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ABSTRACT

A theory for tuckling of three-dimensional space frames by
finite element methods is developed. A procedure for automation of
buckling calculations is presented. An accuracy study is made of the
convergence of the theory by fini:e difference methods and applied to
the pinned, fixed, and cantilever column problems. The semirigid
joints are introduced by a linear spring approach. Two— and three-
dimensional numerical examples are presented that show the influence
of semirigid joints on buckling loads. The procedure used to solve for
the buckling lcads in the examples is determinant plotting. The results
for the problems studied show that practical moment resisting joints
may be assumed to be rigid with a slightly nonconservative buckling
load. Also, 1t is shown that practical moment free connections have a

substantial amount of residual strength for buckling.
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CHAPTER 1

INTRODUCTION
The buckling of planar frames has been the subject c. an

(1,2)

extensive amount of experimental and theoretical study.
survey of these investigations(g) has ied to simple formulas from
which buckling loads can be calculated. Mocst buckling analyses
assume that the joints are rigid. For real structures, however, the
joints are not —igid but have some flexibility due to the method of
connection (bolted or welded). Such practical joints can be termed
"semirigid." If it is assumed that the joint is rigid and is

actual semirigid, the buckling load will be overstated. A joint
assumed to be pinned and is actually semirigid, the buckling load
may be understated. A safer and more economical design would result
if the effect of the semirigidity of the connections were included
in analyzing a frame. Some work on the influence of semirigidity

(1,3,4)

for frames has been accomplished for planar frames. For

(1)

instance, Goering used a generalized slope deflection method

with fictitious members to represent the semirigid joints. Monforton
and Wu(e) modified the stiffness matrices for the members by using a
correction matrix. Also, the methods used for planar studies (rigid
or semirigid) do not appear to be easily extendable to three-
dimensionsl baickling and another approach seems to be required.

An approximate method which has merit for handling three-

dimensional buckling including the influence of joint flexibility is




the finite element method of structural analysis. This method is a
Rayleigh-Ritz approximastion as applied to the displacement shapes.

It is well suited for calculation on a digital computer and has the
potential of being applicable to almost unlimited cases of complicated
structures composed of beams, plates or shell segments. Beceause of
its advantages the finite element method has been chosen for use in
this study.

The purpose of thes thesis is to extend the finite element
method to compute buckling loads of three-dimensional structures
allowing for joint flexibility. A linear spring is used to
approximate the semirigidity of the connections. Torsional stiffness

h

joints are not considered. Twist buckling is not included in this

(;J) Tor any given member is provided; however, torsional semirigid

study and limits the sample problems to frames composed of cross
sections consistant with simple beam-column behavior. The derivation
and a study of accuracy of the three-dimensional buckling matrices
are presented, as well as sample problems for two- and three-
dimensional frames having both rigid and semirigid joints. The
development assumes inextensional buckling behavior for all compression
members. The stiffness values used for the semirigid joints were

(5)

based on the ceries of tests performed by Rathbun on

representative joints for real structures.




CHAPTER 1I

MATRIX ANALYSIS BY FINITE ELEMENT METHOD3
2.1 Derivation of Three-Dimensional Stiffness and Geometric
Matrices
In the finite element method it is customary to obtailn a
characterization of the stiffness properties, E{] , of each element and

relate the end nodal displacements, {u} , to the end internal forces

& CRICRCY @
A symbolic finite beam element with ends at points 1 and 2 is shown in

Figure 2.1.1. The vect;{s {uband@i}ag; the respective vwvectors of
CYERUD IR PR

Figure 2.1.1- Finite element.

end displacements and force resultants. Thus Equation (1), as applied

to Figure 2.1.1, is
F u
1 1
- (2)
F2 u,

where [K] is the stiffness matrix of the finite element. For buckling
problems there are two parts to [Ig(ref. 6) in Equation (1), the bending

stiffness portion {Koj and the portion dependant on P [Kj Thus,

for buckling, Equation (2) can be written in the form

el -

This section contains a derivation of the[l(ﬂ and[Kj matrices for

three-dimensional column buckling.



