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ABSTRACT

A new wind-tunnel technique for measuring various aerodynamic
derivatives of an aeroelastic model is presented. The technique applies
free-flight procedures to a model flown in the wind tunnel on the two-
cable-mount system. The complete equations of motion are presented.

In the case of longitudinal motion, it is theoretically possible
to uniquely determine each of the aerodynamic derivatives by measuring
the model response to a steady-state sinusoidal oscillation of the
horizontel tail. A comparison between free-flight and wind-turnel equa-
tions shows that, due to the added mount system restraints, the equa-
tions can be solved for each deriwative uniquely. However, introduction
of an error into the model response investigated caused the solution to
become ill-conditioned, resulting in equations similar to those used for
determining the derivatives in free flight.

In the lateral equations of motion, a basic free-flight assump-
tion of single-degree-of-freedom response in roll allows the experimental
verification of the dynamic approach to derivative measurements. Experi-
mental results obtained on an aeroelastically scaled model, tested both

statically and dynamically in the wind tunnel, verify the application

of this new testing procedure.
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CHAPTER I

INTRODUCTION

In the study of aircraft stability and control a knowledge of the
aerodynamic characteristics of the aircraft is of basic importance.

The aerodynamic characteristics of a flexible airplane are difficult to
measure or predict analytically, especially at transonic speeds. The
purpose of this thesis is to present a new wind-tunnel testing technique
for the measurement of certain aircraft aerodynamic characteristics
knewn as the aerodynamic stability derivatives. An aerodynamic
stability derivative indicates the rate of change of a force or moment
acting on an airplane with the motion or variable causing the force or
moment .

Structural components of an aircraft are often flexible enough to
be considered as nomrigid. That is, such aeroelastic phenomena as
flutter, divergence, and control surface effectiveness must be investi-
gated. Tt 1s also realized that structural flexibility may have
appreciable influence on the aerodynamic derivatives and thereby affect
the overall flying qualities of the aircraft. Aerodynamic considerations
of structural flexibility occurring in the transonic speed region can be
especially difficult since no dependable serodynamic theories are
available. Conseguently, the necessity for measuring the aerodynamic
derivatives of a flexible aircraft is apparent.

Within recent years a mount system has been developed (Ref. &)

vhich permits the "free-flight" behavior of an aircraft to be simulated




in the wind tunnel. This mount system, referred to as the two-cable
mount, is shown schematically in Figure 1 (p. 7 ). The model is held
by two mutually perpendicular cables passing through pulleys in the
fuselage and attached to the tunnel walls. The cables are kept under
tension by stretching a soft spring in the rear cable. Remotely
operated trim controls ;::>§!!géged on the model. The mount system was
originally designed for the testigzia(‘aeroelastic effects such as
flutter. Since the equat{ons governing motion on the mount system are
quite similar to those of flight, it was soon realized that the mount
offers a potential for measuring aerodynamic derivatives of a flexible
model in the wind tunnel.

The equations governing model behavior in the wind tunnel are
essentially the free-flight equations modified by the addition of mount
system restraints. It is therefore possible to apply test techniques
similar to those presently used to obtain free.flight data. The tech-
nigque selected for investigation involves measuring the model response
to a sinusoidal steady-state excitation provided by the model control
surfaces.

The equations governing model motion on the two-cable-mount system
are derived in terms of model mass properties, linearized mount
restraints, and unknown aerodynamic derivatives. Since fore and aft
motion is not provided by the mount configuration analyzed, the
equations of motion are presented in five degrees of freedom. The

equations are simplified by separating them into two independent groups.



The longitudinal equations'include vertical translation and pitching
motions. The lateral equations include side translation, roll, and
yawing motions. Each of these sets of equations 1s treated separately.

A technique for measuring the longitudinal serodynamic deriva-
tives is presented. The longitudinal equations are expressed in two
degrees of freedom. A sinusoidal steady-state forcing function generated
by the horizontal tail is introduced into the equations of motion. A
steady-state sinusoidal response is assumed, and the resultant equations
are expanded in terms of measurable model response and the unknown
stability derivatives. It is assumed that the derivatives are indepen-
dent of frequency; therefore, the equations of motion are wvalid at each
discrete excitation frequency. From the model response measurements at
several frequencies, a set of redundant equations is generated which
can be solved for the unknown derivatives. A least-squares solution is
used to obtain the derivatives from the set of redundant equations.

Since no experimental data are available for longitudinal motion,
a numerical example is given to determine the effect of measurement
errors on the derivatives. Equations for the two-cable mount show that
it is theoretically possible to separate the results into uniquely
determined stability derivatives. Greenburg (Ref. 2) states that results
obtained by the dynamic technique from free-flight measurements appear as
linear combinations of the aerodynamic derivatives caused by a dependency
on the aircraft response. A comparison between flight and wind-tunnel
equations shows that the mount system restraints allow separation of

the unknown derivatives. In practice, however, the magnitude of this




restraint term is overshadowed by small errors in response measurements,
which result in an ill-conditioned problem when solving for each of the
derivatives uniquely.

The problem of determining each of the aerodynamic derivatives
appearing in the lateral equations is more complex than that of the
longitudinal case because of the added degree of freedom and its asso-
clated derivatives. However, Etkin (Ref. 1) states that for many
conventional airplane configurations the roll equation in flight can be
simplified and treated as a single degree of freedom.

In order to verify the basic dynemic approach to derivative
measurements, an experimental technique for measuring aileron effective-
ness and damping-in-roll stability derivatives is presented. Modified
flight techniques are applied to the wind-tunnel tests. The experimental
technique involves the measurement of model response to a sinusoidal
steady-state forcing function generated by the allerons. In order to
satisfy free-flight requirements (single degree-of-freedom response), a
parametric study of the two-cable-mount system was run in an effort to
force the model to behave, essentially, as & single degree of freedom
in roll. If the aerodynamic derivatives are independent of frequency,
the roll equation is valid at each discrete aileron frequency. Measuring
the model response as a function of alleron frequency generates a set of
redundant equations which are solved for the unknown derivatives. In
this manner both the alleron effectiveness (Cls) and damping-in-roll

derivative (C,_) are determined.
Ip
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Experimental results are presented for a 1/19-size aerocelastic
scaled model of a large, subsonic, multijet cargo airplane. Experimental
results are obtained dynamically, as described, to determine Czs and
Czp and statically to determine Czs. A brief description of the static
mount and test procedure is given. A comparison between static and
dynamic tests shows good agreement within the basic assumptions made.

Based on these results, the application of flight techniques to
scaled models flown in the wind tunnel on the two-cable mount offers a
potential for making quantitative measurements of the effect of flexi-
bility on aircraft stabllity derivatives. This new testing procedure
offers the ailrcraft designer early estimates of the stability and control

characteristics of future aircraft configurations.



CHAPTER II
EQUATIONS OF MOTION

2.1 Introduction

In this Chapter the equations of motion governing model behavior
on the two-cable-mount system are developed. Cable restraints are
presented as stiffness influence coefficients. The assumption of small
perturbations from trimmed flight makes the equations of motion linear
and allows them to be separated into longitudinal and lateral degrees of
freedom.

The mount configuration shown schematically in Figure 1 is
analyzed. The model is held by two cable loops; the upstream cable is
in the vertical plane, and the downstream cable in the horizontal plane.
A soft spring in the rear cable keeps the system under tension. The x,
Y, z axes form a fixed right-hand coordinate system with its origin at
the model center of gravity. The x axis is directed upstream in the
tunnel, and the 2z axis is in the direction of gravity. The equations
of motion are limited to five degrees of rigid-body freedom since fore
and aft motion is not provided by the mount configuration analyzed.

Assuming positive displacements as shown in Figure 1, the dynamic
equations of motion can be written as follows:

Vertical translation:

Summation of forces in the 2z direction

Zy + 2o + mg = m¥ (1a)




'I‘R Adjustment

Figure l.- Two-cable-mount system.




Pitch:

Summation of moments about the y axis

My + Mo = I8

Side translation:

Summation of forces in the y direction
Tt Yo =y

Roll:

Summation of moments about the x axis

Ly + I = I - Igp¥

Yaw:

Summation of moments about the z axis
N, + Ng = Ly = I8
where

vertical translation of model center of gravity

[« ]
L)

rotation about y axis

lateral translation of model center of gravity

<
n

@ =

v = rotation about 2z axis

rotation about x axis

(1b)

(1e)

(14)

(1e)
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and

L,M,N are moments about the x, y, 2z axes, respectively

Z,Y are forces along the z and y axes, respectively

The subscripts A refer to aerodynamic forces and moments; the
subscripte C, to forces and moments generated by the mount restraints.

Etkin (Ref. 1) shows through the use of small perturbation theory
and other assumptions that the complete set of eguatione of motion in
flight can be separated into two independent groups. These two groups
are referred to as the longitudinal and lateral equations of motion.
Tr.e equations for longitudinal motion include fore and aft motion,
vertical translation, and pitch. The equations for lateral motion
include side translation, roll, and yaw. The basic longitudinal and
lateral equations of motion for the two-cable-mount system will be

presented in the following sections.

2.2 Derivation of BEquatfons of Motion
2.2.1 Aerodynamic Force Components
2.2.1.1 Longitudinal Forces.- Lift and drag forces (L and D)
are defined to have directions normal and parallel, respectively, to the

relative wind vector G: as shown in Figure 2. We have the following:

Q=0 + = for 2<<U
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vhere
V = relative wind vector of the ailrplane
Vo = wind vector along x axis
U = wind-tunnel flow velocity
84 = pitch angle for trimmed flight
8 = pitch angle perturbation about trim

Vertical translation:

Referring to Figure 2, the sum of the aerodynamic forces in

the 2z direction results in
Zy = =L cos(a - 8) - D sin(a - 8)
Since it is assumed that 2z < < U, then
Zy = -L - D(a - 8) (2)

The aerodynamic forces are normally expressed in terms of thelr coeffi-

cients

L”QSCL

D = q5Cp

The nondimensional coefficients, CL and CD’ represent the 1ift and
drag generated on an airplane for a given dynamic pressure q and

representative wing area S. (Dynanic pressure q is defined as

q = % oiP, vhere p 1is the testing medium density.)




Equation (2) can be written as

Zy = -qs{%L + Cp %] (3)

Making the basic assumption that the 1ift coefficient C;, isa
linear function of angle of attack a and tail angle 5, we can

express C; as a Taylor series about the trim point 6,. Therefore,

\\)CL BCL
Cp = Cp + == Ax + —=AB
L™ "o " 3 3
where
CLD = 1ift coefficient at trim 0y
M = o (angle of attack perturbation)
A5 = & (tail angle perturbation)t
Let

ac
3, _
x

Therefore, equation (3) can be written as

181511 convention used 1s +% 1is a trailing edge up which
generates & negative 1ift.
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or
= l i C il 4
Z, = A - gS Clu(9+ )+ D + 7 ()

where

on trim aerodynamic forces

ZA = —qSCLSG (h)

Pitching motion:

The aerodynamic pitching moment is normally expressed as

My = qScCy (5a)

Cm is a nondimensional coefficient representing the momernt generated
for a given dynamic pressure, wing area, and a representative length =©.
(€ is the mean aerodynamic chord.l) Seckel (Ref. 5) shows that the

aerodynamic moment can be expressed in a Taylor series expansion about

Bt as
. MA=MAO+%M+%$A&+%SA&+%§A& (5b)

1The mean aerodynamic chord is defined by the formula

b/2
% f Czdy where C 1s the local chord, b 1is the span, S 1is8
(o)

the wind area, and y 1s the lateral coordinate.
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static trim condition

a, angle-of-attack pertﬁrbation

= d, rate of angle-of-attack perturbation

8, rate of pitch-angle perturbation

BB.E-EO:»Z

5, tail-angle perturbation

Substituting equation (5a) into (5b) results in,

OCp oCp OCy : OCqp
M, =M, +qS¢|l—a+—a+—0+—25 6)
A= T TR Y 3% 3% (
In order to handle the aerodynamic terms more conveniently, it is
common practice to nondimensionalize the aerodynamic derivatives in the

following manner:

By F|F
&

T Om @
" 20 foe| 20 m
a(ﬁ)
g T Ny 3T

Substituting the preceding terms into equation (6) and expanding the

expressions results in

cearid R
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MA=MA°+qs‘5[c%e+%%+%c%§+%(%+cné)é]+iA
(7)

M, = qS%C, 5 (Ta)

2.2.1.2 lateral Forces.- The lateral aerodynamics are determined
in a manner similar to that in which the longitudinal aerodynamics are

derived. The lateral aerodynamic equations can be written as follows

(Ref. 4):
LA = quCl
N, = aSbC,
Yp = asSCy
vhere

C; = rolling-moment coefficient

Q
[

yawing-moment coefficient

side-force coefficient

(@]
n

The representative length for the lateral equations is the wing span b,

Ho

The angle of sideslip B~ is defined as - y. The lateral aerodynamic

U
equations can now be written as follows:

Ly = c;Sb(czia % + czp %3 ¢ - cth * 0y ;TJ 6) + T, (8)




(10)

aseCy, By

= gSbC

>==
[

<] Rudder fixed
s

YA = QSbC SA
YaA )

54 = aileron angle perturbation

The expressions for L, Ny, and Y, are simplified forms corresponding
to a fixed rudder configuration which is utilized in wind-tunnel testing

procedure. The aerodynamic derivatives are nondimensionalized as

follows:
oC oC oc oc oC
% - 3’1 2ua(_3b) 26 Cp ¥ "2 b) 20 i
\ay 2U
ac = C E-c—n--cb—- acn = = C EE.L acn .-b—vc
) 8 3 a2vuy(gb) 2u P ¥ auy v r
2u 2U
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% . ¢ .2 % b Xy.2 % b
dp B o 2Ua(@) 2u Yp LY 2Ua( b) 2y Ir
2 2u
oc oc, oC
3, ~ i, 3, M, 3, I8,

2.2.2 Mount Restraint Force Components

The two-cable-mount configuration used during this investigation
is presented in Figure 3. The linearized cable restraint forces for the

longitudinal degrees of freedom are derived in Appendix A. Bjuations
are developed to determine the longitudinal spring constants in terms

of mount system geometry, tension, etc. The iongitudinal and lateral

cable restraint forces can be expressed as follows:

Zg = Zg, = Kggb = Kypz (11s)
Mg = Mg, = Kggz - Kgg8 (110)
Ic = Kyyy - Kgg¥ - Kgy¥ (110)
No = “Kyyy - Ky - Ky (124)

Yo = ~Kyyy - Kw = KyyV¥ (11e)

v M s il

A I e
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where Ky J is the spring constant relating a force or moment in mode 1
due to a displacement in mode J.

