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ABSTRACT

A system which is capable of acting as an adaptive binery
detector is proposed and analyzed. Exponential smoothing is used for
estimation of the mean. A technique similar to exponential smoothing is
used for estimation of the variance. The system uses the frame synchro-
nization code as a teacher in order to adapt itself to the character-
istics of the environment. Decision Directed Measurements are used when
the frame synchronization code is not available. The speed and accuracy
of the different techniques are derived in this study. The optimum

location of the initial conditions of the system is also deteriiined.



CHAPTER I
INTRODUCTION

This dissertation examines the feasibility of receiving binary
digital communication signals with an adaptive detector which adjusts
its threshold in accordance with the need of a slowly varying or previ-
ously unknown environment. The emphasis will be upon an adaptive
technique selected primarily for the simplicity of its implementation.
The technique will be analyzed to show how it offers improvement over
making no change in the threshold location c¢f an optimum detector. A
system of this type is needed for use in spacecraft or aircraft systems
where simplicity and small size are important characteristics of a
system.

For the case of a binary system operating in an environment of
additive white Gaussian noise, the optimum Bayes detector comsists of
two matched filters, a suttracter, and a threshold device. One of the
two filters is matched to the binary O waveform and the other to the
binary 1 wvaveform. The received signal is applied simultaneously to
the two matched filters. A decision, concerning which symbol was trans-
mitted, 1s made by comparing the difference of the outputs of the two
matched filters to a threshold. For many communication systems, condi-
tions are often such that the optimum location of the threshold is fixed
and known. However,.there are, or may arise, conditions such that the
optimum location of the threshold depends on parameters which are

neither constant nor known. Conceivable exsmples are: (1) noise whore
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mean or variance is subject to change, and (2) matched filters suffering
performance deterioration, a plausible condition especially when active
filtors are used. Such situations present the possibility that a Bayes
detector which is optimum for some specific conditions will have a
higher probability of error than an adaptive system after a change in
the environment.

The proposed system is capable of estimating the optimum location
of the threshold when the unknown or variable parameter is the nonzero
mean of the noise. In the case of unequal probability of transmission
of a binary O and binary 1, the proposed system can be used to estimate
the variance of the noise, which may be the unknown or wvariable para-
meter and is necessary for the calculation of the threshold. When
circuit failure or component drift in one of the matched filters causes
an optimum detector to locate its threshold at a nonoptimum location,
the proposed adaptive system is capable of moving the threshold to
reduce the average difference between the actual threshold and the
optimum location of ch~ threshold. These situations are discussed in
detail in Chapter II.

The adaptive portion of the detector receives as its input the
difference of the outputs of the two matched filters. It chooses the
threshold location according to calculations upon past values of its
input. Estimates are made of the mean of the input to the adaptive
detector when a binary O is transmitted, of the mean when a binary 1
is transmitted, and of the variance of the input caused by transmission

of either (btut not both) a binary O or binary 1. The location of the
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threshold is calculated from these estimates. Recursive equations are

used to estimate the mean and variance. This paper proposes use of the

frame synchronization code as the teacher in a "Learning With Teacher"
mode and use of a "Decision Directed Measurement" technique when the
frame synchronization code has not been located. The original contribu-
tions of this work are (1) the method of estimation of the variance
(Chapters IV and V) and (2) the determination of the effect of various
parameters on the convergence rate for the Decision Directed Measurement
technique operating in conjunction with the estimates of the means
(Chapter VI).

In the past few years the literature has contained many reports
of work on adaptive detectors. Very few of these, however, contain
material pertinent to the system proposed here. Papers by Abramson
(Ref. 2) and by Abramson and Braverman (Ref. 5) were among the first to
deal with adaptive detectors. These papers, concerned with optimal
learning in a random enviromment, offer estimation techniques which,
with modification, are useful in the proposed adaptive detector. A book
by Hancock and Wintz (Ref. 7) has chapters pertaining to adaptive
receivers and to learning by Decision Directed Measurement. It is
generally concerned with optimum estimation methods. 1In addition, it
presents results from computer simulations of the various learning
schemes similar to those of Lindenlaub and Mix (Ref. 3). Cooper and
Cooper (Ref. 1k4) 1nv§stignte a system using learning without super-
vision and estimated means. Groginsky, Wilson, Middleton, Hancock,

Gregg, Millard, and Kurz (Refs. 15 - 17) have described work which has



been performed on adaptive detectors for operation in noise of unknown
distribution. The present work is concerned with analyzing in detail a
specific, simply implemented, method of adapting the threshold in an
environment of white, Gaussian noise. Since the resulting system is
suboptimum, the available work on optimum systems must be modified and
extended.

The mean is estimated by a technique which was mentioned, but not
analyzed, by Abramson and Braverman (Ref. 5) for the purpose of tracking
a slowly changing parameter. The technique is similar to Kalman
filtering (Ref. 18) except that it is designed on the basis of other
than minimum mean-square error. Abramson (Ref. 2) gives an analysis of
the recursive estimator of the mean for minimum mean-square error.
Lindenlaub and Mix (Ref. 3) give the appropriate coefficients for the
recursive equation in order to get minimum mean-square error for three
specific autocorrelation functions of the slowly changing parameter.

Lin and Yau (Ref. 19) discuss the Bayesian approach to the estimators
and are concerned with minimum risk. Beine (Ref. 20) discusses an RC
averager to estimate the mean which corresponds to the recursive
equation used here. The most complete analysis of the recursive

estimator is given by Brown (Ref. 4) and his analysis is used as the

basis for the present work.

Dale (Ref. 21) discusses an estimation of the variance by a sum
of squares. Books b& Deutsch and Good (Refs. 22 and 23) treat the area
of estimation theory. No appropriate references were found on estima-

tion of the variance under the requirements of the system being
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investigated. This dissertation shows how an estimate of the variance

can be found by modifying a method used by Brown (Ref. 4) to estimate
means. The method will be analyzed to derive its accuracy.

A search of the literature for an analysis of a system using
Decision Directed Measurement techniques in conjunction with a recursive
estimator revealed none completely suited for detailed evaluation of the
system proposed here. Lindenlaub and Mix (Ref. 3) and Hancock and Mix
(Ref. 10) use Monte Carlo methods to check the convergence of several
learning methods. Henry Scudder (Ref. 6) derives the asymptotic
probability of error for a DDM system which makes estimates only on the
binary 1 signals. Patrick and Costello (Ref. 1) derive the asymptotic
probability of error for estimates on both signals but use the sample
mean with an infinite number of samples as the estimator. The present
work develops a computer program (Chapter VI) for performing a numerical
convolution of the probability densities involved in the system and
makes possible the investigation of how system operation is affected
by various parameters such as signal-to-noise ratio and initial
estimates of the means.

Spragins (Ref. 24) presents a review of the methods of "Learning
Without Teacher" and points out that an optimum method of "Learning
Without Teacher" is impractical. The present system is offered
(Chapter II), from among the many suboptimum solutions to the problem,
as one which is pracfical and simple to implement.

No construction of hardware has been performed as a part of this

study. Computer simulation has been used for any work requiring



investigation from an experimental viewpoint. The computer has also
been used as an aild in analyzing some areas which were difficult to
evaluate in closed form. Since it is anticipated that this system would
operate in real vime and might possibly be used in a spacecraft or air-
craft, it is desirable that the system be potentially fast and small.
This requirement has influenced the method of operation selected for the
system.

At the present time, there is no universally accepted test for
determining whether a system is an adaptive system or a learning system.
The system being investigated here probably fits under most definitions
of an adaptive system rather than that of a learning system. This
system has a specific procedure for adjusting the threshold as a
function of the past history of the input signal and does not attempt

to recognize situations that it has previously encountered.
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CHAPTER II
DISCUSSION OF TOTAL SYSTEM

A detector that is optimum in the Bayes sense for binary signals
in additive, white, Gaussian noise (Ref. 7, p. 49) is shown in Figure 1,
vwhere
w(t) = input to the detector = A.s;(t) + n(t)

}\.c = channel gain

5 (t)

5,(t)

signal representing a binary 1

signal representing a binary O
n(t) = noise

b = optimum bias

This optimum detector decides that a binary 1 was sent if ﬁ 20 and

that a binary O was sent if u < 0O by use of

u = wT(sl - so) -b (2-1)
where
¢
=0 1 T T =T
brLmKsg Ac(s1 5, -5, so) + (5, - ) (2-2)
(]

In these equations the capital letters are matrices (Ref. 7,
Pp. 231-24%) representing the functions of time shown in Figure 1. The
superscript T 1indicates the transpose of the matrix. The factor K

is a decision boundary which appears in the Bayes calculations and is
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for the cost of an error in detecting a binary 1 equal to the cost of an
error in detecting a binary O where q, is the probability of trans-
mitting a binary 0. The mear of the noise is represented by i, and

°n2 is the variance of the noise. It is consistent with (2 - 1) to
say that the detector decides that a binary 1 or binary O was trans-
mitted by determining if WT(Sl - So) is greater than or less than the
threshold, b. The adaptive detector employs as its threshold an
estimation; B, of the optimum bias based on past history of the
difference

X = wT(s1 - 8)

The estimated threshold, B, is obtained by first averaging the estimate
of the mean of X when a binary 1 is transmitted and the estimate of
the mean when a binary O is transmitted, and then adding the ratio

2
%n

—— (the estimated variance of the noise divided by the estimated

A,

channel gain) multiplied by 1In K; thus

2
]
B = %[E@]w =AS, + Np+ E{X[W = A5 + N}]+ % mk (2-3)
c

The only characteristics of the system which must be known are K, the

waveforms sl(t) and so(t), and the fact that the noise is additive,
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white and Gaussian. The mean and variance of the noise and the channel
gain can all be unknown or slowly-varying parameters.

In order to show that B corresponds to the optimum bias for
perfect estimates of the means and variance, the expression for 8

(2-3) is rearranged to yield

- ;2L Eg{(Acsl + N)F (51 - So)) + E{(AcSo + N (s, - so)}] + f{ n K

w
!

_ T T T
= [} S Sl - A Sl S + N Sl - N Sy *+ Acsl S; - A5, So
°n2
+ N S1 - Ns + — In K
o
A
¢
o 2
=}- T T T n -
2‘%[511‘5 s:] N(Sl'so)"Tcan « (2-4)

which agrees with (2-2). Since the estimations are not perfect, the

adaptive detector 1s actually a suboptimum receiver.

