  or yk . For the situation shown in Figure 8, A is equal

to 0.85. The time constant for either xi or yk is

-1
ns - In A

-1
= In 0.5

	

= 6.15 samples	 (6-22)

The.time constant of pi , the threshold, is

'	 2ns = 12.3 samples	 (6-23)



62

By comparing this time constant to those in Figure 8, it can be seen

that the DDM technique converges faster than the Learning With Teacher

scheme for small separation of A  and Al and that the Learning With

Teacher scheme is faster for large separation of A  and A 1 . These

observations deal only with the situation shown in Figure 8. Curves

similar to those in Figure 8 for other situations would be necessary

in order to make a general comparison between the Learning With Teacher

method and the DDM technique.

Performance of Noiseless System

For certain selections of xo and yo and a noiseless system

(Ref. 3, P. 37), it is possible that the estimated threshold does not

converge to the proper value. As an example, consider the following

case:

p (xi I o) = 1.0 S (xi - 20)

P (xi 11) = 1.0 s (xi - 30)

with x  = 15 and Y. = 10. This case is illustrated in Figure 9.

Because of the convergence of the estimation technique, xk m.-ves toward

the mean of the signals above the threshold. For the case in Figure 9

and for p(o) = p(1)

lim ECXk} = 20 
+ 30 

= 25	 ( 6-24)
k ->	 J	 2
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Figure 9.- Illustration of noiseless case.
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There can never be any received signals falling below the threshold so

that yo is never updated. Therefore, the limiting value of the

threshold is

lim E(ak) = 7 l-4 E lyk) + 1-+
 E lxk)

k -^ w	 k -j CO`	 k -j

_	 yo + lim E {xk)

k --+ co

= 2 [10 + 25] = 17.5	 (6-25)

Therefore, the threshold has not converged to the proper value.

This possibility is eliminated if x o and yo are chosen as

previously discussed in this section (x o as small as possible and yo

are large as possible. This insures that y o is always above the

final location of the threshold and that xo is always below the

threshold location. In order to prevent the possibility of a "hang-up"

situation occurring due to a change in signal characteristics, it is

necessary to reset 10 to the smallest possible value and yo to the

largest possible value each time the location of the synchronization

code is lost.



CHAPTER VII

CALCULATION OF THE PROBABILITY OF ERROR

The probability of error can be determined for a system using

an es timated threshold in place of the optimum threshold. For the

case of equally probable signals (K = 1) the optimum location of the

threshold in the Bayes sense is

Al + Ao

=	 2

If it is assumed that the adaptive detector has been moved sufficiently

close to the optimum threshold by the Decision -Directed -Measurement

technique that the Learning With Teacher scheme can be used and if it

is assumed that the detector has processed a very large number of

1

	

	 samples from a stationary environment, the asymptotic probability of

error can be investigated. Since the estimates of the means are random

functions, the threshold and the probability of error are random

functions. The average probability of error can be obtained by using

the probability of error as a function of the threshold location and

the probability density of the location of the threshold.

The threshold is located by the adaptive system at

W +y00
R =0 ^_

As discussed in Chapter III (Estimation of the Mean), the variables x^

and yo, both have a Gaussian probability density with

65



66

variance of	 =variance of y^, _ (1 + A) ant

E^^}=A1

and

E ^yW^ = Ao

The two variables x and yy are independent because the noise has

been assumed to be white and Gaussian. The threshold, a., has a

Gaussian distribution with a mean of

and

`	 variance of ^ = 2 (-1+—A ) ant

The probability of error as a function of the threshold location is

1	 0D	 (x - Ao) 2
prob. of error(ate) =	 J exp - — 2	 dx

2 2n an	R.	 Zan

( ^	 x

+
 J

exp - ^ ^ dx
-^	 2an

The probability density of the threshold is

Al + Aol2

P(0„	
T

) =	 exp -

fll-i A 1-A) 2
A an	 +Aan
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The average value of the probability of error is

F(prob . of error) _ ( 00 PO
OD
 ) [prob. If error ( a. )] da.

