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ABSTRACT

A new wind-tunnel technique for measuring various aerodynamic

derivatives of an aeroelastic model is presented. The technique applies

free-flight procedures to a model flown in the wind tunnel on the two-

cable-mount system. The complete equations of motion are presented.

In the case of longitudinal motion, it is theoretically possible

to uniquely determine each of the aerodynamic derivatives by measuring

the model response to a steady-state sinusoidal oscillation of the

horizontal tail. A comparison between free-flight and wind-tunnel equa-

tions shows that, due to the added mount system restraints, the equa-

tions can be solved for each derivative uniquely. However, introduction

of an error into the model response investigated caused the solution to

become ill-conditioned, resulting in equations similar to those used for

determining the derivatives in free flight.

In the lateral equations of motion, a basic free-flight assump-

tion of single-degree-of-freedom response in roll allows the experimental

verification of the dynamic approach to derivative measurements. Experi-

mental results obtained on an aeroelastically scaled model, tested both

statically and dynamically in the wind tunnel, verify the application

of this new testing procedure.
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CHAPTER I

INTRODUCTION

In the study of aircraft stability and control a knowledge of the

aerodynamic characteristics of the aircraft is of basic importance.

The aerodynamic characteristics of a flexible airplane are difficult to

measure or predict analytically, especially at transonic speeds. The

purpose of this thesis is to present a new wind-tunnel testing technique

for the measurement of certain aircraft aerodynamic characteristics

known as the aerodynamic stability derivatives. An aerodynamic

stability derivative indicates the rate of change of a force or moment

acting on an airplane with the motion or variable causing the force or

moment.

Structural components of an aircraft are often flexible enough to

be considered as nonrigid. That is, such aeroelastic phenomena as

flutter, divergence, and control surface effectiveness must be investi-

gated. It is also realized that structural flexibility may have

appreciable influence on the aerodynamic derivatives and thereby affect

the overall flying qualities of the aircraft. Aerodynamic considerations

of structural flexibility occurring in the transonic speed region can be

especially difficult since no dependable aerodynamic theories are

available. Consequently, the necessity for measuring the aerodynamic

derivatives of a flexible aircraft is apparent.

Within recent years a mount system has been developed (Ref. 4)

which permits the "free-flight" behavior of an aircraft to be simulated

1
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in the wind tunnel. This mount system, referred to as the two-cable

mount, is shown schematically in Figure 1 (p. 7 ). The model is held

by two mutually perpendicular cables passing through pulleys in the

fuselage and attached to the tunnel walls. The cables are kept under

tension by stretching a soft spring in the rear cable. Remotely

operated trim controls are ceded on the model. The mount system was
s

originally designed for the testing of aeroelastic effects such as

flutter. Since the equations governing motion on the mount system are

quite similar to those of flight, it.was soon realized that the mount

offers a potential for measuring aerodynamic derivatives of a flexible

model in the wind tunnel.

The equations governing model behavior in the wind tunnel are

essentially the free-flight equations modified by the addition of mount

system restraints. It is therefore possible to apply test techniques

similar to those presently used to obtain free-flight data. The tech-

nique selected for investigation involves measuring the model response

to a sinusoidal steady-state excitation provided by the model control

surfaces.

The equations governing model motion on the two-cable-mount system

are derived in terms of model mass properties, linearized mount

restraints, and unknown aerodynamic derivatives. Since fore and aft

motion is not provided by the mount configuration analyzed, the

equations of motion are presented in five degrees of freedom. The

equations are simplified by separating them into two independent groups.
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The longitudinal equations include vertical translation and pitching

motions. The lateral equations include side translation, roll, and

yawing motions. Each of these sets of equations is treated separately.

A technique for measuring the longitudinal aerodynamic deriva-

tives is presented. The longitudinal equations are expressed in two

degrees of freedom. A sinusoidal steady-state forcing function generated

by the horizontal tail is introduced into the equations of motion. A

steady-state sinusoidal response is assumed, and the resultant equations

are expanded in terms of measurable model response and the unknown

stability derivatives. It is assumed that the derivatives are indepen-

dent of frequency; therefore, the equations of motion are valid at each

discrete excitation frequency. From the model response measurements at

several frequencies, a set of redundant equations is generated which

can be solved for the unknown derivatives. A least-squares solution is

used to obtain the derivatives from the set of redundant equations.

Since no experimental data are available for longitudinal motion,

a numerical example is given to determine the effect of measurement

errors on the derivatives. Equations for the two-cable mount show that

it is theoretically possible to separate the results into uniquely

determined stability derivatives. Greenburg (Ref. 2) states that results

obtained by the dynamic technique from free-flight measurements appear as

linear combinations of the aerodynamic derivatives caused by a dependency

on the aircraft response. A comparison between flight and wind-tunnel

equations shows that the mount system restraints allow separation of

the unknown derivatives. In practice, however, the magnitude of this
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restraint term is overshadowed by small errors in response measurements,

which result in an ill-conditioned problem when solving for each of the

derivatives uniquely.

The problem of determining each of the aerodynamic derivatives

appearing in the lateral equations is more complex than that of the

longitudinal case because of the added degree of freedom and its asso-

ciated derivatives. However, Etkin (Ref. 1) states that for many

conventional airplane configurations the roll equation in flight can be

simplified and treated as a single degree of freedom.

In order to verify the basic dynamic approach to derivative

measurements, an experimental technique for measuring aileron effective-

ness and damping-in-roll stability derivatives is presented. Modified

flight techniques are applied to the wind-tunnel tests. The experimental

technique involves the measurement of model response to a sinusoidal

steady-state forcing function generated by the ailerons. In order to

satisfy free-flight requirements (single degree-of-freedom response), a

parametric study of the two-cable-mount system was run in an effort to

force the model to behave, essentially, as a single degree of freedom

in roll. If the aerodynamic derivatives are independent of frequency,

the roll equation is valid at each discrete aileron frequency. Measuring

the model response as a function of aileron frequency generates a set of

redundant equations which are solved for the unknown derivatives. In

this manner both the aileron effectiveness OZ.) and damping-in-roll

derivative (C Z p ) are determined.

N
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Experimental results are presented for a 119-size aeroelastic

scaled model of a large, subsonic, multijet.cargo airplane. Experimental

results are obtained dynamically, as described, to determine C Z,, and

CZ
P 

and statically to determine C ts . A brief description of the static

mount and test procedure is given. A comparison between static and

dynamic tests shows good agreement within the basic assumptions made.

Based on these results, the application of flight techniques to

scaled models flown in the wind tunnel on the two-cable mount offers a

potential for making quantitative measurements of the effect of flexi-

bility on aircraft stability derivatives. This new testing procedure

offers the aircraft designer early estimates of the stability and control

characteristics of future aircraft configurations.



CHAPTER II

EQUATIONS OF MOTION

2.1 Introduction

In this Chapter the equations of motion governing model behavior

on the two-cable-mount system are developed. Cable restraints are

presented as stiffness influence coefficients. The assumption of small

perturbations from trimmed flight makes the equations of motion linear

and allows them to be separated into longitudinal and lateral degrees of

freedom.

The mount configuration shown schematically in Figure 1 is

analyzed. The model is held by two cable loops] the upstream cable is

in the vertical plane, and the downstream cable in the horizontal plane.

A soft spring in the rear cable keeps the system under tension. The x,

y, z axes form a fixed right-hand coordinate system with its origin at

the model center of gravity. The x axis is directed upstream in the

tunnel, and the z axis is in the direction of gravity. The equations

of motion are limited to five degrees of rigid-body freedom since fore

and aft motion is not provided by the mount configuration analyzed.

Assuming positive displacements as shown in Figure 1, the dynamic

equations of motion can be written as follows:

Vertical translation:

Summation of forces in the z direction

ZA + ZC + mg - my	(la)

6
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Pitch:

Summation of moments about the y. axis

MA + MC = IYe	 (lb)

Side translation:

Summation of forces in the y direction

YA+YC -my	 (lc)

Roll:

Summation of moments about the x axis

LA + LC - IXO - IXZi	 (ld )

Yaw:

Summation of moments about the z axis

NA + NC - IZj - IXZ$	 (le)

where

z - vertical translation of model center of gravity

9 - rotation about y axis

y . lateral translation of model center of gravity

0 - rotation about x axis
- rotation about z axis
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and

L,M,N are moments about the x, y, z axes, respectively

Z,Y	 are forces along the z and y axes, respectively

The subscripts A refer to aerodynamic forces and moments] the

subscripts C, to forces and moments generated by the mount restraints.

Etkin ( Ref. 1) shows through the use of small perturbation theory

and other assumptions that the complete set of equations of motion in

flight can be separated into two independent groups. These two groups

are referred to as the longitudinal and lateral equations of motion.

E7

	 The equations for longitudinal motion include fore and aft motion,

vertical translation, and pitch. The equations for lateral motion

include side translation, roll, and yaw. The basic longitudinal and

lateral equations of motion for the two-cable-mount system will be

presented in the following sections.

2.2 Derivation of Dquat{ons of Motion

2.2.1 Aerodynamic Force Components

2.2.1.1 Longitudinal Forces.- Lift and drag forces (L and D)

are defined to have directions normal and parallel, respectively, to the

relative wind vector V, as shown in Figure 2. We have the following:

V = 7o + Z

a-9 +U for i<<U

U = 1
-4
 Vo I

8 ^8t+0
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where

V = relative wind vector of the airplane

Vo = wind vector along x axis

U = wind-tunnel flow velocity

8t = pitch angle for trimmed flight

= pitch angle perturbation about trim

Vertical translation:

Referring to Figure 2, the sum of the aerodynamic forces in

the z direction results in

ZA = -L cos(ac - 'g)  - D sin(m -16)

Since it is assumed that z < < U, then

ZA = -L - D(e - 8)	 (2)

The aerodynamic forces are normally expressed in terms of their coeffi-

cients

L - gSCL

D - gSCD

The nondimensional coefficients, CL and CD, represent the lift and

drag generated on an airplane for a given dynamic pressure q and

 (Wnamicrepresentative wing area S. 	 pressure q is defined as

q = 2 pt^, where p is the testing medium density.
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Equation (2) can be written as

y	 ZA = -qS ICL + CD U	 (3)

Making the basic assumption that the lift coefficient CL is a

linear function of angle of attack m and tail angle S, we can

express CL as a Taylor series about the trim point 8 t . Therefore,,

CL = -40 + C& AM+ & M

inhere

CLO = lift coefficient at trim 8t

Am = a (angle of attack perturbation)

65 = S (tail angle perturbation)'

Let

ac

aac	 `b►,

Thereforeo equation (3) can be written as

ZA = ZAo - qSCa + CD U - qSC^ S

'Sign convention used is +8 is a trailing edge up which
generates a negative lift.
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or

	

Zp = Zpo - 9S C^ (9 + U) + CD U + Zp	 (4 )

where

Zpo = trim aerodynamic forces

Zp = -gSCys5	 (a)

Pitching motion:

The aerodynamic pitching moment is normally expressed as

MA = 99FCm 	 (5a)

Cm is a nondimensional coefficient representing the moment generated

for a given dynamic pressure, wing area, and a representative length c.

(c is the mean aerodynamic chord. 1 ) Seckel (Ref. 5) shows that the

aerodynamic moment can be expressed in a Taylor series expansion about

8t as

	

MA =Mpo +;—: ba.+--, bm+^pd8 
+aS	

(5b)

lThl a mean aerodynamic chord is defined by the formula
2 r b/2

	S l/	
C2dy where C is the local chord, b is the 	 span, S is

the wind area, and y is the lateral coordinate.



lk

where

MAo = static trim condition

Am = a, angle -of-attack perturbation

A& = a, rate of angle -of-attack perturbation

A6 = 6, rate of pitch-angle perturbation

M = S, tail-angle perturbation

Substituting equation (5a) into (5b) results in,

MA = MAO +	 +	 a+^ A+aa f	 (6)

In order to handle the aerodynamic terms more conveniently, it is

c 	 practice to nondimensionalize the aerodynamic derivatives in the

following manner:

acm

as = C%

acm 	 acm _

2U)(Oz

acm 6	
"

acm E ^
as - 2U a^2 1 2v

Substituting the preceding terms into equation (6) and expanding the

expressions results in
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MA=MAO +q lq,^Me+CCU+2UC%U
+ 2U(C„.

-
+C%-)6 +MA

(7)

where

MA = 9S`%s	 (7a)

2.2.1.2 Lateral Forces.- The lateral aerodynamics are determined

in a manner similar to that in which the longitudinal aerodynamics are

derived. The lateral aerodynamic equations can be written as follows

(Ref. 4):

LA = gSbCI

AA = gSbCn

YA = gSCy

where

CZ = rolling-moment coefficient

Cn = yawing-moment coefficient

Cy - side-force coefficient

The representative length for the lateral equations is the wing span b.