For the configuration under investigation (Appendix A) the stiff-
ness influence coefficients are as follows:

longitudinal stiffness influence coefficients

Kpy = 2:[—2 cosaﬂF + -Tlg]

Kze- :%-%hcos%sinﬂp-%eco@ﬁ{]

"
n

Lo, = “Kze0t

Koz = Kzg
2 TR [

Keesea. L—R+2aTRcoa ﬁR+2TFfsinBF+ecosBF

- E ]
1 2 i
+ 7=(e cos Bp + h sin Bp)
Iy -
Lateral stiffness influence coefficients

ICYY=2-TI§+2-'I;-2-00325R

Kyg = O




Kwaeke-Qgcos BR(dsinBR+acos BR)

Kgy = Xy = ©

Kgp = 2hTF(£; + sin aF) + 2dTR(£% + 8in BR)

Kgy = ©
Kyg = Kgy = O
Kyy = Byy

KW = 2eTF(fF- + cos BF) + 2TRE cos Bp + d sin Br
1 2
+ -L—R(e cos By + 4 sin BR)]

2.2.3 Complete BEguations of Motion
Having developed the aerodynamic and mount forces, eguations (4),
(7), (8), (9) (1), (1la) through (lle) are substituted into

equations (la) through (le) resulting in the following equations of

motion:




Vertical translation:

Z

*ZAO"‘S[EL.,,(‘“E)*CD%]*ZCO - Kpg® - Kypz + mg = ni

>Nl

Pitch:

My + My, * qSEE?hP + Cp_ % + ;% O % + g%(cm& + Cmé)é]

+ M, - Koz? - Kogb = I8

Side translation:

y b .
Y, + 48 Ecyﬂ - CD)ﬁ +Cf + c},p G ¢ - CyB* + cyr

&l

/
- Kyy = Ky - Ky ¥ = o
Roll:

EA*‘!S"[CzB%*CzP%a'CzB**Clrz%’;]'Kdy - Kyg¥

- Kgy¥ = I - I

21

(12a)

(12pb)

(12¢)

(124)
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Yaw:
i +C LA d -C.y+C -
v " Cnp 55 ng¥ * Cn, 5 ¥| - K - Kygh
- Kpy¥ = Ig¥ - Il
(12e)

The longitudinal equations can be simplified further by considering the
@g=0=2=2=%=0; 8=8,.

static trim condition et. At 8¢ let

Therefore,
SC; 8.+ 2, + +mg =0
=a5Cpe%% * Zp, * ¢
Static trim equations

95CCagB0 + Mo, * M,
The dynamic longitudinal equations of motion for small perturbations

about the trim point 64 become the following:

Vertical translation:
z) + Cp é] Kpg = Kppz = (13a)

ZA - qS[%Lh(g +5

Pitch:
(Cg, + Cagl® | - Koz - Kggo = Iyd
(13b)

o
CHN‘
o

c"d

z
64‘

+ch'[ e+cmcIL
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The equations of motion are linear second-order differential
equations with constant coéfficients. The analysis does not include
the dynamic properties of the mount itself such as cable inertia and
pulley damping. A simplified approach is to neglect cable inertia and
add viscous damping terms proportional to displacement rates in each
mode. The terms Cyz, Cgb, Cy¥, c,,&, and c¢6 are added to each of

the equations of motion, respectively. Where

K
Cy, = 2Lpmayy g, = ",Zn‘z'
Co = 289 Ty%e e = %ﬂ
Syy
Cy = 2ymayy oy =\ 3
Ky
% = oyl WL
C¢ B 2§¢IX‘W “W B V Iy

The damping factors §,, &5, &y, g*, and §¢ are estimated for the
pulley configuration being investigated. Substituting these terms into
equations (12c), (12d), (12e), (13a), (13b), and rearranging, results in

the following equations:



2k

Vertical translation:

mZ + E-!UE(CIu +Cp) + ngm"‘ZZ]i + Kygz + (KZe + qSCLa)B = EA
(1ka)

Pitch:

32
IY'e' - [q—z—;—(cma + Cmé) - QQBIY“EO:]é + (l(ee - qS'ECma)e

2
‘:}; Cugi - 55 Cp +Rozz =Fy  (Lbb)

Side translation:

ay - [%%-(cyﬁ - cp) - ecymw]i + Kyyy - 57 Oy § + (Kyg - ascy)d

Sb . —
- %U— Cer + (QSCyB + Kyy )V = Yy

(1ke)

Roll:

- (5 oy - gl - 5 - 5

+ (quCZB + KWN - 9% Clafr + K¢Yy = I’A

(14a)
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Yaw:
. Sb® . asb ., .
+ - 1.4 gsp? c g+ =N
KVYN ) vAPT Np KW¢¢ A

(1ke)

BEquations (1llka) through (1l4e) completely describe, within the
framework of the assumptions made, both the longitudinal and lateral
motion of the model in the wind tunnel. The equations are expressed
in terms of model mass properties, tunnel test conditions, mount

properties, and aerodynamic derivatives.




CHAPTER III

TECHNIQUE FOR MEASURING LONGITUDINAL

AERODYNAMIC DERIVATIVES

The equations of motion governing model behavior in the wind
tunnel are quite similar to the free-flight equations modified by the
addition of mount system constraints. Hence, it is possible to apply
test techniques similar to those used to obtain aerodynamic derivatives
from free-flight tests. The technique selected involves measuring the
dynamic response of the model to a sinusoidal excitation. In this
thesis, the excitation is provided by a sinusoidal movement of the
horizontal tail. Greenburg (Ref. 2) presents this technique for the

free-flight case.

3.1 Derivation
For simplicity, it is assumed the pulley damping and cross-
coupled mount stiffnesses in equstions (1llta) and (14b) are zero (i.e.,

Ce = CZ = KBZ = KZa = 0). The equations of motion become

mZ + gUﬁ(cIu + Cplz + Kypz + qsclue = EA (15a)
. qSEe . qS'62 .
I - (G + ) + (Koo - 95°0e,)0 - 25 Cgl

- iay (150)

26
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. In order to provide a dynamic forcing function, let the tail
deflection be b = Soeium. A sinusoidal deflection of the tail will

provide translation and pitch forcing functions of the form:

Zp(t)= -qschsacei‘*’t (16a)

M) (t) = qSTCpBoel ™ (16b)

Substitution of the forcing functions in the form Z,(t), My (t)

into equations (15a) and (15b) results in,

mZ + %f-’(cl(JL + Cplz + Kypz + qsclue= -qscIGsoei“" (17a)
. Iy-é_qsc(cma cme)gqp.(xee-qs-cma)e-ﬂcmaz
qSE:' . {at

- 5 Cmg? = 95CCmgBoe (17v)

For sinusoidal motion, the steady-state response becomes:

z zoei(at+¢1) g = eoei(“¢+¢2)
z = azoei(ut+¢l) 9 = 1a90e1(“x+¢2)
= -uPzge(wt+fl) § = ~aPogel(wt+)
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¢1 and ¢2 are the phase angles between tail and model displacements.
Substituting the response functions into f17a) and (17b) results in the
following equations:

Vertical translation:
CLq<qSGOei¢2 + 1w %-S- zoei¢1) + Cp (iw 2U§ zoei¢l)
+C, (+g56.) = (meP - Kyp)z efL (18a)
Ig' 9%/ = K722,

Pitch:

2 2
Cm |- 3sc iaﬂoei¢2 + Cp, |-10 B eoei¢2 = a?zoei¢1
2U a au 2u2

+ cmm[:-qSEe‘,em‘2 - iw SVE zoei¢1] + cmaE-QSE&OJ

= (1yf - Kbe)eoei¢2

(18b)

If the aerodynamic derivatives Clu,’ Cps CLG’ Cme', Cmd, C"’u,’

and Gm6 are assumed to be independent of frequency, each of the equa-
tions of motion can be used to generate a set of redundant equations
which can be solved, using a least-squares method of solution (refer to
Appendix B) for each of the aerodynamic derivatives. The least-squares

method of solution presented in Appendix B is a mathematical procedure
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for solving a set of redundant equations. Eguation (18a) can be expressed

as a function of frequency in the following form:

igo as i¢1 s 19
C%ESO € + iw— T + Cpliw T N + CL5 EQSGOJ

= [(m“? - l(Zz)zoeidl]
w=y
J=1,23, ...N
(19a)

8or 20> ¢1, and ¢2 are measured from model response as a function of

the tail frequency . Similarly, equation (18b) can be written as
2
gse 1go qSEe 1go it
Cme[' =5 e + Oy [-10 55— 0oe +2U2 Fzge
(.lFCDJ

+ Cm, -qSEeoe:l'¢2 - 1w % zoeidl] + Cmg [:-qSESOJ
w=w
J

et

= [(zye? - Kee)eoei¢2]
=4

3J=1,2,3 ...N

(190)
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Equation for vertical translation:

Equation (19a) can be rewritten in the form,

AJICLOL + AJQCD + AJBCLG = bd (19¢)

where

Aj = a8 Eoewe + 1w -ZUE e1¢1]
GF(DJ
QS i
Ajp = 1 F@“oe ¢l]
AJ3 =+q850
by = [(me? - Kzz)zoei¢l] J=1,23, ...N
urE

“

Applying a least-squares solution to equation (19c¢c) results
in the following (Appendix B):

N

N N - -
2 : 1 [
3=1 3=1 =1
N N 5 N.
Z (Af18 52+ A51A%) 22 Jagel Z (A%phy3+ Agoh¥s) [ [Cp |=
3=l 3=l jal
N N N 5
Z (A543 Ay A%5) Z (A5 +AghYs) 2 Z |45 Cre|
| J=1 J=1 =1 |

l""Complex conjugate of the term (defined in Appendix B).
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p— -

(b%A41 + byA%;)

[\/Iz

C
]
o]

(bjAs2 + DyAYp)

[~ y=

Ca
0
[

(bSAJj + byhs) (20)

L=

5 | )

Substituting the expressions for A,jl’ A,je’ AJB’ and b'J
into (20) results in three simultaneous equations which are solved for
Cltz,’ CD, and CLS' The algebraic expressions necessary to calculate

the aerodynamic derivatives are presented in terms of measured response

data.
H“ N uz 2 20z
> lA,jl'2 = (98)? |:e§ + ( Uo) Uo 2 sin(¢, - ¢l)]
J:i J:i ey
l - (qS)2 l 5
Z; ‘AJel = v 2_, (azo)cu-wJ
J=1 J=1
N
> 'AJ3'2 = (gs8,)2N
3ol
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X, 2 L 2
ZJ (A31A55 + Ay AY,) = (qj‘) [‘“‘J’ + a9 2z sin(g, - ¢1’]
=1

J=1 | @9

X, N

= 2q2 Lo
Z, (A:’*]_AJ5 Jl .13) 2q 8260 [e cos ¢2 5 sin ¢1:]
=]l

J J=1 UFCDJ
. 2q 528 Y,
_“ 0

), (Kighys * Ayphi) = ), bz otn MW
J=1 J=1
N
) (3Ay +Bgany) = 268 ) [(me? - k)20, cos(@, - 4y)]
J=1 J=1 w=ay
N

(b;Ade + bJAJz) =0
J=1

[(mu.? Ky7)2, cos ¢1J

e

N
24 (%A, + boYS) = 2088,

[
[
(]
Cn
J
[

Bquation for pitching motion:

Bquation (19b) can be rewritten in the form,

3,31°m9- + gdecmd + g‘ﬁcma, + g'ju(':m6 = hJ (194)
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where
QSC i
gy = [‘“9 dz]
_ . gse? g, Pz g
8J2"HEJ‘E“90° -5t
w=w
J
. g | 1420 igy
ng = -qS'El:e e + — 5
w=wJ
&y = =q5¢8,

= ((1ye? - Kee)eoemejwwd J=1,23,...N

Applying a least-squares solution to equation (19d) results

in the following:




-

=
LAY ﬁ‘ 3 r
1=f 1=( 1=f WL
Q) N_i.m__ rA 2 ("a<Fs . "Fa<ls) rA ("a2ls . "F52la) rA ("atls . "Falls) rA
[ N [
gt g o ¢ o 5 (S =
Ty (| F5F + "5€h5) A m_n w_ .Nm (F57g nqwm*mv A (Fatfy , € 3'ls) ¢
F I N F
1=f T=f = Wq
)| ¢ mwmﬂm . i.mmmwv A Anmmwﬂw . nﬁwmmmv A u_.w_ Am Ammwa.w + C £9) A
X X w
T=f T=f = 1=f
Qu, ("atls , l5ils) A (5aTfs . <Fatls) A (2kaTfa 4 2faTls) A N_i.m_ Am
L JL " N H b J
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-

N_I
), (e + nyehy)

(hjg ;o + 1y83,)

L

Coie
1l
P

D~ =

(h3eys + hye)s)

[
]
ot

L

(h3gyy + hyefy) (21)

Coe
1l
-

Substituting the expressions for ng, 332’ 335, gjh’ and hJ into
(21) results in four simultaneous equations which are solved for Cmg »
qqi, qu, and CmS' The algebraic expressions necessary to calculate

the aerodynamic derivatives are presented in terms of measured response

data.