2
o
The ratio -2— 1in equation (2-4) is shown in Appendix I to be
A
¢
estimated by
5 2 variance of (A Sg + N (S -8 )
=~ = (2-5)

{Aslnv (sl-s}-n{(Acs +N) 31-30}

The method of estimation of the means and of the variance are discussed
in Chapters III and IV, respectively. The above analysis shows that the

adaptive detector derives an estimate of the optimum location of the
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threshold when the channel gain and mean or variance of the noise are
unknown. The value of the decision boundary K must be known for this
situation.

For the special case of K = 1, the adaptive detector can also be
used to increase the reliability of the receiver by making it possible
to relocate the threshold in the event of a degradation in one of the
matched filters in an optimum detector. The degradation would cause the
optimum dztector to be operating with the threshold at a nonoptimum

location. The equation implemented by the degraded optimum detector is
_ ul
u=W (51 +€ - so) -b

where € 1s the change in one of the matched filters. The threshold of
the degraded optimum detector differs from the optimum location by an

amount, 4, given by
d=Wes=(AS; +Ne ; 1=0,1 (2-6)

In order to restore the threshold to the optimum location, it is
necessary to determine ¢ and subtract it from the term (Sl + € - So)‘
The adaptive system can be used to improve this situation when it is
not practical or possible to determine € and to make the necessary
adjustments. This specific adaptive system is limited to situations

of K=1 for degradations in the matched filters because the estima-
tion techniques used.here do not give an accurate estimate of the

variance when the input is degraded. Other estimation methods may
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permit this system to be used for K f 1, but they have not been
investigated here.

The followiug analysis is included to show that the adaptive

detector Jocates its threshold at

B=b+E<d>

for perfect estimations of the means.  For calculation of B according

to (2-3), with K =1, the input is
X = WT(Sl + € - So)

and the estimates of the means are given by

s

a8 + Np=((a 8, + N)T (5 + € - 8))

AcslTsl - AcSlTSo + W (sl - so) + (AcSl + ﬁ)Te (2-7a)

E{x|W

AS, + N) = {8, + B (8, + € - 5,))

AS OTSl - AcsoTso + FF (sl - so) + (Acso + 2ﬁ)Te (2-70)

The threshold according to (2-3) is

0 ‘13- AC(SIT SI i SOT So) ¥ ﬁ'r(sl - SO) + % EAcsl + Acso + QﬁJTe

(2-8)

This differs from the optimum threshold given by (2-2) for K =1 by
the amount of the last term which is shown to be the expected value of

d, the distance to the optimum location of the threshold. For equally



13

probable signals, K = 1, the expected value of d 1is obtained from

(2-6) to yleld
B{a) -1 [E{(Acsl + 0} + B{A s, + N)Tc-:}] =L [a8) + AS, + o] e

This corresponds to the last term of equation (2-8).

The degraded optimum detector implements
T
u=W (Sl - So) -b+d

The adaptive ¢utector, with perfect estimation, implements

u=wT(sl-so) -b+d-E@>

Since 4 - E(é} is less than d on the average, the adaptive detector
is closer to the optimum location of the threshold than the‘degraded
optimum detector. This results in a suboptimum detector but would offer
improvement for sufficiently large values of 4 over the continued use
of the degraded optimum detector.

The input to the adaptive detectbr Las been called X, which
represents a matrix. In practice, the input is the sampled output of
the subtracter at the end of a bit time. The input to the adaptive
detector is, therefore a sequence of values, x5 each value represents
the processing of a single bit by the matched filters. Bit synchroni-
zation is assumed for this study.

For proper operation of the adaptive detector, it it necessary

tc perform separate estimates of the mean of x when a binary O has
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been transmitted and of the mean of x when a binary 1 has been
transmitted. For this to be accomplished, 1t is necessary to know
whether the transmitted signal was intended to be & binary O or binary 1
in order to know which estimator to update.

This system operates on digital communication systems in which
the data are transmitted in serial fashion over a single channel. 1In
a system of this type a known sequence of bits, called the frame
synchronization ccde, is normally inserted into the sequence of data
bits in order to synchronize the decoder located at the receiver with
the encoder located at the transmitter. After synchronization has been
obtained, the proposed system uses the fact that during transmission of
the frame synchronization code, the correct decision is known. The
system knows from the synchronization code if the received signal was
intended to be a bilnary O or a binary 1 and updates the appropriate
estimator. This is a form of Abramson's "Learning With Teacher"

(Ref. 2) where the frame synchronization code is the teacher.

Since the "Learning With Teacher" scheme cannot be used during
the transmission of actual data, the system may either cease its
estimation until the appearance of the next synchronization code or
may use some form of "Learning Without Teacher." The operation of the
system before the synchronization code has been located also requires
the use of "Learning Without Teacher"” since the correct decision is not
known. The proposed.system uses a Decision Directed Measurement (DDM)
technique similar to that discussed in Reference 3%, page 13. In DDM,

a decision is made with all available information and assumed to be

i Reniledmabbbaie i
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correct. The decision determines which estimator is to be updated.
Incorrect decisions are possible in DDM and cause the system to converge
slower than a "Learning With Teacher" system. There are other tech-
niques of "Learning Without Teacher,"” but the DDM technique appears to
offer the best combination of convergence rate and implementation
simplicity as shown by Lindenlaub and Mix (Ref. 3, pp. 13-37).

The DDM technique operates in such a manaer that the expected
value of the estimate of the mean when a binary 1 i1s transmitted moves
to0 the mean of all signals above the threshold. This estimate of the
mean is not unbiased when a binary 1 is transmitted because some of the
signals above the threshold are due to the transmissior of a binary O
and some of the signals due to the transmission of a binsry 1 fe'1l
below the threshold. Therefore, it is necessary to use the DDM
technique only to move the threshold so that enough correct decisions
can be made to enable the frame synchronization code to be located. The
DDM scheme should not be used after the frame synchronization code is
located. The "Learning With Teacher" scheme is required to give an
unbiased estimate of the conditional means.

The analysis of the estimation techniques can be performed
without knowing if the inputs are coming from the "Learning With
Teacher" scheme or from the DDM scheme. The estimators are only
required to perform computations on the data glven to them. The
"Learning With Toachér“ or DDM technique performs the function of
deciding which estimator receives each individual input sample. The

convergence and accuracy of the estimations are derived as functions
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of the input data, and this analysis applies for both the "Learning
With Teacher" and DDM cases.

Three specific problems associated with this aduptive detector
are analyzed and are discussed here. These three are:

1. Estimation of the Mean

2. Estimation of the Variance

3. Operation of the system when controlled by the Decision

Directed Measurement technique.
Both the estimation of the mean and the estimation of variance are
performed by recursive equations. The estimate of the mean is
accomplished bty use of exponential smoothing (Chapter III). A technique
similar to the exponential smoothing method is used for the estimate
of the variance (Chapter IV). Computer simulation is used to study the
operation of the Decision Directed Measurement technique and the
estimation methods (Chapter VI).

Figure 2 shows a block diagram of the system discussed here. The
input to this system 1s a sequence of random values; each value
represents WT(Sl - So) for a single bit. The threshold decision
element examines each random value. If the random value is above the
threshold, the output is the decision that the bit is a binary 1. If
the value 1s below the threshold, the output is a binary O. The
threshold computer determines an estimated value of the threshold by
calculating the termé in (2-3) from the two estimates of the means and
from the estimate of the varlance. The resulting value of the threshold

is furnished to the threshold decision element. This is equivalent to
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estimating the bias, b (2-2). The estimators use the input data to
make estimates of three of its properties, The control block determines
which estimators are updated. The sync detector looks for the frame
synchronization code in the output of the threshold decision element.

If the sync detector has properly located the frame synchronization
code, the control block is directed to use the frame synchronization
code to determine which set of estimators to update. If the sync
detector has not located the frame synchronization code, the control
block is directed to use the decisions of the threshold decision element
to determine which set of estimators to update. This latter case 1s
called Decision Directed Measurement.

The properties of interest in this investigation are accuracy,
speed of response to step changes in the input, complexity of equipment
required to implement the system, and required calculation time.
Techniques have been selected which appear to require simple implementa-
tion and which have potentially low calculation times. TIn this investi-
gation, the accuracy and speed of response are found to be varlables

which must be traded off against each other.



CHAPTER III
ESTIMATION OF THE MEAN

Description of the Method

One of the tasks which the adaptive detector must perform is the
estimation of the mean of the received signals representing a binary O
and representing a binary 1. These signals are (ACSO + N)T (Sl - So)
and (AcSl + N)T (Sl - So), respectively. For this reason, there are
two estimators of the mean in the adaptive detector; logic circuits
determine which of the two is updated. The estimators are identical,
hence, an analysis of one can be extended to the other. The input to
the estimator 1s a sequence of values which represents the received
data. This sequence of values consists c¢f the differences of the out-
puts of the two matched filters at the ends of transmissions of
successive bits. As previously mentioned, the technique for estimation
should be simple, accurate, and capable of reacting quickly to abrupt
changes in the characteristics of the input.

The technique selected for estimatlion of the mean is exponential
smoothing which was introduced and analyzed by Brown (Ref. 4). He uses
the folloﬁing equation for the estimation of the mean with a written

for (1 - A):

Bpo= AR o+ (1-Ax; k=1,23 (3-1)

where

19
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kth estimate of the mean

[t}

k
X, kth data sample
A = recursive constant; 0 < A< 1.0
The input to the estimatlion equation is a series of values, X4y which
are considered to be samples of a random function. The task of the

estimator is to estimate the mean, E{%}, of the random function, where

the mean is defined by

E{x} =Ji: xp(x) dx

where p(x) is the probability density of x. Requirements for use of

the above definition of the mean are given on page 64 of Reference 8.
The estimation begins with an initial guess, io, of the mean of

X. This value is used in conjunction with the first data pdint, X1,

to compute the next estimate, ﬁl, of the mean. This process is

continued as each succeeding input sample is applied to the estimation

equation. Calculations are simple and quickly made because only two

multiplications and one addition are required. Storage 1s needed only

A

for xk_l.