The angle of sideslip p is defined as U - fir. The lateral aerodynamic

equations can now be written as follows:

LA agSb(C 10U +C Zp29 0 - C Z^,^ +C Zr r^r +LA	(8)
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NA gSb(SU +C
up 

E0- Cn, 	 n,0 ) + 'RA
	

(9)

YA = qS (Cy0 - CD)U + CL^ + Cyp 0 - C3,0* + Cyr IM ' + YA

(18)

Where

LA = gSbCZSA SA

NA = gSbCnBA

 S
A Rudder fixed

YA = gSbCy$ASA

SA - aileron angle perturbation

The expressions for LA, NA, and YA are simplified forms corresponding

to a fixed rudder configuration Which is utilized in wind tunnel testing

procedure. The aerodynamic derivatives are nondimensionalized as

foll+ovs :

ac	 6C

a^
CjQ	

2U ( b 2U 

^v

	

t+	 `2u/

aC	 aC -

a^	 2v a b	 2v C Zr

0

a^n - C^	
aCn - ^ aCn = ^ Clip

2u
na,^	 2U acn - 2v Cnra

YOU
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ICY . C	
'Cy . b 'Cy = b

60	 yo	 cV 2U 6( $bb) 2U CYp
2U J

IC,	 6Cn

65A - 
C ZSA	

65A a Cn5A

aZ . b ac- . 
b Cy2j 2U 6(#)
	

r
2U

aC

65A CY8A

2.2.2 Mount Restraint Force Components

The taro-cable-mount configuration used during this investigation

is presented in Figure 3. The linearized cable restraint forces for the

longitudinal degrees of freedom are derived in Appendix A. Auations

are developed to determine the longitudinal spring constants in terms

of moil system geometry, tension, etc. The longitudinal and lateral

cable restraint forces can be expressed as follows:

	

ZC = ZC0 - Kw8 - K=z	 (lla)

	

MC - MC. - K$ZZ - %08	 (llb)

	

IBC - -YvYy - %4 YO** 	 (11c)

NC - -K*YY -	 - X***	 (32d)

	

YC - -KYYy - KyOO - Ky**	 (lle)
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where Kij is the spring constant relating a force or moment in mode i

due to a displacement in mode J.

For the configuration under investigation (Appendix A) the stiff-

ness influence coefficients are as follows:

Longitudinal stiffness influence coefficients

K Z = 2 
LF 

cos2pF + 
iail

KZe = 2a TR - 
I 
F h cos OF, sin pF - I e c062

 q

ZCo = -KZ6et

K8Z v-

Kee - 2a2 LR + 2aTR cos Pi, + 2TF h sin 0. + e cos
R

+ 1 (e cos pF + h sin pp)2
IF

Lateral stiffness influence coefficients

Kyy=2^+2^cos2pR

K O - 0
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Ky* = 2 D: e - 2 1 cos OR(d sin OR + a cos OR)
LF	 LR

KoyoKyo-0

Koo - 2hTF(h + sin OF) + 2dTR d + sin 0R

K0*-O

Y.	 K0* -2 0

K*Y -o

N* = 2eTF
LF

 + cos pF )	 a+ 2TR cos OR + d sin %
C	 I

+ (a cos OR + d sin Olt ) 2
R

2.2.3 Complete Equations of Motion

Having developed the aerodynamic and mount forces, equations (4),

(7), (8), (9) (17), (lla) through (lle) are substituted into

equations (la) through (le) resulting in the following equations of

motion:



Vertical translation:

Z  + ZAo - qS [Q8 + U ) + CD U + ZCo - K 8 - KZZZ + mg - mz

21

(12a)

Pitch:

MA + MAO + 98-
Clcz^me 

+ C^ U + ru CMM. u2u ^ + C^ )e

+ Mt;o - KBZZ - K888 - Ix8

(12b)

Side translation:

YA +qS ( Cy -CD)U +CLO
+Cy L 0 - Cy*+Cy J

R	 P	 R	 r

-W -	 -Ky**- my►

(12c)

Roll:

LA +gSbC ZR U +C Zp 'm0 - CIO rr+C
7,

mi -KOYy

- Ko** - IXO - I)^j

(12d)
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Yaw:

NA + qSb ICno U + Cnp 2 - CnO* + Cnr 2U - K*yy -

- K*** = IZijr - IKy
(12e)

The longitudinal equations can be simplified further by considering the

static trim condition 8t . At 8 t let 8 8 z ti z = 0; 8 = 80.
Therefore,

gSCLB80 + ZAo + ZC0 + mg = 0
Static trim equations

gSeC 580 + MAO + MCO = 0

The dynamic longitudinal equations of motion for small perturbations

about the trim point 8t bc^.ome the following:

Vertical translation:

ZA - 9S CLM18 + U, + CD U - KZ8 8 - KZZz = my
	

(13a)

Pitch:

MA + qScCMIaB + 
C°

l
a U + 2<J nor U + W( C%- + Cmg)8 - KOZz - K 888 = IY8

(13b)
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The equations of motion are linear second-order differential

equations with constant codfficients. The .analysis does not include

the dynamic properties of the mount itself such as cable inertia and

pulley damping. A simplified approach is to neglect cable inertia and

add viscous damping terms proportional to displacement rates in each

mode. The terms CZz, C88, CYy, C,*, and C^Q{ are added to each of

the equations of motion, respectively. Where

AM—ZCZ = 2^ZLZ	 wLZ =

C8 = 2C,8Iy49	 I%9= K88
IY

F

l:K!^yy
Cy = 2tywa y^=

C* = 24IZ j*	 "^YV IZ

CO =2^J
e
W1010_

The damping factors tZ, to, ty, 4, and to are estimated for the
pulley configuration being investigated. Substituting these terms into

equations (12c), (12d), (12e), (13a), (13b), and rearranging, results in

the folloiring equations:



Vertical translation:

mz + 
12u—S 

(C 
LM+ 

CD ) + 2t2m(-ZZ z + KZZz + (KZ9 + gSC
It

)8 = zA

24

(14a)

Pitch:

Y - [--;^U-(CM.  + Cam) - ^58IY^e 8 + (IC88 - q9-CC".)8

2_

CmaZ - 
qU 

C%' + K6Z z = MA (14b)

Side translation:

my - [!US-(Cyo  - CD ) - 25ymuyYy jy + Kyyy - 2Sb Cy
P^ + (KyO - q SCL) O

- 2Ub Cyr ' + (q SCyp + Ky* = YA

(14c)

Roll:

`X'' (q 2U C Z - 2t0IXw	 + K	 .ZL - 
qn CZri

P	 /

+(gSbCZ0+Ko*)JY-^CZ^ y +KOYy='EA

(14d)



25

Yaw;

2
Izi - qSb Cnr - 2t* IZu y* d► + (gSbCn^ + K** )* - 2S b Cnpy

2

+ KVYy 
_ IXZq _ 

qIbCnp^ + K►^ 
s NA

(14e)

Equations (14a) through (14e) completely describe, within the

framework of the assumptions made, both the longitudinal and lateral

motion of the model in the wind tunnel. The equations are expressed

in terms of model mass properties, tunnel test conditions, mount

properties, and aerodynamic derivatives.



CHAPTER III

TECHNIQUE FOR MEASURING IDWITUDINAL

AERODYNAMIC DERIVATIVES

The equations of motion governing model behavior in the wind

tunnel are quite similar to the free-flight equations modified by the

addition of mount system constraints. Hence, it is possible to apply

test techniques similar to those used to obtain aerodynamic derivatives

from free-flight tests. The technique selected involves measuring the

dynamic response of the model to a sinusoidal excitation. In this

thesis, the excitation is provided by a sinusoidal movement of the

horizontal tail. Greenburg (Ref. 2) presents this technique for the

free-flight case.

3.1 Derivation

For simplicity, it is assumed the pulley damping and cross-

coupled mount stiffnesses in equations (14a) and (14b) are zero (i.e.,

t6 = tZ = KeZ = KZ9 = 0). The equations of motion become

mti+ U (CL +CD)z+K z+gSC
IU

9 =ZA 	 (15s)

IYe - 112(0 + C^)6 + (K99 - q`7cC,,)e - qS,^2 ci

-^C^z=MA	 (15b)

26
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In order to provide a dynamic forcing function, let the tail

deflection be 6 = 6oe iat . A sinusoidal deflection of the tail will

provide translation and pitch forcing functions of the form:

	

ZA (t)- -gSCL.60eiat	(16a)

	

MA (t) = gScCm Boeiat	 (16b)

Substitution of the forcing functions in the form ZA(t), k(t)

into equations (15a) and (15b) results in,

mz + U (CItr + 
CD ) ' + KZZz + gSC B= _q5C^6oeiat 	(17a)

Iy9 - g^ (Cm,. + C 6 )9 + (Kee - gSeCm)9 - 	 CMMz

q SEE

	

U Cmai	 = q Cj%Soeiat	(17b)

For sinusoidal motion, the steady-state response becomes:

Z	 o
= z ei(C&+O1)

i = iazoei((Lt+Oi)

E = -a?-zoe(ut+0l)

9 = 90 ei(at+02)

9 = iw9oei(at+02)

9 = -cc?eoei((Lt+02)
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01 and 02 are the phase angles between tail and model displacements.

Substituting the response functions into (17a) and (17b) results in the

following equations:

Vertical translation:

CL (qseoeiO2 + iwUzoei0l +CDcu Uzoei0l1
a 	 /	 \	 /

+ 
CIIB

 (+gS8o ) = (mu? - KZZ ) zoei0l
	

(18a)

Pitch:

_ g^2	iI2	 gSc2	 iO2 aS	'01Cm	 2U icu9°e	 + C.m^ -iw 2U Q °e	 + 2 c z°e_ "`9	
2U

+ CM, [-qSnoe102 _ iw . zoei^l + CmS C q^oj

= ( I „2 - Ke8 )eoeiO2

(18b)

If the aerodynamic derivatives Cam, CD, CJ6, 
CM4 1 Cam, Cam,

and CM5 are assumed to be independent of frequency, each of the equa-

tions of motion can be used to generate a set of redundant equations

which can be solved, using a least -squares method of solution (refer to

Appendix B) for each of the aerodynamic derivatives. The least-squares

method of solution presented in Appendix B is a mathematical procedure
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for solving a set of redundant equations. Equation ( 18a) can be expressed

as a function of frequency in the following, form:

Cjt^gSo e102 + iw U zoei^l	 + CD iw U zoeio	 + CLS EgS8Q
w=w^	 w=w,

KZZ)zoei0lI0- u j

J = 1,2,3, . . . N

(19a)

60 , z0, 01 , and 02 are measured from model response as a function of

the tail frequency w. Similarly, equation (18b) can be written as

Cmi 
_ q	 2

iaSoeih2	 + 
"M 

_iw q eoei02 + 22 S zoeiS^l
1CLVwjw=wb ^

+ CM, -gSceoeiO2 _ iw L9 zoei1l	+ Cy, Cg5R)O1w=wJ	 J

^(Iya - 4e )eoeiO2j
QP9

= 1,2,3, . . . N

(19b)
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Equation for vertical translation:

Equation (19a) can be rewritten in the form,

AjlCia, + AJ2CD + AJ3Cit = b 	 (19c)

where

AJ1 = qS8o e iO2 + i, ITe'O1

c3=wJ

AJ2 = i 
U 

Ccu¢oei'l]
GJ--WJ

AJ3 = + 9SSo

bj = [(mom - KZZ )z
oei01]	 j = 1 , 2 ,3,	 N

uFwJ

Applying a least-squares solution to equation (19c) results

in the following (Appendix B):

N	 N	 N2

2 I 	 (AIlAJ2+AJ1AJ2)1 L (All AJ3 +AJ 1A13) C^j =1	 j=1	 j=1

N	 N	 N

(AJ1AJ2 + AJ1A32) 2L IAJ2I2	
L (AJ2AJ3 

+ Aj2AJ3) CD

J=1	 J=1	 J=1

N	 N	 N

^(AJ1AJ3+AJ1AJ3) L (A*,2Aj, + Aj_,Aj*3)
 2 L IAJ3I

2	

CL5
J.Ml	 j=1	 J=1

'*Complex conjugate of the term (defined in Appendix B).
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N

J 
(b3Ajl + b,Ajl)

,=1

N

L, (b3AJ2 
+ bJA32)

J=1

N

^, ( b*jAJ3 + b, A13 )	 (20)

,j=1

into (20)

CLM , CD,

the aerod

data.