The sign convention for rotations used in this thesis follows
the right hand rule and is shown in Figure 2.1.2. (Consider a
continmuous prismatic beam element with a length h and a symmetrical
cross section subjected to a constant axial load P. The strain energy
of the beam which takes into account bending about both axes and

constant torque is
=1 h‘ 2 w2 GJ &2 '
U-Eﬁ) EL,v" xx + Ely " +h2 x| & (4)

The terms EI, GJ are the bending and torsicnal stiffnesses and v, w,
ek are the relative displacements of the beam element (Figure 2.1.2).
The distance along the element is x and the subseript x following
a comma denotes differentation with respect to x. If inextensional
behavior is assumed, the bowing effect of a differential segment dx in

the x-y and x-z planes of Figure 2.1.3(b) due to out of plane motion is

ax — (d.xz-—dvz—dwz)%

(i-[- (2 2)] %}dx &)

Expand the total bowing term of Equations (5) in a binomial series.

e

e

]

The result for the segment is

e =dx{(1- E'_% ("':xe +w:x2) * 'j} (6)
e=% (v:x2+w:x2 )dx

The external potential energy of the bowing effect for the element is

h
Q =‘/;L/; e o, dA

where g, = %



Figure 2.1.2.- Sign convention.

rli P dx - P
M (a)
0, ax
(b)
(dx2 ave — aw )}
w 7 ¢
— \ |*
y

Figure 2.1.3%.- Bowing effect.



Then, if the axial force and the area of the member are constant:
_P J[ll 2 2
Q=2 o \Vx *¥y dx (7)

The total potential energy of the element is the sum of Equations
(4) and (7):
V=Q+1U

v —% u[uh [EIz v,xx2 + EIy W’X__x2 + %’Jg ex,xg + P (v’x2 + w’xe)]dx
(8)

The Rayleigh-Ritz method is used to approximate the behavior
of the finite element. The displacements shapes (v,w) are assumed
that satisfy the boundary conditions at each end. The simplest set of
approximations that satisfy the boundary conditions — the arbitrary
displacements and rotations at the ends of the element — is the
following: ek =8ay+a) X

v = bgt by X + by i + by X

Ww=cytep X+ op %+ c3 x0 (9)
where a5 bi, and c; are constants of integration. These displacement
states correspond to that resulting for a prismatic beam undergoing
small displacements and subjected to end loads.

It can be seen from Equation (8) and Equations (9) that the
bowing effect as well as the various energies are uncoupled from each
other and can be handled separately. Therefore, the bending derivation
will be restricted to two dimensions to compare with Martin's work

(ref. 6) and these results will be subsequently utilized to obtain the




complete three-dimensional behavior.
Solving for the constants of Equations (9) in terms of the nodal

displacements of the element results in the following:

Oy = (oxg - OXl)x (10a)

D R B R Y SR I Ch
(ozl + ezz) ]x3 (10b)
Wy - Oyl x + [hlé ("2 - wl) + % (29yl + Oy2 ):]xz + [:53- (wl - we)

- ;l:é (gyl + eye)]né (10¢)

Let Vl be the two- dimensional portion of the potential energy and Vo

<
1l

A

]
1

the remaining portion. Using the calculus of variations(incrementing, Vl

by a virtual displacement), Equation (8) excluding Voxx 8nd ¥ o terms,

is
1 GJ 2
Vit av= 2 ~/o Enz (v,xx + 5",xx) + 3 (ex,x + sex,x)

2
+ PG’X + Sw’rx) ]d.x (1)
Expanding and grouping together those terms linear in the virtual

displacement &V; and quadratic as 82\!1 yields



H+av;= |+ B+ 8%!1 (12)

From energy principles it is known that 8 = 0 for equilibrium and

52V > 0 for stebility (See ref. 7). Since the only term that is of
interest in buckling is the second variation 52Vl, it will be evaluated.
Note that for this problem the potential function is guedratic and the

variations higher than the second vanish. Thus

h
&y, 1 2 GJ 2
5 1= 5 \/O\ {EIZ e} V,xx + —Eh ( 529x,x) +P 5% V,x} dx (13)