[ )=
N3
=
[Ab)
[}
o
%
)=
X
o
&
£

J 2\? 3 ur, 2 200200

- ~ SE -— .

Vel () ) [0 (B Bt (a
=1




[~ =

[ =Y
U]
—

,'L'_\/lz

>~ =

[
(1]
—

[~ =

Cne
1l
[

i

3=1

nghle = (qS?BO)EN

(85185, * &5,8)0) =

(31855 * €518)5) =

aeq

2020w

g

u

)2

U

51n(¢2 = ¢1 )J

QFU.)J
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2 X
P - o%o 2
2(2U) >_, [90 t—y sinld, - ¢1)] ey
3=1 >=dy
o3 N,
2q-S-¢
_%Ue_ >_‘ [uﬁeozo cos(@; - ¢2)Ja)=w
J=1
2q282?:'380 &
Ty >_, @90 sin ¢£«ij
J=1
0
N
29252838, \° [ ]
by sin @o + cos @
2y Z °
J=l O.F(DJ
N
2q232325° >_' [e,) cos ¢y - %—Q sin ¢l]
J=1 =y
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N

>-J (nfgy; + hyely) = O

41

. 2qs?2 -

2J (h38J2 + hJ832) = :Uz 24 [KIYA? - Kbe)“?zoeo cos(@o - ¢li]aﬁaﬁ
=1 31

N

weolo

_ sin(g, - ¢1)]

N
(hygys + nygss) = 2085 ) | (1 - 1) |6F +

i~

GF(DJ

=

"~

T

N
(Wep, + nyal) = 2050, ) [(1yf - Kq)e, cos 8]
w=w
J=l J

The aerodynamic derivatives are determined by solving
equations (20) and (21). The data required are obtained from wizd-
tunnel tgsts.

At a test point (tunnel conditions fixed) the horizontal tail
surface 1s oscillated at a known amplitucde through a range of frequencies.
At each discrete frequency = ay (J =1,2,3, . . . N; N> 4) the model
rotion is monitored to determine z,, 6, ¢1, and ¢2. Cable tensions
are monltored at each test point to calculate mount stiffnesses from the
equations presented in Appendix A. The data collected at N different
frequencies are used to e/mluate the algebralc terms which comprise

equations (20) and (21). Bach equation is then solved for the associated

aerodynamic derivatives.




5.2 Error Analysis
3.2.1 Prror Aualysis Computation

An error analysis is provided to determine the accuracy with which
the model response z,, 65, @1, and @o needs to be measured in order
to obtain meaningful results. A numerical error analysis is presented to
determine the error in the calculated aerodynamic derivatives due to an
error in measuring model response. Since no experimental data are aveil-
able, a set of amplitudes and phase angles is obtained by solving the
equations of motion (eqs. (17a) and (17b)) for an assumed tunnei test
roint and representative values of th aerodynamic derivatives.l This
analysis assumes that the governing equations of motion are correct as
presented in equations (17a) and (17b). All parameters other than model
response are assumed to be correct.

Errors are now introduced into the response data, and the aero-
dynamic derivatives based on the new response are calculated using
equations (20) and (21). The new aerodynamic derivatives ccr be
expressed in a Taylor series in the following manner:

aC oC A ac

=C + — Ae_ + ™ D¢, + ————-Aﬁdl + 3
¢
2

C€¥O €=0 Bez Z aee 8 aedl

A£¢2 (22)

lthe aerodynamic derivatives selected are those of a large
multijet cargo airplane.

|
'l
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where

1]

C€¥O numerical value of aerodynamic derivative

with error

Ce=p = numerical value of aerodynamic derivative

without error
Qe = incremental error in measurement

= rate of change of the aerodynamic derivative

with respect to the erro-

Appendix C describes the computer programs used in this analysis.
The model properties, test conditions, and aerodynamic derivatives

assumed for the numerical error analysis are as follows:

U = 500 ft/sec ®» =1,2,3, . . . 30 rad/sec
q = 100 1b/ft? Cr = 5.00/rad

S =10 f£t? Cp = 0.02

m = 2.0 slugs Cry, = -1.00/rad

T =1.0ft Cpy = 4.00/rad

Iy = 3.0 slug-ft? Cpg = =15.0/rad

8 = 0.00698 rad CL = -0.40/rad

Ky, = 20.0 1b/ft Cms = 1,2/rad

500 ft-1b/rad

Kgg =




Lo

These parameters are substituted into equations (C-1) and (C-2) to

evaluate the model response Z,, 8 ¢l, and ¢2 as a function of the

o’
tail frequency w. The model response for this example is presented in
Figure 4. The peak responses occur at the damped natural frequencies of
the system.

Errors are now introduced into each term of the response data, and
the aerodynamic derivatives with response errors are calculated using

equations (20) and (21). Appendix C presents equations (20) and (21) as

equations (C-3) and (C-k), where

N
. 2
B(1,1) = ) ‘Adll
=
N
1
J=1
N
1\
B(1,3) = 5 Z (AJlAﬁ 31 JB)’ ete.
=1
N—l
A(l:l) = > ISJI'Q
)1
N
=1
AL2) =5 ) (8%, *+ &,.8%,)
J=1
=1
A(1,3) = 5 > (8318J3 L J3), etc.
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Based on equation (22), a numerical comparison of the aerodynamic

derivatives, with and without response errors, is used to calculate ég

€
and the per cent error. In general, equation (22) is written

_ L - ac_ 3&
Ce¥0 = C Bel Ae Bee A€2 o 563 Ae; . aem Ac

Considering each of the error functions separately (Ael % 0;
Bep = Dex o o . = Dep = 0) results in the following expressions for the
rate of charge of the aerodynamic derivatives with respect to the

response €rrors:

3  Cer#0 = Ce=0 3c  Cep#0 = Ce=0 (23)
bel Beg 862 e,
We can also define
C - Ce=(;
Per cent error = _ng____S_Q.x 100 (24)

Ce=0

A numerical calculation of the aerodynemic derivatives with ard
without response errors is presented in Table I. Errors ranging in
amplitude from O to 5 per cent and in-phase angle of 1°, 29, and 3° are
presented. The derivatives are obtained numerically by considering an
error in one response function while the others are held constant.

Tables II and III present the calculated data in terms of the

rate of change of the aerodynamic derivatives with respect to response

error and the per cent error in the aerodynamic derivatives, respectively.
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TABLE I.~ CALCULATED AERODYNAMIC DERIVATIVES WITH RESPONSE ERROR

€25 | Ola ‘e | ‘mg | Cmg | Omg | Cms | Omg * Cmg
% error | 7ga | D rad rad rad rad rad rad
0 5.00| 0.02 F0.400| -1.00| <k.00| -15.00| 1.20 -19.00
1 5.05 | =0.03 |0.kok | <1.00] -3.75] -15.05| 1.197| -18.80
2 5.10 | =0.08 FO.408 | -1.00| -3.k2| -15.17( 1.194| -18.59
3 5.15 | =0.13 }0.412| <0.99| -3.01| -15.37| 1.191| -18.38
L4 5.20 | «0.18 FO.416 | -0.99 | -2.54]| -15.63 1.i85 -18.17
5 5.25 | =0.23 F0.420 | -0.99| -2.00| -15.97| 1.182| -17.97
% e2ror
1 4,951 0.07 0.400 | =1.00| -4.17| «15.03| 1.215| -19.20
2 4,90 0.12 F0.400 | -1.00| ~4.26| -15.14| 1.230| =-19.40
3 4.85] 0.17 Fo.400 | -1.00| -k.27| -15.32| 1.245| -19.59
L4 4L.81| o0.21 }0.%00 | -2.00| -4.20| -15.58| 1.260; -19.78
5 L.76 | 0.26 F0.400 | =1.00| -4.06] -15.91|1.275{ ~19.97
&
1 5.00| 0.09}-0.328 | -0.98| 0.96| -19.89 | 1.194 ' -18.93
2 5.00| 0.17 {=0.255 { «0.96| 5.78 | -2k.61|1.191| -18.83
3 5.00| 0.24}-0.182 | -0.94 | 10.46| -29.14} 1,188 | -18.68
o
1 5.00 | =0.06 [-0.473 | -1.04 | <7.53| ~11.43 | 1.209| -18.96
2 5.00 | =0.14 |-0.544 | ~1.09 | -18.86| o.04|1.218| -18.82
3 5.00 | =0.22 |-0,615 | =1.13 | -26.25 | T7.64]1,227| -18.61
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TABLE II.- RATE OF CHANGE OF AERODYNAMIC DERIVATIVES WITH RESPONSE ERROR

et | e[ 2 [ Tk [Ty [ g | g | Py [
? €ITOr | 3¢ | de de de de de de e
1 2.0]<5.0 |-0.%0 | o 25.0 5.0 | -0.30 20.0
2 2.01-5.0 (=040 | 0 29.0 -8.5 |-0.30 . 20.5
3 2.0 [<5.0 |-0.40 | 0.33 | 33.0 |-12.3 -0.30 20.7
b 2:0|-5.0 [-0.50 | 0.25| 36,5 | .15.6 -0.39 20.8
5 2.0[<5.0 |-0.b0 | 0.20 | %0.0 |-19.% -0;36 20.6
Aee,’
error
1 5.0 5.0 | o o ~17.0 | -3.0 | 1.5 -20.0
2 5.0} 5.0 | 0 0 =13.0 | -7.0 | 1.5 -20.0
3 5.0 5.0 | 0 0 -9.0 |-10.8 | 1.5 -19.7
L4 4.8 48 | o 0 5.0 [«1%.5 | 1.5 =19.5
5 4.8 4.8 | o 0 -1.2 [-18.2 | 1.5 -19.4
&
1 0 0.07 | 0.072{ 0.02| 4.96| -4.89 |-0.006 0.07
2 0 0.08 0.073| 0.02| 4.89| -4.81|-0.006 0.08
3 0 0.07| 0.073| 0.02| L4.82| -4.7i | -0.003 0.11
e
1 0 |-0.08/-0.073|-0.04[ -3.53| 3,56 0.009 0.04
2 0 [-0.08|-0.072|-0.05| -7.43] 7.48 0.009 0.09
3 O {-0.08-0.072| 0.0k | -7.42| 7.55 0.009 0.13




TABLE III.- PER CENT ERROR OF AERODYNAMIC DERIVATIVES

%AZ;;‘OI‘ Cle Cp CLg e, Cog Cmg Cmg Cmg, * Cmg

1 l.o] -&0| 1.0| o -6.3 0.3] -0.25 -1.1

2 | 20| 00| 20| 0 | azs| 1.4 ©0.50| 2.2

3 3.0 =750 | 3.0 -1.0| -24.8 25| =0.75| 3.3

L L.0]-1000| 4.0|-1.0| -36.5 L.2| -1.25 -4 b

5 5.0 =1250 | 5.0 -1.0| -50.0 6.7 «1.50 =5 .4
%A:xe‘;or

1 -1,0 250 0 0 4.3 0.2 1.3 1.1 )

2 =2.0{ 500| o 0 6.5 09| 2.5 2.2

3 =3.0| T 0 0 6.8 2,1| 3.8 3.1

4 =3.86| 900]| o 0 5.0 3.91 5.0 k.