Substituting the expressions for A, l, AJ2 , A 
0 

p and b,

results in three simultaneous equationa which are solved for

and CL5. The algebraic expressions necessary to calculate

ynamic derivatives are presented in terms of measured response

	

N	 N

	

NI
	

I I
	

(	 121AJ1I2 (qS)2 1 
eo + 1 Uo! + 2 Uoeo sin(02 - 01)

	

L-j
J=1=1	 a)=wj

I
A 2 2 _ (9S 12 ,N (^ )2
j I	 \ U) /	 o urw,

	J=1	 J=1

N

>I 
A D 1 2 = (gS80)2N

J
J=1
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)_,
N
i 

(A*lA	 ) = 
2(gS) 2	 (UZ0)2 

+ u8 z sin
(02 	 )J J

2 + A 
J lAJ `
	

U 	 U	 o 0	 2	 1

J=l	 J=1	 cu^cuJ

N	 N

> (A*J1 A + A A*
J3 )
	 2g2S25 ) leo cos 	- U°sinO1

 J3 	J1	 0.	 2

Jul	 J=1 	u-r-Wj

2 2	 N,

	

-2g S So	
C o sin 3(AJ2AJ3 +AJ2AJ3) =	 U	
wz	

uru^
J 1	 J=1	 J

N	 N

> (b*AJl + bJA,l ) = 2rs ) [mu? - 
KZZ)zoAo cos (0

2
 - 01)]

J=l	 J=1	 cr-wJ

N

(b*AJ2 + b JAJ2 ) = 0
JL1

N	 N

(bJAJ3 
+ bJAJ3 J = 29SSo 	 [(m - KZZ ) zo cos 01]

J_1	 J=1	 "^c'J

Equation for pitching motion:

Equation ( 19b) can be rewritten in the form,

gJlCm9 
+ gJ2Cmdr, + gJ3CMM 

+ gJ4Cm5 = h 	 (19d)



where

gSc2	 42]g, l = -i 2U w9oe	
`_"(Uj

932 = - g^ iu8oeio2 - ^U° ei01

w=w,

1
go = -qO eoei 2 + 

U

iw¢  o ei^

w=w3

gj4 _ -95'80

h j = C(I^ - K69)eoe'02]w=w3
	

= 1 1 2,3, .	 NL 

Applying a least-squares solution to equation (19d) results

in the following:

33
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a
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N
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Na
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N

(hj*gJl
+ hJg;l)

J=1

N

(hJgJ2 + hJg32)

J=1

N

(hJgJ3 + hJg13)
J=1

N_

(hlgJ4 + hJg34) (21)

J=1

Substituting the expressions for 
gJl ' gJ2 ' gJ3' 9,4, 

and hJ into

(21) results in four simultaneous equations which are solved for CM6,

Cam, C%, and Cm6 . The algebraic expressions necessary to calculate

the aerodynamic derivatives are presented in terms of measured response

data.

N g

	
= q^2 

2 ,N

	

J 1	 ^ 2U) 1	 w=

	

1	 wJ
J=l=1

N	
ST2 2 N
	

U 2 28ozow
> igJ2^ = ( q2U	

> 80 + f U
	

+	
U	

sii,,^2 - ^l )	 (wJ )2
_J `

J=l	 J=1 wj
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N	 N
u^zo 2 29ozow

I gJ3I
2 

= ( g^)2 	80 + U	 U	 sin (02 - 01)

J=1	 J=1	 cwt

N

> Igi412 = (q C50)2N^.J
3=1

N
\	 C2 2 N-,	 u8 z
IJ (g*jlgj2 + gjlgj*2 ) = 2 (g2  U) >

 [j)2 + 
U 

° sin(02 - 01 )	 (wj )2

N	 N

(8 J3 + gg) 
2 2	

>J ^ct?Ao zo cos (O1 - 02 )]
93

1	
Jl33 	w=w

3=1	 J=1

)N (8''Flg 4
	

l4 _ - 292S^3so N ug sin
L,	

3 + gg*)	 2U	 > l o	 21ar-w^
J=1	 J=1

N

> (gj*2gJ3 + gj2gJ*3) = 0

J=1

N	 N

	

2g2S21C3So	 w2zo
> ( 284 + 8 2 4) _ -	 > cu8o sin	 + U cos O1

J=1	 J=1	 w=w^

N	
\N

> ( 38 4 + 8 3 4 ) = 2g2S2c2S° ) 8o cos 02 - U° sin Ol

J=1	 J/=1	 lur-wj
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N

( h*gJl + hJg*l ) = 0
J

J-1

N
2gSc2

(h*gJ2 + hJg32 ) =	 } [(I,	 - K88)uzo8o cos (02 Vl)]
J_1	 2U2 J-1
	

w=wJ

N	 N

(hi8J3 + hJ8^3) -2q^	 (IYct - K88 )[()2
 + UB0 sin(02 - 01)

J=1	 J=1	 w=wJ

N_	

N ('> (h jgJ4 + h J g j*4' = -2q^S0	 C( IY2 - Y'98)8. cos 02]
J 1	 J=1	

w=wJ

The aerodynamic derivatives are determined by solving

equations (20) and (21). The data required are obtained from wiad-

tunnel tests.
I

At a test point (tunnel conditions fixed) the horizontal tail

surface is oscillated at a known amplitue .e through a range of frequencies.

At each discrete frequency w = wJ (J = 1,2,3, . . . N; N > 4) the model

motion is monitored to determine z o , 80 , 01 , and 02 . Cable tensions

are monitored at each test point to calculate mount stiffnesses from the

equations presented in Appendix A. The data collected at N different

frequencies are used to ?-ialuate the algebraic terms which comprise

equations (20) and (21). Bach equation is then solved for the associated

aerodynamic derivatives.

S

3

3

3
3
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3.2 Error Analysis

3.2.1 Error Analysis Computation

An error analysis is provided to determine the accuracy with which

the model response z0 , 801 01, and 02 needs to be measured in order

to obtain meaningful results. A numerical error analysis is presented to

determine the error in the calculated aerodynamic derivatives due to an

error in measuring model response. Since no experimental data are avail-

able, a set of amplitudes and phase angles is obtained by solving the

equations of motion ( eqs. (17a) and (17b)) for an assumed tunnel test

point and representative values of th aerodynamic derivatives. ) This

analysis assumes that the governing equations of motion are correct as

presented in equations (17a) and ( 17b). All parameters other than model

response are assumed to be correct.

Errors are now introduced into the response data, and the aero-

dynamic derivatives based on the new response are calculated using

equations (20) and (21). The new aerodynamic derivatives ^ar be

expressed in a Taylor series in the following manner:

C	 = C	 + aC of + aC AC(22)E 0	 E=0 6EZ Z aEe 8 C^Eol ^1 6% * 2

lThe aerodynamic derivatives selected are those of a large
multijet cargo airplane.
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where

CEj0 = numerical value of aerodynamic derivative

with error

CE=O = numerical value of aerodynamic derivative

without error

De = incremental error in measurement

aC = rate of change of the aerodynamic derivative
aE

with respect to the erro-

Appendix C describes the computer programs used in this analysis.

The model properties, test conditions, and aerodynamic derivatives

assumed for the numerical error analysis are as follows:

U = 500 ft/sec w	 = 1,20,	 . . . 30 rad/sec

q = 100 lb/ft2
CI,, =

5.00/rad

3 =10ft2 CD	 =0.02

m = 2.0 slugs CMm = -1.00/rad

c = 1.0 ft Cmm = -4.00 /rad

Iy = 3.0 slug-ft2 G... = -15.0/rad

So = 0.00698 rad CLb = -0.40/rad

KZZ = 20.0 lb/ft CB15 = 1.2/rad

Kee = 5oo ft-lb/rad



4o

These parameters are substituted into equations ( C-1) and ( C-2) to

evaluate the model response Z0, 90, 01 , and 02 as a function of the

tail frequency w. The model response for this example is presented in

Figure 4. The peak responses occur at the damped natural frequencies of

the system.

Errors are now introduced into each term of the response data, and

the aerodynamic derivatives with response errors are calculated using

equations (20) and (21). Appendix C presents equations- (20) and (21) as

equations ( C-3) and (C-4), where

N
' IAJJI 2

J=1

N

B(1,2) = 2 ^ (At
JI
 A^2 + A^1At2)

J=1

N

B( 1 ,3) = 2	 (A* A33 + AJ1AJ3)' 
etc.

J
Y=1

N
_,

A(1,1)
igjl i

 

2

j=1=1

N

A(1 ,2) = 2)( gj*lgj2 + gj1g*j2)
j=1

A( 113) = 2 / (^1g^3 + g^13) etc.
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Based on equation (22), a numerical comparison of the aerodynamic

derivatives, with and without response errors, is used to calculate 6C
aE

and the per cent error. In general, equation (22) is written

CE O = CE=O + 

aC AE1 + 6C A62 + 6C AE+	 aCm Arm
Gel	 6C2	 6`3	 6cm

Considering each of the error functions separately (6E1 10;

AE2 = AE3 . . . = AEm = 0) results in the following expressions for the

rate of charge of the aerodynamic derivatives with respect to the

response errors:

aC _ CE1#0 CE=O	 aC	 CE2{O - CE=O
(23)

6El	AE1	 6E2	 AE  

We can also define

Per cent error = CE 0 ` CE=O x 100	 (24)
CE=O

A numerical calculation of the aerodynamic derivatives with and

without response errors is presented in Table I. Errors ranging in

amplitude from 0 to 5 per cent and in-phase angle of 10 , 20 , and 30 are

presented. The derivatives are obtained numerically by considering an

error in one response function while the others are held constant.

Tables II and III present the calculated data in terms of the

rate of change of the aerodynamic derivatives with respect to response

error and the per cent error in the aerodynamic derivatives, respectively.
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TABLE I.- CALCULATED AERODYNAMIC DERIVATIVES WITH RESPOESE ERROR

t z y CI-m
CLS

Cmm Cenci Cm6 CM5
C^ + C^

error rad
C 

D ra d rad rad rad rad rad

0 5.00 0.02 o.400 -i.00 -4.00 -15.00 1.20 -19.00

1 5.05 -0.03 -o.4o4 -1.00 -3.75 -15.05 1.197 -18.80

2 5.10 -o . 08 -o .4o8 -1. oo -3.42 -15.17 1.194 -18.59

3 5.15 -0.13 0.412 -0.99 -3.01 -15.37 1.191 -18.38

4 5.20 -o.18 0.416 -o.99 -2.54 -15.63 1.185 -18.17

5 5.25 -0.23 0.420 -o.99 -2.00 -15.97 1.182 -17.97

E8/
% error

1 4.95 0.07 o .400 -i .00 -4.17 -15.03 1.215 -19.20

2 4.90 0.12 0.400 -1.o0 -4.26 -15.14 1.230 -19.40

3 4.85 0.17 0.400 -1.00 -4.27 -15.32 1.245 -19.59

4 4.81 0.21 0.400 -1.00 -4.2o -15.58 1.260; -19.78

5 4.76 0.26 o.400 -1.00 -4.o6 -15.91 1.275 -19.97

deg

I r, nn n nn n :nQ n nR IQ nz
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TABLE II.- RATE OF CHANGE OF AERODYNAMIC DERIVATIVES WITH RESPONSE ERROR

laE Z, 	 dC?tr	 6C 	 8Cl.6
,A error ac
	 aE	 aE

1	 5.0 -5.0	 -0.4o

2	 5.0 -5.0	 -0.4o

3	 5.o -5.o	 -0.4o

	

4	 5 .0 -5 .o -o.4o

5	 5.0 -5.0	 -o .4o

DEB,
% error

	

1	 -5.0 5.0	 0

	

2	 -5.0 5.0	 0
	3	 -5.0 5.0	 0

	

4	 -4.8 4.8	 0

	

5	 -4.8 4.8	 o

&41"
deg	

I

	

1	 0	 0.07 0.072

	

2	 0	 0.08 0.073
	3	 0	 0.07 o .o73

deg

	

1	 0

	

2	 0

	

3	 0

86 aE aE I	 aE

0 25.o -5 .0 -0 .30

0 29.0 -8.5 -0.30

0.33 33.0 -12.3 -0.30

0.25 36.5 -15.6 -0.39

0.20 40.0 -19.4 -0.36	 j

. 1 U _ • d(C^.-+Cm)
aE

20.0

20.5
20.7

20.8

20.6

3.56 o .009

7.48 0.009

7.55 o .009

o .o4

0.09

0.13

O -17 . o I	 -3.0 1.5 -2o . o
0 -13.0 -7.0 1.5 -20.0
0 -9.o -10.8 1.5 -19.7

0 -5.o -14.5 1.5 -19.5

0 -1.2 -18.2 1.5 -19.4

o.02 4.96 -4.89 -0.006 0.07

0.02 4.89 -4.81 -0.006 0.08

0.02 4.82 -4.71. -0.003 0.11

-0.08 -0 .073 -0 .o4 -3.53

-0 .o8 -o .o'i 2 -0.05 -7.43

-o-o8  -0.072 -0.04 -7.42



TABLE III.- PER CENT ERROR OF AERODYNAMIC DERIVATIVES

AE2f
% error CLa , CD CLg Cma Cmq Cmg Cma +	 n'

1 '	 1.0 -250 1.0 0 -6.3 0.3 -0.25 -1.1r >

2 2.0 !	 -500 2.0 0 -13.5 1.1 -0.50 -2.2

_ 3 3.0 -750 3.3 -i.o -24.8 2.5 -0.75 -3.3

4 4.o -1000 4.o -1 .o -36.5 4.2 -1.25 -4.4

5 5.0 -1250 5.0 -1.0 -50.0 6.7 -1.50 -5.4
oEef
% error

1 -1.0 250 0 0	 4.3 0.2 1.3 1.1

- 2 -2.0 500 0 0	 6.5 0.9 2 ,5 2.2
_ 3 -3.0 75' 0 0	 6.8 2.1 3.8 3.1

4 -3.8 900 0 0	 5.0 3.9 5.o 4.1

5 -4.8 1200 0 0	 2.0 6.1 6.3 5.1

deg

1 0 350 -18.o -2.0	 -124.o 33.0 -o . o -0.37
2 0 750 -36.o -4.0	 -245.o 64.o -0.75 -0.90

0 1100 -54 .5 -6).0	 ••362.0 94.o -1.00 -1.70
OE ^
deg

1 0 -400 18.3 4.0	 88.0 -24.o 0.75 -0.2.L
2 0 -800 36.0 9.0	 374.o -1oo.0 1.50 -0.95
3 0 '1200 53.8 13.o	 556.0 i -151.0 2.25 -2.10

45
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These Tables are obtained by applying equations (?3) and (24) to the

results presented in Table I. Error interwils are included to establish

the linearity of the functions. Table II is present-d so that equa-

tion (22) can be used to establish the effect of errors in several of

the variables on each aerodynamic derivative.