The average probability of error has been calculated on a digital

computer for several values of A and for several values of SNR

where
- A

SNR =
A1 	 0

0
n

The following table shows the results of these calculations:

Average probability of error

SNR A = 0.85 A = 0.90 A = 0.95 A = 1.0

3.33 9.25 x 10 2 9.07 x 10-2 8.7 x 10-2 4.74 x 10-2
4.0 4.53 x 10-2 4.37 x 10-2 4.1 x lo-2 2.27 x 10-2
5.0
6.67

1.28
9.56

x 10-2
x lo-4

1.21
8.6

x 10-2
x 10-4

1.1
7.5

x 10-2
x 10-4

6.21
4.3o

x 10-
x lo-

10.0 7.93 x to-7 6.42 x lo-7 5.0 x to
-7

2.87 x 10-7
20.0 7.8 ^3x l0- 3.7 ^3x 10- 1.69 x 10-^3 7.62 x 10-24

Figure 10 shows a plot of the results for A = 0.85 and A = 1.0. The

results for A = 1.0 correspond to the optimum detector for this

situation. All other values of A cause the average probability of

error to be higher than for the case of A = 1.0. It should be noted

that Figure 10 gives the average probability of error. The actual

probability of error is a random function which has a minimum given

by the curve for A - 1.0. The value of A can be chosen as close to

1.0 as desired in order to reduce the probability of error, but
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increasing A causes an increase in the reaction time of the

estimation equation as discussed in Chapter III.

Since Patrick and Costello (Ref. 1) only make their calculations

for an infinite number of samples used to compute the sample mean, the

only comparison between these results and those of Reference 1 that can

be made is for A = 1 with equally probable signals. At this point the

estimates have zero variance and the adaptive detector has the same

probability of error as the optimum detector. The additional error

found in Reference 1 is due to an unsymmetrical bias caused by -ion-

equally probable signals. No attempt was made by :°.trick and Costello

(Ref. 1) to compensate for the effect of the nonequally probable

signals.

A calculation of the probability of error of the DDM system with

nonequally probable signals and with A not equal to 1.0 would show

the ability of the DtM system to properly locate the threshold. This

analysis would be more complicated than the analysis shown in

Reference 1 because values of A other than 1.0 have the effect of

using less than an infinite number of samples in the estimation process

and because an estimation of the variance is included in the system

proposed here to reduce the additional error due to nonequally probable

signals. This estimate of the variance is also a biased estimate when

operating in conjunction with the DIN technique for the same reason

(p. 15) that the estimates of the means were biased. Since the input to

the estimator of the variance is not Gaussian in the DTM mode, the

calculation of the variance of the estimated variance shown in Chapter V
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does not apply. This calcu'ation of the probability of error has not

been included as a part of this investigation.

An example can illustrate a situation in which the adaptive

detector to yid give a lower probability of error than a degraded

_imum detector. A:sume than an optimum detector has been constructed

and is operating in an environment of zero-mean, white, Gaussian noise.

Let an enemy in the neighborhood of the transmitter begin to transmit

a continuous sequence of signals which correspond exactly to the

binary 0 signal and which are exactly in synchronization with the data

bits. Before the enemy began to transmit, the equation, (2-1),

implemented by the optimum detector was

u = WT`S1 - Sol - b

The equation implemented by the optimum detector after the beginning

;,f transmission of the enemy is

U = WT(S1 - So) - b + Ac 'ST(Sl - Sol

where Ac ' is the channel gain of the channel from the enemy trans-

mitter to the receiver. Since Ac 'ST Sl - So) is a constant and is

present for both binary 0 and binary 1 signals, the additional signal

Ac ' Q(Sl - Sol has the appearance of a nonzero .ear. of the noise. This

would cause the optimum detector to be operating with its threshold

located at a nonoptimum location.