5 4.8 1200| o 0 2.0 6.1] 6.3 5.1
-

1 0 350 -18.0 -2.0| -124k.0| 33.0] -0.30 -0.37

2 o 750 | -36.0 4.0| -245.0| 4.0 0.751 -0.90

P 0 1100 | 54.5 | -5.0[ «362.0| 94.0]|-1.00| -1.70
&%

1 0 400| 18.3| 4.0| 88.0| -24.0 0.75 -0.2.1

2 0 -800 | 36.0] 9.0| 374.0|-100.0 1.50| «0.95

3 0 -120C | 53.8|13.0{ 556.0-151.0| 2.25| -2.10
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These Tables are obtained by applying equations (23) and (24) to the
results presented in Table I. Error intervels are included to establish
the linearity of the functions. Table II is present>d so that equa-
tion (22) can be used to establish the effect of errors in several of
the variables on each aerodynamic derivative,
3.2.2 Results and Discussion

The results given are for a particular example; therefore, they
should not be generalized. Since the dynamics of the problem are
dependent on the system parameters and the test point, it is necessary
that each case be analyzed separately.

(1) CL;

Referring to Tables I and III, notice that CL; appears to behave
favorably in the dynamic analysis. That is, CL: i1s not significantly
affected by errors. This term is one of the more important derivatives
and is normally measured statically. Numerical values of this derivative,
with errors in response amplitudes, tend to give linear results with error
in the derivative on the same order of magnitude as the error in the
response. Table I shows that errors in the phase angles ¢l and ¢2
do not affect this derivative.

(2) ¢p

Referring to Table I, large errors in the drag coefficient are
evident for all values of response error. The reavon for this is
apparent from equation (15a). The drag coefficient appears in comtination
with Cp  in the form (Cr, + Cp). For most configurstions C; > > Cp,
and as our results show, the drag coefficient cannot be separated when a

response error is introduced.
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Although the drag coefficient, then, should not be measured using

the dynamic technique, it is still possible to obtain Cp statically on
the mount system. If the static equations of equilibrium are written in

the x direction (refer to Fig. 3), the front and rear cables differ in

tension as a function of geometry and model drag in the following

approximate manner:

2TF cos BF = 2TR cos BR + qSCD

hence

2(Tp cos Bp - TR cos BR)
CD = qS

Load cells on the front and rear cables provide TF ané TR'

(3) o

Referring to Table III, note that amplitude errors affect the
magnitude of CL6 slightly, ranging from zero to about 5 per cent.
Errors in phase sffect this term appreciably. Errors of 39 in either
¢1 or ¢2 result in magnitude errors of over 50 per cent.

The reason for this result is that for conventional airplane
configurations the tail 1ift is almost negligible. The primary forcing
furction obtained from the tail is the aerodynamic moment ﬁA. This
moment is physically generated by the tail 1lift EA acting a distance
Ly rearward of the model center of gravity. (L, 1is the distance
between the tail aerodynamic center and the aircraft center of gravity.)
Etkin (Ref. 1) shows that the aerodynamic moment can be approxizated by

the equation ﬁA = -Lt-Z.A.

;—_“‘m g T S e e O SRR S B S
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Hence

qSECm55= ~-LthCLBB

or

Cmsc
CL5=- Lt

For our example L, = 3.0 ft since T = 1.0 ft, Cm6 = 1.2/rad, and
C16= -O.h/rad. We can therefore assume that CLS can be determined
from the values obtained for q“s'

(4)  Cpg

Referring to Table III, notice that Cm6 behaves favorably in
the dynamic analysis. Amplitude ericrs affect the magnitude of Cmﬁ
slightly, ranging from near zero to about 6 per cent. Error in phase
angle affects Cm5 even less.

(5) Cm,

Another of the important derivatives, which is normally measured
statically, appears from Tables I and III to behave quite well in the
dynamic analysis. The effect of amplitude errors on Cma is quite
small. Errors in phase angle affect this term the most, resulting in a
13 per cent error due to an error of 3° in ?s.

(6) Cags Cmgs (Cmg *+ Cmg)

Tables I and III show that errors in both amplitude and phase
measurements result in extremely large errors when Cm& and . are
calculated separately. For the test condition analyzed, errors of over

500 per cent are evident for small errors in phase.
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Notice, however, that the sum of these terms (Cmd + Cmé) behaves
quite well for both amplitude and phase errors. Numerical results
presented in Table III show that the sum (Cmd + Cmé) varies almost linearly
with amplitude errors while phase affects the results a maximum of about
2 per cent. In view of these results, it appears that the sum of
(qna + Cmé) can be measured accurately in the dynamic analysis, but
unique solutions for each of the derivatives cannot be determined. The
following section will further interpret this problem.
3.2.3 Comparison of Free-Flight and Two-Cable-Mount Eguations of Motion

In order to fully understand the problems which arise in deter-
mining unique solutions for each of the aerodynamic derivatives, =
comparison of free-flight and mount equations is presented. Greenburg
(Ref. 2) shows that for the free-flight case a linear dependency exists
in the dynamic response, so that the aerodynamic derivatives in the pitch
equation cannot be solved uniquely. Neglecting the drag coefficient Cp
the free-flight 1lift equation (eq. (15a), Kyz = O) can be written as
follows:

.

- z _
mZ + qSCIu Gt qSCI_ue = -qSCL88 (25)

Since a = 8 + =, equation (25) can be written as

Cliee

mié - mU§ + Loa + Igd = O (26)
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where

I

Ly

qSCLm
qSCL6

Similarly the free-flight pitch equation becomes

=2 2
s gse= YRR . qST . g§§ . _
I8 o (Cmci + Cme)e qSECmae o2 cmdz 5 cmaz qsacmss

or
I - Ma - Mgd - Mg6 = Mgd (27)

Where

My = 9SS0y

qu'2
Mg = ou qu
- o
9
Mg = qSCCy,

Solving equation (26) for 6 results in

. o + Lsd .
mU
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Substituting this expression into equation (27) results in the following:

IY§ -a(Ma+MnéﬁI;°‘)-d(M&+Mé) -8(M5 +M-%[I;§-)=o (28)

Due to the relation expressed in equation (26), equation (28) can bte

solved for the following combination of derivatives:

._Ma+ i

ML,
U

Greenburg (Ref. 2) states that for most conventional configurations this
indeterminacy affects only the separation of the damping derivatives

(CN& + Cmé) becaus= they are of the same order of magnitude. For most

Mila Mgls
configurations the terms M, +'7ﬁf- and Mg + - 8re approximately

My and My, respectively, to within 5 per cent. Only if Mg or M
can be determined separately by some other method can the damping
derivatives be separated uniquely.

The equations equivalent to (26) and (27) on the mount system can

be written as follows:

mid - mU§ + Lya + Lgd + Kyzz = O (29)
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Iy - Mo = Myd - Mgb + K08 = Mgd (30)

Solving equation (29) for & results in

5 - Iga + Lgd + Kypz

+q
mU

Substituting this expression for 6 into equation (30) results in

IY'é+x999-a( +Mi?)-&(%+%)-%l%-a(%+b%)=o

(31)

Note the similarity in the aerodynamic terms comprising equations (28)
and (31). If the dependency derived in the free-flight case were to
exist in the mount system anaslysis, the case where exact data are used
would also break down. It has already been demonstrated in Table I that

the mount aralysis yields each of the aerodynamic derivatives uniquely
MgKzz2
mU

when exact response is used. It is the added expression which
allows us to solve for Mé uniquely and, therefore, solve for each of
the aerodynamic derivatives. Hence the mount system restraint Kg7
ellows both the vertical translation and pitch equation to be solved
separately for the aerodynamic derivatives q%x’ Cma’ Cmé, Cma, CLS’
and CLm'

The analysis fails to separate the terms qﬁi + Gy: when an error
is introduced into the response data due to the magnitude of the term
McKzz2

mU

. For example:




53

qsce

a(Mg + M) = 5 (cm&+cmé)[é +%]

qSee

o o[ %2 - 52 )

n

. i¢y
MgKzzz _ qse2, . \KzzZo®
mU 2U \Cmﬁ' myU

iy
362 qS'c'2 results in

q i¢l U.?Zoe
Kooz with .  ——
- Cme 7220 Cm9 -

Comparing

approximately E%Z compared to «f. For this example KZZ = 20 lb/ft,
m= 2.0 slugs, and w = 1,2,3, . . . 30 rad/sec. Hence for a large
range of w, ithe expression defining (h% separately is small compared
to the expression defining (qﬂi + Cmé)’ and the introductinn of an

error into the response eliminates any accuracy in separating the

two terms.




CHAPTER IV

EXPERIMENTAL TECHNIQUE FOR MEASURING AILERON EFFECTIVEN'ESS

AND DAMPING-IN-ROLL STABILITY DERIVATIVES

4.1 Irtroduction

The lateral equations of motion of the twoe-cable-mount system are
given by equations (1lic), (14d), and (14e). The problem of determining
each of the aerodynamic derivatives has greatly increased over that of
the longitudinal case due to the added degree of freedom and its agso-
ciated derivatives.

The general approach to measuring the three-degree-of-freedem
lateral derivatives would be the same as discussed in the previous
chapter. However, Etkin (Ref. 1) states that for many conventional
airplane configurations, the roll equation in free flight can be simpli-
fied and treated as a single degree of freedom. If we assume it is
possible to force the model to behave as a single degree of freedom in

the wind tunnel, equation (14d) could be simplified as follows:

. 2 . -
1 - (52 0y, - ety + s -

Letting LA = quclaaA results in

L§ - (9-253 €y, - 2§¢IX‘W)6 + Kgb = aSbC;, 8y (32)
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The acrodynamic derivatlves Cz and ¢y appearing in
P

&
equation (32) are referred to as the aileron effectiveness and damping-
In-roll stability derivatives, respectively. A brief insight into the
physical nature of the derivatives CZB and CZp is necessary.

The primary function of the ailerons is to produce a rolling
motion of the alrcraft. As the term implies, ailleron effectiveness 1is
a measure of the performance of the ailerons in producirg this motion.
Physically, a differential deflection of the silerons creates an incre=-
mental change in the 1ift on each wing. Since this 1ift 1es in opposite
directions on each wing, a rolling moment is produred. However, when
dealing with an elastic airplane, a deflection of the allerons also
produces a twist of the wings. This induced twist changes the wing 1ift
in the opposite direction to the 1lift due to the aileron deflectlion.
Hence, the moment generated by a control input is the difference between
the moment produced by the allerons and that induced by wing twist. An
elastic airplane may even experience a phenomenon referred to in the
literature as "aileron reversal," if the moment generated by the wing
twist is larger than that produced by the imposed aileron deflection.

Clp is referred to as the damping-in-roll derivative. In most
configurations only the wing contributes significantly to (»is dev‘va-
tive. A rolling moment is generated opposing the rolling motion of an
airplane due to the spanwise angle of attack produced by a roll rate.
The angle of attack varies lineafly across the wing, from a value of

b .
g% at the right wing tip to - gﬁ at the left wing tip (+ right
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wing down). The angle-of-attack distribution along both wings generates
a moment which resists the rolling motion of the airplane.

It will be shown in this chapter that through the proper selection
of cableemount parameters, the roll respor.se of the model to & sinusocidal
oscillation of the ailerons can be approximated by a single degree of
freedom. A parametric study of the model and its mount system is pre-
sented to establish a mount configuration which permits the roll response
to be approximated by a single degree of freedom.

Once the single-degree-of-freedom system apuvroach tc¢ the problem
is established, the equution of motion is solved for the aerodynamic
derivatives 015 and Clpr based on the dynamic response technique
preeented in Chapter III. In this case the ellerons are simusoidally
oscillated through a known freguency range, and the steady-state model
response is monitored.