3.2.2 Results and Discussion

The results given are for a particular example; therefore, they

should not be generalized. Since the dynamics of the problem are

dependent on the system parameters and the test point, it is necessary

that each case be analyzed separately.

(1) Cit^

Referring to Tables I and III, notice that Cy , appears to behave

favorably in the dynamic analysts. That is, C jt, is not significantly

affected by errors. This term is one of the more important derivatives

and is normally measured statically. Numerical values of this derivative,

with errors in response amplitudes, tend to give linear results with error

in the derivative on the same order of magnitude as the error in the

response. Table I shows that errors in the phase angles 01 and

do not affect this derivative.

(2) CD

Referring to Table I, large errors in the drag coefficient are

evident for all values of response error. The rea<<on for this is

apparent from equation (15a). The drag coefficient appears in combination

with CJt, in the form (CI + CD). For most configurations CJ, > > CD,

and as our results show, the dreg coefficient cannot be separated when a

response error is introduced.
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Although the drag coefficient, then, should not be measured using

the dynamic technique, it is still possible to obtain CD statically on

the mount system. If the static equations of equilibrium are written in

the x direction (refer to Fig. 3), the front and rear cables differ in

tension as a function of geometry and model drag in the following

approximate manner:

2T. cos SF, = 2TR cos OR + 
gSCD

hence

2(TF cos OF - TR cos OR)
CD =

qS

Load cells on the front and rear cables provide TF, and TR.

(3) CLg

Referring to Table III, note that amplitude errors affect the

magnitude of CJ,S slightly, ranging from zero to about 5 per cent.

Errors in phase effect this term appreciably. Errors of 30 in either

01 
or 02 result in magnitude errors of over 50 per cent.

The reason for this result is that for conventional airplane

configurations the tail lift is almost negligible. The primary forcing

function obtained from the tail is the aerodynamic moment MA. This

moment is physically generated by the tail lift Z A acting a distance

Lt rearward of the model center of gravity. (L t is the distance

between the tail aerodynamic center and the aircraft center. of gravity.)

Etkin (Ref. 1) shows that the aerodynamic moment can be approx'i— ted by

the equation MA = -IJA .
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Hence

gSc'LIMB -^gSC^S

or

C1=-Cuc

It

For our example It = 3.0 ft since c = 1.0 ft, CMC = 1.21rad, and

CL,= -0.4/rad. We can therefore assume that Cj,, can be determined

from the values obtained for Cmb.

(4) cmS

Referring to Table III, notice that C,,, behaves favorably in

the dynamic analysis. Amplitude errc-s affect the magnitude of CMb

slightly, ranging from near zero to about 6 per cent. Error in phase

angle affects 
CM6
 even less.

(5)

Another of the important derivatives, which is normally measured

statically, appears from Tables I and III to behave quite well in the

dynamic analysis. The effect of amplitude errors on Cm^ L is quite

small. Errors in phase angle affect this term the most, resulting in a

13 per cent error due to an error of 3 0 in 02.

(6) cmm., Cmp (Cmm. + %-)

Tables I and III show that errors in both amplitude and phase

measurements result in extremely large errors when 
CMM

 and CM
6
 are

calculated separately. For the test condition analyzed, errors of over

500 per cent are evident for small errors in phase.
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Notice, however, that the sum of these terms (C,, + C. 14) behaves

quite well for both amplitude and phase errors. Numerical results

presented in Table III show that the sum (Cm, + N ) varies almost linearly

with amplitude errors while phase affects the results a maximum of about

2 per cent. In view of these results, it appears that the sum of

(C% + C*) can be measured accurately In the dynamic analysis, but

unique solutions for each of the derivatives cannot be determined. The

following section will farther interpret this problem.

3.2.3 Comparison of Free-Flight and Two-Cable-Mount Dquations of Motion

In order to fully understand the problems which arise in deter-

mining unique solutions for each of the aerodynamic derivatives, a

comparison of free-flight and mount equations is presented. Greenburg

(Ref. 2) shows that for the free-flight case a linear dependency exists

in the dynamic response, so that the aerodynamic derivatives in the pitch

equation cannot be solved uniquely. Neglecting the drag coefficient CD

the free-flight lift equation (eq. (15a), KZZ = 0) can be written as

follows:

mz + qSC U + gSC 9 = -gSCLSS	 (25)
ib^

Since a = 9 + U, equation (25) can be written as

MUa - mU6 + I(,a. + Its = 0	 (26)
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where

La=qSC14M

Ls = qSCI-0

Similarly the free-flight pitch equation becomes

22
IyU - q2U (C. + C^)8 - gScC..A - q-2 C.6z - gU Cmz = gScC^B

or

IYA - Maa - Maa - M66 = M56	 (27)

Where

MM =q5FCM,

gsc2
MM = 2u C a

gSc2
M8 = —2U Cme

MS = gScCMS

Solving equation (26) for 6 results in

Iaac + 165
8 =	 + ac

mu

9

N
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Substituting this expression into equation (27) results in the following:

IY6 - a (MM + mu - 606, + M8 ) - s t Mg + mU S) = 0	
(2c3 )

Due to the relation expressed in equation (26), equation (28) can be

solved for the following combination of derivatives:

MM 
+ N LM

mu

M + M6 LS
S mu

% + MB

Greenburg (Ref. 2) states that for most conventional configurations this

indeterminacy affects only the separation of the damping derivatives

(C,.. + C,..) becausa they are of the same order of magnitude. For most

configurations the terms McL + MdI'm and Mg + M4 Ls are approximately
mu	 mu

Ma and Ms, respectively, to within 5 per cent. Only if N or Mi

can be determined separately by some other method can the damping

derivatives be separated uniquely.

The equations equivalent to (26) and (27) on the mount system can

be written as follows:

mU6 - mU6 + Itra + I:ZB + KZZz = 0	 (29)
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IYA - MMM - Maa - it A + K'9 8 = Mss	 (30)

Solving equation (29) for 6 results in

9 _ Lc a, + Lgs + KZZz 
+ ac

mu

Substituting this expression for A into equation (30) results in

Y + K888 _ 
a(t" 

+ Me lbL _ 
a(M 

+ ) _ 
Me 

KZZz - s^MS + 
M

B LS = 0eLmU	 mu	 mu )

(31)

Note the similarity in the aerodynamic terms comprising equations (28)

and (31). If the dependency derived in the free-flight case were to

exist in the mount system analysis, the case where exact data are used

would also break down. It has already been demonstrated in Table I that

the mount analysis yields each of the aerodynamic derivatives uniquely

K
when exact response is used. It is the added expression •KZZ

z
 which

MU

allows us to solve for M6 uniquely and, therefore, solve for each of

the aerodynamic derivatives. Hence the mount system restraint KZZ

allows both the vertical translation and pitch equation to be solved

separately for the aerodynamic derivatives Cm, Cam, 
CMG

, Cms , CLS,

and C,,,.

The analysis fails to separate the terms Cm m + CN when an error

is introduced into the response data due to the magnitude of the term

McKZZz For example:
mu
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2
a.(ma+MA) 

q 
U ( C01 . +C 4 A +U

 (
(	 + "'A ) 9 2 iu8°ei02 _ Uz° ei0l^

McKZZz = qSLr2(C,. )KZZz°ei0l

MU	 2U `"A	 mu

c.^z eiS^l

Comparing 22f
 

Cm4 KZZzoe'Ol with %.	 °2	 q^ results in
2mU2	2U

approximately
mz compared to	 For this example KZZ = 20 lb/ft,

m = 2.0 slugs, and w = 1,20,	 30 rad/sec. Hence for a large

range of w, the expression defining 
CMG- 

separately is small compared

to the expression defining (C,,, + CM.), and the introduc tuin-i of an

error into the response eliminates any accuracy in separating the

two terms.

n `



CHAPTER IV

EXPERIMENTAL TECHNIQUE FOR MEASURING AILERON EFFECTIVEt'FSS

AND DAMPING-IN-ROLL STABILITY DERIVATIVES

4.1 Irtroduction

The lateral equations of motion of the two-cable -mount system are

Riven by equations (14c), (14d), and (14e). The problem of determining

each of the aerodynamic derivatives has greatly increased over that of

the longitudinal case due to the added degree of freedom and its asso-

ciated derivatives.

The general approach to measuring the three-degree-of -freedcm

lateral derivatives would be the same as discussed in the previous

chapter. However, Etkin (Ref. 1) states that for many conventional

airplane configurations, the roll equation in free flight can be simpli-

fied and treated as a single degree of freedom. If we assume it is

possible to force the model to behave as a single degree of freedom in

the wind tunnel, equation ( 14d) could be simplified as follows:

2
I	

g2U C
Z -2 I W4+K000=LA
P

Letting LA = gSbC ZS8A results in

I* - ^
2
- C tp - 2toI	 ^ + K ro = gSbC Z BA	(32)
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`1lie aerodynamic derivatives CZ
S 

and C Z appearing in
p

equation (3?) are referred to as the aileron effectiveness and damping-

In-roll stability derivatives, respectively. A brief insight into the

physical nat:xre of the derivatives CZ 
S 

and C Z	io necessary.
p

The primary function of the ailerons is to produce a rolling

motion of the aircraft. As the term implies, aileron effectiveneso is

a measure of the performance of the ailerons in producing this motion.

Phyeically, a differentia]. deflection of the ailerons creates an incre-

mental change in the lift on each wing. Since this lift iv in opposite

directions on each wing, a, rolling moment is produced. However, when

dealing with an elastic airplane, a deflection of the ailerons also

produces a twist of the wings. This induced twist changes the wing lift

in the opposite direction to the lift due to the aileron deflection.

Hence, the moment generated by a control input is the difference between

the moment produced by the ailerons and that induced by wing twist. An

elastic airplane may even experience a phenomenon referred to in the

literature as "aileron reversal," if the moment generated by the wing

twist is larger than that produced by the imposed aileron deflection.

CZp is referred to as the damping-in-roll derivative. In most

configurations only the wing contributes significantly to :' , is de'r-'va-

tive. A rolling moment is generated opposing the rolling motion of an

airplane due to the spanwise angle of attack produced by a roll rate.

The angle of attack varies linearly across the wing, from a value of

Lb at the right wing tip to - Lb at the left wing tip (+0 right



5f^

wing down). The angle-of-attack distribution along both wings generates

a moment which resists the rolling motiozi of the airplane.

It will be shown in this chapter that through the proper selection

of cable-mount parameters, the roll response of the model to a sinusoidal

oscillation of the ailerons can be approximated by a single degree of

freedom. A parametric study of the model and its mount system is pre-

sented to establish a mount configuration which permits the roll response

to be approximated by a sl •.zgle degree of freedom.

Once the single-degree-of-freedom system apn*oach tc the problem

is established, the equation of motion is solved for the aerodynamic

derivatives 
CZS 

and Clp , based on the dynamic response technique

presented in Chapter III. In this case the ailerons are sinusoidally

oscillated through a known frequency range, and the steady-state model

response is monitored.

In order to verify the dynamic technique, experimental resalt:-

are presented for an aeroelastically scaled model of a hlgh-speed ,het

transport that was tested in the wind tunnel to determine 
CZ8 

and C Z .
P

Due to the static nature of 
CZS 

it is possible to measure this deriva-

tive without resorting to a dynamic approach so that a static measure of

CZ
s 

can be found for comparison with the dynamic results. The mount

system used during the static wind-tunnel tests is also unique and will

be described. Since CZP is a dynamic derivative, no experimental

results are available for comparison purposen. A simplified error

analysis to determine the accuracy of the dynamic technique is also

presented.
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4.2 Analytical Aspects

4.2.1 Equations of Motion

The lateral equations of motion on the two -cable-mount system are

given by equations (14c), (14d), and (14e). In order to measure the

aileron effectiveness and damping-in-roll stability derivatives, it is

necessary to show that the model response to a sinusoidal oscillation of

the ailerons can be simplified to a single degree of freedom. If we

assume that an oscillation of the ailerons only generates a forcing

function in roll, then the right-hand side of the lateral equations of

motion can :,e- - -ttten, as a function of time, in the following manner:

L(t) = gSbCZSSAeiat

R(t) = o	 (33)

Y(t) = o

Assuming sinusoidal motion, the steady-state response becomes:

O(t
) = Ooei(at+al)	

*( t) 
= *oei(cct+a2)	 y(t) = yoei(at+a3)

$(t) = i4oei(at+al)	 j(t) = ia*oei(at+a,2,)	 y(t) = iwyoei(Lt+m3)

^(t ) = -W^Ooei(
cLt4a l)	 i(t) = -2*0ei((&4a,2)	 y(t) _ -.2yoei(at+cL3)

The phase angles relating model response to aileron deflection are

al , a2 , and ac3.