Figure 11 shows a plot of the probability of error of an optimum

detector as a function of the location of the threshold. The abscissa.
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is expressed in terms of the deviation of the noi:,e. For inst-:nce, if'

the sign;-1-to-noise ratio were 5.0 and if the mean of the noise were

0.1 o il , the degraded optimum detector would have probability of error

equal to 0.00643. If the mean of the noise i;, zero, the optimum

,ector has a probability of error of 0.00621.

An adaptive detector operating in this same situation has an

average probability of error which does not change as the mean of the

noise changes if sufficient time is allowed for any transients to

disappear. The probability of error of the adaptive detector is higher

than that of the optimum detector when the optimum detector is using

the optimum threshold. As the mean of the noise increases, the

probability of error of the degraded optimum detector increases while

the probability of error of the adaptive systen remains cons':.ant.

Figure 11 shows the points where the probabilities of error of the two

systems are equal for a given signal-to-noise ratio and for a given

recursive constant. ;-ii a signal-to-noise ratio of 5.0, the adaptive

system using A = 0.85 has a lower probability of error than a

degraded optimum system for values of A c 'So(Sl - So) greater than

approximately 0.53an . For values of A greater than 0.85, the point at

which the two systems have equal probability of error is decreased. As

the signal-to-noise ratio increases the point at which the two systems

have equal probability of error also decreases. This fact can be shown

from curves similar to Figure 11 for other signal-t)-noise ratios, but

have not been included here.



CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

The results of this investigation show that the system proposed

here is capable of acting as an adaptive detector. The system requires

an estimate of the mean and an estimate of the variance of a sequence

of random numbers. The mean is estimated by

xk = Axk-1 + (1 - A)xk

and the variance is estimated by

.. 2	 ..	 2	 (1 + A) (1 - B)_	 2
ok - Bck-1 +	 2	 (Xk Xk-1

If the input data have a Gaussian distribution with mean of "a" and

variance of "Q2", the estimated variance has a variance of

2

lim variance of 
ak2 

^l + B) 2 + B(l - 
2) Q4k-4 co	/ 	 1-AB

The accuracy and time response of each estimator can be varied by the

choice of constants A and B. The frame synchronization code is used

as the teacher in a "Learning With Teacher" technique. A Decision

Directed Measurement technique is used when the frame synchronization

code is not available.

It has been found that in the recursive estimate of the mean,

the more accurate the estimate, the slower the convergence. The

optimum location of x  and yo when using the Decision Directed

73
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Measurement technique is found by a computer study to be xo as small

as possible and yo as large as possible. This selection of x o and

y
0 

is found to prevent the possibility of a "hang-up" when there is no

noise. The asymptotic, average probability of error for the adaptive

system using only the estimates of the means in the Learning With

Teacher mode is found to be equal to that of the optimum detector for

A = 1.0 and greater than the optimum detector for A < 1.0. However,

a change in the environment can cause the adaptive detector to have a

lower probability of error than an optimum detector, which cannot track

the changes.

This investigation has by no means completely analyzed the

proposed system. Some of the areas which offer possibilities for future

work are discussed here. One of the most important areas for future

work is the construction of hardware to perform the functions discussed

in this dissertation. R. G. Brown (Ref. 4) mentions other techniques of

estimation of the mean which are essentially higher orders of the

technique used here. It would be interesting to attempt to use some

of the other techniques and to compare their results to those of the

exponential smoothing method. The time response of the estimation of

the variance is unknown and should be determined, but it will be

difficult to determine due to the nonlinearity of the estimation

technique. The probability of error of the adaptive system in the

Learning With Teacher mode for K ^ 1 also should be determined. The

operation of the "Decision-Directed-Measurement" technique also ras

some areas which require more investigation. The effect of all the
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system variables on the convergence rate of the system needs to be

determined. All of the techniques discussed here need to be investi-

gated when operating in an environment of correlated noise and correla-

tion between adjacent data samples. The probability of error for this

adaptive system in the DDM mode should be calculated. The operation

of the DDM mode when the variance is estimated also needs to be

investigated.
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APPENDIX I

2
Cr

METHOD OF ESTIMATION OF nAc

The purpose of this appendix is to show that

on2	
variance of {(A cS o + N)T Sl - So

rr	/ 
Ac E((AcSl + N)T(Sl - So l - E (AcSo + N) (Sl - So))