In order to verify the dynamic technique, experimental rasulit:
are presented for an aeroelastically scaled model of a high-cpeed jet
transport that was tested in the wind tunnel to determine Cz5 and Clp'
Due to the scatic nature of Cig 1t 1s possible to measure this deriva-
tive without resorting to a dynamic approach so that a static measure of
Cla can be found for comparison with the dynamic results. The mount
system used during the static wind-tunnel tests is also unique and will
be described. Since Czp is a dynamic derivative, no experimental
results are available for comparison purposens. A simplified error

analysis to determine the accuracy of the dynamic technique is slso

presented.




o7

4.2 Analytical Aspects

4,2.1 Hguations of Motion

The lateral equations of motion on the two-cable-mount system are
given by equations (ihc), (14d), and (1l4e). 1In order to measure the
aileron effectiveness and damping-in-roll stability derivatives, it is
necessary to shéw that the model response to & sinusoidal oscillation of
the ailerons can be simplified to a single degree of freedom. If we
assume that an oscillation of the ailerons only generates a forcing
function in roll, then the right-hand side of the lateral equations of

motion can 5¢ -~itten, as a function of time, in the following manner:

I(t) = quclssAeiat
Nt) =0 (33)
¥(t) =0

assuming sinusoidal motion, the steady-state response becomes:

g(t) = ¢oei(at‘a1) ¥(t) = *oei(°t+02) y(t) = yoei(“¢+“5)

iu%ei(utml) i) = iwoei(atme) (1) = 1wyoei(mm@)

d(t)

Py )y

d(t)

Ppet (D) e ~Pypet (1)

The phase angles relating model response to aileron deflection are
G'l’ 042, and 0;3.
Substituting equation (33) and the steady-state response into the

lateral equations of motion results in the following form of the

equations:




Roll:

2
¢°§ia1 [.wa? + Kgg - 1w(q—28— Cyy, - 2§¢I)¢L¢¢))]+ Voo 22 [Ixza? + 9sbC;

gsb2 ia gSb
+ - 1) — + 3 - ) — =
K¢W w T C r] Yo€ K¢Y w - CZB quC268A

(34)

Yaw:

¢°e [Ixz“? + Kyg - 1o B2 2U np] + WO [:Izu? + quCnﬁ + Kyy

2
. [aSb
) m( s

Cnr - 2C¢IZU-W\I[)J + yoeia3 E(‘VY - iw % CnB] =0

(35)

Si.e translation:

lag [y ib lap g5b
?.e [Y¢ - a5C; - 1o 23— C 1] * Voe Rlasbey + Ky + 0 5 O

+ yoem'5 -mf + Kyy - 10){5%8(0}:3 - VCD) - 2§Ym“’!Y:] =0

(36)
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The simplification of equation (34) as a single degree of freedom

yields,

goco [+ gy - 5 e, - e - om0

It has been stated previously that in flight the roll equation can be
analyzed in a form similar to equation (37). Since the cable restraints
are a function of mount system geometry and other test parameters, it is
necessary to compare calculated results bésed on both single degree and
three-degree-of-freedom solutions. Assuming approximate values of the
aerodynamic derivatives, equations (34), (35), and (36) are solved
simultaneously for the roll response as a function of the forcing fre-
quency . These results are then compared with those for the "single
degree” equation. A parametric study is presented for a numerical
example with physical and mount properties quite siuilar to the model
of the high-speed jet transport tested in the wind tunnel.
4.2.2 Parametric Study of the Model and Its Mount System

Let Mach number = 0.89, q = 225 psf, hence U = 470 ft/sec.
The model physical properties, mount configuration, and assumed aero-

1

dynamic derivatives™ are as follows:

“The aerodynamic derivatives given are estimated through informa-

tion supplied by the aircraft manufacturer.



m = 2.18 slugs Czp = -0.401/rad
Iy =5.25 slug-ft° C, = 0.078/rad
X 1.
I =7.30 slug-ft2 CZB = -0.062/rad
Iyg =0 Cn, = 0.422/rad
s = 8.94 £t° Cp = -0.124/rad
b = 8.46 ft an = 0.117/rad
h =0.3 ft Cy = 0.105/rad
p
d = 0.30 1% C. = 0.0051/rad
Yr
Bp = Bg = 20.0 deg cyB = «0.725/rad
Ip = Ig =20.0 ft Cp = 0.02
Tp = 161 1b C;, = 0.035
Tg = 140 1b

§¢ = QY = CW = 0.05

The parametric study will ueal with the design of = mount con-

figuration based on the fore and aft pulley separation distances a

and e (Fig. 3), which permits the roll response to be approximated by

a single degree of freedom. The cable restraints for this example are
calculated from the mount restraint equations presented in Chapter II.
Calculated values of the mount restraints Kyy and Kgg are 28.5 1b/ft
and 70.6 ft-lb/rad, respectively, since these restraints are not functions
of elther a or e. Values of the restraints KWY and wa, es a

function of the parameters a and e, are presented in Figure 5. Due

to the mount symmetry KY¢ = K¢Y = KW¢ = de = 0.
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Using the physical and aerodynamic properties of the example
given, equations (34), (35), and (36) are solved simultaneously for
the roll response as & functiou of the aileron frequency w. Figure 6
presents results obtained for three sets of a and e wvalues and
compares three-degree-of-freedom to single-degree-of-freedom solutions.
Since no value of CZ6 is assumed, the results are presented in terms
of the magnitude 2 1

C25 Sa
These results should be valid for any nonzero C:S

and «p versus aileron forcing freguency .

All three sets of data presented in Figure 6 agree well with the
single-degree-of -freedom calculations for frequencies above approximately
8 rad/sec. Below this frequency, a peak response around 4-1/2 rad/sec is
apparent for a =0; e=1.75 ft, and a =0, e =1.0 ft, For the
case a =1.2ft, e =1.0ft, this peak response is much less pronounced
and the calculated data compare favorably with the single degree analysis
throughout the frequency range given.

KWY for the three sets of a and e values (Fig. 5) are as

follows:

Kyy - ft-1b/ft

a=0, e=1.75 26.6
a=0, e=1.,00 14.8
a=l.2, e=l.0 O

Ccmparing the trend in KWY with the results presented in Figure 6, we
notice that as the magnitude of KWY diminishes, the single degree and

three-degree-of-freedom analysis agree more favorably.
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Figure 6(a).- Roll response as a function of aileron frequency.
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These results are more apparent if we look at the hcmogeneous
solution of the equations of motion to determine the dynamic behavior
of the system. Let TL(t) = N(t) = ¥(t) = 0. Assume @(t) = ¢Oext,

¥(t) = Woext, and y(t) = yoext; where A = n + 1w. Hence

F(t) = Aggelt V(t) = Avgelt y(t) At
Q [o]

Ayqe

At

B(t) = Wog ert V(t) = Ny elt 7(t) = Wy.e

Substituting these terms into equations (34), (35), and (36) results in
three homogeneous algebraic equatlons in the unknowns ¢0, Vor Yoo
and containing A.

Therefore
Bo (122 + Ayoh + Ay5] + ¥ [ory ¥ + boh + Bz ]+ yo[orn + 03] = 0
Bo[8o12® + Aok + B ]+ ¥, [0 N + Bpoh + Bps ]+ 3, [Eaph + Cpz ] = O
Bo[hsah + Ass] + Yolbsah + b35] + o [G312° + C3h + C33] = 0

(38)
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Setting the determinant of the coefficients of equation (38) equal to
zero provides the condition for determining the values of A. This
determinant is known as the "stability determinant," and its expansion
results in the characteristic equation of the dynamic system. For this

example the characteristic equation is of the form
MO+ BV + ol + D+ B2+ FA 40 =0 (59)

The six roots of this equation establish the dynamic characteristics of
the system. For the example given the solutions of equation (39) are as

foilows:

o
[}

C, e=1.75 At -1.50
Ay = -11.1
Az, N, = =0.16 1 L.47
25506

-2.28 t 1 18.79

-1.407

-11.16

a=0, e=l.0 Al

A2

-0.152 * 1 4,15

Aj ,)\u
%1%
a=1.2, e=1.0 A = -1.17

A2
)\3,)\“ = <0 .36

-2.22 £ 117.9

=11.17

H+

13.6
A Ng = 2,27 £119.2
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Figure 7 presents these results plotted in the complex plane. Since the
complex roots appear in conjugate pairs, only the upper half of the
complex plane 1s presented. The radial distance from the origin to a
complex root is the undamped natural frequency a,. The angle between
the radial vector and the iw axis is equal to sin-1 zn: where En
is the damping ratio of the model in flight relative to critical damping.

Note in Figure 7 that a lightly damped mode exists at 4.hk7, 4,15,
and 3.6 rad/sec for the three cases under consideration. Reed and Abbott
(Ref. 4) refer to this as the side translation mount mode. (This can be
verified by substituting the roots AB, A, into equation (38) and
solving for the characteristic mode shape.) If we assume the forced
model response at the side translation frequency decreases with increased
damping in this mode, thz case where a = 1.2, e = 1.0 would exhibit
the least response. Figure 6 confirms this fact since the response at
the side translation frequency for a = 1.2, e = 1.0 is much less
pronounced. The cable configuration which allows single degree approxi-
mation seems to be one in .aich the mount restraint Kyy = O since this
increases the damping in the side translation mode. Based on this
analysis the model pulley locations were fixed at a = 1.2 ft,
e = 1.0 ft, and the model response to & sinusoidal oscillation of the
allerons was assumed to behave as a single degree of freedom in roll.
4.2.3 single-Degree-of-Freedom Solution

Once it has been assumed that the model behaves essentially as a

single degree of freedom in roll, eguation (37) can be written in the

form
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qSb° , N .
iw( 50 (,Zp - 9§¢wa¢¢)¢oe ay + qu0156A = (-I)(wg + K¢¢)¢Oe ay
(ko)

One further simplification is desirable in order to measure the aileron

derivative Cz8 and the damping-in-roll derivative C; . Looking at the
jY

Sb¢
3 i L
magnitude of theﬁtGTMb 50 Clp and 2§¢wa¢¢ in equation (40), we
qQsb | . N
notice that o sz > 2§¢Ixa¢¢ (CZP‘” 0.3 from estimated data).

Theretore, equation (40) can be written approximately as

. gSbY  iay _ ia
le 5= ¢Oe CZp + quCZSBA = (-ng? + K¢¢)¢Oe 1 (L41)

Equation (41) can be solved for C, and Cz5 using a least-
p
squares solution, by measuring the dynamic amplitude ¢o and the phase

angle a) at N discrete frequencies. Assuming CZ and CZ are
&

1Y
irdependent of frequency, equation (%1) becomes

=b

A +
31%, * Ag2Cay = b

where

q5b2 iay
Ay = =i e
J1 2u [: 0 J s

= qSbdy

>
Cse
N
1

= [(-zy? + Kyg)g,e ] 3=1,2,5, . . .N

uru)J

x>
[
\S .}
1




From Appendix B
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4.3 Experimental Results

A l/l9-size aeroelastically scaled model of a large, subsonic,
multijet carge airplane was tested in the NASA-Langley transonic
dynamics tunnel. The wind tunnel uses Freon-12 gas as the testing
medium. The speed of sound in Freon-12 is approximately half that of
air. Since many aeroelastic phenomenon are functions of Mach number,
this allows testing to higher Mach numbers at reduced dynamic pressures.

Since C26 can be measured either statically or dynamically,
test results employing both of these methods will be presented. These
results will then be compared to establish an evaluation of the dynamic
approach. The mount system used during the static tests is also unigue
and will be briefly described.

4.3.1 Static Wind-Tunnel Tests

Once the model is designed and constructed, static testing is
fairly straightforward. Grosser (Ref. 3) presents a testing technique
where the model is supported in the wind tunnel on a sting-pylon-spring
mount system. A photograph of the model on this mount support is
presented in Figure 8.

The support consists of a rigid sting which is attached to the
tunnel splitter plate, a palr of pylons which extend from the sting to
within the model fuselage contour, and a set of springs which connect
the fuselage spar to the pylons. The mount allows the model six degrees
of limited freedom. The model is restrained from excessive motion by
stops located on the front and rear pylons. Rolling moments generated

by a deflection of the ailerons are transmitted by a pair of push-pull







[P
rods cxtending from the fuselage spar to a strain-gaged beam located in
the sting. Roll control for trim, independent of model control surfaces,
is provided by a remotely controlled rotation of the entire roll
mechanism within the sting.

At selected test points during a run, the ailerons are remotely
deflected. Rclling moments and aileron displacements, measured from the
strain-gaged beam and position indicators on the ailerons, respectively,
are monitored on direct writing recorders. Since rolling moment is
defined as quCZBBA’ Cza can be determined from the measured data.
Static values of CZS’ determined at the same test conditions as the
dynamic tests, will be presented under the comparison of experimental
results,

The static wind-tunnel tests were originally designed to establish
the aileron reversal boundary of the model. For purely informative
purposes the results of this test are presented in Figure 9. Curves
representing the measured reversal boundary (CZE = 0) and 25 in-lb of
rolling moment/degree of aileron deflection are given as & function of
model dynemic pressure versus Mach number. The two reversal points
measured statically on the cable-mount system will be discussed later.
The dashed line representing the estimated boundary is based on positive
alleron effectiveness measurements approaching reversal. The reversal

boundary could not be attained due to excessive buffeting loads experi-

enced in this region.
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L.3.2 Dynamic Wind-Tunnel Tests
In order to verify the dynamic technique, the model used in the
previously mentioned static tests was tested dynainically to determine

the derivatives Cl& and CZ . A photograph of the model on the two-

cable mount is presented in ngure 10.

The aileron drive mechanism on the model had to be modified in
order to provide a sinusoldal fixed amplitude deflection. The aileron
drive was modifled to consist of a pair of push-pull rods extending
from the aileron pivot to the wing attachment structure, a rotating cam,
and a variable speed ac motor. The aileron frequency is altered remotely
by varying the voltage to the drive motor. A finite torque was required
to overcome friction in the drive system, end therefore limited it to a
minimum sustained frequency of about 0.5 cps. The maximum frequency was
around 4.0 cps. The aileron amplitude could not be altered during a run
since this was set by the eccentric attachment of the push-pull rods on
the cam. The drive mechanism was designed so that the ailerons would
return to zero deflection after the oscillation. The ailerons could also
be statically deflected up to the maximum preset dynamic amplitude. Roll
control was provided remotely by a pair of spring loaded spoiler panels
located inboard on each wing. These panels were opened and closed by
means of a torque tube arrangement driven by an electric motor. Longi-
tudinal control was provided by a remotely controlled horizontal
stabilizer.