The appropriate variations of Equations (10a) and (10b) are substituted
into Equation (13). The result after expansion and integration is

the following:

1] & - 2
e} 1=~§{:E‘ (éex2 Bex;)

12EI 12E1
6P 2 P
+ (}:;r_ﬁ + 55) (?va - avl) - <-;§—E + Bi)(sve

LET
-5v.) (50 +80 \ + z+2Ph) 28 +8 0
1) (%, * %) (h ) (% % 2,
4ET
Ph
+ z E) 59‘1 5912} (14)

Equation (14) can be written in matrix form as

v, =3 (o0 [x1 {ou) (15)




Separating K into two matrices, K° and K' gives the following

result:
5v 56 86 5v 86 50
1 zl 2 x2 '2
]
121-:1z 6EI 12EIz 6EIz
0 - 0
el B A Ed
GJ GJ
0 T 0 0 " 0
6ET . hmz _ 6ET 2EI,
2 0 h 2 0 R
K° = (16)
128T 6EI 12ET 6ET
oz o - _?z_ z o - 2
h5_ h n3 h2
GJ GJ
o} - 0 0 e 0
6ET 2ET, 6EIz LYET
= ° n "= ° X

Where the ordering of the@variations is shown along the top of the

matrix.
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8&v. 86 88 Bv_. 88 58

, 1 'l 2 x2 52

6 L6 1

5 O 10 53 © 10

o O 0 o © o}

1 2h 1 h

, 1w © 15 "I ° °%
K =P (17)

_6 o -1 6 0o -1

5h hXo) 5h 10

o © 0 o 0 0

1, .k ! 2h

| 10 % i © b

Equation (156) is the standard, two-dimensional finite element

stiffness matrix and Equaticn (17) is the two-dimensional geometric
(6)

matrix reporced by Martin, but derived in a different manner.

To extend this in the third dimension, Equation (10c) and the
remaining portion of Equation (8) are used to obtein, through the same
procedures as Equations (11), (12), (13), and (14), the following

additional terms to the second variation (82V2):

82V2=% (1331 . g@ (5"2 _ 5'1)2 +(_1_2E;x + g.)(awa - 5"1) (.593'1

) ><52° )

+ (Tﬁ-x - 35- 50 (18)



1

It is seen in Equations (16) and (17) that there is no exten—
sional contributicn in the K° and K' matrices. Extensional behavior
1s neglected in the buckling behavior of the element corresponding to
the usual inextensicnal assumption made when deriving the differential
equation for column stabily. The final three-dimensionel finite

element stiffness matrix K9 obtained by adding the applicable part of
Equation (18) to Equation (16), is the following:

&v, &w, &6 86 88 &v Bw, 86_ 8@ &e

_ L7y "y Ty 2 2 Xy,
12ET 6ET 12EI 6ET
2 0 N 0 2| z 0 0 0 z
e | v he
12ET 6ET 12ET 6ET
0 0 - —él 0 0 -71 0 - 0
h h h h
GJ GJ
0 0 = O 0 0 0 -5 O 0
6EI 4ET 6EI 2ET
0 - l
0 h ° h ° ° _;Ex ° h °
kK= 6T, YET | 6Er 2ET
0o 0 o - 0 0 0 ——t
_hT ' _h'é_ h
1281 GEI_| 1PEI 6EI
-—= 0 0 0 -—f —5* 0 0 0o -—pF
h h h h
12EI 6EI 12FT 6EL
0 - 0 —él 0 9 - ) -—g‘i 0
h h h h
oJ oJ
0 0o -§& o0 0 0 o = o© 0
6EI 2ET 6EI LEY
0 m—f o g ol o o L o
h h
6EIz 2ET 6EI Ler
0 0 ) —_—Z] et 0o 0 0 L
L e h = . B
-




-
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The final three-dimensional finite element geometric matrix