Analysis of the Method
Since the input, x4, to the estimator is a random variable, the
estimated mean also is a random variable. The mean and variance of the
estimated mean are uéed to determine the accuracy of the estimation.
For proper operation of the estimator, the mean of ﬁk should be

asymptotically unbiased (Ref. 8, p. 463), that is, the mean of ik
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should approach the actual mean of the input as the number of samples
handled approaches infinity. The variance of ﬁk is an indication of
the error of the estimate and should be as small as possible. Unfortu-
nately, small variance of the estimated mean is achieved at the expense
of reaction time to abrupt changes in the mean of the input as will be
shown in Figure 3.

The mean of ik is derived as a function of k 1in order to

show that the estimation is asymptotically unbiased. For a stationary

input, Appendix II shows that the mean of ﬁk is
2R, ) - A2 wa(l-n) (1424 oo 4 akel)

where a 1is the mean of the input data, x;. Since ,Al < 1.6,

1im A¥ % =0

k o °

and

Um L+ A+ A% 4 e w A5 o1

k 2w

Therefore,

1im E{£k> =a (3-2)

koo

This demonstrates that the estimation of the mean by the exponential
smoothing method is asymptotically unbiased. For nonstationary inputs,

the analysis of the estimation technique still applies 1f the input

changes very slowly with respect to the response time of the estimation.

i R R i 0
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P AL M 00 A A ARt o
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The variance of ik is also derived in Appendix II and is found

to be

k-1
\ i
variance of ik = (1 - A)2 0@ > (Az)

i=o

where 02 is the variance of the input, x The limiting value of the

.
variance is found to be
R 1-4
lim variance of R = (1 - A)2 o —1 = ( ) i (3-3)
K - 1-42 \l1+A

Some observations can be made at this point. Since the estima-
tion equation is linear, the estimate of the mean is Gaussian if the
input data are Gaussian (Ref. 9). The estimation technique is not
limited to input data with a Gaussian distribution and should be able
to operate on any distribution for which the mean exists. However, the
probability density of ﬁk would be very difficult to calculate for
distributions other than Gaussian. The Cauchy distribution is an
example of a distribution which could not be used here since none of
its moments exist (Ref. 8, p. 157). 1If the characteristics of the data
are not time-varying and if the estimation began with an initial
estimate ﬁo, the actual variance of ik is always less than the
asymptotic value. This can be seen from the fact that only positive
terms are added to the variance as k increases. The limiting value
of the variance of ﬁk can be made as small as desired by making A
closer to 1.0. Since the variance of the estimate is an indication of

the error, the estimator can be made as accurate as desired.
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In order to determine the speed of response to a step input, it

is necessary to determine the transfer function of the estimation
technique. The transfer function is determined in Appendix II and is

found to be

B(z) - SR

The time constant associated with this transfer function is

-7
t = ——
C inA

The time constant also can be expressed as the number of samples

n = =%
8 naA

This value, ng, is positive since 0 <A<1.0 which meansvthat the
logarithm of A 1is negative. It has been shown 1in Equation (3-3) that
A should be as near 1.0 as possible in order to reduce the variance
of the estimate. However, A should be near 2ero in order to reduce
the time required to respond to a change in the input characteristics.
A potential user of this system is required to make a tradeoff study
in order to determine the optimum value of A for his particular
application. The variance of ik and the time constant, n,, are
plotted in Figure 3 to aid the user in his selection of A.

An example which i1llustrates one procedure for selecting A
follows: Due to the application of an adaptive system, it is required

that the estimate of the mean be able to react in not more than 100
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samples to a step change in the mean of the data coming into the
estimator. The accuracy of the estimator should remain as high as
possible. After five time constants, the mean of the estimated mean has
moved to within 99 per ceni of the final value. This means that the
estimator should have a time constant of 20 samples. Choosing A = 0.95
gives a time constant of 19.5. For this choice of A, the asymptotic
variance of the estimated mean is 0.0256 times the variance of the
input data.

Two other techniques which were considered for estimation of the
mean are a sliding window and a running calculation of the sample mean
of all previous samples. The running calculation of the sample mean
is a calculation of the sample mean using all previous samples. It is
not practical since it must take into account the number ofbprevious
samples, which could possibly exceed the capacity of the computer used
for the computailon during long periods of operation. It is also slow
to react to changes in the data characteristics if the number of
previous samples is rery large. The sliding window method uses & fixed
number of samples and computes their sample mean. The variance of the
sample mean is 2; (Ref. 11, p. 2u46) where @ 1s the variance of the
input and n 1is the number of samples in the window. Tn order to
have the same variance of estimated mean for exponential smoothing,
Equation (3-3), and'a sliding window,

e . (L:.A) o2
n 1+A



and

From consideration of the general range of accuracy and speed require-

ments, i will probably be
0.9<AK]1.0

The following table shows the value of n required as a function of A
in order to enable the sliding window system to have a variance equal

to that of the recursive system:

A ng n
0.9 9.491 19
.95 19.497 39
.99 99.502 199
. 999 1000 1999

The table also shows the corresponding time constant, ng, of the
recursive equation. All effects of the previous characteristics of
the input disappear from the sliding window technique when n samples
have been processed after the step change; meanwhile the exponential
smoothing technique has undergone approximately two time constants.
If the initial estimate for both estimators is zero and the final
estimate is 1.0, the expected value of the recursive estimate moves as
(l - e-t/tc). The expected value of the sample mean of the sliding
window moves linearily between zero and 1.0. For the recursive
estimator, the integral of the difference between the final value and

the actual value is



o7

ERROR =L/;m (: _(a- e'tltéﬂ dt
k/“m (e’tltc) dt

(o}

=tc

The same calculation for the sample mean of a sliding window is

2t
¢ t
ERROR =J[ - —| dt
[e] Etc
» |2t

=t-rt ¢
tC

o
=2t - t,
= t,

This shows that the integral of the difference between the final value
and the actual expected value of the mean is the same for the recursive
estimator and the sample mean of a sliding window. However, the amount
of equipment required for implementation of a sliding window technique
due to the requirement of storing and labeling hundreds or thousands of
previous samples removed the sliding window technique from further
consideration in this application.
For updating fhe estimators during the frame synchronization

code, it may be practical to use the sample mean of the synchronization

code block as the estimator. However, this is not advantageous vwhen
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operating in the DDM mode because if blocks of n samples are used in
this mode to calculate the sample mean, the system must use the old
estimate for n samples while walting for a new estimaie. This results
in additional error as will be shown below, The recursive estimator

with variance equal to that of the sample mean has moved two time

constants closer to the new location than the sample mean during the n
samples. The expected value of the sample mean of a block of n
samples remains at zero for a time equal to 2t, and then jumps to 1.0.
The integral of the difference for the sample mean of a block of n

samples is

2t, .
ERROR =Jf (L -0)adt
o

= 2tc

This shows that the use of blocks of n samples ylelds more error than
use of either a recursive estimator or a sliding window. The same
results are obtained for any location of the step change with respect
to the location of the block of n samples. The recursive estimator
has an additional advantage over the calculation of the sample mean
since the accuracy of the recursive estimator can be changed by simply
changing a single constant. A change in ithe number of samples used is

required to change the accuracy of the sample mean.




CHAPTER IV
ESTIMATION OF THE VARIAWCE

A technique similar to the estimation of the mean is used for +he

estimation of the variance. The equation used is

52 =85 2+ L=Bl(x -3 (k-1)

k c

where
is the kth estimate of the wvariance

is the kth estimate of the mean

=

Xy is the kth data sample
B is a constant and B < 1.0

C is a constant

This equation uses an initial estimate of the variance, 802, plus the
received data sample and the present estimate of the mean in order to
make a new estimate of the variance. The constant C will be
determined later and is required to make this technique converge to
the proper value, that is, to remove the bias of this estimate.

If ﬁk is replaced by its equivalent given by (3-1), a more

usable form of (4-1) is obtained for 8k2:

1}
&
n
+
s
N
—
E

k-1 e [ ﬁk-ﬂe (4-2)

29
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This equation for 8k2 leads to faster calculation than the preceding
one since it employs ik-l instead of ﬁk. This calculation can be
performed in parallel with the kth estimate of the mean instead of
having to wait until ﬁk is calculated.

As was done in the case of the estimate of the mean, the mean
and variance of the estimate of the variance are determined. The
constant, C, will be selected to force the mean of the estimate of the
variance to converge to the actual variance of the data being sampled.
The variance of the estimate serves as an indication of the average
error of the estimate.

The mean of the estimated variance is calculated for several
values of k. Enough terms are used in order to recognize the series

being generated. The general expression is then written, and the

limiting value is determined. Thus,

bl

5.2 = 3802 + Agil6=—§l [?l - ié]e

and

1]

58,%)

"2 Ael—B 2 A A2
Boo + c E{gl - 2x1x0 + xo:}

A2 Ae(l - B) 2 A A2
Boo + S E<%l } - 2x0E xi>-+ X,
~ 2 N A
= B002 + L%'—B)- a2 + 02 - 2axo + xoaj

_53 24 RU=B[2 ) (a - 2,)7]
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The same techniques are used to calculate E@;}, which gives

5,2 = 83,2 + & gl - B) [x, - 1:] [ 2, AE(IC- B) (x - io)fi]
"M [o - A%, - (- A)xl]
o 2a 2 A2B(1-B) 2 A ~ 2 A2(1-B) 2
_Bco +_T-xl—2xlxo+xo +——C——-— x2
+ (1 - A)2x12 - 2Ax23‘c -2(1 - A)x X, + 2A(1 - A)L_Lx]
and

BB, ) - 32802 A0 -B) T E’@f) - REE ﬁj]
D[R 2 0 0T - 2556
- 2(1 - A)Eé{lxz} + 2A(1 - A)n“coE{xl}]

The data samples are considered to be independent so that

E{xix J> = Eé@ E{xJ> for 1 # J

This yields

A2\ 2.2 A®B(1-B)T[.2 A 27 A1 -B)| 2

E02>-Boo+—-T—Ei +c12-23x°+xoj+—c———a
+c'12+1\25202+(l-‘l\.)z(a:;"+02)-2Am'20-2(1-A)a2

+ 2A(1 - A)a.?cJ
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2
2n 2 A -
=Boo +_(_].‘.C_§l[(1+3)02+(1-1;)262

+ (A2 + B) (a - 5&0)2]