Substituting equation (33) and the steady-state response into the

lateral equations of motion results in the following form of the

equations:



Roll:

(doe	 ^	
gSb2ial 

-I	 + KO - icu 2U C I - 2tOI	 )	 iac,2^ + *oe	 IXZG2 + gSbC Za

2
+ ^P^ - icy 

q2U CZ r + 
yoeia3 y - iw Ub 

C Z 
a

= gSbC ib BA
 [KO

(34)

Yaw:

2
0oeialIIXZc^ + *0 _ iw q2U Cnp + ^Voe

i°2
 -IZu? + gSbCna + K**

2
- ico qSb 

Cnr - 
2tVIZc^ + yoeia3 K*y - im qUb Cna = 0

(35)

Si-e translation:

°eial[Kyo - gSCL - iw 2Ub Cy + * ei°^[qSbCyo + Ky*+ icu 2Ub Cy
P 	 ° 	 r

+ yoe^(13 _map + Kyy - iu) U ( Cya - CD) - 2tpayy = 0

(36)
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The simplification of equation (34) as a single degree of freedom

yields,

2
Ooeial -I^ + 

Koo - iw q2U 
C Zp - 2 tOIXuVO = gSbC Z55A 	 (37)

It has been stated previously that in flight the roll equation can be

analyzed in a form similar to equation (37). Since the cable restraints

are a function of mount system geometry and other test parameters, it is

necessary to compare calculated results based on both single degree and

three-degree-of-freedom solutions. Assuming approximate values of the

aerodynamic derivatives, equations (34), (35), and (36) are solved

simultaneously for the roll response as a function of the forcing fre-

quency w. These results are then compared with those for the "single

degree" equation. A parametric study is presented for a numerical

example with physical and mount properties quite siUlar to the model

of the high-speed jet transport tested in the wind tunnel.

4.2.2 Parametric Study of the Model and Its Mount System

Let Mach number = 0.89, q = 225 psf, hence U = 470 ft/sec.

The model physical properties, mount configuration, and assumed aero-

dynamic derivatives) are as follows:

The aerodynamic derivatives given are estimated through informa-

tion supplied by the aircraft manufacturer.



m = 2.18 slugs

IX = 5.25 slug-ft2

IZ = 7 .30 slug-ft2

IXZ = 0

s = 8.94 ft2

b = 8.46 ft

t:	 = 0.35 ft

d	 = 0.30 f+.

OF _ On = 20.0 deg

LF, = LR = 20.0 ft

TF = 161 lb

TR = 140 lb

to =ty =4=0.05

C l = -o .401 /rad
P

C Z	= 0.078/rad
r

C IO = -0.062/rad

Cnp = 0.422/rad

Cnr = -0.124/rad

Cna =
0.117/rad

Cy = 0 .105/rad
P

Cy	= 0.0051/rad
r

Cya = -0.725 /rad

CD = 0.02

cL	 = 0.035

6o

The parametric study will ,.eal with the design of a mount con-

figuration based on the fore and aft pulley separation distances a

and a (Fig. 3), which permits the roll response to be approximated by

a single degree of freedom. The cable restraints for this example are

calculated from the mount restraint equations presented in Chapter II•

Calculated values of the mount restraints Kyy and Koo are 28.5 lb/ft

and 70.6 ft-lb /rad, respectively, since these restraints are not functions

of either a or e. Values of the restraints K*Y and Kam, , as a

function of the parameters a and e, are presented in Figure 5. Due

to the mount symmetry KYo = 1^y = K*0 = Ko* = 0.
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Figure 5.- Cable restraints as a function of fore and aft pulley
separation distances, a and e.
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Using the physical and aerodynamic properties of the example

given, equations (34 ), (35), and (36) are solved simultaneously for

the roll response as a function of the aileron frequency w. Figure 6

presents results obtained for three sets of a and a values and

compares three-degree-of-freedom to single-degree-of-freedom solutions.

Since no value of 
CZ8 

is assumed, the results are presented in terns

of the magnitude 1 -L and al versus aileron forcing frequency w.
CZg15AI

These results should be valid for any nonzero C,s.

All three sets of data presented in Figure 6 agree well with the

single-degree-of-freedom calculations for frequencies above approximately

8 rad/sec. Below this frequency, a peak response around 4 -1/2 rad/sec is

apparent for a = 0, e = 1.75 ft, and a = 0, e = 1.0 ft. For the

case a = 1.2 ft, e = 1.0 ft, this peak response is much less pronounced

and the calculated data compare favorably with the single degree analysis

throughout the frequency range given.

K*Y for the three sets of a and a values (Fig. 5) are as

follows:

KAY - ft-lb/ft

a = 0, e = 1.75	 26.6

a=0, a=1.00	 14.8

a=1.2, a=1.0	 0

Comparing the trend in K*y with the results presented in Figure 6, we

notice that as the magnitude of K*y diminishes, the single degree and

three-degree-of-freedom analysis agree more favorably.



63

300

200

RAC48 I	
Ired 

100

0`-
'0	 4	 8	 12	 16	 20

w, rad/sec

-180

-120

al , deg

- 60

0
0	 4	 8	 12	 16	 20

w, rad/see

Figure 6(a).- Roll response as a function of aileron frequency.
(a=0j a -1.75)
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Figure 6(b).- Roll response as a function of aileron frequency.
(a - 0; e - 1.00)
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Figure 6(c).- Roll response as a function of aileron frequency.
(a - 1.2; e - 1.0)
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These results are more apparent if we look at the homogeneous

solution of the equations of motion to determine the dynamic behavior

of the system. Let L(t) = N(t) = Y (t) = 0. Assume O(t) = ¢oext,

*(t) = *oext , and y(t) = yoext ; where X = r + iro. Hence

O( t ) = TOoe^lt
	

i(t) = X*Oellt
	

y(t) = NyoeNt

0(t) = WooeXt
	

^(t) = A2*OeXt 	 Y(t) = a2 yoeTt

Substituting these terms into equations (34), (35), and (36) results in

three homogeneous algebraic equations in the unknowns 00) *OP yo)

and containing A.

Therefore

00 [All )\2 + Al2A + A13] + *o Cb11?2 + b 12A + b131 + yo ^012T + C13 = 0

00 &2112 + A22a + 
A231 + *o Cb2l) 2 + b 22 + b231 + yo C22T + C231 = 0

Oo CA32
^\ 

+ A331 + *O [b32\ + b 33 + yo CC31?` + C32a + C333 = 0

( 38)
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Setting the determinant of the coefficients of equation ( 38) equal to

zero provides the condition for determining the values of T. This

determinant is known ab the "stability determinant," and its expansion

results in the characteristic equation of the dynamic system. For this

example the characteristic equation is of the form

A? 66 +BX5 +Ca4 +Da3 +E?2 +FT+f'.=0	 (59)

The six roots of this equation establish the dynamic characteristics of

the system. For the example given the solutions of equation ( 39) are as

follows:

a=0, a=1 .75 	 al= -1.50

?^2 = -11.1

a3,?'4=-0.16114.47

X5 ,6 = -2.28 ± i 18.79

a = 0, e = 1.0	 Ni = -1.407

A2 = -11.16

=-0.152 ± 14.15J
115 , X6 = -2.22 ± 1 17.9

a=1.2, a =1.0	 Tl = -1.17

?+2 = -11.17

X3 , N4 = -0.36 ± i 3.6

?'5,N6  - -2.27 ± 1 19.2

{
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Figure 7 presents these results plotted in the complex plane. Since the

complex roots appear in conjugate pairs, only the upper half of the

complex plane is presented. The radial distance from the origin to a

complex root is the undamped natural frequency u,. The angle between

the radial vector and the iw axis is equal to sin-1 tn , where to

is the damping ratio of the model in flight relative to critical damping.

Note in Figure 7 that a lightly damped mode exists at 4.47, 4.15,

and 3.6 rad/sec for the three cases under consideration. Reed and Abbott

iRef. 4) refer to this as the side translation mount mode. (This can be

verified by substituting the roots A 3 , A4 into equation (38) and

solving for the characteristic mode shape.) If we assume the forced

model response at the side translation frequency decreases with increased

damping in this mode, the case where a = 1.2, e = 1.0 would exhibit

the least response. Figure 6 confirms this fact since the response at

the side translation frequency for a = 1.2, e = 1.0 is much less

pronounced. The cable configuration which allows single degree approxi-

mation seems to be one in aich the mount restraint K*y = 0 since this

increases the damping in the side translation mode. Based on this

analysis the model pulley locations were fixed at a = 1.2 ft,

e = 1.0 ft, and the model response to a sinusoidal oscillation of the

ailerons was assumed to behave as a single degree of freedom in roll.

4.2.3 Single-Degree-of-Freedom Solution

Once it has been assumed that the model behaves essentially as a

single degree of freedom in roll, equation (37) can be written in the

form
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i'uq2U CZ - ^ SCI ^)00eial + gSbC
ZS5A = (-1 )6

1?+ Koo)VoeialP

(4o)

One further simplification is desirable in order to measure the aileron

derivative CZ F)and the damping-in-roll derivative CZ
P

. Looking at the

magnitude of the terms q2U C Z and 2^0xwoo in equation (40) , we
p

notice that 
q2U` 

C Zp 
% 2toIo (C Z P^ 0.3 from estimated data).

Therefore, e quation (40) can be written approximately as

2
ice q2U 00eialCZ P + gSb%5A = (-I)&^ + KVO )Voeial

	

(41)

Equation (41) can be solved for C Z and C Z using a least-

squares solution, by measuring the dynamic amplitude Vo and the phase

angle al at N discrete frequencies. Assuming C Z and C Z are
8	 p

independent of frequency, equation (41) becomes

Aj1 C + Aj2CZS = b Zp 

where

AJ1 = g22U C elaljo	 u)=cui

AJ2 = gSbSA

-1	
jAJ3 = C-I^ + K^^)ooeialJU)=cu 	= 1 , 2 ,3,	 N
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From Appendix B

N	 N N -

2 /	 ^ AJ,1	 > ( A*j lAJ 2+A,ilA*J2 ) C lp ) (A*jlbj+AJlbu)

J=l J=lJ/=1

N	 N N

( AjlAj` +A^ lA^ 2 )	 2>^
IA^2I2 Cls (AJ2bJ +AJ2bj)

`)-1	 l 1

Hence

2 N
(gSb2	 2

w_2U	 /

	
(4,) )wi

- g2S208A
N

> ( U00 sin of ) caw	 C/ 2U
J

l
pJ=l j=1

92S2b38p 	
N

2U	 , (4o sin a1 )^w (ySb8A)21Y
CJ

=l
,j Z8

0

N_

-gSbSA	 C( I}2 - Fw)(oo Cos a1)]
,j=1

42)
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4.3 Experimental Rcsults

A 119-size aeroelastically scaled model of a large, subsonic,

multijet cargo airplane was tested in the NASA-Langley transonic

dynamics tunnel. The wind tunnel uses Freon-12 gas as the testing

medium. The speed of sound in Freon-12 is approximately half that of

air. Since many aeroelastic phenomenon are functions of Mach number,

this allows testing to higher Mach numbers at reduced dynamic pressures.

Since C Z, can be measured either statically or dynamically,

test results employing both of these methods will be presented. These

results will then be compared to establish an evaluation of the dynamic

approach. The mount system used during the static tests is also unique

and will be briefly described.

4.3.1 Static Wind-Tunnel Tests

Once the model is designed and constructed, static testing is

fairly straightforward. Grosser (Ref. 3) presents a testing technique

where the model is supported in the wind tunnel on a sting-pylon-spring

mount system. A photograph of the model on this mount support is

presented in Figure 8.

The support consists of a rigid sting which is attached to the

tunnel splitter plate, a pair of pylons which extend from the sting to

within the model fuselage contour, and a set of springs which connect

the fuselage spar to the pylons. The mount allows the model six degrees

of limited freedom. The model is restrained from excessive motion by

stops located on the front and rear pylons. Rolling moments generated

by a deflection of the ailerons are transmitted by a pair of push-pull
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rods extending from the fuselage spar to a strain-gaged beam located in

the sting. Roll control for trim, independent of model control surfaces,

is provided by a remotely controlled rotation of the entire roll

mechanism within the sting.

At selected test points during a run, the ailerons are remotely

deflected. Rolling moments and aileron displacements, measured from the

strain-gaged beam and position indicators on the ailerons, respectively,

are monitored on direct writing recorders. Since rolling moment is

defined as gSbC ZS BA , C ls can be determined from the measured data.

Static values of C Z , determined at the same test conditions as the
s

dynamic tests, will be presented under the comparison of experimental

results.

The static wind-tunnel tests were originally designed to establish

the aileron reversal boundary of the model. For purely informative

purposes the results of this test are presented in Figure 9. Curves

representing the measured reversal boundary (C Z. = 0) and 25 in-lb of

rolling moment/degree of aileron deflection are given as a function of

model dynamic pressure versus Mach number. The two reversal points

measured statically on the cable-mount system will be discussed later.

The dashed line representing the estimated boundary is based on positive

aileron effectiveness measurements approaching reversal. The reversal

boundary could not be attained due to excessive buffeting loads experi-

enced in this region.
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x+.3.2 Dynamic Wind-Tunnel Tests

In order to verify the dynamic technique, the model used in the

previously mentioned static tests was tested dynamically to determine

the derivatives CZ 
s 

and CZ 
P* 

A photograph of the model on the two-

cable mount is presented in Figure 10.