K' 1s obtained by adding the rest of Equation (18) to Equation (17):
v 5w, 56 56 50 Sv 5w, b6 50 50

1
: 1y 0 oz 2 2 % vy, %
6 1 6 1
Sh 0 0 0 o!l- gi 0 0 4] 10
! 6 1 6
0 5 © "1 O O -3 0 - O
] 0 0 0 0 (0] 4] 0 0 (0]
1 2h 1 h
0 10 0 5 0 (0] 10 (0] - 36 0
1 2h 1 h
T O =l-% o 0 -3
' 1 0 0 15 10 0 30
& 1| 6 1
5 O O o -5l = © o o0 -3
6 1 6 1
0 5h 0 ia C 0 gﬁ 0 ia (0]
0 0 0 0 g 0 0 0 0] 0]
1 h 1 2h
o - 10 o - b0) 0 0 iTo) (6] T 0
1 i l 1 2h
10 0 0 o - 35 - 10 0} 0 0 ig
- -

The equilibrium equations describing the end forces {F} in

terms of any set of nodal displacements (virtual or real) is
L
{F) = [£° + k'] {u} (21)

where

¢
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2.2 Introductiocn of Semirigid Joints

In this study the influence of semirigidity will be studied.
Some method of introducing joint flexibility must be provided. The
method selected is the use of a linear spring between members at a

Joint. The strain energy of the spring is

0
U, = j; Msde where Ms =~ RO

]
U =f RO 40 (23)
8
0
2
RO
Ug =3

Where R 1is t_.e spring or Joint stiffness.




14

Some typical examples of this approach for semirigidity
are shown in Figures 2.2.1 and 2.2.2. In all cases the column angle
is used as the base angle (datum plane) for determining the slippage
of the joint. A typical deformed joint is shown in Figure 2.2.1(a).
The total strain energies for the two-dimensional springs of

Figure 2.2.1 (a) and (b), respectively, are as follows:

U, - gl (o, - %)° (2ka)
ZUS - 23 (o5 - 0, ) + 2—3 (5 - 95)2 (24b)

The total strain energies for the same joints but adding the

third-dimensional member, Figure 2.2.2(a) and (b), respectively, are

Z Us = gt (96 - 97)2 + ;5‘ (96 - ¢1)2 (25a)

as follows:

R ~ Rg
Z U - §§ (o - 99)2 + ;ﬁ (% - 910)2 + 5 (0 - ¢2)2 (25b)

For example, the matrix format of the second variation terms

that come from Equation (2ka) is

8, 89,
R R 1

6 - @
- K ! )

where[éf]is the spring stiffness matrix for the Jcint of Figure 2.2.1(a).




Typical deformed joint

]
]
Col. :
]
I

14
X

Col.

15
Rigid

Sﬁmirigid
1

L

-

Figure 2.2.1.~- Two-dimensional joints.

| i | Actual
- — —
____.#

Bm.

y =~

i

| [
R |

Semirigid

Rigid

|
=3

1\r

(b)

Figure 2.2.2.- Three-dimensional joints.
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The semirigid connection may be thought of as a locally
weakened section between the end of a beam and the face of the column
to which the connection is made. Reference (1) points out that only a
small part of the rotation of a semirigid joint is due to bending of
the angles. Most of the rotation is due to slip and extension of
its rivets or boits. Since this semirigid joint is quite complex
and involves other types of movement such as local bending of the
column, this thesis will be concerned only with the use of a linear
rotational spring to represent the semirigid joint.

The rotational springs of the column and beam have additiongl
nodal stiffnesses, (l—*%l) colum 2nd (E%I-) beam' The rigid joint

stiffness form can be expressed as the following:
(%) co1umn * (%81)bean

e . M

—_— 2
X h coclumn h  beam )

Equation (27) must be included in Equation (26) to obtain the

complete semirigid stiffness of the joint. The result is

891 662
LET
_ + R -
h column 1 Rl 56
[K_-]@)= 1\ (28)
56,
1 h  beam 1
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where[?] is the semirigid joint stiffness matrix of Figure 2.2.1(a).