If these same techniques are used, the mean value of @ and 3,4

3

2

can be determined:

E<852>= 895 2 + A_gi_l_C-_B). [(1 +B+8)df + (1+ A%+ B)1 - 43P
+ (2% + 2%+ P)(a - ﬁo)%]

E Gu2>=Bu802 + “ﬁ%l [(l +B+ B+ B3)u2 + [(l + A2 4 aY)
+ B(L + A%) + 82 ] (1 - 8)26% + (a6 + als

+ APB B3) ( - )'Eo)z:J

From these four mean values it 1s possible to recognize the general term

of this series as

k-1 k-1
A2\ _pka 2  A%(1 - B) |2 1 s \2 21 k-1-1
E@k} B6 " + = o B+(a—xo) A“'B
i=0 1=C
k-2 K-2-J
+ (1 -8)2° ? Bd Z ae1 (4-3)
3o j=o

The next problem is to find the value of E{G}f} as k approaches

infinity. Since |B| 1s less than 1.0,
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1m B2 =0
(o]
K->

and

koo

-1
es 1 1
lim Bt = &2
i = [l-B]
i=0

The limiting value of the next term in (4-3) 1s found from

k-1

(2 - %)° Z aPtgk-1-1 (e - 520)2 Eak‘l + AZE2 , pligk-3
e . s A2k-2]

It is known that

0<AK<1
0<BK1
Let
A<C,<1
B<C,<1
If C, 1is substituted for A and B 1in the above series, the

resulting series is greater term by term than the original serles
involving A and B. If the limiting value of the series of C» 1s
shown to approach zero, the limiting value of the series of A and B
must also approach zéro. Thus,

k-1 k-1
2 ¢,21 ¢ k-1t o g k-1 Z c,t

i=0 =0




3k

This is a truncated geometric series whose partial sum, s, (Ref. 13),

is
k k-1 2k-1
l1-¢C C -C
2 2
Sk=Ck'1 2 =
1-¢, 1-¢p
Since Cp < 1,
lim sk=0
k 2w
Therefore,
k-l
lin (a - 20)2 Z A2igk-1-1 _ o
k > o i=
The last term in (4-3) is
k-2 k-2-
(1-A)2022 B/ Z P IR RV L | (P P A
J=o 1=0
NG ) IS (T

+ Azk'6) + 32(1 + A2 4 Au + oo

+ AZE-B) i B34 9) 4 22 ]

The limiting value 1s

k - .

k-2 k-2-]
1im (1-A)2022G3 z A2l] = (1 - A)%° (1+A2+A“

J=0 i=0

RO TCUPE S
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_ (1 - a)3P
(1 -49)1 - B)

__(a-a)d
(L +A)(1 - B)

These expressions are inserted into the equation for E<§k?>

in order to find the limit as k approaches infinity. Thus,

ln B(%,7) = 20 -8 2, _(-ad

K > ¢ 1-38 (1+4a)12-3)
=.}.\2;.2E+1;A]=£ %2]
c 1+ A cl1+aA ‘

In order for this limit to converge to the actual variance, 02,
of the function being sampled, we must have

2A2

"1+ A

(@]
|

The value of C obtained sabove is inserted into the estimation

equation (4-2) to give

E;1(2 - B3 2 + (l - B)él + A) [xk _ ik-ﬂg (h-h)



CHAPTER V
DERIVATION OF THE VARIANCE OF THE ESTIMATED VARIANCE

The varlance of *he estima*ed variance is also of interest since
it glves an indication of the error of the estimate., Due to the
complexity of the procedure of calculating the variance of the estimated
variance for the general case, the derivation 18 performed here only for
input data consisting of samples taken from a Gaussian distribution with
mean of "a" and variance of "¢°". However, the te~hnique of estimation
described in Chapter IV is not limited to this case; it applies to any
probability distribution whose mean and variance exist. If the moments
of a variable are expressed in terms of the mean and variance of the
variable, it is found that moments of order greater than two are
dependent on the probability distribution of the variable, The
variance of the estimated variance is a function of the probabllity
distribution since it involves moments of order greater than two. The
moments of a Gaussian variable are shown in Appendix VII.

Since the equation used for estimation of the mean is a linear
equation, the estimated mean has a Gaussian distribution if the data
have a Gaussian distribution. The term, (xk - ﬁk-l)’ is the difference
of two terms, each of which has a Gaussian probability distribution.

The probability of the difference is also Gaussian. The square of this

difference has a chi-square distribution with one degree of freedom

(Ref. 11, pp. 250-253).
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In order to investigate the probability distribution of the

estimated variance it is necessary to examine several estimation steps

using

A2 o~ 2. (1-B)(1+A Y
O =By, + %( : )["k'xk-l:l

The initial guess, 302, has a delta function for a probability distribu-
tion since it can have only one value. The distribution of 312 is the
weighted convolution of a delte function and a chi-square distribution

with its origin shif“ed. The equation for o 2 is a welighted sum of

2
~ 2 a2 3 ~
oy and (x2 - xl) . Because of the estimation technique x1 is not
independent of 312 and 1s fixed exactly when 312 is determined.

However, X, is independent of either 312 or il. The distribution of

322 is a weighted convolution of the chl-square distribution represent-
A2 A 2A2
ing 9 and the distribution p[};a - xl) 'dli]’ which i3 a chi-square

dist:ibution with its meen a function of G e The probability distri-

-
bution of any estimate of the variance by this recursive equation is a
welghted convolution of the distribution of the previous estimate and

a chi-square distribution whose mean is de*ermined by the previous
estimate of the variance. The probability distribution of the estimate
of the variance is not determined since it is not practical to make a
detalled cslculation. Although the distribution of the estimate of the

variance is not derived, its variance serves as a indication of the

error of the estimate. The error decreases as the variance decreases.
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Using the delinition of variance, the variance of 9.2 is

k
A 2 A ‘l‘: ~ 2
variance of ok = E{Gk} - E2 {ck}

-

E{[;g NS RN 1]}

- E2 Bak-la + Q- B%(l + A) (xk _ ik-l)e}

- E @k_l"} + B(1 - B)(1 + A) E{ka - :‘ck_l)z’c}k_le}
e s B)i(l + ) E{‘k - ’A‘k-l)l} - BF {?’k-le}
- B(1 - B)(1 +A) E {:k_l} E{(x, - xk_l)}

-
- B)°(2 2 A \2
-4 B)h( * AL g (% - "x-l)}

MECS R

+ B(1 - B)(1 + A) [E «xn - gk-l)e Gk'j

2 na)
CER WY\ H(xk - xk-l)l} ' Ez{(*k - *x-l)?}J
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2 A 2)
= B (va.riance of ok-l

+ B(1 - B)(1 +A) E: {xkz’c?rk_l2 - 2xkik_l’ak_12

* ”\‘1(-12?’1{-12} - E{("k - ?‘k-l)e} E {&k-le}J

+ (1 - 3)2(1 + A)2

T Erariance of (x - ?ck_l)ﬂ

2 ~ 2
= B variance of Uk-l )

+

(1 - 3)2(1 + A)2
n

Erariance of (% - S‘ck_l)ﬂ

+

B(1 - B)(1 + A) [(a‘? + od) Eék_lz}
2a Eéck_lak_l§+ E{ik_l‘?’&k_]g}
(ESES]

This last step can be made since ok l and xk_ are independent of

X.k.

Let k=mn where n 1s large enough so that all terms in the
equation for (va.riance of '&ka) exce) t |[variance of Gk-lz) nave
become infinitesimaliy close to their limiting values. The convergence
of each of these terms is shown in the appendices by the derivation of

their limiting values. Ir Appendix III these are
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4
-~ 2 80'
1lim variance - = — (5-2)
k > (xk xk'l) (1 + 1)
and
A \2 202
i E {("k - xk-l/} =T+& (5-3)
Appendix IV shows that
A A 2 2
lim E o = ag (5-4)
e {xk-l k-l}

Appendix V shows that

A 2n 2 22 |1-A 1-A)21-B) L
klimmE{xk'l ok'l}zao +[1+A+E1+A)(§-A2B)]U o2

By the choice of C in Equation (4-2) we have insured that
lim E {ak_f} s (5-6)
k oo

Substitution of Equations (5-2) - (5-6) into Equation (5-1) ylelds

2y, (1-8%0+n2]| 8"
I

-1 (1 + A)2

2
n

variance of & 2 = B (variance of Gn

+ B(1 - B)(1 +A) (a2 + 02) 02 - 2a (aoe) + a202

1-A 1-A)21—~B) h 20° 2
+<1+A*21+A)(i_A2B))° '(1+A>° (5-7)

= B2 (variance of 3n_12) +2(1 - B)20h
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+ B(1 - B)(1 + A)Eeo2 + oh - 2a%6° + a202

1-4A ltﬂ__(l-A)e(l-B) h_eol‘]
“( )o (1+A)(1-AQB)C 1+A

= B2 (variance of Gn-12> +2(1 - B)eoh

+ B(1 - B)(L + &) E“+G;_ﬁ)ch

+(1-1\)241 -B) M4 201*]
(1 + a)(1 - %) 1+4

= E2 (variance of an-le) +2(1 - B)2ch

4 2
+ B(1 - B)(1 +A)[12° +1-4°Q-58) &

*A a1 - A%B)
2ck:J
"I +A

= 32 (variance of Gn—12)+ 2(1 - B)2c4

2 2
4 B(1-B)(1-4) b (5-8)

1l- A2B

The method of determining the 1limiting value of variance of an is to
insert some constant, M, for (variance of Gn-le)' Several terms are

determined in order to recognize the series being generated. Thus,



L2

A 2
variance of ¢ "= M
n-1

2
variance of 3 2 B2M+(1-B)2 B—(i—'i+2] oh

n 1 - A°B
A~ 2 - 2 [B(1 - a)? 4
variance of © =B M+(l+Ba)(1-B) _LT"'E o
n+l 1 - A°B

2

2
variance of & ..o = B6 M+ (1 + B 4+ B)’L)(l - 3)2 B(1 - A) + 2 0’*
n+2 ——1 225

The general term is

J
2
variance of §_. .2 = 2(3+1) M+ (1- B)2 Eg-l;‘e\-)— +;] oh Z gt

n+j

l1-AB ) im0
The limiting value is
lim (varia,nce of © _2) =M 1lim B2(J+l)
J o g j o
2
+(1- 32 |BL-A" ‘g) +3é‘ lim i gl
i1 -AB J oo i
Since
J
lim z Bai = 1 5 for IBI<1.0
J == 40 l1-8

1n 2O Lo gor [B| <10

J o

2
lim (va.riance of '&mja) =(1- B)2 M +2] (——1—-?) oh

jow 1 - AB 1-B
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A 2
i i f =
Jl_?g (var ance o ck?) Jli?; (variance of °n+J )
) (1 - B) (B(l - )2, 2) b (5-9)
1+ B 1. A2B

No attempt is made to apply the standard mathematical tests for
convergence due to the complexity of the series. The method of
derivation used above shows the convergence of the series since the
starting point has no effect on the limiting value of the sequence and
the limiting value is determined.