The aileron drive mechanism on the model had to be modified in

order to provide a sinusoidal fixed amplitude deflection. The aileron

drive was modified to consist of a pair of push-pull rods extending

from the aileron pivot to the wing attachment structure, a rotating cam,

and a variable speed ac motor. The aileron frequency is altered remotely

by varying the voltage to the drive motor. A finite torque was required

to overcome friction in the drive system, and therefore limited it to a

minimum sustained frequency of about 0.5 cps. The maximum frequency was

around 4.0 cps. The aileron amplitude could not be altered during a run

since this was set by the eccentric attachment of the push-pull rods on

the cam. The drive mechanism was designed so that the ailerons would

return to zero deflection after the oscillation. The ailerons could also

be statically deflected up to the maximum preset dynamic amplitude. Roll

control was provided remotely by a pair of spring loaded spoiler panels

located inboard on each wing. These panels were opened and closed by

means of a torque tube arrangement driven by an electric motor. Longi-

tudinal control was provided by a remotely controlled horizontal

stabilizer.

Onboard instrumentation included a miniature rate gyro and a

strain-gage position indicator to measure roll rate 	 and aileron
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displacement SA , re:;pectively. A servo accelerometer was included to

measure :t.atic roll angles and provide a level roll reference. Signals

from these instruments were displayed on a direct writing recorder for

visual monitoring and simultaneously recorded o.: magnetic tape for

further nnaly:, is .

The dynamic amplitude is determined by integrating the roll rate

signal. For sinusoidal motion this integration results in ^^ o ^ _ ^ '

Ideally, a direct comparison between the traces 	 and fiA as a

functiun of time is all that is required to determine the phase angle

al . Since the model is essentially free and subjected to tunnel turbu-

lence, signal noise, etc., this procedure is quite time consuming and

subject to added errors. In lieu of this, an electronic sin-cosine

resolver was utilized to determine a l . This instrument is designed to

electronically evaluate the phase angle between two known signals.

Once the dynamic response of the system is known, a value of the

mount restraint KOO is required before solving equation (42) for the

derivatives C ts and C Z
P

. This restraint is calculated based on the

equation presented in Chapter II. Since KW is a function of front

and rear cable tensions (geometric properties are known), miniature load

cells are installed in these cables and at each test point these tensions

are recorded.

The geometric and physical properties of the model and mount are

as follows :l

lA response analysis with measured model properties was run to
establish that the model behaves essentially as a single degree of freedom.
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IX = 2.1E	 slug-ft2

weight = 47.9 lb

s	 = 8.94 ft2

b	 = 8.46 ft

F'A = 0.105 rad

LF, = LR = 23.0 ft

OF = OR = 20 deg

a	 = 1.2 ft

e	 = 1.0 ft

h	 = 0.37 ft

d	 = 0.39 ft

Tests were run at Mach numbers 0.675 and 0.75 over a range of

dynamic pressures from 115 psf to the reversal boundary. At each

dynamic pressure, tunnel conditions were held constant while the ailerons

were oscillated over a rang, of frequencies. At each discrete frequency,

roll rate, aileron deflection, cable tensions, and the tunnel parameters

were recorded.

Theoretically, the model should have no roll response at the

reversal boundary. Such is not the case, since this assumption is

based on a single-degree-of-freedom analysis. For the areas Yhere the

ailerons are quite effective (C l. is a function of Mach number and

dynamic pressure), the assumption that N(t) = Y(t) = 0 is realiztic.

As the ailerons become less effective so does the forcing function L(t).

In the region near reversal the servo accelerometer was used.
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The reversal dynamic pressure was estimated at the point where no roll

was evident for a static deflection of the ailerons. The dynamic pressure

was then increased slightly above this point, and reversal was noted both

on the accelerometer and visually.

Table N presents the measured model response data as a function

of Mach number and dynamic pressure over a range of aileron forcing

functions. The dynamic amplitude 00 , the dynamic phase angle ml,

(sin-cosine resolver), the cable-mount tensions, and the tunnel test

parameters at each frequency are substituted into equation (42) to deter-

mine the aerodynamic derivatives. Figure 11 presents the calculated

aerodynamic derivatives as a function of Mach number and dynamic pressure.

4.3.2.1 Error Analysis, In order to establish the effect of

measured response errors on the accuracy of the calculated derivatives,

a simpl numerical error analysis is included. Test data obtained at

Mach number 0.675 are used in the analysis. At each of the test dynamic

pressures a response error was introduced iii the following form:

0EJO - " E=O + EO ' " E=0

CGl	= CL'	 + CL1
E#O	 E=O	 E

where

E
=0 = measured dynamic amplitude

EO	 = incremental error

0E
#O = measured dynamic amplitude with error



TABLE 7V.- MEASURED MODEL ROLL RESPONSE

W,
rad/sec

00,	 al,
rad	 deg

M Q,
lb/ft2

U,
fusee

I TF ,
lb

TR,
lb

26.4 o .oll	 -i59 o.675 115 350 130 l;x)
22.8 0.013	 -150
?1.4 o .ol6	 -147
18.3 0.019	 -136
16.6 0.021	 -117
13.8 0.022	 -112
10.8 0.029	 -101
8.9 0.038	 -99
6.7 0.051	 -86
4.3 0.072	 -66

25.5 o.olo	 -158 e.675 130 350 138 loo
22.1 0.013	 -147
20.9 o .ol4	 -143
17.7 o.ol8	 -116
15.7 o .ol8	 -lo'?
13.8 0.021	 -111
11.6 0.024	 -1_o9
9.3 0.031	 -99
5.1 0.055	 72
3.9 o .o64	 -6,21
2.9 0.076	 -53

26.6 o.0088	 -159 0.675 150 350 144 loo
24.4 0.0103	 -151
22.9 ).012	 -147
21.6 0.013	 -138
x_9.4 o . ol5	 -116
16.7 o.ol4	 -107
14.8 o.o14	 -114
11.6 0.020	 -103
8.8 o .o25	 -97
7.4 0.031	 -92
6.6 0.036	 -85
4.1 0.o52	 -69

62



TABLE IV.-  Concluded

W,

rad/sec
00,
rp d

al,
deg M @,

lb/ft2
U,

ft/sec
TF,
lb

TR,
lb

26.9 o.009 -162 0.75 117 397 128 loo
24.8 0.011 -157
22.9 0.013 -151
21.5 o.u14 -150
19.4 0.016 -139
16.7 o.ol8 -124
14.7 0.020 -124
12.0 0.025 -117
9.3 0.033 -98
7.0 0.042 -92
3.5 0.076 -55

26.6 o.008 -16o 0.75 135 397 138 loo
24.2 0.009 -154
22.4 0.011 -151
?1.4 0.012 -147
19.4 0.014 -138
16.7 o.o14 -119
14.3 0.015 -120
11.5 0.023 -104
8.6 o .o29 -100
7.3 0.032 -89
5.7 o.046 -82
3.4 o .o64 -56

23.9 o.008 -153 0.75 152 397 145 loo
22.9 o.009 -151
21.7 0.009 -147
20.0 o .olo -132
17.7 0.011 -121
15.7 0.012 -115
13.8 0.012 -118
11.2 0.016 -104
8.7 0.021 -93
7.0 0.026 -85
6.2 0.030 -83
5.0 o .o4o -69
3.9 o.o43 -63

d3
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Figure 11.- Dynamic wind-tunnel experimental results.
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al	= oeasured phase angle
f=o

al	_ error in al
E

a140 = measured phase angle with error

and

E0 = 0.01, 0.02, 0.03, 0.04, 0.05

al = 10 , 20 , 20 , 40 , 50
E

Equation (42) is solved for the aerodynamic derivatives based on

the response measurements with errors. These results are presented in

Table V. Amplitude errors of the form E are normally associated with

instrument calibration errors. Numerical results show that Ev does

not affect 
CZP 

and appears to have a one to one effect on CZ8.

al
E 

is associated with errors due to the sin-cosine resolver. Phase

angles determined with this equipment were repeated several times at

each frequency, and the repeatability was normally within 1 0 to 30.

Numerical results show that phase errors affect C Z slightly and CZ
S	 p

about 2 per cent per degree of error depending on the dynamic pressure.

In general, this simplified analysis shows that realistic values of

response errors (EO < 0.05, ml < 30 ) predict results within about
E

5 per cent accuracy.

4 .3.3 Comparison of Experimental Results

A comparison of the aileron derivative C Z , measured both
s

statically and dynamically, is presented in Figure 12. Results are

presented in terms of 
CZS 

versus model dynamic pressures at Mach



FABLE V.- ROLL RESPONSE ERROR ANALYSIS

^`
gf CZp/rad C ZS /rad ae 8' C Zp/rad C lb /rad M p

o -0.349 o.0166 o -0.349 0.0166 0.675 115

1.0 -0.3+9 o .o168 1.0 -0.356 o .o168

2.0 -0-349 0.0169 2.0

3.0 -o.349 0.0171 3.0 -0.369 0.0171

4 .0 -o. ?49 0.0173 4.0 -0.375 0.0173

5.0 -0 .349 0.0174 5.o -0.381 0.0174

o -0.310 0.0123 0 -0.310 0.0123 0.675 130

1.0 -0.310 0.0124 1.0 -0 . 313 0.0123

2.0 -0.310 0.0125 2.0 -0.316 0.0124

3.o -0.310 0.0126 3.o -0.318 0.0124

4 .o -0.310 0.0128 4.o -0.319 0.0124

5.0 -0.310 0.0129 5.0 -0.321 0.0124

0 -0.294 o .oi-o4 o -0.294 o .olo4 0.675 150

1.0 -0.294 o.olo5 1.0 -0.300 0.0105

2.0 -0.294 o .0106 2.0 -0.306 0 .olo6

3.0 -0.294 0.0107 3.0 -0.311 0.0107

4.0 -0.294 o.olo8 4.o -0.317 0.01o8

5.0 -0.294 o.olo9 5.0 -0.321 0.0109

86



Mach number = .675

87
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Figure 12.- Comparison of static and dynamic experimental results.
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numbers 0.675 and 0.75. Note the close correlation between static and

dynamic results at all but the higher dynamic pressures. These results

tend to confirm the assumption made earlier: that as the rAlerone

become less effective, the dynamic motion can no longer be approximated

by a single-degree-of-freedom solution. Since C Z cannot be measured
P

statically, experimental data are not available for a comparison of the

damping-in-roll derivative.

The reversal boundary was also determined statically at Mach

numbers 0.675 and 0.75 using the two-cable mount. These results are

presented in Figure 9 to give comparison of static testing procedures

using both the sting-pylon-spring and two-cable mounts. Note the

extremely close comparison of results between the two mounts for deter-

mining reversal dynamic pressure.



CHAPTER V

SUMMARY AND CONCLUSIONS

A new wind-tunnel technique for measuring various aerodynamic

derivatives of an aeroelastic model has been presented. The technique

applies free-flight procedures to a model flown in the wind tunnel on

the two-cable-mount system. The complete equations of motion have been

derived in terms of model properties, mount geometry, and aerodynamic

derivatives.

In the case of the longitudinal equations of motion, it is theo-

retically possible to uniquely determine each of the aerodynamic deriva-

tives by measuring the model response to a steady-state sinusoidal

oscillation of the horizontal tail. In the determination of the deriva-

tives from model test data a least-squares procedure is used to solve

the set of redundant equations generated. A numerical example has shown

that the derivatives can be determined uniquely only if exe-t response

data are analyzed. The derivatives CL., C% , Cms , and (Cmci + Cm19}

can be predicted with significant accuracy using this technique. An

alternate static method to measure CD has been presented. The assump-

Cmsc
tion that C

Lb 	 Lt
=- 	 provides an estimate for C^. A comparison

between flight and wind-tunnel equations shows that, due to the added

mount system restraints, the equations can be solved for each of the

derivatives uniquely. However, introduction of an error into the model

response causes the solution to become ill-conditioned resulting in

equations quite similar to those used for determining the aerodynamic

derivatives in free flight.

89
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In the laterll equations of motion a basic free-flight assumption

of single-degree-of-freedcm response in roll allows the experimental

verification of the dynamic avproach to derivative measurements. ThF.-

model In the wind tunnel can be forced to behave in a similar fashion

by the proper selection of mount system parameters. The derivatives

C ls and CZ
P 

can be determined by measuring the dynamic model response

to a steady-state sinusoidal oscillation of the ailerons. Experimental

results obtained on a 1/19-size aeroelastically scaled model, tested

both statically and dynamically in the wind tunnel to determine CZS,

verifies the application of this new testing procedure.

It has been shown that by means of a rather simple two-cable-mount

system the dynamic characteristics of an aircraft can be closely simu-

lated, allowing the use of free-flight techniques to estimate the aero-

dynamic derivatives of an aircraft in the early design stages. Application

of the analysis presented in this thesis should assist in developing

testing techniques required to satisfy specific research programs.
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APPENDIX A

MOUNT RESTRAINT INFLUENCE COEFFICIENTS

Vertical Translation

As shown in Figure 3 the cable configuration analyzed has a

vertical forward cable and horizontal rear cable. The linearized mount

stiffness due to small perturbations about a trim point will be deter-

mined. A diagram of the forward pulley configuration is shown in

sketch (1A).