The adaptive detector computes estimates of three properties of its

input. 'these are

E CXIW = AcSl + N) = E (AcS1 + N)T (Sl - 
So)

*	 E (XIW = AcSo + N) = E (AcSo + N)T(Sl - So)
)

and

variance of (XIW = AcSo + N) = variance of ((A c S 0 
+ N)T (Sl - 

So)

The remaining portion of this appendix shows that the numerator of

equation (A-1-1) is

variance of ((A c S 0 
+ N)T (Sl - So) = an2 (Sl - so) T(S1 - Sol

and that the denominator is

E (AcS1 + N)
T(Sl - Sol - E (AcSo + N)T(S1 - Sol = Ac(Sl - so ) T (Sl -So)

8o
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The numerator is rearranged to yield

variance of (AcSo + N ) T ( S 1 Sol

1
= E ([(A 

C 
So N)T (Sl - So) - E((AcSo + N)T (S1 - So 

T
)1

[(A 
c 

S o + N)T (Sl - So) - E (AcSo + N)T (Sl -

 So))])

Equation (2-7b) with E = 0 is used to reduce the complexity of the

above equation, so that

variance of ((A 
c 
S 0 + N)T (Sl - So)

= E [N - 'N)T (S1 - So)] T CN 
- N)T (S1 - So)1

i	 = E{N - N) T (N - N)3 (Sl - So)T (Sl - So)

a n 2 ( S 1 - So)T (S1 - So)

	
(A-1-2)

Identical results are obtained if variance of ((A 
C 
S 1 + N)T (Sl - So)^

is computed.

The denominator of equation (A-1-1) is computed using (2-7a) and

(2-7b) with E = 0, which yields

E ((AccSl + N)T (Sl - so)) - E (AcSo + N)T(Sl - So^

= AcS1TS1 - AcS1TS
o
 + N (Sl - So) - AcSo S1 + AcSo So

-14T(Sl - So)



= Ac (S1
 - So)T(S1 - So)

Equation (A-1-1) results from the division of Equation (A-1-2) by

Equation (A-1-3) as shown by

variance of ((AcSo + N)T(S1 - So)}

E [(AcSl + N )T (Sl - So ) - E ((AcSo 
+ N)T 

(S1 - So^

an2(Sl - So )T (S1
 - S0)
_

Ac (Sl - So) 
T 

(Sl so)

a 2
_ n

Ac
I
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APPENDIX II

ANALYSIS OF THE EXPONENTIAL SMOOTHING TECHNIQUE

This appendix is a derivation of some of the properties of the

estimation of the mean by the exponential smoothing technique. The

results shown here were published in Reference 4 by R. G. Brown;

however, some of the results here are derived in a different manner.

Xk = kkk_1 + ( I - A )xk; k = 1,213
	

(A-2-1)

where

xk = kth estimate of the mean

xk = kth data sample

A = recursive constant; A < 1.0

o= initial guess of mean

This equation can be compared with that in Reference 4 if (1 - A) is

set equal to m.

Derivation of the Mean of the Estimation

The general term of the estimation equation is rearranged by

inserting an expression for xk_1 into the expression for xk,

inserting an expression for-2' and continuing until xo is reached.