2.3 Automated Technique of Matrix Methods

2.3.1 Procedure for stress analysis. The process for

generating a computer program of any structure that is composed of
many finite elements is to first pick a set of coordinates convenient
for a typical element. The generalized element displacements are {}i}

and forces are <§i>. The energy in terms of element coordinates is

v-3 & (]G (29)

The displacements {g} and stiffness matrix [?:]are partitioned corre—

sponding to ends 1 and

L& - & (30)

Kig Ky | |3 P,

- O P 1
K3 99 3 3 (31)
In the process of connecting elements, it is found that one
element's local courdinates are not the same for another element.
Therefore, a set of system coordinates is chosen that is convenient
for a system of elements and the local coordinate points are numbered

(points 1, 2, 3, ...).

A systematic numbering process for the node points and members
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is chosen. The element properties (E, A, I, L) are given. The stiffness
KiJ for each element is calculated in local coordinates where 1 and J
refer to the end points of each element.

If the system coordinates are called {E} , the transformation
from an element's coordinates to a system's coordinates is accomplished
by a transformation matrix,[g. (8) That is

0-B 2

The stiffness of the element is transformed to system coordinates by

- [ B e

Consider several elements that are connected. The next step

Equation (32).

is to generate the master stiffness mgtrix EFii]M by suming all member

stiffnesses. It can be shown that the elements of[KiaM can be

obtained as follows: .
DR
All

members
For all displacements that are constrained(boundary conditions),
it can also be shown that this can be handled by striking ocut rows and
colums corresponding to the displacement constraints, resulting in the
reduced master stiffness matrix [E]R.
Finally, the system applied external forces {é are identified

[KJ R {u}R = {Q}R (35)

and the equation

is solved.

2.3.2 Buckling procedure. For the buckling

-
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problem the steps are essentially the same as for the preceding
section except that the stiffness matrix K for an element is composed
of two parts, K°, the stiffness of the structure and K', which

contains P — the eigenvalue portion of the problem. The remaining

steps are the same with the external concentrated exial loads at

the joints equal to the internal forces of the column elements in

the XK' matrix. Since the external lateral forces and moments at the
junction of the beam elements are equal to zero in all cases studied

in this thesis, the equilibrium equation for inextensional behavior is

E{OR s x RJ () - (36)

A nontrivial solution to equation (36) requires that the determinant

1

o] 1 -
K®  +K Rl-o. (37

A similar condition results for stability based on the second
varigtion of the potentiasl energy of the structure. This is then
solved by some standard procedure for d termining eigenvalues such
as determinant plotting, matrix iteration, or other procedures. The
method used in this study is determinant plotting.

When the eigenvalue has been computed, the mode shape or
elgenvector is obtained by assuming a value for one of the components

of the eigenvector and solving for the remaining components in terms

of it.
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2.3.3 Seririgid joints., The process of allowing for joint

flexibility adds only one additional step from that described in
the previous sections. After transforming the element coordinates
into system coordinates, the next step is to add the system spring

stiffness matrix Eéij] similar to that in Equation (26)
- R

] Ry 13
"R By

to the transformed element matrix or matrices. For instance, if a

semirigid joint occurs between points i and j, the resulting

stiffness matrix is

[Km] = Ec-i.j * R:JJ (39)

Any combination of Sections 2.3.1, 2.3.2 and this sectlion can
be used to give values (two- or three-dimensions) for stresses,
displacements, eigenvalues, or eigenvectors either by allowling for

Joint flexibility or by using rigid joints.