TV

TF

Sketch (1A)
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The Z force at each pulley due to a z displacement is

Zl = -TF sin (OF + pal ) + TF

Z2 = TF sin(OF + p02 ) - TF
	 (A-1)

Since all displacements are small perturbations about the trim point

Z1 + Z2 = TF (A02 - '^'al)cos OF	 (A-2)

AO, and A02 are composed of angular changes due to displacements in

the x and z directions.

x displacement:

x1

xl < < Lw

From the geometry

xl sin 
OF sin(aF + pal)zo =

sin(aF val - OF)

xl sin OF sin(aF + pal)zo =
sin(Aa1)



s

z0

zl

For small perturbations
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sin L01 = Apl

sin(OF + ppl ) _
zo

LF

hence,

x
Opl

 = I'F 
sin OF	 (A-3)

z displacement:

x

zl < < z0

From the geometry

zo + zl = 
x sin OF sin(OF + API)

sin pal

and

cos OF = i sin 
OF1



For small perturbations
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sin(OF + 'Wl) _ z
o + zl

IF

hence

A01 = l cos OF

Therefore, the total Gal due to an x and z displacement is

xl sin OF + zl cos OF
x,31	IF

In a similar manner it can be shown that

x2 sin OF - z2 cos OF
602 =
	 IF

(A-4)

(A-5)

(A-6)

Pulley movements due to z and 8 displacement (sketch(lA)) are as

follows:

xl = -hO	 zl = z - eA

(A-7)
X2 = hA	 z2 = z - e6

Substituting equations (A-5), (A-6), and (A-7) into (A-2) gives

Z1 + Z2 = - IF
F 

cos OF, [h6 sin OF + z cos PF - e8 cos pFj

(A-8)

.
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x

2TR
z3 + z4 = - -(z + ae ) (A-11)

A diagram of the rear pulleys is given in sketch (2A)

97

it
z

Sketch (2A)

The vertical force at each of the rear pulleys due to a z displacement

is

- T^	 TRz4z3 =	 LR	 z4 =- LR

The rear pulley displacements are (sketch (2A))

z3 =z +ae	 z4 =z+ae

Therefore,

(A-9)

(A-10)
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The sum of the vertical forces at each of the pulleys ((A-11) and (A-8))

due to a z and a displacement is

z  = Z1 + Z2 + Z3 + Z4

or

T
ZC = -2z	 cos20F +	 + 2g 

[LF 
h cos OF sin OF

+ TF e COS20F - a 
IR	

(A-12)

Since 6 = 8 + 8 t , we can express equation (A-12) in stiffness-influence

coefficient form as

z  = ZCo - KZZz - KZ8 8	 (A-13)

Where

KZZ = 2 
rLEF 

cos2OF + LR
	 (A-14)

KZ8 = 2Ia ! -h a cos
I  	

OF sin OF - e a cos2pF,	 (A-15)

ZCo = -KgZet	 (A-16)

Pitch

The forces producing moments about the center of gravity from the

forward cable are (sketch (lA))t
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Z1 = -TF sin(OF + A01)

Z2 = TF sin(OF + A02)

(A-17)
Xl = TF cos(OF 

+ API)
	 _

X2 = TF cos(^ F + A02)

For a positive z, 6 displacement, the moment produced by the forward

cable is

M,F = -Zl (e - he) - Z2 (e + h8) - Xl(h + e8) + X2(h - e8)

(A-18)

Substituting equations (A-5), (A-6), (A-7), and (A-17) into equa-

tion (A-18) and simplifying gives

(e cos OF + h sin OF ) 2MC = 2TF: -h sin OF - e cos OF
F	 T?

+ 2TFz [e 	 + h sin OF cos OF]	 (A-19)
LF

The forces producing moments about the center of gravity from the rear

cable are (sketch (2A)):
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TR z
z=- 

LR
3 

TRz4Z4 = - LR

(A-20)

X3 = -TR cos 0 

X4 = -TR cos 0 

The pulley displacements due to a positive z, 9 displacement are

z3=z4=z +ae

(A-21)
x3=x4=a

The moment about the center of gravity produced by the rear cable is

MC R = z3a + z4a + X3ae + x4ae
	

(A-22)

Substituting (A-20), (A-21), into (A-22) and simplifying, results in

MCR = 2e - aLTR - aTR cos pR	 -+ 2z ^TR(A-23)
R 

The total moment

1`3C = `'F + MCR
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Hence,

a2
LB

= 2A - a2T - aTR cos OR - TF h sin OF + e cos 0., + ^(e cos pF

+ h sin OF) 2 + 2z - aTR + a(e cos2 5F + h sin OF cos OF)
LR	 LF

(A-24)

As before, 8 = 8 + 8t and we can express equation (A-24) in stiffness-

influence coefficient form as

MC = MCo - KdZz - K88 8	 (A-25)

Where

MCo = -K888t

2aTR 2TF	 2
K8Z = LR - LF (e cos OF + h sin 0F, cos OF)

2a2TR
Ke a

 = .a 
+ 2aTR cos OR

+ 2TF h sin OF + e cos (3F

+ LF(e cos OF + h sin OF ) 2

Note that for small perturbation theory KZ8 = KBZ. Equations (A-13)

and (A-25) completely define the mount system restraints in terms of
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known and measured quantities. Therefore, it has been shown that in the

longitudinal case the cable restraints can be defined as follows:

ZC = ZCo - KZZz - KZ98

MC = MCo - KeZz - Kgge

where

KZZ = 2TLLF1 cos2pF + —
LRR

KZe = 2
LR
 - LF cos OF sin OF - LF cos2pF

2
KA0 = 

2aa2TR 
+ 2aTR cos OR + 2TF h sin OF + e cos OF

+ 1(e cos OF + h sin OF ) 2
LF

ZCo = -KZeAt

MCo = -Keeet

In a similar manner (Ref. 4) the lateral restraints can be derived in

the form



LC = -Koyy - NOO - Ko**

NC = -K*yy - K*00 - K***

YC = -Kyyy - KyOO - Ky**
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Where

KyY = ^ + ^ cos2aR

Kyo=0

Lea L
Ky* = 'T - LR cos OR (d sin OR + a cos OR)

Koy = Kyo = 0

Koo = 2hTF(t + sin pF + 2dTr \j + sin OR

K0* = 0

fc,o=Key, =0

K*y = Ky*

Y%** - 2eTF (4 + cos OF) + 2TR a cos OR + d sin OR

+ L(a cos or . d sin OR) 
2

LR



APPENDIX B

LEAST-SQUARES SOLUTION OF REDUNDANT LINEAR EQUATIONS

General Solution

Given at set of N equations in M unknowns

Yl = A11X1 + Al2X2 + A13X3 + . . . AlMXM

Y2 = A21X1 + A22X2 + A^3X3 + A2mXm	
(B-1)

YN = ANlXl + AN2X2 + AMX3 + ANMXM N > M

Equations (B-1) can be written in the form

M_

Yi	 ) Aim m	 i = 1 ,20,	 N	 (B-2)
J
m=1

We wish to solve for (Xl , X2 , . . . Xm) given (Yi , i = 1,2, . . . N;

Aim , m = 1,2, . . . M). Choose (Xl , X2 , . . . Xm ) so that the sum of

the squares of the deviations is as small as possible. Where

M

	

Vi =	 (Aimxm - Yi)
m=1

is the deviation. Therefore,

2
N	 NIM

(V,)2
	 AiMXM - Yi

i=1	 i=1 m=1

loo

k
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is to be minimized. Hence,

aE _ 0
aXk

where

k = 1 ,2 ,3, . . . M

N M	
a

	

6 E 2	 (A1mXm - Yi ) ^a^	 Aim = 0_ 	a
i=1 n=1

Therefore,

	

N M_	 N
axm 	-	 axm

Aimxm aXk Aim =	 Yi aXk Aim

	

i 1 m=1	 i=1

aXn

	

1	 m = k
aXk 

	= 0	 m j k

Hence

N 

L

M	 N

 AimXm Aik = 	YiAik	 (B-3)

i-1 m=1	 1=1

Equation (B-3) results in M equations which are solved simultaneously

for X1 , X21 X3 , . . . Xm.



Complex Solution

If the Y's and A. ' s are complex, define

lo6

N	 N' M	 2

E	 ( vi I 
2	

AimXM - Yi

i=1	 i=1 m=1

where

Yi = Yireal + iYiimag.

Aim - Aimreal + ^imimag .

also, the complex conjugates of these quantities are

	

Y*=Y	 -iY	i 	 ireal	 iimag.

Aim - Aimreal - iAimimag.

Therefore, equation ( B-4) is written

	

N M	 M

E
 _ >

/ AimXm - Yi ) AJmXm - Yi

	

JJ	 J
i=1 a=l	 m=1

which is to be minimized. Therefore,

	

6E = 0	 k = 1,2,3. . . . M
6Xk

	

6Xm 0	 m = k
Xk

	

0	 m J k

(B-4)
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Hence,

N	 M	 M	 N

!^	 > AimY-n Alk + > AimXm Aik = > (YiAik + YiAik)

	

i=1 m=1	 m=1	 i=1

(B-5)

Equation (B-5) results in M real equations which are solved for

Xl I X21 X3 , • . . XM .

Example; M = 3

k = 1

N

C Ai1X1 + Al2X2 + A13X3 )Ail + (Ai1X1 + Al2X2 + A13X3)Ail]
i=1

N

(YiAil + 
YiAll )J

i=1

N	 N	 N
2X1 > IAi1^2 + X2 	 (AilAi2 + AilAi2 ) + X3	 (AilAi3 + Ai1Ai3)

i 1	 i=1	 i 1

N_

> (Y
i
*Ai). + YiAi1 )J

i=1
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APPENDIX C

COMPUTER PROGRAMS

Model Response

Assuming sinusoidal motion in the form z(t) = Zoe i(,at+o1),

8(t) = 00el((ut+02) equations (17a) and (17b) can be written.

Vertical translation:

zo el^l (-c?m + KZZ) + iw U (C"a 4 -D) + 0 e102gSC^= -gSCLSSo

Pitch:

—2
zoei0l g2U2 Cma - iw is-fe C^ + go ei02 IIy - gScC^ + K8A

gSc2
- icu 

2U 
( Cm. + 

Cm . 
) = y -CmsE)

The equations above can be written in the form

z0eiV'[Al + iBl] + 
8oei02(A2] _ Fo	 (C-1)

Z.e '01 [A3 + iB3] + goe'02 [ 4 + iB4] = Mo	 (C-2)



Where
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Al = -u?m + KZZ A q$e2^ C_
3 

=	 .
2U2	 _m

Bl = cu U (C" + CD )

A2 = gSCLM

Fo = -qSCLbS0

Applying Kramer's rule results in

B	 -^ qSc
3 =	 U

A4 = -Iya^ - gSeC. + %G

2B4 _ _ qSc	
)w	

(
2U C

ma + Cmg

Mc. = q5C-Cms50

Fo A2

io	 Mo A4 + iB4
zoe 1 =

Dr+iDi

Al + iBl Fo

8 eiV2 = A
3 + iB3 . 0

°	 Dr+iDi

Where

Dr = ALAI+ - A2A3 - B1B,4

Di = AlBI, + A4Bl - A2B3
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Each of the terms zoei0l and 90ei02 can then be divided into the

real and imaginary parts zo, 90 , ^l , and 02 . Al , A` , A3 , A4,

B11 B3 , and B4 are defined in the program listing. Once the values

of the aerodynamic derivatives, model physical properties, and test

conditions are selected equations (C-1) and (C-2) are solved simultaneously

to determine the dynamic response zo , 8o, 01 , and ¢2 as a function

of w. A sample program listing is presented.

Definition of terms

M	 - mass of model, slugs

KZZ	 - vertical spring restraint, lb/ft

Q	 - dynamic pressure, psf

S	 - wing area, ft2

U	 - wind-tunnel flow velocity, ft/sec

C	 - mean-aerodynamic chord, ft

IY	 - pitch inertia, slug-ft2

CIA	 - lift curve slope 
CLCL 

/rad

DC	 - drag coefficient CD

CMADOT - Cm.. /rad

CMA	 - C,,/rad

CMQ	 - C 6 /rad

FO	 - -gSCI,550, lb

MO	 - q TFCm
5

50 , ft-lb

N	 - number of frequencies at which response is calculated

WWII) - values of w to be used to calculate response



L' 2

Al	 - Al

A2	 - A2, etc.