The resulting expression is

I

83
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Xk = A xo + (1 - A) [Xk + Axk-1 + A2
x
k-2 + ... + Ak-1x1 (A-2-2)

The mean value of xk is

ECxk) = E(Ak^o + (1 - A) E{ k) + AE(xk-13 + ... + Ak'1 xl)

The random Pmction from which the samples, x i , are taken is assumed

to be stationary with a mean of "a" and a variance of " v2" so that

E(xi)=a

The mean of xk can be rewritten to yield

Eixk) = E A xo + (1 - A) E(xi) 11 + A + • • • + Ak'1]

+	 = A x
0 
+ (1 - A)& 11 + A + A2 + ••• + Ak-13 	 (A-2-3)

Since JAI < 1.0,

lim A"! = 0
k --?, o0	 0

and

lim (1+A+A2 + ••• +Ak-1) =11 A
k -► co

Therefore,

lim E(k) - all - A) C 1 1 AJ
k —► co
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Derivation of the Variance of the Estimation

The variance of xk is calculated by using

variance of Xk = E ^xk2 - E2 4x	 (A-2-5)

The first two terms are

variance of 1  = E Xo2) - E2 ^Xo

= X 2 - x 2 = 00	 0	 (A-2-6)

and

variance of xl = E A2Xo2 + 2A (1 - A ) xlxo a (1 - A)2X2

E(AXo) + E (1 - A))xl 2

= A2 02 + 2A(1 - A)aX0 + (1 - A)` C a2 
+ a21

- 2Xo - 2A(1 - A)axo - (1 - A) 2 a2A 

= (1 .. A)2a2
	

(A-2-7)

The variance for several values of k has been calculated by the same

technique and is presented in the following table:
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k	 variance of 3
Nk

0	 0

•	 1	 (1 - A)2a2

2	 (1 + A21.(1 - A)2a2

3	 (1 + A2 + A4)(1 - A)2 Q2

4	 (l + A2 + A4 + A6)( l - A)2 c2

The general expression of the variance of a k is written from the

table by inspection to yield

	

k-	 i
variance of xk = (1 - A) 2o2	LA2j	 (A-2-8)

i=o

As k approaches infinity,

}	 lim variance ofxk = (1 - A)2a2	 1 ^

k-iW	 1 -A

lira variance of_ (1 + A a2	
(A-2-9)

k ^^

Derivation of the Time Constant of the Estimation

Since the estimation equation must also react to step changes in

the mean of the incoming data, it is desirable to determine the time

required to respord to a step change. The estimation equation is

analyzed as if it were a filter by the use of the z-transform method

(Ref. 12). The impulse response of the following equation is found:

xk = Axk-1 + (1 - A)xk



Let

X-1 = 0

x = 1
O

xi = 0 for i ^ 0

87

This set of conditions determin

technique to an input of a unit

of the z-transform (Ref. 12, P.

X(z)

es the response of the estimation

impulse at t = 0. From the definition

145)

cc

xkz-k

k-o

X( z ) = ( 1 - A)zo + A(1 - A)z-1 + A2(1 - A)z
-2 + •••

X( z ) = ( 1 - A) (1 + Az-1 + A2 z-2+ •••^

X(z) _ (z - A)	 1
1 - Az-1

	

X(z) _ (z _ 
A)z	

(A-2-10)

The Laplace transform which corresponds to the z-transform given above

is

H(s) = (1 - A)	 (A-2-11)
s - T to A



APPENDIX III

DERIVATION OF THE LIM VARIANCE OF2k	 (xk xk-1)
-+m

The first moment of (xk - xk-1 )2 is

E ((xk xkk-1 )2 = E (Xk2 - 2xk xk-1 + xk-1 
2

= E (xk 2) - 2E(xk) 
E lxk-1J + ECxk-12^

This step can be made since xk-1 and xk are independent.

lim E ^{	 ĝ 2	 a2 + Q2 - 2a lim E`̂x	 + lim E ĝ 
2

k —* ao	
(xk	 k-1)	

k —> oo l k-1) k —+ co ^ K"1

=a2 +02 - 2a (a)+a +(1+A)v2

1 - A 2
1 + l + ] o

2 v2
1 + A

The second moment is

E (xk xk-1)	 xk	
4 xk xk-1

+ 
6xk2 xk-12	 xk xk-13

+ xk-1

88
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As discussed in Chapter III, xk and 
xk-1 	 both have a Gaussian

distribution with known mean and variance and are independent.