Onboard instrumentation included & miniature rate gyro and a

strain-gage position indicator to measure roll rate d and aileron
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displacement &j, respectively. A servo accelerometer was included to
measure ctatice roll angles and provide a level roll reference. Signals
from these instruments were displayed on a direct writing recorder for
visual monitoring and simultaneously recorded o. magnetic tape for
further arnalycis,

The dynamic ampiitude 1is determined by integrating the roll rate

2.

signal. For sinusoidal motion this integration results in '¢°' =

Ideally, a direct comparison between the traces d and 5, as a
function of time is all that is required to determine the phase angle
ay. Since the model is essentially free and subjected to tunnel turbu-
lence, signal noise, etc., this procedure is quite time consuming and
subject to added errors. In lieu of this, an electronic sin-cosine
resolver was utilized to determine a - This instrument is designed to
electronically evaluate the phase angle between two known signals.

Once the dynamic response of the system is known, a value of the
mount restraint K¢¢ is required before solving equation (42) for the
derivatives Czs and Clp‘ This restraint is calculated based on the
equation presented in Chapter II. Since K¢¢ is a function of front
and rear cable tensions (geometric properties are known), miniasture lcad
cells are installed in these cables and at each test point these tensions
are recorded.

The geometric and physical properties of the model and mount are

as follows:l

1 response analysis with measured model properties was run to
establish that the model behaves essentlally as a single degree of freedom.
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Ix = 2.16 slug-ft°

Weight = 47.9 1b

s = 8.94 £t°

b = 8.46 ft

SA = 0.105 rad
LF = LR = 23.0 ft
Bp = BR = 20 deg
a =1.2ft

e =1.0 ft

h = 0.37 ft

d =0.39 ft

Tests were run at Mach nurbers 0.675 and 0.75 over a range of
dynamic pressures from 115 psf to the reversal boundary. At each
dynamic pressure, tunnel conditions were held constant while the allercons
were oscillated over a rang: of frequencles. At each discrete frequency,
roll rate, aileron deflection, cable tensions, and the tunnel parameters
were recorded.

Theoretically, the model should have no roll response at the
reversal boundary. Such 1s not the case, since this assumption is
based on a single-degree-of-freedom analysis. For the areas where the
ailerons are quite effective (Cz5 is a function of Mach number and
dynamic pressure), the assumption that N(t) = Y(t) = G 1is realiztic.

As the ailerons become less effective so does the forcing function L(t).

In the region near reversal the servo accelerometer was used.
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The reversal dynamic pressure was estimated at the point where no roll

was evident for a static deflection of the ailerons. The dynamic pressure
was then increased slightly above this point, and reversal was noted both
on the accelerometer and visually.

Table IV presents the measured model response data as a function
of Mach number and dynamic pressure over a range of aileron forcing
functions. The dynamic amplitude ¢°, the dynamic phase angle aq,
(sin-cosine resolver), the cable-mount tensions, and the tunnel test
parameters at each freguency are substituted into equation (42) to deter-
mine the aerodynamic derivatives. Figure 11 presents the calculated
aerodynamic derivatives as a function of Mach number and dynamic pressure.

4.3.2.1 Error Analysis.- In order to establish the effect of

measured response errors on the accuracy of the calculated derivatives,
a simpl. numerical error analysis is included. Test data obtained at
Mach number 0.675 are used in the analysis. At each of the test dynamic

pressures a response error was introduced ia the following form:

¢e;fo = ¢e=0 * €¢ ) ¢€=O

where

«
1]

=0 measured dynamic amplitude

incremental error

1}

¢
¢€¥0

1}

measured dynamic amplitude with error




TABLE IV.- MEASURED MODEL ROLL RESPONGE

Wy ¢ ’ ay, Q, u, Ty | Tro
rad/sec rad d]ég M 1b/fte | £t /sec B | iE
26.4 0.011 -159|0.675! 115 350 130 | 100
22.8 0.013 =150
214 0.016  -1u47
18.3 0.019 =136
16.6 0.221 =117
13.8 0.022 -1l12
10.8 0.029  -101

8.9 0.038 -99

6.7 0.051 -86

4.3 0.072 -66
25.5 0.010 =158 ¢C.675! 130 350 138 | 100
22.1 0.013 <147
20.9 0.0l <143
17.7 0.018 -116
15.7 0.018  -107
13.8 0.021 =111
11.6 0.02% =109

9.3 0.031 -99

5.1 0.055 =72

3.9 0.064 -€2

2.9 0.076 53
26.6 0.0088 -159 0.675| 150 350 144 | 100
24 4 0.0103 =151
22.9 0.012 147
21.6 0.013 -138
19.4 0.015 -116
16.7 0.0l%+  -107
14.8 0.01%  -11k
11.6 0.020 =103

8.8 0.025 -97

7.k 0.031 =92

6.6 0.036 -85

4.1 0.052 -69




TABLE IV.- Concluded

W,y ¢ ’ aj s Q, U, Ty, | Tg»
radfsec| vod | ase | M | 10/8t2| £t/sec| 10 1R
26.9 0.009 | =162} 0.75 117 397 128 | 100
2L .8 0.011 | =157
22.9 0.013 | -151
21.5 0.014 | <150
19.% 0.016 | -139
16.7 0.018 | -124
14.7 0.020 | -12k
12.0 0.025 | -117
9.3 |0.033 | -98
7.0 0.042 -92
3.5 0.076 =55
26.6 |0.008 | -160|0.75 | 135 397 | 1381 100
24,2 10.009 | -154
22.4 0.011 | =151
21.k4 0.012 | =147
19.4 0.014 | =138
16.7 0.014% ! -119
14 .3 0.015 | -120
11.5 0.023 | =10k
8.6 0.029 | -100
7.3 0.032 -89
5.7 0.046 -82
3.4 0.064 -56
23.9 0.008 | -153|0.75 152 397 1451 100
22.9 0.009 | -151
21.7 0.009 | =147
20.0 0.010 | =132
17.7 0.011 | -121
15.7 0.012 | -115
13.8 0.012 | -118
11.2 0.016 | -10k4
8.7 0.021 -93
7.0 0.026 -85
6.2 |0.030 -83
5.0 {0.0k0 | -69
3.9 0.043 -63
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Figure 11.- Dynamic wind-tunnel experimental results.
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ay o = peasured phase angle
€=
a = error in o
l€ 1
o = measured phase angle with error
e%O

and

e¢ = 0.01, 0.02, 0.03, 0.0k, 0.0

(o)
@ = 1°, 2%, 29, 4°, 5°

Equation (L2) is solved for the aercdynamic derivatives based on
the response measurements with errors. These results are presented in
Table V. Amplitude errors of the form €y are normally associated with
instrument calibration errors. Numerical results show that e¢ does
not affect CIP and appears to have a one to one effect on CZ
a, is associated with errors due to the sin-cosine resolver. FPhase
angles determined with this equipment were repeated several times at
each freguency, and the repeatability was normally within 1° to 3°.

Numerical results show that phase errors affect Cl slightly and Cy

5
about 2 per cent per degree of error depending on the dynamic pressure?
In general, this simplified analysis shows that realistic values of
response errors (e¢ < 0.05, ule < 30) predict results within about
5 per cent accuracy.

4,3.3 Comparison of Experimental Results

A comparison of the aileron derivative CZ , measured both
3

statically and dynamically, is presented in Figure 12. Results are

presented in terms of Cls versus model dynamic pressures at Mach




TABLE V.- ROLL RESPONSE ERROR ANALYSIS

chf’. g Czp/rad Czs/rad géé, Czp/rad Czo./rﬂd M g;f
0 -0.349 [0.0166 |o -0.349 | 0.0166 |0.675 | 115
1.0 -0.349 10.0168 [1.0 |-0.356 |0.0168
2.0 -0.349 10.0169 | 2.0
3.0 -0.349 10.0171 |3.0 |-0.369 |0.0171
k.o -0.549 [0.0173 |Lk.0 |-0.375 |0.0173
5.0 -0.349 [0.0174 |5.0 |-0.381 |o0.017k
0 -0.310 |0.0123 |o -0.310 ]0.0123 |0.675 | 130
1.0 -0.310 |0.012% 1.0 |[-0.313 |0.0123
2.0 -0.310 [0.0125 [2.0 |-0.316 |0.012k
3.0 ~0.310 {0.0126 |%.0 |-0.318 {0.0124
L.o -0.310 {0.0128 |4.0 [ -0.319 |0.0124
5.0 -0.310 |0.0129 [|5.0 |-0.321 | 0.0124
0 -0.294 1 0.010% joO -0.29% |o0.0104 |0.675 | 150
1.0 -0.294% 10.0105 |1.0 | -0.300 | 0.0105
2.0 -0.29% |0.0106 |2.0 | -0.306 | 0.0106
3.0 -0.29% [0.0107 |3.0 |-0.311 | o0.0107
4.0 =6.29% 10.0108 [4.0 | -0.317 | 0.0108
| 50 -0.294% 10.0109 |5.0 | -0.321 | 0.0109
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numbers 0.075 and 0.79. Note the close correlation between static and
dynamic results at all but the higher dynamic pressures. These results
tend to confirm the assumption made earlier: that as the silerons
become less effective, the dynamic motion can no longer be approximated
by a single-degree-of-freedom solution. Since Czp cannot be measured
statically, experimental data are not available for a comparison of the
damping=-in-roll derivative.

The reversal boundary was &also determined statically at Mach
numbers 0.675 and 0.75 using the two-cable mount. These results are
presented in Figure 9 to give comparison of_static testing procedures
using both the sting-pylon-spring and two-cable mounts. Note the

extremely close comparison of results between the two mounts for deter-

mining reversel dynamic pressure.




CHAPTER V
SUMMARY AND CONCLUSIONS

A new wind-tunnel technique for measuring various aerodynamic
derivatives or an aeroelastic model has been presented. The technique
applies free-flight procedures to a model flown 1n the wind tunnel on
the two-cable-mount system. The complete equations of motion have been
derived in terms of model properties, mount geometry, and aerodynamic
derivatives.

In the case of the longitudinal equations of motion, it is theo-
retically possible to uniquely determine each of the aerodynamic deriva-
tives by measuring the model response to a steady-state sinusoidal
oscillation of the horizontal tail. In the determination of the deriva-
tives from model test data a least-squares procedure is used to solve
the set of redundant equations generated. A numerical example has shown
that the derivatives can be determined uniquely only if exe-t response
data are analyzed. The derivatives cha’ Cma, Cma, and (Cmd + cmé)
can be predicted with significant accuracy using this techknique. An

alternate static method to measure CD has been presented. The assump-

CmsC
tion that CL5=" z provides an estimate for CLB. A comparison
between flight and wind-tunnel equations shows that, due to the added
mount system restraints, the equations can be solved for each of the

derivatives uniquely. However, introduction of an error into the model

response causes the solution to become 1ll-conditioned resulting in
equations quite similar to those used for determining the aerodynamic

derivatives in free flight,

89
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In the lateril equations of motion a basic free-flight assumption
of single-degree-of -freedem response in roll allows the experimental
verification of the dynamic aoproach to derivative measurements. The
model In the wind tunnel can be forced to behave in a similar fashion
by the proper selection of mount system parameters. The derivatives

KZS
to & steady-state sinusoidal oscillation of the ailerons. Experimental

C and Clp can be determined by measuring the dynamic model resporse

results obtained on a 1/19-size aerocelastically scaled model, tested
both statically and dynamically in the wind tunnel to determine CZB’
verifies the application of this new testing procedure.

It has been shown that by means of a rather simple two~cable-mount
system the dynamic characteristics of an aircraft can be closely simu-
lated, allowing the use of free-flight techniques to estimate the aero-
dynamic derivatives of an aircraft in the early design stages. Application

of the analysis presented in this thesis should assist in developing

testing techniques required to satisfy specific research programs.
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APPENDIX A
MOUNT RESTRAINT INFLUENCE COEFFICIENTS

Vertical Translation
As shown in Figure 3 the cable configuration analyzed has a
vertical forward cable and horizontal rear cable. The linearized mount
stiffness due to small perturbatlions about & trim point will be deter-

mined. A diagram of the forward pulley configuration is shown in
sketch (1A).

T
Pp + 4B
1
5 h
Tp
» X
(, .G.
) T
e
4
Z
Sketch (1A)
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The 2Z force at each pulley due to a z displacement 1is

= Ty sin(ﬁF + ABl) + Ty

N
—
!