Error Analysis

Equations (20) and (21) are programed in the following manner:

B(1,1)	 B(1,2)	 B(1,3) Cim B(1,4)

B (2 , 1 )	B ( 2 ,2 )	 B( 2 ,3) CD = B(2,4) (C-3)

B(3, 1 )	 B(3, 2 )	 B(3,3) CI,5 B(3,4)

Where

B(1,1) _ > I AJJ 1
2 = (9S)2 ,N 80 + 

U 
2 + 2 

U 
08o ei n(02 - 11	 (1120)J=l	 J=1	 I 

co--a)j

N

B(1,2) _ ^ (A*
jlAJ2 + A

JlAJ2
) = 2(U 

)2 ^., ( u

J=l	 J=1

+ CM000 sin(02 - 01)

N	 N

B(1,3) _ 	 (A* A + A A* ) - 2g2S2S -^ 0 cos 0	 wzo sinJ1 J3 J1 J3 —	 o> 0	 2 u	 1
J=1	 J=l	 `°°`A'J

N	

)NB(1,4) _
	

(bj*AJ1 + bJA*jlj - 2gS L, (map - KZZ)z0A0 cos(^2
 - 010cuncu

J 1	 J=1
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A(1,1) A ( 1 , 2 ) A(1,3)

A ( 2 , 1 ) A ( 2 , 2 ) A(2,3)

A (3, 1 ) A (3, 2 ) A(3,3)

A(4,1) A(4,2) A(4,3)

A(1,4) q%-% A(1,5)

A ( 2 ) 4 ) Cra.. A(2,5)

A(3,4)
Cma. A(3,5)

A (4 ,4 ) cmg A(405)

(c-4)

Where

N	 2 N

A(1,1)	
/ I 

gjll2	
7,	 ) 14j2

N	 2 N2

A ( 1 , 2 ) _ > (^19J2 + gjlg*j2 ) = 2 

L 2	

[92
o

J=1 	J =1

+ w9Uzo
 sin(02 - 01)	

(wj)2

w=wi

N

(	 .—	
28282-3 

N

A 1,3) _	 ('^* g + g g* ) _	 > PO z
,^ 1 ^ 3	 ^j l ,^ 3	 2U2	

ccs(O - 0—,	 o 0	 1	 2 w=w
J=1 	 =1

N	
2 2 2-3	 N

A(1,+) = ' (g
j*
lg,4 + gjlgj*4) _ - 9 2UC so ) 1020 sin021

l
, l	 w=wi

N

A ( 1 ,5) _ >J (h*gel + h^ g^l ) = 0

J=1
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The program generates the coefficients A(i,,j), B(i,,j) based on

the test conditions, model properties, and model dynamic response. The

effect of an error in response is introduced by considering

Z0 	= z0 	(1 + DEZ)C,()E

=0

00	 = 00	 (1 + pE0)

	

E^0	 E=0

	

l E#0	 1E=0 
+ AE„( 

1

	

240	 2E=0
 + AE0 

2

Next, the program solves equations (C-3) and (C-4) separRtely for the

value of each aerodynamic derivative with response errors included.

(The equations are solved by a library subroutine called MATRIX.)

A sample program listing is presented.

Definition of terms:

U	 - wind-tunnel flow velocity, fps

Q	 - dynamic pressure, psf

S	 - wing area, ft 

M	 - model mass, slugs

C	 - mean aerodynamic chord, ft

IY	 - pitch inertia, slug-ft2

KZZ	 - vertical mount restraint, lb/ft,

KTT	 - pitch mount restraint Kg O , ft-l.b/rad

DELT	 - tail angle 501 rad

ZE	 - DEZ
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TE	 - AC 

PIE	 - AEOl

P2E	 - AE
2

K - program code	 0 new test case

1 new error function

2 stop

N - number of response data to be analyzed

W(I) - valises of tail frequency

W(I) - values of response	 zo

THETAO(I) - ~slues of response	 Ao

PHI1(I) - values of phase angle wl

PHI2(I) - values of phase angle 02

MATRIX - solves equations ( C -3) and (C-4)



MODEL RESPONCE PROGRAM

DIMENSION 114(100)
REAL KZZ,KTT,tl,110,1Y

1 FORMAM OF8.0)
READ (5,1) tt, KZZ, Q, S, IJ, C, I Y, KTT, CLA, CD, ^t1ADOT, Ct1A, Ct1Q
PRINT 2

2 FORMAT(2511 I ABEL	 !AIL STOP 340//)
READ(5,1) FO,t10
PRINT 3,F0,t10

3 FORt1AT(/51i FO -F10.4/511 110 -F10.4//)
PRINT 4

4 FORMAT(1611 OMEGA - RAD/SEC,8X,711Z0 - FT,10X,1211THETAO - RAD,
16X,10HPHIl - DEG,6X,10IIPH12 - DEG//)

5 FORl1AT(14)
6 FORIIAT(10F8.2)

READ(5,5)N
READ(5,6) (1111(1 ), I n 1,N)
I-0

7 1-1+1
N-11 ( I )
A1-KZ7.-11*11**2
R1=(CLA+CD)*W*Qi :/IJ
A2-Q*S*CL
A3-Q*S*C**2*11**2*C7tAD0T/2.OiU**2
113=-1'1*Q*S*r*CHA/U
44-- I Y*11**2+KTT-Q*S*C*CtIA
34--(CtiADOT+Ch1Q)*II*Q*S*C**2/2. /tJ
DR=Al*A4-A2*A3-81.84
DI-Al*R4+A4*B1-A2*B3
ZO nSQRT((DR*(FO*A4-tt0*A2)+DI*FO*04)**2+(DR*FO*R4-DI*(FO*A4-t10*A2))
1**2)/:DR**2+DI**2)
PIJI1=57.295780*ATAN2(DR*FO*84-D1*(FO*A4-110*A2),Dk*(FO*A4-t10*A2)+DI

1*FO*B4)
TtiETAO-SQRT((DR* (t10*Al-FO*A3)+D 1 * (I10*B1-FO*R3)) * • *2+ ;DR* (t10*01-FO*

1B3)-DI*(t10*A1-FO*A3;)**2)/(DR* -2+DI**2)
PH 12 ,, 57.295780*ATAN2 (VR* (t!0*83.- F0*R3) - D I * (MO*A1-FO*A3 ), DR * ( t10*Al-

1F0*A3)+DI*(t10*R1-F0*R3))
PRINT 8, W, 7.0, T11ETA0, Pill 1, Pill 2

8 FORIIAY(4XF6.2,8X4E18.8)
PUNCII 9,11, Z0, TIIETAO, PII 11, PH 12

9 FORMAr(5F.15.8)
I F (1 . LT. N) f?O TO 7
STOP
END
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ERROR ANALYSIS PROGRAti

DIMBSION tl(50),7.0(50),THETAO(SO),P1111(50),PF112(50)
DIMENSION A(4,5),R(3,4)
REAL KZ7.,KTT,tI,IY
FORMAT(51`15.8)
FORMAT(30X,421! LONG. LEAST SQUARES SOLUTION - TAIL ItJPIJT////)
FORMAT(511	 ll-F10.4,4X,511	 Q-F10.4,4X,SH	 S-F10.4,4X,511	 11-Flo.

14,4X,511	 C n F1n.4//5H IY=F10.4,4X,511 KZZ-Fln.4,4X,5H KTT-F1n.4,4X
2, 5HnEI.T-F1O. ti, 4X, 511 ZF-F10.4//51J TE n F1O.4,4X, 5H P1E-F10.4, 4X, 511
3P2F-Fln.4////)

FORMAT(14)
FORI'IAT(5F15. R )
PRINT 3

20 REAn(5,5)K
IF(K.M.0) GO TO 14
IF(K.FQ.1) GO TO 16
1F(K.F(1.2) GO TO 1500

14 REAn(5,5)11
no 15 I-1,N

15 REAn(5,6) 110 ),ZO(1 ),THETA00 ),Pilll(I ),PHI20 )
16 REAn(5,1) ll,Q,S,t1,C,IY,K7.Z,KTT,DELT,ZF.,TF,PIE,P2E

PRINT 4,1),Q,S,t1,C,IY,KZZ,KTY,nELT,7.E,TE,PIE,P2E
IJ-1
J n 30

11 n0101 11-1,4
no lnl J1-1,5

101 A(I1,J1)-O.
DO 102 I1-1,3
DO 102 J1-1,4

102 11(11,JU-0.
PRINT 9,N,J

9 FORMAT011 N-l2,6X,2HJ-12///)
DO 100 ImN,J
Z0(I)-(1.0+ZE)*Z0(1)
THETAO M- (1.0+TE)*THETAO(I)
PHl1(I)-P1E+PH!1(1)
PH12M-P2E+PHl2M
A(1,1)-A(1,1)+(1.1(1)*THFTAO(I))**2
A(1,2)-A(1,2)+(THETAO(I)**2+tJ(I)*THETAO(1)*ZO(I)/ll*Sltl((PH12(I)-PH

111(1))/57.2959))*11(1)**2
A(1,3)-A(1,3)+W(I)**2*THETAO(I)*ZO(I)*COS((PNI1(I)-PH12(I))/57.295

111)
A(1,4)-A(1,4)+11(1)*TIiETAO(I)*SltJ(PH12(1 )/57.2958)
A(2,2) nA( 2,2)+(THFTAO(I)**2+(:J(I)*ZO(I)/(l)**7.+2.0*TIIETAO(I)*ZO(1)*

1M  )/ll*SIN( (Pill 20 )-PHI 10 ))/57.2958))*t)(I )**2
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IN, A(2,4)-A(2,4)+t!(1 )*THETAO(1 )*SIN(PH12(I )/57.2958)+11(1 )**2*7.0(1)/t)*
F`' 1COS(Pilll(1)/57.2958)

A(2,5)-A(2,5)+(IY*t1(l)**2-KTT)*t1(1)**2*ZO(1)*THETAO(1)/tJ*COS((PH12
1(1)- PHII(l))/57.2959)
A(3,3)-A(3, 3)+THETAO(i)**2+(t!(l)*ZO(I)/U)**2+2.0*THETAO(1)*ZO(1)*

1d(1)/U*SIN((PH12(1)-PHI1(1))/57.2958)
A(3,4)-A(3,4)+THETAO(I;*COS(PH12(1 )/57.2958)-I1(1)*ZO(1)/tJ*Sltd(PHI1

1(1)/57.2958)
A(3,5)-A(3,5)+(IY*11(1)**2-KTT)*(THETAO(I)**2+t1(l)*7.0(I)*THrTAO(1)/

111*SIN((PH12(1)-PH11(1))/57.2958))
A(4,4)-A(4,4)+(Q*S*C*DELT)**2
A(4,5)-A(4,5)+(IY*11(l)**2-KTT)*TIIETAO(I)*COS(PH12(1)/57.2958)
R(1,1)-R(1,1)+TIIETAO(1)**2+(11(1)*ZO(I)/U)**2+2.0*N(I)*THETAO(1)*

1ZO(1)/tl*SI N((PtII 2(I)-Plli l (I) )/57.2958)
R(1,2)-R(1,2)+11(l)**2*ZO(l)**2/11+11(1)*THETAO(1)*ZO(i)*Sltl((PH12(I)

1- PHIl(I))/57.2958)
-" B(1,3)-B(1,3)+THETAO(I)*COS(PH12(1)/57.2958)-11(1)*1'0(1)/tJ*SlD!(PHil

1(1)/57.2958)
R(1,4)=R(1,4)+(tl*N(I)**2-KZZ)*ZO(I)*THETAO(I)*COS((PH12(1)-PHI1(I)

1)/57.2958)
R(2,2)-R(2,2)+(1•!(I)*7.0(1 ))**2
R(2,3)-R(2,3)+t!(1)*ZO(1)*SIN(PHI1(I)/57.2958)

- B(3,3)-R(3,3)+(Q*S*DELT)**2
8( 3,4)-B( 3,4)+(tl*I1(1)**2-KZZ)*ZO(i)*COS(PHil(I )/57.2958)
ZO(1)=ZO(i)/(1.0+ZE)
THETAO(1)-THETAO(1)/(1.0+TE)

`; PHI 1(1 Ii-Pill 1(1 )-PIE
` 100	 PH12(l)-PH12(1)-P2E

A(1,1)-A(1,1)*(Q*S*C**2/2.0/U)**2
A(1,2)=A(1,2)*(Q*S*C**2/2.0/t))**2
A(1,3)=A(1,3)*(Q**2*S**2*C**3/2.0/U**2)
A(1,4)=A(1,4)*(-Q**2*S**2*C** 3 DELT/2.0/1))
A(2,1)=A(1,2)
A(2,2)-A(2,2)*(Q*S*C**2/2.0/())**2

- A(2,4)-A(2,4)*(-Q**2*S**2*C**3*DELT/2.0/1))
--" A(2,5)-A(2,5)*Q*S*C**2/2.0/t)

A(3,1)-A(1,3)
A(3,3)-A(3,3)*(Q*S*C)**2= A(3,4)-A(3,4)*(Q*S*C)**2*DELT
A(3,5)-A(3,5)*(-Q*S*C)

Ew A(4,1)-A(1,4)
-= A(4,2)-A(2,,4)

A(4,3)-A(3,4)
A(4,5)-A(4,5)*(-Q*S*C*DELT)

R(1,2)=R(1,2)*((I*S)**2/t)
B(1,3)-R(1,3)*(+Q*S)**2*DELT
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8(1,4)=B(1,4)*Q*S
8(2,1)=8(1,2)
B(2,2)=B(2,2)*(Q*S/U)**2
B(2,3)=B(2,3)*(-Q*S)**2*DELT/U
B(3,1)=B(1,3)
8(3,2)=B(2,3)
B(3,4)=B(3,4)*(Q*S*DELT)
PRINT 400

400 FORh1AT(//9H A MATRIX//)
PRINT 8,((A(I1,J1),J1 n1,5),11=1,4)

8 FORMAT(5E16.8)
PRINT 401

401 FORMAT(//9H B MATRIX//)
PRINT 10,((B(I1,J1),J1=1,4),11=1,3)

10 FORMAT(4E16.8)
CALL 14ATRIX(10,4,5,0,A,4,DETERM)
CALL t4ATRIX(10,3,4,0,B,3,DETERM)
PRINT 7,A(1,5),A(2,5),A(3,5),A(4,5),B(1,4),B(2,4),8(3,4)

7 FORHAMH CMQ=F10.4//8H CNADOT=F10.4//5H CMA=F10.4//7H CMDEL=F10.4
1//5H CLA=F10.4//4H CD-F10.4//7H CLDEL=F10.4///)
IF(J.GE.30) GO TO 20

1500 STOP
END
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