CHAPTER ITI

STUDY OF CONVERGENCE

3.1 Introduction

Since the finite element method is an approximate aumerical
solution to structural problems, some knowledge of its rellabllity in
these applications is desirable. This section gives the resulte of
an investigation of the convergence and accuracy of the finite element
matrices derived in Chepter II. The results are limited to simple
planar buckling; however, they provide a basls for extending the
methods to more complicated problems. There are many ways to study
convergence and accuracy, most of which are based on numerical
solutions to speclal problems. The approach used here is that of
classical order of error analysis pfocedures borrowed from finite

(9)

difference methods; that 1s,to expand the discrete equations in a

Taylor series about the 1th point.

el
3.2 Order of Error Analysis for K + K'

Consider a continuous prismatic beam element of length h
subjected to a constant axial load P (Fig. 3.2.1). The generalized

displacements are taken to be rotation €& and deflection v at the

— s —

8

end of the element.

Ph——l:——‘::'—ups-—-———-upc‘ v?
11 BT 1 R St
(a) (v)

Figure 3.2.1.- Beam element.
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Since the out-of-plane displacements and rotations are uncoupled from
the in-plane displacements, it allows for separation of the two and
only in-plane behavior will be considered to evaluate buckling
reliability,

If two elemenis are jJolned together at the ith point, two

finite element equations result riom the sum of forces and moments

at the point. They are respectlvely,

6
(%ESI. * 55') (- Vi *2v - Vi) +(§2E£ ' '11%) (’ Pt 91‘51) =°

(ko)
and
6EL . P 2EI Ph
(;’z' * ‘1‘6) (Vi1 = Van) * (_h- - 36) (B1-1 * ®141)
+(§T1El+§%) 8, =0 (k1)

To study the convergence character, the terms in these e, . .ons
are expanded about the ith point by using Taylor series such as

2

] h 1t
Vit =Vy t vy + 3TV

t s o0

2

This leads to

s O AN ST N - A N SN N - S
h3 5h i 12 i 360 i 56(360) ‘1 - )

6EI P - R TR - n' v
*(;r*m)(zhei *8% w4 tsmry byt eer)=0

(k2)
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and
6EL . P e I A L -
(;E“*I‘G)(‘Eh"i " Vy &Y "yt )

6 8
2EI _Ph 2,'" ,h IV h VI h VIII
+(T'36)(2°1+h 5 *m% *m bt st i )

8EI . 8ph
Since 8, 1s not an independent variable in the continuum sense it

i
1s useful to eliminate it from Equation (42) and (43). By solving

Equation (43) for 61, obtaining the successive derivatives and

substituting these derivatives back into Equation (43), it becomes

V 11t
SPRUPRY A I (a
i i 1680  1OCEI
Substituting the derivatives of 6, into Equation (42) 1eads to
' VIII
Py v
v 1 4 1 P V'J:] (6)_
vy T th |-~ tseEr Vi | *Ol)= 0 (45)

J

Equations (44) and (45) show the convergence characier of the

finite element Equations (40) and (41) and show that they converge

to
0, - "1' =0 (kha)
and By 1
"1IV - "E%" =0 (45a)

with both equations having an error of order hu.




2k

3.3 Order of Error Analysis for K° - K! for String

Reference (6) suggests that a simpler method be used to obtain
K' by the superpositicn of a string and a beam without any interaction
between the two. This combination then leads ¢0 the same result of
K® previously derived but a modified K'. The K' for the string
as applied to the planar column is

v 50 bv 56

1 1 2 2
0} -1 0
g 0 0 0 (46)
-1 ¢ 0
0 o} 0 0
By applying the same procedure as before, the two finite element
equations at the ith point are
12EI P
(_Sh -t H) (- Ve * 2y - 1+1) ( 8 * %)= O
(47)

(.i_;*_I.) (. Vi t "1-1) 5 (9_-1 + b, + eiﬂ) )

Expanding as before results in

b 6 8
128 P 2 ''* h IV h Vi h VIII
('h'S +E)('h i "Y1 "3 Y1 " 30056) ‘i )

6ET o h5 v, nl vn)
oh e, +2 g 0, - 48
.+( h§>( 1730 60 1 )7 ° 4o




25

@l 2h I-h—j.v!ll hsvv- h7 vv-II
12 - i 3 i T80 i 2520 1
L 6 8
2EI 2 ''" h IV h VI h VIII
+—h-(681+h 61 +T2-ei +?@Gi 'f'mei ):O
(49)
Solving Equation (49) for 9i and substituting successive
derivatives back into this equation leads to
1 h)-l- \'4 h6ViVIII
TV e Yyt e < O (50)