(A-1)

W]
S]
i

= Tp sin(BF + OBs) - T
Since all displacements are small perturbations about the trim point
Zy + Z, = TF(A82 - ABl)cos Bp (A-2)

OBy and AB,  are composed of angular changes due to displacements in

the x and 2z directions.

x displacement:

Pp Pr + OB

X << 1

From the geometry

x) sin Bp sin(BF + OBq)

N
O
I

sin(Bp + 48 - By)

X1 sin Bp sin(By + AB;)

% = sin(ABl)




9%

For small perturbations
sin Aﬂl = ABl

sin(BF + ABl) =2

Ip
hence,
X1
OBy = E; sin Bp (A-3)
z displacement:
Iy z,
(2%
sin Br Bp
Brp + OBy 21
o
b ¢
From the geometry
x sin BF sin(BF + ABl)

sin ARy

and

X
cos BF = EI sin BF




For small perturbations

z2. + 2
Sin(BF + Aﬁl) = —OT‘IF—i
hence
OBy = Z1 cos Bp (A=4)

Lp

Therefore, the total ABl due toan x and 2z displacement is

Xy sin BF + Z) cos BF

ABl = (A-5)
Ly
In a similar manner it can be shown that
Xp sin By - Zo COS B
£By = £ E (A-6)

Ly

Pulley movements due to z and 6 displacement (sketch(lA)) are as

follows:

xl=-h—9- Zl=Z‘e§
_ _ (A-7)
Xp = he Zp = 2 - ed
Substituting equations (A-5), (A-6), and (A-7) into (A-2) gives
2TF - -
Z1+z2= -L—F—cos [SFE-he sinBF+zcosBF-ee cos BF]
(A-8)
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A diagram of the rear pulleys is given in sketch (2A)

LR
BR . o .
3 | M - x
\ ‘\\\S_ C.G.
PR
LR
TR M
Sketch (24)

The vertical force at each of the rear pulleys due to & 2z displacement

is

Tgrz TrzY
ZB=-—E2 Zu=-—i-r§- (4-9)

The rear pulley displacements are (sketch (2A))
2z = 2 + ad z), =2z + ad (A-10)

Therefore,

2T -
Zy + 2 = - ER(Z + &8) (A-11)
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The sum of the vertical forces at each of the pulleys ({A-11) and (A-8))

due toa z and 6 displacement is

Zo=Z) + 2yt 23+ Y

or
T
Zo = 'QZETL% coseﬁF + I'E + 26[%:— h cos By sin By

T T
F 2 R
+ == e cosBp - & == (A-12)

Since 6 =6 + 04, we can express equation (A-12) in stiffness-influence

coefficient form as

g = Zg, - Kgz2 = Kzg® (A-13)
Where
KZZ = 2[%: COSEBF + %] (A-14)
Kzg = eEa % - h % cos Bp sin Bp - e g— coseﬁF] (A-15)
Ze, = ~Kozbt (A-16)
Pitch

The forces producing moments about the center of gravity from the

forward cable are {sketch (1A)):
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2y = -Tp sin(BF + ABl)

Zy = Tp sin(BF + 0By)

(A-17)
X) = Tp cos(pp + AB;)
X, = Tp COS(BF + A@Z)

For a positive 2z, 6 displacement, the moment produced by the forward

cable 1is
Mo, = -Z1(e - h8) - Zo(e + h8) - X3(h + €8) + Xo(h - €B)
(A-18)

Substituting equations (A-5), (A-6), (A-7), and (A-17) into equa-

tion (A-18) and simplifying gives

(e cos Bp + h sin BF)2

MCF = 2TF9 =h sin BF - € coSs QF - T

2sz
Ly

+

Ee cosgﬁF + h sin By cos BF] (A-19)

The forces producing moments about the center of gravity from the rear

cable are (sketch (24)):
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__Ix»
23 = - LR
TRzl
Z)y = - In
(A-20)
X5 = -TR cos BR
x,+ = -'I'R cos BR

The pulley displacements due to a positive z, () displacement are

23 = 2z z + 88

(A-21)
X =X)+=B.

3

The moment about the center of gravity produced by the rear cable is

Mo, = 238 + 248 + X388 + X,88 (A-22)

Substituting (A-20), (A-21), into (A-22) and simplifying, results in

2
MCR = 23[- aLiR - aTR cos BR] + 22[— %T‘R-] (A=23)

The total moment
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Hence,

_ 2

MC=29-aj._’;f;R-aTRcosBR-’I'.E,E1sinﬁ11;.+ecos(31,.+I—1"F-(ec:osBF

+ h sin BF)EJ + 2z[— %‘B— + g(e coseﬂF + h sin By cos BF)]
(A-24)

As before, 6 = 6 + 84 and we can express equation (A-24) in stiffness-

influence coefficlent form as

Mg = Mg - Kypz - Kgg8 (a-25)

Where

Mc, = -KogBt

Kyy = I - -i-F—(e cos“Py + h sin py cos By)

22T
K99= LRR+28TRCOB BR+2TFE151nBF+ecosBF

+ L—l’F-(e cos By + h sin BF)E:]

Note that for small perturbation theory Ko = Kgqy. Equations (A-13)

and (A-25) completely define the mount system restraints in terms of
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known and measured quantities. Therefore, it has been shown that in the

longitudinal case the cable restraints can be defined as follows:

Ze = Zg, - Kzg? - Kgg®

Mc = Mg, - Kgz2z - Kggb

where

T T
KZZ = 2(-& cos2[3F + I—'E)

2(%?3 - h%?— cos BF sin BF - ;—;—T— cosEBF)

K20

2acTy
Kee = I + 2a.'1‘R cos BR + ETF h sin BF + e cos BF
+ -l—(e cos By + h sin BF)Q]
Iy
20, = =Kzg8¢
Mc, = KgoBt

In & similar manner (Ref. 4) the lateral restraints can be derived in

the form




103

Kgyy - Kgg¥ - Kgy

&

N = =Kyy¥ - Kyg# - Kyy¥

Yo = -Kyyy - KY¢¢ - Kpy¥
Where
2 2
Kyg = ©

2e 2
Kyy = LFTF _.I?TR cos BR(d sin By + & cos BR)

iy g = O
= onT (& + sin p_| + 24T _[-& + sin p

Koy F{ Iy F r|ig R

Kgy = O

Kyg = Kgy = ©

Kyy = Kyy

KW=2eTF(f;+cos BF) +2TRE cos BR+d sin BR

1

+ ==(a cos B .d.sinB)2
LR F R




APPENDIX B

LEAST-SQUARES SOLUTION OF REDUNDANT LINEAR EQUATIONS

General Solution

Given at set of N equations in M unknowns

Yl = Allxl + A12X2 + A13X3 + .. Almxm
Yo = ApyXy + AppXp + ApsXg + . . . AppXp (B-1)
YN = ANle + Asz + AN}XB S ANMXM N>M

Fquations (B-l) can be written in the form

M
Y, = ) A_X 1=1,2,3, . ..N (B-2)

We wish to solve for (Xy, Xp, . . . Xp) given (Y4, 1 = 1,2, . . . N;
Ajp» m= 1,2, . . . M). Choose (X;, Xp, . . . X) so that the sum of
the squares cf the deviations is as small as possible. Where

vy = (A% - ¥4y)

L=

i
(W)

is the deviation. Therefore,

2
N

o {&
(Vi)'= >J >_, Aimxm'Yi
1 i=1im=1

n
o=

[
1

10k
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is to be minimized. Hence,

9E _,
Bxk
where
k. = 1,2’3, . M
3 N1 M
—E-=2> > (Ap¥p = ¥4) |5 Atm = O
d (o] Lo ¢
Xk
i=1|m=1
Therefore,
NI M N
>_. >qA xmax”‘A Zyax’“A
—— = ———— i
/AL im axk im i an m
i=1|m=1 i=1
oX.
2 1l m=k
OXy
=0 m{k
Hence
NI M N
e N
}_J >d An¥n [Arx = Z Yih1k (B-3)
1=1{m=1 i=1

Bquation (B-3) results in M equations which are solved simultaneously

fOI' xl, XQ, x}, « v . &n-
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Complex Solution

If the Y's and A's are compiex, define

X M
E= ) vy ® - Z >_1 Ay - Y[ (B-k)

where

also, the complex conjugates of these quantities are

=Y - 1Y
1 lreal iimag.

A?m = Aimree.l - iAimhnag.

Therefore, equation (B-4) is written

N M Va8

E=> ) Aup¥y - Yy > Afm¥y - Y
iy —
i=1\m=1 m=1

wvhich is to be minimized. Therefore,

O _ _

S‘i;-o k—l,eyiv-o-M
é}g =0 m=k

oK,

suad T e A ezt kebico
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Hence,
N |/ H M N
24 > Aim¥n |AYk + }_} Afw¥n|Asy | = Z (YA + YiAg)
i=1 [\ m=1 m=1 i=1

(B-5)

Bquation (B-5) results in M real equations which are solved for

X0 Xop Xy o v o Ko

Example: M= 3

k=1

=

(A% + A%, + AysXs)AY) + (A5 X) + AfpXy + AfsXs)Ay; |

[
1
—

N

= Z (Y;AY; + Y,8%)
1=1

=

N N
T -
2 ¥* ¥* ¥* *
. 2Xy Z IAH‘ + % Z‘ (A} 1A, + A A%) + X, (AilA15 + A )AYs)

furs
[}
[
e
U
us}
e
|}
-

N
= %
= >_‘ (YiAgy + Yi8%))

i AR L
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APPENDIX C
COMPUTER PROGRAMS

Model Response

Assuming sinusoidal motica in the form z(t) = zoei(ajt+¢l),

8(t) = 8°e1(wt+¢2) equations (17a) and (17b) can be written.

Vertical translation:

zoel¢l[:(-a32m + KZZ) + iw %S(CL(I + JD)J + eoel¢2qSCIu= -qSCL85O

Pitech:

i sT2uf C
i@ |asc gse igo -
z_ e ————— C - ia) —— C + e e _I U.? - Scc -+
o [EUE ms U rrh_] o Y q m, KSG

1‘-@2-( + )| = wT7C, B
- 10 S5 (Gy + Cyy) | = TTCp B,

The equations above can be written in the form

zoei%-[l\.l + iBlJ + eoej¢2[A2:] = F, (c-1)

zoej'¢l @3 + 1B3J + eoei¢2E\;+ + iBlJ = M, (c-2)
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Where
=2
seeuf
Ay = -ufm + Az = 3
l .
K7z 3% 2
By = u)gE(C + Cp) Bz = -u>g§§
L = o5+ Cp 3 T Gy,
Ay = ascy By = -If - 9SEC, + Ky
F_= =SC, & i, wﬁ( v )
° Iy~ By = -0 (G, Cmg
M, = QSECmGE’o
Applying Kramer's rule results in
Fo A
i¢]_ MO A)+ + iBu,
z.€ =
¢ D + 1Dy
Ay + 1B, F,
+ 1 al
2] ei¢2 = A3 B3 o
Dr + iDi
wWhere
Dr = MA, - AgA3 - BB,
Di = AlB). + A)+Bl - A233
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Each of the terms zoe1¢l and 60e1¢2 can then be divided into the
real and imagirary parts z,, 6,, %, and @,. A}, A, Az, Ay,
B, B3, and B, are defined in the program listing. Once the values
of the aerodynsmic derivatives, model physical properties, and test

conditions are selected equations (C-1) and (C-2) are solved simultaneously

to determine the dynamic response z ] ¢l’ and ¢2 as a function

o’ o’

of w. A sample program listing is presented.

Definition of terms:

M - mass of model, slugs

KZZ - vertical spring restraint, 1b/ft
Q - dynamic pressure, psf

S - wing area, £t°

U - wind-tunnel flow velocity, ft/sec
C - mean-aerodynamic chord, ft

IY - pitch inertia, slug-ft°

CIA - 1ift curve slope CLm/rad

c - drag coefficient Cp

CMADOT - Cmd/rad

CMA - Cmu/ra.d

CMQ - Cmé/rad

FO - =qSCrgdo, 1b

MO - qSECmaso, ft-1b

N - number of frequencles at which response is calculated

WW(I) - values of @ to be used to calculate response




Al - Al

A2 - A, etc.