A calculation which adds to the credibility of this derivation
is that of the estimation of the variance when the mean is known
exactly. For this case A 1is equal to 1.0 and the equation for the

variance of the estimated variance reduces to

1im (variance of & 2) - (l_'_li) 26" for A = 1.0 (5-10)
P 3 T+8

This can be checked by actually calculating the mean and variance of the

estimated variance with the mean known exactly. Thus,

2 2

82 = B8 2+ (1 - B) (x - 8) (5-11)

and
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The general term is

k-1
E{%k"‘} 8% 2. (1 - B)02 Z g
(o]
J=0
Since B << 1.0
1m 86 2 -0 for |B] <1.0
k 5o °
and
k-1
3 1
1im B® = ;=5 for [B|<1.0
k 5o -
J=0
Then,

(1 - 3)02 (1 % B): o>

n

lim E {'&ka}
k 2w

The variance of the estimation is determined by

variance of 302 =0

"2 ~ N a2
varlance of Gl = E &Jl} - E2 {ol}

The variances for several values of k are

variance of 312 -(1-38)° 20"
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variance of 322 =21+ )1 - B)2ch

variance of 852 = 2(1 + B+ Bu) (1 - B)eah
The general term 1s
k-1
variance of Ska =2(1 - B)acl+ }: 529
J=

The 1limiting value is

lim variance of 8.2 = 2(1 - B)2oH[ 2 ). 2(1-B) M
k -
koo 1-8

This equation checks with that obtained by letting A = 1.0 1in the
general equation (5-9).

As was found in the estimation of the mean, the limiting value
of the variance of the estimate can be made as small as desired by
making the estimation constant, B, closer to 1.0. Since the estimation
of the mean is used in the est  tion of the variance, the constant A
also has an effect on the limiting value of the variance of the
estimated variance. Agein, A should be near 1.0 in order to make the

variance of the estinate small.



CHAPTER VI
DECISION-DIRECTED-MEASUREMENT ESTIMATION TECHNIQUE

Description of the Method

The three previous sections of this dissertation presenter. an
analysis of the estimation of the mean and of the estimation of the
variance. The proper operation of these estimators requires that the
correct answer of the decision be known so that the proper estimator
can be updated. When the system is first operated in a given situation,
the location of the frame synchronization code is not known. The system
is required to move the threshold until enough correct decisions can be
made in order to locate the frame synchronization code. A form of
"Dec? sion-Directed-Measurement" similar to that described by Lindenlaub
and Mix (Ref. 3, p. 13) is used to control the system during the search
for the frame synchronization code. This scheme is examined, in the
pages which follow, only for the cases requiring estimates of the mean,
that is, for equally probable signals. It can be employed for cases
requiring estimation of the variance, but an analysis of this situation
is not included here.

The Decision-Directed-Measurement (DDM) 1s used as outlined by
the following sequence: (1) An initial guess is made of the wean, ?0,
of the received signal when a binary O is transmitted and of the mean,
io’ of the received éignal when a binary 1 is transmitted. (2) A first
selection, Bo’ for the threshold 12 mads according to

x+yo

[s]
Bo = —3— (6-1)

L6
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This i1s used as the threshold in order to decide whether the first
sample, Xqys is a binary O or 1. If Xy
?O is updated using the exponential smoothing equation,

is judged to be a binary O,

?l = A§o + (1 - A)x) (6-2)
and the revised estimate of the threshold, Bl’ is
+
By = —5— (6-3)

If, howaver, Xy is Judged to be a binary 1, io is update¢ by use of

o)

X o= AX 4+ 1 - A)x) (6-4)

and the revised estimate of the threshold is

ot H

+
Bl = =5 (6-5)

As more and more samples are processed, the estimated threshold moves
toward the optimum location, which 1s the intersection of p(xlo) and
p(xll),'and eventually gets close enough to allow so many correct
decisions that the frame synchronization code may be located. When the

code is located, the "Learning With Teacher" scheme is employed.

Analysis, Mathematical
Some questions which should be answered are:
1. Does the estimated threshold, in fact, move toward the
optimum location?

2. What factors affect the convergence rate of +he threshold?
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3. What is optimum point for initial guess of the threshold
location?
To answer these gquestions, it is helpful to examine some probability
distributions. Figure 4 shows the probability density of the received

signal, the initial guesses of io and §°, the corresponding Bo and

the actual means, AO and Al’ given by
/\oo
A ='J-w xip(xi|o) dx, (6-6)
and
]
A =L/im xip(xitl) dx, (6-7)

Since any X, 2 B, 1s Judged to be a binary 1, and any x; <B_  1is

Judged to be a binary , the cnonditional probabilities are

2 o) s(mj) |, o) 2(s)Y

f: p(x1l°) ¥ ]; p(x|3) o

o}

p(xy%y 2 Bo) = (% - B) (6-8)

and

p(o) p(xllo) p(1) P(xlll)
B +/“Bo
J2rmg e e @

where ul(z) is a unit step (ul 1 for z>o0 and w =o0 for

p(%y % < Bo) w (B, - :Ll)(6-9)

z < o).

Figure 5 is a plot of p(xllxl 2 Bo) and p(xllxl < Bo).
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p(x]o) p(x|1)
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—1h——

Figure 4,- Operation with initial estimates.
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Figure 5.~ Probability density of first sample after decision.
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For 21 given by (6-4), the celculation of its probability
density requires the conditional probability for x; given by (6-8).
Since io and x, are independent, the probability density of ﬁl
given that X > Bo is a weighted convolution of p(io) and
p(xl) = p(xllx1 2 Bo), (Ref. 11, p. 189). Similar techniques are used
to determine p(?l) with the condition of x, < B _. The shapes of
p(’il,x1 2 Bo) and p(?l'xl < Bo) are shovn in Figure 6. The new
threshold is

Ax + (1 -A)x +7
=2 5 17 % for x, 2B, (6-10)

X Ay ¢+ (1 - A)
2

for x < Bo (6-11)

This includes the possibility that io is not updated if the signal is
decided to be a binary O and that 90 is not updated if the signal is
decided to be a binary 1. The probability demnsity of Bl is obtained
by a weighted convolution of p(io), p(xl), and p(?b) with appropriate
use of the probability that x 2 Bo and the probability that X, < Bo'
The process is repeated when the second sample, oY) is received with the
added complication that Bl has a probability density. If both x

and x, are decided to be binary O's, the calculation of B, will

1
It can be seen that e mathematical analysis of this problem in

still use io as the estimate of A,.

-losed form is virtually impossible since it involves repeated
convolutions of truncated probability distributions. No general

analysis of a DDM system has been located in the literature. With the



PGy lx < 8) p(x)|x > 8)

A9, + Q- A)Bo: AR, + (1 - AA

1
A
I Ax, + (1 = MA,
i
AR, + (1 - A)A,

Figure 6.~ Probability density of estimated means after processing
of first sample.
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exception of a "hang-up" for the case of no noise, there have been no
cases postulated or discovered experimentally in this investigation or
in the literature for binary signals for which the DIM system does not
converge. The possibility of the "hang-up" is discussed and eiiminated
later in this report. The DDM system is designed so that the estimate
of the mean of the binary 1 moves to the mean of all signals above the
threshold and the estimate of the mean of the binary O moves to the mean
of all signals below the threshold. The threshold divides the range of
received signals into two portions so that the average of the estimates

of the two means is equal to the boundary between the portions.

Computer Analysis

A general purpose digital computer i1s found to be useful for the
investigation of some of the characteristics of the system. Since it
is intended that digital techniques be used in the final hardware, the
range of inputs to the decision element is converted from analog to
digital format. Therefore, the range of lnputs 1s separated, in effect,
into 2% discrete partitions where n 1is the number of bits used in
the digital word. By meiking use of this partitioning of the input
range, it is possible to perform a numerical convolution of the
probability densities on a digital computer.

For the calculations here, the input range is divided into
64 levels (n = 6). This value is selected as providing about the
minimum resolution required and as being small enough to reduce the

required computer time. The probability densities p(o), p(1), p(x|o),



P

and p(x|l) are selected for the particular test case, calculated for
each of the 6k partitions, and inserted as inputs to the computer. The
initial estimates, &0 and ?O, are also selected and inserted as
inputs. The computer uses &0 and ?0 to set up a 64 x 64 array
representing p(io, §0). The indices of the array represent the
amplitude of the variables and the value stored in a given location
represents the probablility. The computer then uses each possibility

of input with each possibility of threshold to generate p(%l, 91)' The
process is repcated in order to determine p(ii, ?i). The average value
of the threshold (as a function of number of samples) is calculated and

is used as an indicator of the convergence of the threshold. Appendix

VI shows the computer program used with some typical numbers as inputs.