Substitutions from Appendix VII yield

lim E (xk-Xk_114 = a4 +6a2 a2 + 3a4 -4a4 -12 a 
2 a 2 + 6 a 4

k -+ w	 `	 /l

+6a2 a2+6( 1 +A) a2 a2 +6(1+A) a4

4a4 - 12(1 + A) a2 a2 + a4 + 6 (1 + A^ a2 a2

+3 (1-A)2Q4
1 + A

4	 - A) 4	 f1 - Al2 4
=3a +6 (1

+A a +3 1+AJ

=3a4 1+ 1-A 2
1+A]

12 a4

(1 + A)2

The limiting value is

limvariance of txk - -1 121 = lim E (xk -
k -4 00	 I	 k - cc	

xk_114

lim E2	
2

k -+ ao	
(Xk xk-1)

12 a4	4 a4

8 a4



2
+ E xk xk-1 (A-4-1)

APPENDIX IV

DERIVATION OF LIM E (S'k Qk2
k -i o0

(1k
Q2	

E A	 (1 A)^	 +-	
By 2+(1+A) 1-B) 	_A

 k	 E xk-1	 xkj	 k-1	 l	 xk-1)

= A B Exk-1 ck_12 + B(1 - A) xk Qk-l2

Al+A)(1 - B)	 2^	 - 2	 ..
+	 E xk xk_l - 2E xk xk-1 + E xk-l3

+ (1 - A)(1 + A)(1 - B) [E(Xk3) - 2E xk2 -Xk2

E-

Since xk is independent of xk_l and 
'k-l2' the expected'values of

the product of these variables can be separated into the product of the

expected values. Using Append'Lx VII I Equation (A-4-1) becomes

xk Qk2 = A B E (lk_l ck-12 + B(1 - A)a E Qk-12

+ (1 + A) (1 - B) C(1 - A) W + 3a c2)

+ (3A - 2) (a2 + 02) E c-1}

+ (1 - 3A)(a) (xk-12E
	

+ A E xk-1 3	 (A-4-2)

The technique for finding the limit as k approaches infinity

of this recursive equation is the same as that used in the main body of

this report for the varian ^e of the estimated variance. The index k

90
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is set equal to n where n has a value large enough so that all

terms on the right hand side of Equation (A-4-2) except E

	

	 a 
2

^c-1 k-1

have become infinitesimally close to their limiting values. Using

Appendix VII and Equations (A-2-4) and (A-2-9), Equation (A-4-2)

becomes

E xn an2 = A B E xn-1 %-12+ B(1 - A)a v2

+ (1 +A)(1 - B) 1(1 - A)(a3 + 3a a2)

+ ( 3A - 2) (a2 + art) a + (1 - 3A) (a) a2 + 1 + A c2

+A
a3+3(1 +A)ao

= A B E xn-1 cn-12 + (1 - A B)a Q2 	(A-4-3)

Several terms are calculated in order to recognize the series being

generated. Let

^Xn-1
 A2

E 	 cn-1 - P

Then

Exn Cn2 = A B(P) + (1 - A B)a a2

E (In+, °n+12 = A2 B2
(P) + (1 + A B)(1 - A B)a a^2

'	 Exn+2 on+22 = A3 B3
(P) + ^1 + A B + A2 B2 )(1 - A. B)a v2



2
=aa (A-4-5)
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and
i-

E xn+i cn+i = pi+l 
Bi+1 (P) + (1 - A B)a o2	 (AB)i	 (A-4-4)

Since A < 1 and B < 1, (A-4-4) becomes

(	 2
ili 

mo 
E^Xn+i cn+i2 = klim o 

E (Rk ak2 = 1 - A BA B Q

The convergence of this series has been verified by calculating

the exact expression for the series for k = 0, 1, and 2 but has not

been included because of its length. From these expressions it is

possible to recognize the general expression for the coefficients of

all terms in the expression. It is found that the limit of ,coefficients

of all terms approached zero as k approached infinity except for the

coefficient of ao2 . This coefficient is found to approach 1.0.