Lk R T i f o e iiae L E i benks s ns e BB it the

Error Analysis

Equations (20) and (21) are programed in the following manner:

— ""—‘" [~ h

B(l:l) B(lye) B(l:j) CLﬁ. B(l:)“’)

B(2,1) B(2,2) B(2,3)||cp | = [B(2,k) (c-3)

3(511) 3(3;2) B(B,B)J CLS B(3:“‘)J

—

Where
N N w2 2 2ug6
B(1,1) = Z lAJlle = (gs)? >_‘ 95 + (Uo) + ; = sin(d, - ¢l):,
J=1 J=1 =4
Y 20052 \" [(uzg)?
- _2(q az
B(1,2) = Z “31“‘32 + AJlA:’j*e) = =5 Z [—UL
J=1 31
+ azof, sin(@s - ¢l)‘J A
a=w g
J
N N ‘ 1;~
AN - og22s @z2g :
B(1,3) = ZJ (AY,4,5 + AjMis) = 20°5°8 Z an cos ¢, - = sin ¢1J ]
J=1 J=1 wsy :
3 d | i
B(1,4) = Z (b¥A,) + A% ) = 2q3 Z ((mef - K,,)208, cos(d,, - ¢1)Jw=m




Where

A(1,1) =

A(1,2) =

A(l’B) =

A(l,+) =

A(1,5) =
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AL a2 a3) AL (o] [ac,s))
A2,1)  A(2,2) A(2,3) AR (e | |A(2,5)
| - (c-)
AGSL) A(32)  AG3) AGM|[e | |AG3,9)
_{x(h,l) A(k,2)  A(h,3)  A(k,4) Cng A(4,5)
J o2
2 gsc ﬁ 2
), le|? - (Tu‘) ) e
P} 1 W=y
N 5 2 N
qSc \
). @hsge + enel) - 2( 20 ) ), [eﬁ
=1 3=1
ub.2
+ =22 sin(g, - ¢l)] ()
UF(L)J
X 25253 ¥
_ 298¢’ \"
J>“i (67,845 + 8,,8}5) = po Z [«Po_z_ cos(d, - ¢,]]
= '::l
N N
N 2q232'6360 -
), @ngp +egh) = - —— ) [us, sin ;]
=1 3=1 4
N-.
), ey +nEr) = 0
J=1
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The program generates the coefficients A(i,j), B(i,J) based on
the test conditions, model properties, and model dynamic response. The

effect of an error in response 1s introduced by considering

Z 2 (l +A€z)

0 =0
8o =8, (1+2¢)
€40 €=0
¢ = ¢ + Ae
le;!o le=o ¢1

¢2€¥O i ¢2e=o * 8%,

Next, the program solves equations (C=3) and (C-4) separately for the
value of each aerodynamic derivative with response errors included.
(The equations are solved by & library subroutine called MATRIX.)

A sample program listing is presented.

Definition of terms:

U - wind-tunnel flow velocity, fps

Q ~ dynemic pressure, psf

s - wing area, ft2

M - model mass, slugs

C - mean aerodynamic chord, ft

Iy -~ pitch inertia, slug-ft2

K2z - vertical mount restraint, 1b/ft

KTT - pitch mount restraint Kgg, ft-lb/rad
DELT - tail angle B, rad

ZE - leg




TE
PIE

P2E

w(I)
zo(I)
THETAO(T)
PHI1(I)
PHI2(I)

MATRIX

- A€

115

)

- Ae¢l

- A£¢2

- program code 0 new test case
1  new error function
2 stop

- number of response data to be analyzed

- values of tail frequency

- values of response Z,

- values of response eo

- values of phase angle @,

- values of phase angle @,

- solves equations (C-3) and (C-l)




3
4

5
6

7

8
9

116

MODEL RESPONCE PROGRAM

DIMENSION Wy (100)

REAL KZZ,KTT, M, M0,1Y

FORMAT(10F8.0)

READ(S,1) 1,K2Z,0,S,U,C,1Y,KTT,CLA,CD,HADOT, CHA, CHQ

PRINT 2 -

FORMAT(25H | ABEL AALL STOP  340/7)

READ(5,1) FO,10

PRINT 3,F0,N0

FORMAT(/S5H FO =F10.4/5K MO =Fl0.4//)

PRINT &4

FORMAT(16H OMEGA - RAD/SEC,8X,7HZ0 - FT,10X,12HTHETAO - RAD,
16X,10HPHI1 - DEG,6X,10HPHI2 - DEG//)

FORMAT(14)

FORMAT(10F8.2)

READ(S,5)N

?Egn(s,ﬁ)(uu(l),l-l,n)

{=]+]

W=ifi(l)

Al=KZZ=Hwljea2

Bl=(CLA+CD)»\*Qs . /U

A2=Q*S*CLA

AZuQuaS«Cuwluliee2«CHADOT/2,.0/Usw2

B3m={x(nS*C*CHA/L)

Alme | Y a2 2+KTT-QeS«2CHA

Blw=(CHADOT+CMQ) x\ (1 #S*Ca2/2, /1)

DR=Al+AL=-A2*A3=-Bl+BY

DiwAl*BU+Al«Bl~A2+B3

20=SQRT((DRe (FO*AL=MO*A2)+DI*FO*BL)ww2+ (DR*FO*BL=-DI«(FO*AL=-110*A2))
1ev2)/{DRew2+Dlwe2)
PHI1s57.295780%*ATAN2(DR*FO#BL=DI«(FOxAL-1O*A2),DLk*(FO*AL=-MO*A2)+DI
1«FO#BL)

THETAG=SQRT( (DR* (M10*Al-FQ#A3)+D!«(110*B1-FO0*B3) ) +*2+ (DR« (}MO*B1=-FOe
1IB3)=DI*(MO*AL=FO*A3;)*%2)/ (DR* 24D [w#2)

PHI 2457,295780«ATAN2(DR* (10*B1-FO#B3)=DI*(MO*AL=FO+*A3) DR+ (110*Al~
IFO#A3)+D I« (HMN*B1=-FN*B3))

PRINT 8,W,70,THETAO,PHI1,PHI2

FORMAT(4XF6,2,8XLEL18,8)

PUNCH 9,4,20, THETAND, PHI1,PHI 2

FORMAT(SE15.8)

IFOI.LT.N) €O TO 7

STOP

END

i L - -
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ERROR ANALYSIS PROGRAM

DIMENSION W(50),Z0(50), THETAD(S50), PHI1(50), PHI2(50)
DIMENSION AC4,53,B(3,4)
REAL K27Z,KTT,M,1Y

1 FORMAT(5F15.8)

3 FORMAT(30X,u2i! LONG, LEAST SQUARES SOLUTION = TAIL INPUT////)

4 FORMAT(SH  U=F10.4,4X,5H Q=F10.4,4X,5 S=F10,.4,4X,S5H HeF19,
14,6X,5H C=F10,4//5H 1Y=F10.4,4X,5H KZ2=F10,4,4X,5H KTT=F10.4,4X
2,5HDELT=F10.6,4X,5H ZFE=F10,4//50 TE=F10.4,4X,5H P1E=F10.4,4X, Sii
3P2E=F10.4////)

5 FORMAT(14)

6 FORMAT(5F15,8)

PRINT 3

20 READ(S,5)K
IF(K.FQ.0) GO TO 14
IF(X.EQ.1) GO TO 16
IF(K.EQ,2) GO TO 1500

14 READ(S,S)N
NG 15 I=1,N

15 XEAD(5,6) W(1),Z0(1), THETAO(!),PHI1C1),PHI2(1)

16 READ(5,1) u,q,S,M,6,1Y,K22,KTT,DELT,ZF, TE, P1E, P2E
PRINT &,U,Q,S,M,C,1Y,KZ2,KTT,DELT, 2E, TE, P1E, P2F
N=1
Ju30

11 DO 101 11=1,4
DO 101 J1=1,5

101 A(11,41)=0,
DO 102 11=1,3
DO 102 J1=1,4
102 B(11,J1)=0,
PRINT 9,N,J
9 FORMAT(3H N=12,6X,2HJ=12///)
DO 100 I=N,d
Z0(1)=(1,0+ZE)+20(1)
THETA0(1)=(1,0+TE)*THETAO(I)
PHI1(1)=P1E+PH'1(1)
PHI2(1)=P2E+PHI2(1)
AC1,1)=A(1,1)+(H(I)*THETAG (1) ) #w2
AC1,2)=A(1,2)+ (THETAOCI ) ##2+W/ (1)« THETAOCI)*20(1)/U*SIN((PHI2(1)=PH
111C1))/57,2958) ) #li( 1) we2
12§1,3)-A(1,3)+wu)--2-THETA0(|)~20(|)-cosupuu(l)-sz(l))/57.295

ACL,8)=A(2,4)+M (1 )«THETAOC) )*SIN(PHI2(1)/57.2958)
A(2,2)=A(2,2)+(THETAO (I ) we2+(01(1)«Z0(1)/U)ww2+2, 0«THETAO(I)*Z0O(1)#
INCL)/7USINCC(PHI2CE)=PHIT(1))/57,2958) )+t (1) we2
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AC2,4)=A%2,4)+U (1 )=THETAQ(I )«SIN(PHI2(1)/57.2958)+U(1)222270(1)/Un
1COS(PHI1(1)/57,2958)
A(2,5)=A02,5)¢(1Y2U() ) ea2=KTT)2H(1)+«2+Z0(1 )«THETAO(I ) /UxCOS((PHI 2
1(1)=-PHI1(1))/57.2958)
A(3,3)3A(3,3)+THETAO(1 ) =22+ (M (1X2Z0(1)/U)**2+42 0+THETAO(1)2Z0O(I1 )
1R /USINC(PHE2(1)=-PHILX(1))/57.2958)
A(3,8)=A(3,4)+THETAO(I+COS(PHI2(1)/57.2958)=U(1)*Z0(1)/U«SIN(PHI1
1(1)/57.2958)
A(3,5)=2A(3,5)+(1Y21(1)2e2-KTT) 2 (THETAO(1 ) »x=2+(1)*Z0 (1 )+THETAD(1)/
1USINC(PH12(1)-PHI1(1))/57.2958))

ACh, 4)=ACL, 4)+(QaSeCoDELT) »=2

ACh,5)=A(L,5)+ (1Y=H(1)222-KTT)*THETAO (! }+COS(PH12(1)/57.2958)
B(1,1)=B(1,1)+THETAOCI ) =22+ (U (1)*Z0(1)/U)*22+2,0+H (I )«THETAO(!)»
1ZOC1)/U=SINC(PHI2C1)=-PHI1(1))/57,.2958)
B(1,2)=B(1,2)+N(1)22x2220(1)«+2/U+H{1)*THETAO (1) *Z0O (1) *SINC((PHI2(I)
1-PHI1(1))/57.2958)
B(1,3)=B(1,3)+THETAO(1)*COS(PHI2(1)/57.2958)=UH(1)+Z0(1)/U=SIN(PHI]
1(1)/57.2958)

BC1,u)=B(1,4)+ (e (1)*22-KZZ)2Z0(I)*THETAQ(1)+COSC(PHI2(1)-PHIL1(I)
1)/57 2958)

B(2,2)=B(2,2)+(M{1)*Z0(1)) 222
B(2,3)=R(2,3)+W(1)220(1)+SIN(PHIL1(1)/57.2958)
B(3,3)=B(3,3)+(Q*S*DELT) *»2
B(3,4)=R(3,u4)+(Mali(])2+2-KZZ)=Z0(1)+COS(PHI1(1)/57.2358)
2001)=20(1)/(1,.0+2F)

THETAO (1 )=THETAO0(1)/(1,0+TE)

PHIT(1)=PHI1(l)~-P1E

100 PHI12(1)=PHI2(1)=P2E

A{1,1)=A(1,1)»(OaSxCxe2/2,0/U)*=2
A(1,2)=A(1,2)>((QsSeCxx2/2 . 0/U)x%2
A(1,3)sA(2,3)x((Qe222Sxx2+Cx23/2,0/U%x2)
A(Ll,4)=A(1,4)x(~Q»22+Sex22Cx232DELT/2.0/4)

AC2,1)=A(1,2)

A(2,2)=A(2,2)*(Q2S5*Cx*2/2,0/U)x=*2
A(2,8)=A02,4)*(~Qan22Sex22Cxx32DELT/2,0/Y)
A(2,5)aA(2,5)*(QxS=Cx=2/2,0/U

A(3,1)=A(1,3)

A(3,3)=A(3,3)%(QaS*C)»#2

A(3,4)=A(3,4)x(QxS*C)»=2«DELT

A(}pS)'A(},S)'(-Q*S*C)

A(L,1)=A(1,4)

A(h,2)=A(2,4)

A(h,3)=A(3,4)

ACh,5)=A(L,5)%(~(*xS*C«DELT)

B(1,1)=B8(1,1)*(Q*S) %42

B(1,2)=B(1,2)s(Q*S)#%x2/U

B(1,3)=RB(1,3)*(+Q*S)»*2+DELT
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B(1,4)=B(1,4)*QsS
8(2,1)=B(1,2)
B(2,2)=B(2,2)*(Q*S/U)*#*2
B(2,3)=B(2,3)*(-Q*S)**2+DELT/U
8(3,1)=B(1,3)
B(3,2)=B(2,3)
B(3,b8)=B(3,4)*(QeS*DELT)
PRINT 400
400 FORMAT(//9H A MATRIX//)
PRINT 8,((ACI1,J1),41=1,5),11=1,4)
8 FORMAT(5E16.8)
PRINT 401
401 FORMAT(//9H B MATRIX//)
PRINT 10,((B(11,J1),J1=1,4),11=1,3)
10 FORMAT(4E16.8)
CALL MATRIX(10,4,5,0,A,k,DETERM)
CALL MATRIX(10,3,4,0,B,3,DETERM)
PRINT 7,A(1,5),A(2,5),A(3,5),A(k,5),B(1,4),B(2,4),B(3,4)
7 FORMAT(5H CMQ=F10.4//84 CMADOT=F10.4//5H CMA=F10.4//7H CMDEL=F10.&
1//5H CLA=F10.4//4H CD=F10.4//7H CLDEL=F10.4///)
IF(J.GE.30) GO TO 20
1500 STOP
END
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