Effect of Choice of io and ?0 on Convergence Rate

The first characteristic of the system to be investigated is the
effect of the initial guesses, io and 90’ on the convergence rate.
Since B = (io + ?o)/Q, there are many choices of %o and ?O which
yleld the same Bo. For this test all of the inputs to the computer
program except &0 and ?o remain unchanged; io and ?o are varied
with the proper relationshlp so that Bo remains constant. Figure 7
shows a plot of the average value of the estimated threshold location
versus the number of samples processed as a function of io and ?O.
Several other cases have been run on the computer but have not been
shown here since the results of Figure T are typical of those in the

other cases. It can be observed in Figure 7 that the fastest convergence
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is obtained when io is as small as possible and ?o is as large as
possible. This seems strange since io is the estimate of the mean
of the received signal when a binary 1 is transmitted. However, this

has been found to be true in all of the cases which have been

investigated.
The following explanation is offered for this property. For

x, 2 B, only io 1s updated. From (6-1),

Yo = 2B, - X, (6-12)

Using this with (6-4) ylelds
x

B. = 1% Y%
1" 2

Aio + (1 - A)x1 + 230 - %
- 2

) (1 - A)gx1 - xo) ‘e, (6.13)

The change, AB, in the threshold 1is

AB

Bl - Bo

_ (1 - A)gxl - xo) (6.10)

For x, <B, only ?o is updated. From (6-1),

X =28 -% (6-15)
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Using this with (6-2) yields

B xo * 1
1° 72

2By - ¥, +AY, (1 - A)x
= 2

) (1 - A)§Xl - Yo) + Bo (6-16)

The change, 2B, in the threshold is

A3

By - By

]

1-ax -¥ )
= 0 (6-17)

If Bo is less than the optimum location of the threshold, A8 should
be as large a positive value as possible. According to (6-1L4) and
(6-17), %o and ?o should both be as small as possible. Since
Bo = (io + ?o)/2, one must be large if the other is small. Since the
received signal is decided to be a binary 1 with greater probabllity
than to be a binary 0, (6-14) is applicable more often than (6-17) and
ﬁo is selected as small as possible without regard to ?o.

Conversely, if Bo is greater than the optimum location of the
threshold, AR should be as large a negative value as possible. There-
fore, %o and ?o should be as large as possible. Since the received

signal is judged to be a binary O with higher probability, (6-17)

applies more often. Therefore, ?O has more effect and is selected as
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large as possible. This reasoning gives the same results as had been
observed from the computer runs; that is, io should be small and ?o
should be large. TFor the case of no prior knowledge of the signal
characteristics the optimum location of Bo appears to be the center
of the input range. This means that §° is the smallest possible

input value and ?o is the largest possible input value.

Effect of Other Parameters on Convergence Rate

This section contains observations of the relationship of the
convergence rate to other variables, such as:

1. Separation of the mean, Al’ of binary 1, from the mean, Ao’
of binary 0.

2. The variance of the noise; that is, the variance of p(x|o)
and p(x]1).

3. Separation of initial estimate of mean and actual mean.
A method is devised for measuring the convergence rate. Figure 7 shows
that, for optimum location of io and 90’ the movement of the average
value of the estimated threshold has the appearance of the exponential
charging of a capacitor. Although the curve for this system is not
exactly an exponential, the number of samples required to move
63.2 per cent of the distance between Bo and the actual threshold is
called a time constant and is used to compare different systems.

Figure 8 shows a plot of the time constant versus the deviation
of the noise for three different values of Ao and Al. The estimation

factor, A, the initial estimate, Bo’ of the threshold and the optimum
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location of the threshold are held constant for this test. The initial

estimates, io and ?o, are located at the points found to be optimum

(io = 1; §° = 6#) according to the discussion following equation (6-17).
It had been hoped that the convergence rate could be expressed

as a function of the estimation constant, A, and of a signal-to-noise

ratio defined as
(6-18)

where o 1s the deviation of p(x]o) and p(x|1). Figure 8 shows

that the convergence rate does not depend on A, Al, Ao, and o in

such a simple way. For example, for Al = 50, Ab = 20, o, = 6, and

A = 0.85,
with Figure 8 showing that
Time constant = 10.32 samples (6-19)
Also for, A = ko, A =30, 0 =2,
Figure 8 shows that
Time constant = 2.47 samples (6-20)

Thus, it can be seen that the convergence rate is different for two

cases which have the same signal-to-noise ratio. This investigation
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is not carried any further due to the amount of computer time required
to generate each point on the curve and due to the large number of
curves which are required to determine the effect of Ao, Al’ Bo’ and

other variables on the convergence rate.

Comparison With Learning With Teacher
The convergence rate for the Learning With Teacher scheme can be
compared to the convergence rate of the DDM technique for those cases
shown in Figure 8. TFor the case of Learning With Teacher for equally
probable signals, the threshold is computed by
%y + 9

+
By = 75— (6-21)

Since ij and ﬁk are estimated by 1 .cursive equations with the same
time constant, Bi will have undergone one time constant wheh both QJ
and ?k have undergone one time constant. It takes twicé as many
samples for both ij and ?k to undergo one time constant so that the
time constant (measured in "number of samples") of ﬁi is twice that of
either iJ or §k' For the situation shown in Figure 8, A is equal

to 0.85. The time constant for either ij or ?k is

-1
s in A

-1

= 7n (0.85)
= 6.15 samples (6-22)

The time constant of Bi, the threshold, is

2n, = 12.3 samples (6-23)
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By comparing this time constant to those in Figure 8, it can be seen
that the DDM technique converges faster than the Learning With Teacher
scheme for small separation of Ao and A1 and that the Learning With
Teacher scheme is faster for large separation of AO and Al' These
observations deal only with the situation shown in Figure 8. Curves
similar to those in Figure 8 for other situations would be necessary
in order to make a general comparison between the Learning With Teacher

method and the DDM technique.

Performance of Noiseless System
For certeln selections of io and ?o and a noiseless system
(Ref. 3, p. 37), it is possible that the estimated threshold does not
converge to the proper value. As an example, consider the following

case:

1.0 8(xi - 20).

2(41°)

p(x[1)

1.0 5(x, - 30)

with ?co =15 and 3}0 = 10. This case is illustrated in Figure 9.
Because of the convergence of the estimation technique, ik m~ves toward
the mean of the signals above the threshold. For the case in Figure 9

and for p(o) = p(1) = 0.5,

: ~ \ _ 20 + 30
lim E - =25 (6-24)
K oo Y 2
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Figure 9,~ Illustration of noiseless case.
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There can never be any received signals falling below the threshold so
that ?O is never updated. Therefore, the limiting value of the
threshold 1is

lim E{Bk} (:klim E<Yk}+ lim E {xk}J

k -

%—[y + lim E{?LK}]

k -

% [10 + 25] - 17.5 (6-25)

Therefore, the threshold has not converged to the proper value.

This possibility is eliminated if &0 and 90 are chosen as
previously discussed in this section (%o as small as possible and §O
are large as possible). This insures that §o is always above the
final location of the threshold and that io is always below the
threshold location. In order to prevent the possibility of & "hang-up"
situation occurring due to a change in signal characteristics, it is
necessary to reset io to the smallest possible value and ?O to the
largest possible value each time the location of the synchronization

code is lost.



CHAPTER VII
CALCULATION OF THE PROBABILITY OF ERROR

The probability of error can be determined for a system using
an es“imated threshold in place of the optimum threshold. For the
case of equally probable signals (K = 1) the optimum location of the

threshold in the Bayes sense 15

Rt
B 2

If it is assumed that the adaptive detector has been moved sufficiently
close to the optimum threshold by the Decision-Directed-Measurement
technique that the Learning With Teacher scheme can be used and 1f it
is assumed that the detector has processed a very large number of
samples from a stationary environment, the asymptotic probability of
error can be investigated. Since the estimates of the means are random
functions, the threshold and the probability of error are random
functions. The average probability of error can be obtained by using
the probability of error as & function of the threshold location and
the probability density of the location of the threshold.

The threshold is located by the adaptive system at

A + ~
xoo yoo

Po =2 —

As discussed in Chapter III (Estimation of the Mean), the variables iw

and ¥, both have a Gaussian probability density with

65
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variance of X_ = variance of y_ = (m) %

B(%,)= &

and

E {§“> = A

The two variables 3‘(‘,° and ?w are independent because the nolse has
been assumed to be white and Gaussian. The threshold, B, has a

Gaussian distribution with a mean of

and

variance of B = -21- (—i—:’_—%> °n2

The probability of error as a function of the threshold location is

1 * (x - 4)
prob. of error (B,) = —= exp| - ~—————| dx
B

2Ven %, 2crn
= [ e
+ f exp | - “~—s— dx
=00 20
n
The probablliity density of “he threshold is
A+ A
1 Po = =2
p(B,) = —————exp| - "
l-A l-A
R\J1+A°n (I+A)°n




67

The average value of the probability of error is

E<?rob. of erro%} =\jpm p(B“) [érob. »f error (Bmi] dp_

The average probability of error has been calculated on a digital
computer for several values of A and for several values of SNR

where
A - A

o
n

SNR =

The following table shows the results of these calculations:

Average probabllity of error

SNR A =0.85 A = 0.90 A =0.95 A=1.0
3,33 9.25 x 10°2 9.07 x 10°2 8.7 x 10-2 474 x 10-2
4.0 k.53 x 102 4.37 x 10- k.1 x10° 2.27 x 10-
5.0 1.28 x 10'ﬁ 1.21 x 10-2 1.1 x 10-2 6.21 x 10-
.67 9.56 x 10~ 8.6 x 10 7.5 x 10-% 4,30 x 10~
10.0 7.9% x 10~7 6.52 x 10-T 5.0 x 1077 2.87 x l°-7u
20.0 7.8 x 10723 | 3.7 x 1023 | 1.69 x 10723 | 7.62 x 10~

Figure 10 shows a plot of the results for A = 0.85 and A = 1.0. The
results for A = 1.0 correspond to the optimum detector for this
situation. All other values of A cause the average probability of
error to be higher than for the case of A = 1.0. It should be noted
that Figure 10 gives the average probability of error. The actual
probability of error is a random function which has a minimum given

by the curve for A = 1.0, The value of A can be chosen as close to

1.0 as desired in order to reduce the probability of error, but
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increasing A causes an increase in the reaction time of the
estimation equation as discussed in Chapter III.

Since Patrick and Costello (Ref. 1) only make their calculations
for an infinite number of samples used to compute the sample mesn, the
only comparison between these results and those of Reference 1 that can
be made is for A = 1 with equally probable signals. At this point the
estimates have zero variance and the adaptive detector has the same
probability of error as the optimum detector. The additional error
found in Reference 1 is due to an unsymmetrical bias caused by non-
equally probable signals. No attempt was made by i'atrick and Costello
(Ref. 1) to compensate for the effect of the nonequally probable
signals.