APPENDIX V

DERIVATION OF LIM E V ak
k -4 co

E xk2 ak2 = E CA xk-1 + (1 - A)x k̂ 2 B ak
-12

+ (1 + A) (l - B) (xk -
 xk-1)2

A2 B E -12 
ak-12 + 2A B(1 - A)a E xk-1 ak-12

+ B(1 - A) 2 
C

at 
+ a2/ E ,ak-12)

+ (1 + A)(1 - B)la+ 662 a2 + 304 (1 - A)2

+ E'xk-1} (a3 + 3a a2) (- 2 + 6A - 42)

• E C k_l2) lag + a2) (1 - 6A + 6A2)

• E C k-13) (a) (2A - 4A2)+ E {xk-l4! (A2 )	 (A-5-1)

Since xk is independent of xk-;L and a
k-12 the expected

value of the product of these variables is separated into the product

of the expected values in the above expression.

The technique for finding the limit as k approaches infinity

of this recursive equation is the same as that used in Appendix IV.

The index k is set equal to n Where n has a value large enough

so that all terms on the right hand side of equation (A-5-1) except

93
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E (xk_12 ak-12 have become infinitesimally close to their limiting

values. Using Appendix VII, Equation ( A-5-1) becomes

E xn2 - 2 = A2 B E xn-12
 an-12 + 2A B(1 - A)a2 a2

+B(1 -A)2
 (a2+a2)a2+ 1+A 1- B) ( a4 +6P a2

+ 3a4)(1 - A) 2 + ( a4 + 3a2 a2 )(- 2 + 6A - 4A2)

+ a2 + 1 + A a2 la2 + a2 )( 1 - 6A + EA2)

+ (a3 + 3	 + —AA a a2 (a) (2A - 4A2)

+ a4 +6 1 -A a2 a2+3 1-A2 a4 Cpl)1+ A	 1+ A	 ( J

= A2 B E
(In-1

2
 an-12 + (1 - A2 B)a2 a2

+ la+ A E(1 - A)(1 - A2 B) + (1 - A) 2(1 - B)]	 (A-5-2)

E In-12
 an-12 is set equal to an arbitrary constant Q, and sev!ral

terms are calculated in order to recognize the series being generated:

2 ^ 2
E xn-1 an-1 = Q

E x2a A = A2 B(Q) + ( 1 - A2 B)a2 a2
4

+ l a C(1-A)(1- A2 B)

+ (1 - A) 2(1 - B]
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E x n+1 2 a n+l 2 . - A4 B2 (Q,) + (1 + A2 B) 11 - A2 B) a2 a`

1(1
+la 4+A 	 -A)(1-A2B)+(1-A)2(1-B)

The general term can be recognized to be

E xn+j 2 an+32 = A2 ( j+1 ) 
Bj+1 (@) + (1 - A2 B)a2 a2

4
+ la

+A C(1-A)(l-A2 B)

+ (1 - A) 2(1 - B] ^ (A2 B) i 	(A-5-3)

Since A2 B < 1.0,

glimoo E(1k2 ak2 = li
p E 

xn+j2 an+ j2

=1 
1A2B 

ll-A2 B)a2 02 + la
+A B1-A)(l- A2 B)

+(1-A)2(1-B)]

=a2 a2+a 1-A + (1-A) 2 (1-B)	 (A-5-4)1 + A (1 + A)(1 - A^B)]-

The limit of this sequence has been verified by the same method

of verification discussed in Appendix IV.
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APPENDIX VII

MOMENTS OF A GAUSSIAN VARIABLE

If x is a probabilistic variable having a Gaussian probability

distribution with mean of "m" and variance of "v 2", the first

four moments of x are (Ref. 11, p. 162):

E(x} - m

E(x2) = m + v2

B(X,) = m3 + 3 my
2

E{x4k
=m +62v2 +3v
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