A calculation of the probability of error of the DDM system with
nonequally probable signals and with A not equai to 1.0 would show
the ability of the DIM system to properly locate the threshold. This
analysis would be more complicated than the analysis shown in
Reference 1 because values of A other than 1.0 have the effect of
using less than an infinite number of samples in the estimation process
and because an estimation of the variance i1s included in the system
proposed here to reduce the additional error due to nonequally probable
signals. This estimate of the variance 1s also a blased estimate when
operating in conjunction with the DIM technique for the same reason
(p. 15) that the estimates of the means were blased. Since the input to
the estimator of the variance is not Gaussian in the DIM mode, the

calculation of the var‘ance of the estimated variance shown in Chapter V
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does not apply. This calculation of the probability of error has not
been included as a part of this investigation.

An exampl~ can illustrate a situation in which the adaptive
detector vould give & lower probability of error than a degraded
v _imum detector. Acsume than an optimum detector has been constructed
and 1s operating in an environment of zero-mean, white, Gaussian noise.
Let an enemy in the neighborhood of the transmitter begin to transmit
a continuous sequence of signals which correspond exactly to the
binary O signal and which are exactly in synchronization with the data
bits. Before the enemy began to transmit, the equation, (2-1),

implemented by the optimum detector was

The equation implemented by the optimum detector after the beginning

of transmission of the enemy is
T e 1al/ e o
u= W (bl - SO) - b + AC So(”l - OO)

where Ac' is the channel gain of the channel from the enemy trans-
mitter to the receiver. Since A 'ST(S -5 ) is a constant and is
c o\l o}

present for both binary O and binary 1 signals, the additional signal
AC'SE(Sl - So) has the appearance of a nonzero .ean of the noise. This
would cause the optimum detector to be operating with its threshold
located at a nonoptimum location.

Figure 11 shows a plot of the probability of error of an optimum

detector as a function of the location of the threshold. The abscisse
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is expressed in terms of the deviation of the noice. TFor inst.necc, if
the signul-to-noise ratio were 5.0 and 1f the mean of the noise were
G.1 0 the degraded optimum detector would havc - probability of error
equal tc C.00643. If the mean of the noise iz zero, the optimum

4 ,ector has a probability of error of 0.0062i.

An adaptive detector operating in this same situation has an
average probability of error which does rnot change as the mean of the
noise changes if sufficient time is allowed for any transients to
disappear. The probability of error of the adaptive detector is higher
than that of the optimum detector when the optimum detector is using
the optimum threshold. As the mean of the noise increases, the
probability of error of the degraded optimum detector increases while
the probability of erior of the adaptive system remains conswant.
Figure 11 shows the points where the probabilities of error of the two
systems are equal for a given signal-to-noise ratio and for a given
recursive constant. 5t & signal-to-noise ratio of 5.0, the adaptive
system using A = 0.85 has a lower probability of error than a

degraded optimum system for values of AC'SE(S - So) greater than

1
approximately O.550n. For values of A greater than 0.85, the point at
which the two systems have equal probability of error is decreaczed. As
the signal-to-noise ratio increases the point at which the two systems
have equal probability of error also decreases. This fact can be shown

from curves similar to Figure 11 for cther signal-t>-noise ratios, but

have not been included here.



CHAPTER VIII
CONCLUSIONS AND FUTURE WORK

The results of this investigation show that the system proposed
here is capable of acting as an adaptive detector. The system requires
an estimate of the mean and an estimate of the variance of a sequence

of random numbers. The mean is estimated by

X = A% g+ (- A)x

and the variance is estimated by

(5 - %en)’

2 ~ 2+(1+A)(1-B)
)

If the input data have a Gaussian distribution with mean of "a" and

2n

variance of "o ", the estimated variance has a variance of

2
lim variance of 31(2 = (H) 5 4 B(1 - 12\) ]04
kK oo 1 - A°B

The accuracy and time response of each estimator can be varied by the
choice of constants A and B. The frame synchronization code is used
as the teacher in a "Learning With Teacher" technique. A Decision
Directed Measurement technique is used when the frame synchronization
code is not available.

It has been found that in the recursive estimate of the mean,
the more accurate the estimate, the slower the convergence. The

optimum location of io and §O vhen using the Decision Directed

7>
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Measurement technique is found by a computer study to be Qo as small
as possible and §o as large as possible. This selection of ﬁo and
§0 is found to prevent the possibility of & "hang-up" when there is no
nolse. The asymptotic, average probability of error for the adaptive
system using only the estimates of the means in the Learning With
Teacher mode is found to be equal to that of the optimum detector for
A =1.0 and greater than the optimum detector for A < 1.0. However,
a change in the environment can cause the adaptive detector to have a
lower probability of error than an optimum detector, which cannot track
the changes.

This investigation has by no means completely analyzed the
proposed system. Some of the areas which offer possibilities for future
work are discussed here. One of the most important areas for future
work 1s the construction of hardware to perform the functions discussed
in this dissertation. R. G. Brown (Ref. 4) mentions other techniques of
estimation of the mean which are essentially higher orders of the
technique used here. It would be interesting to attempt to use some
of the other techniques and to compare theilr results to those of the
exponential smoothing method. The time response of the estimation of
the variance is unknown and should be determined, but it will be
difficult to determine due to the nonlinearity of the estimation
technique. The probability of error of the adaptive system in the
Learning With Teachef mode for K # 1 also should be determined. The
operation of the "Decision-Directed-Measurement" technique also ras

some areas which require more investigation. The effect of all the
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system variables on the convergence rate of the system needs to be
determined. All of the techniques discussed here need to be investi-
gated when operating in an environment of correlated nolse and correla-
tion between adjacent data samples. The probability of error for this
adaptive system in the DDM mode should be calculated. The operation
of the DDM mode when the variance 1s estimated also needs to be

investigated.
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APPENDIX T

2
[s]

METHOD OF ESTIMATION OF %

o]

The purpose of this appendix 1s to show that

°n2 ] variance of {(ACSO + N)T(Sl B so)> (A-1-1)

A E{(Acsl + N)T(Sl - so)} - E{(Acsp + N)T(Sl - so)}

The adaptive detector computes estimates of three properties of its

input. These are
E{X[W =45 +N)-= E{(Acsl + N)T(Sl i, So}
E{x|W=AS, +N)-= E{(Acso + N)T(sl - SO}
and

variance of {x|w = ACSo + N} = variance of {(Acso + N)‘I‘(Sl - SO}

The remaining portion of this appendix shows that the numerator of

equation (A-1-1) is

T

variance of {(Acso + N)T(Sl - So} = anz(sl - SO) (Sl - So)

and that the denominator 1is

E{(Acsl +M'(s, - S°3 - E{ACSO + N)'(s, - soﬁ - a8, - SO)T(sl - 8,)

80
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The numerator 1s rearranged to yleld

variance of (ACSO + N)T(Sl - So)

= {[(AS + N)(l-so) {(AS +N)T(sl-s)}:]T
[(AS +N s —S)-E{(AS +N s -8, ]}

Equation (2-Tb) with € = 0 1is used to reduce the complexity of the

above equation, so that
variance of {A S + N) (Sl - So)}
T
E{EN - Tv)T(sl - so):] [(N - ﬁ)T(sl - so)]}

E{(N - ﬁ)T (N - 'ﬁ)} (sl - so)T(s1 - so)

g n2(51 - S O)T(sl - so) (A-1-2)

Identical results are obtained if variance of {A S, + N)T( 8, - So)}
is computed.
The denominator of equation (A-1-1) is computed using (2-7a) and

(2-7b) with € = 0, which yields

{(AS +N S-S}-E{AS +N S-Sﬂ

= A8, s - AS, Ts, + ¥ (s -S)-ASTS +ASTS

- i’”(sl - 5,)
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£ T T T T
_Ac[slsl-slso-sosl-soso]

= A8y - 8,) (5 - 8,) (A-1-3)

R e

Equation (A-1-1) results from the division of Equation (A-1-2) by

Equation (A-1-3) as shown by

=
R
g
=
=

variance of {(Acso + N)T(Sl - SO)>

E{(Acsl +ﬁ(sl ) SO)} B E{(Acso * N)T(Sl B So)}

_ Une(sl - ngT(Sl - ‘So)

A(S) - 8, )T(sl - 5,)
2
(]

a
N _n
T A

wul R P R R R b R P T

=




APPENDIX II
ANALYSIS OF THE EXPONENTIAL SMOOTHING TECHNIQUE

This appendix 1s a derivation of some of the properties of the
estimation of the mean by the exponential smoothing technique. The

results shown here were published in Reference 4 by R. G. Brown;

however, some of the results here are derived in a different manner.
’ik = As‘ck_l + (1 - Ax; k = 1,2,3 (A-2-1)
where

A

xk = kth estimate of the mean

X = kth data sample

A = recursive constant; A < 1.0

£
=
£
=
£
£
3
E
£
E

QB = initial guess of mean

This equation can be compared with that in Referencz 4 if (1 - A) is

set equal to a.

Derivation of the Mean of the Estimation

The general term of the estimatlon equation is rearranged by
inserting an expression for ik-l into the expression for ik’
inserting an expression for ﬁk-2’ and continuing until io is reached.

. The resulting expression is

83
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% = A%+ (1-a) {}k $hx  + A et A“'lxl:] (A-2-2)

The mean value of ik is

By ) = E{Ak’ic} + (1 - A) [E{"k}* AE{xk_l> b oooo 4 p¥1 E{xl>:]

The random function from which the samples, Xy, are taken is assumed

to be stationary with a mean of "a" and a variance of "02" so that

Eéci} =a

The mean of ik can be rewritten to yleld

Eka} E{Ak?:o} + (1 - a) E@i} [1+a+ .0 A1)

ka 2 -1 -
=Ax°+(1-A)a.[l+A+A + cce 4+ A _-J (A-2-3)
Since IA‘<1.0,
1n A% =0
k5w °
and
1im (1+A+A2+ cor 4+ 25D =11A
Kk o -
Therefore,

lm E{%} - (1 - &) (l—}-—A-)

K~

= a (A-2-4)
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Derivation of the Variance of the Estimation

The variance of ik is calculated by using

variance of % = E {ik2> -F {'ik} (A-2-5)

The first two terms are

variance of 'io E{?(oa}- e <§o>
=x“-%x“=0 (A-2-6)

and

>

2~ 2 A 2 2
variance of E{A X, +2A(1 - A)L_on + (1 -4) x,

- [E{Aio> + E{(l - A)xl}:r

A2'5:°2 + 2A(1 - A)a’:‘:o + (1 - A)° (aa + 02)

- Az?coa - 21 - A)a’:‘co - Q- NS

(1 - w2 (A-2-7)

it

The variance for several values of k has been calculated by the same

technique and is presented in the following table:
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k variance of ik

0 0

1 (1 - A)202

2 (1 + 231 - 0)3P

3 (a+ A2+ Ah)(l - 03P

4 (; N A6)(l - 03P

The general expression of the variance of 'ik is written from the

table by inspection to yield

K-
i
variance of ik = (1 - A)zc!2 i[Ae_-J (A-2-8)
i=0

As k approaches infinity,

K 2w

lim variance of ')Ek = (1 - A)‘?ae (_1__2.)

klimm variance of ;‘k = G: ; ﬁ)oe (A-2-9)
Derivation of the Time Constant of the Estimation
Since the estimation equation must also react to step changes in
the mean of the incoming data, it is desirable to determine the time
required to respord to a step change. The estimation equation 1s
analyzed as if it were a filter by the use of the z-transform method

(Ref. 12). The impuise response of the following equatlion is found:

~

B = Ao ) + (1 - A
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Let

>
"
(@

-1

>
"

0 for 1 £0

This set of conditions determines the response of the estimation

technique to an input of a unit impulse at t+ = 0. From the definition

of the z-transform (Ref. 12, p. 1i45)
o0
X(z) = E: ﬁkz-k
k=0

X(z) = (1 - A)z° + AL - A)z'l + A2(1 - A)z’2 PR

X(z) = (1 - A) (1 +azl 4 a%2 4 L)
X(z) = (1 - &) —2—
= ) 1- Azt
X(z) = %—:ﬁﬁ (A-2-10)

The Laplace transform which corresponds to the z-transform given above

is

H(s) = —(ii-l)— (A-2-11)

S-—T-lnA




APPENDIX III

DERIVATION OF THE LIM  VARIANCE OF (x - ?ck_l)2

k 5w

The first moment of (xk - ik-l)2 is

JCRESY

Eé‘kz -2 X )t ik-lz}

H

5o ’) - 28y By 1)+ s )

This step can be made since ﬁk-l and x, are independent.

k »o

lim E{(xk - ?ck_l)a} a4 - 2e lm B 1 )+ Um )

H

2 2 2 l1-A\2
a +d -2a(a) +a" + (l + A>°

l-A12
[“m"
2

2 ¢
1+ A

The second moment 1s
~ h- h’ ~
E{(ﬁ-xk-l)} ={ﬁ -0 Ry
2 A 2 N
L ENE LN
A b
“‘k-l}

88



89

As discussed in Chapter III, x, and ?ﬁc-l both have a Gaussian
distribution with known mean and variance and are independent.

Substitutions from Appendix VII yield

- klimmE{(xk-ik_l)‘}=au+6a202+30h-hau-12a202+6a.,+
+65202+6G;§)a202+6(§;ﬁ)c’*
L l1-A)\ 2 2 'S 1-A\ 2 2
- ka '12(1+A)°' ¢ +a +6(m)a g
2
1-A 4
+5(1+A) o
) 4 1 - A\ b4 1-AY &
=30t + 6 (1) + 3 (35) @
s b4 l-pe
=_12_L
(1 + 4)°

The limiting value is

lim [variance of (xk - ik-l )2:]

Kk 2>

lim E {(xk - ik-l)h}

k o

- 1;1_1’“& ¥ {("k - ;‘k-l)a}
4

12 ah b o

(1 +A)2 i 1+ A)2

8 )'}
- = g
‘ (1 + A)z




APPENDIX IV

DERIVATION OF LIM E@tk . 2}
k
k o=

t=8
‘;()‘
>
o
oy
H

= E {E“?‘x-l + (- Ax][B 3" e (xk-;“k-l)%]}

AB E{“xk_l Gk_12}+ B(1 - A) E{xk ,&k_le}
L AL+ A%(l - B) [E{"ke ;zk_l} - 2E€tk ?rk_le} + E{?‘k-f}]

NCEDMEE IR} ) QEGS ?‘k-l}

il

Since x  1s independent of ik-l and ak-le’ the expected values of

+he product of these variables can be separated into the product of the

expected values. Using Appendix VII, Equation (A-4-1) becomes

E{"xk ’&ke} =ABE {"xk_l ’&k_lz} + B(1 - A)a E{’&k_lz}

L0 A%(l - B) [(1 - A) (a.3 + 3a 02)

+ (3A - 2) (a2 + &) E{%&-l}

+ (1 - 3A)(a) E {ik-la:} +AE {"xk_f}J (A-4-2)

The technique for finding the limit as k approaches infinity
of this recursive equation is the same as that used in the main body of

this report for the variance of the estimated variance. The index k

90
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is set equal to n where n has a value large enough so that all
terms on the right hand side of Equation (A-4-2) except E{‘xk_l Gk-lz}
have become infinitesimally close to their limiting values. Using
Appendix VII and Equations (A-2-4) and (A-2-9), Equation (A-4-2)

becomes

-~ ~ 2 [ ~ 2 2
E{xn cn} =ABE {xn_l cn_l} + B(1 - A)a ¢

L+ A)(l -8 |1 - a(e + 3 )

+ (34 - 2) (e +or)€t+(1'3*“)(“‘)(i +[1+A] )
+A[:a3+3('i—;—%)&°2j}

=ABE {32“_1 Gn_l"‘} +(1-ABad | (A-k-3)

Several terms are calculated in order to recognize the serles being

generated. Let

A 2
n-1 cn—l} =P

E{?cn '&na} = AB(P) + (1 - ABa o

E{?{ o 2}=A232(P)+(1+AB)(1-AB)3.62

=
ST

Then

n+2 n+2

E{?c o 2}=A533(P)+(1+AB+A2132)(1-AB)5.02
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and

1-
E {S‘:Mi an+1} a1 g (p) 4 (1 - A B)a &2 zl (AB)Y  (A-b-b)
j=o

Since A<1 and B <1, (A-l-4) becomes

2
A a2 s ~2 (1L-ABlagd
1limm E {xmi Un+i} = klimw E {xk Ok:} ST I-AB
—a (A-k-5)

The convergence of this series has been verified by calculating
the exact expression for the series for k = 0, 1, and 2 but has not
been included because of its length. From these expressions it is
possible to recognize the general expression for the coefficients of
all terms in the expression. It is found that the 1limit of coefficients
of all terms approached zero as k approached infinity except for the

coefficient of aaz. This coefficient is found to approach 1.0.



APPENDIX V

DERIVATION OF LIM E {"xka ’&3

k =+

=
>
P‘?‘l'\)
[« P4
O,
i

- E{[A 2+ (1 - A)xlae B3, ,°

egen g ]

A 3BE {ik_l‘? Gk_l"’} + 2A B(1 - A)a E {Axk-l Gk_le}
+ B(1 - A)° ( o + 02) E{’&k_l‘?}

+ (1 + A%(l - B) [:(ah + 662 o2 + 50&) Q- A)e

+ E ka-l} (9.5 + 3a 02)(- 2+ 6A - hAQ)
+ E{%k_12> (8.2 + 02)(1 - 6A + 6A2)

+2{% >} (o) (oA - %)+ E{&_;‘} (Aa)] (A-5-1)

Since x, 1s independent of ik-l and ak-lz the expected
value of the product of these variables is separated into thc product
of the expected values in the above expression.

The technique for finding the limit as k approaches infinity
of this recursive equation is the same as that used in Appendix IV.
The index k is set equal to n where n has a value large enough

so that all terms on the right hand side of equation (A-5-1) except
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E{;(k-lz Gk-le} have become infinitesimally close to their limiting

values. Using Appendix VII, Equation (A-5-1) becomes

a2 a2l 2 A 2 2 2 2
E{xn on} = A Bli:{xn_l Un-l} +2AB(1 - A)a" ¢

+ B(1 - A)2 (32 + 02)0 + (1+ A)(l - B) (ah + 682 o°

+ Bah)(l - A)2 + (ah + 5&2 02)(- 2 + 6A - 1+A2)

( [}+J )a. +o)(l-6A+6A)

+G. +3L1-'— ac)(a)( -hAe)
+(au+6é;§]ao+3[ ﬂeuh)(}\.e)

2 A 2 2 2 2 2
= A BE(xn_1 on_l} +(1-A B)a o

ch
t1T71

[(1- (- 4238)+@-n%-5) (A-5-2)

E {in-lz '&n_la} 1s set equal to an arbitrary constant Q, and sev:ral

terms are calculated in order to recognize the series being generated:

E {’x‘n--l2 ?’n-lz} =Q
{ }-A B(Q) + (1 - 4% B)a® o

1+A[.—(1 »)(1 - A2 B)

+ (1-°%02 - B)
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-

E {inﬂe an+12} -2t Q) + (1442 8) El - A% B)e® &

L
+li+—i[(l-A)(l-AeB)+(1-A)2(l-B)]:]

The general term can be recognized to be

A 24 2 2(3+1) J+1 2 2 2
E{x amj}= ( B (Q)+[:(1-A B)a® o

n+)}

4
+ 2= [ - (1 - 42 8)

J
+ (1 - A)2(1 - B)J:]

z (a2 B) (A-5-3)
i=0

Since A2 B< 1.0,

Aal2a2 A 2 a 2
lim E xk ak} lim E{xmj °n+,j}

k Do J ==
4
sl 11 -ABa® P+ [(1-a)(1-A°B
1_AZBB Ja* o + 175 [ - )
+(1-A)2(l-B)]:]
IR L | (1-8°%@-5 A-5-4
ao+a[l+A+(1+A)(1-AzB), (A-5-4)

The limit of this sequence has heen verified by the same method

of verification discussed in Appendix IV.
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APPENDIX VII
MOMENTS OF A GAUSSIAN VARIABLE

If x 1is a probabilistic variable having a Gaussian probability

distribution with mean of "m" and variance of "ve", the first

four moments of x are (Ref. 11, p. 162):

E{x) = m

E@2> = m2 + V2

E{X3} = 1.!15 + 3 HIVZ

E<%¥} = m& + 6m? v2 + 3vh
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