Substituting the derivatives of 8. into Equation (48) and collecting

terms gives

1t -
Py v,V v, ey Vi]
R A S-S Dl S B IS SR -+<£f)= 0
1 BT 155T ) 335E?j

(51)

Equations (50) and (5.) show that the string approximation
converges to the required continuum equations but Equation (51) has
412; Thus its expected accuracy is less than that given in the

previous section.

3.4 Application of Order of Error for K° + X'
The results on order of error can be applied to obtain some
further ‘anformation on the accuracy of the discre:e approximations

(10,11)

ir a particular set of problems. Consider a pinned column

with effective length, Le’ and subjected to a coastant axial load, P,




-
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If only the first order of error term 1s retained, the differential

equation representing the finite element equation is

v TR VIII vi|
vy ')‘ivi +hE:lvi +02)‘ivi_J'o
where
P
A= T
The constants Cl and 02 taken from Equation (45) have

1 1 4
values of - 750 and 350° respectively. Since h is small,

(52)

Equation (52) can be solved utilizing the perturbation procedure in

references (10) and (ll)~ Let L

Where A; corresponds to the order of error term.

Substituting (53) into (52) ylelds (retaining up to h4 terms)

v ' L VIII VI vy
[vi -kovi]+h[c.lvi +Ce7\0\ri -)\lvi]_o

Assume
mx
V'i = Am sin (i-)
e
The first part of Equation (54) becomes
my 4 mx 2] max
=) + -_ sin(——)
S [(3) 0 () )
and this must be zero independent of hl‘ terms, thus

v (@)

(53)

(54)

(55)

(56a)

(56b)

s
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Let 2
PL
2 e
A=A Ly = 4
(57)
Ry = - (mn)?
The second part of Equation (54) becomes
. E"_B 7\0’”" n.‘ﬂa si L"L’E):o
AR don (e n @] e
Therefore (58)
(m:r) (nm
and
A== )2 1+(R hﬁﬂ)ﬁ
; Bt (‘1;) 720
or (59)

2 ) EI
Pop. = - (mn) [1+(e) (I';;O -

e

Now let N equal the number of elements per half wave, this is

Le
V= Ya

The final equation form is

i
2 1 EI
Fo, = - (mx) [ ;x:“—o:] - (60)
e
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Where the negative sign says that for buckling the member must be
in compression. This shows that the error in a buckling load calcula-
tion is determined by the contribution of the principal error term

N

€, wvhere € = FL Representative values of € for various number
720

of elements are as follows:

€ N

20% 0.91

10% 1,08 (61)
1% 1.92

Then, two elements per buckling half wave gives the buckling load to
about 1% error.
3.5 Application of Order of Error for K° + K' for String
The came procedure as the previous section is used with

order of error h2. The differential equation of the column effect
approximated by a string is

viIV - N vi” + 1 [:Cl N viIv] =0 (62)
where

2
7\i=)\o+h 71

The constant C, =-i—2 from Equation (51) and Eq. (62) becomes

'T\ 11 .
[viIV-Kovi_J +h2[:cl)\0vi:w')ivi] =0 (63)

Solving this in the same manner as before

2
2 1l x| ET
For, = = (@0 |1+ 15| =5 (64)

Le
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2
The principal error term € = EEEE , for various number of elcments are
as follows:
€ N
20% 2.03
10% 2.87
1% 8.72

Thus nine elements per buckling half wave are required to obtain the

buckling load to about 1% error.

3.6 Numerical Comparison

To complete the study of convergence, numerical results for
the classical columns (pinned, fixed, and cantilever) were obtained
for several numbers of finite element segments per column.

The results for Figures 3.6.1, 3.6.2, and 3.6.3 were obtained
by the O(h&)finite element approximations (K0 + K') and shown in
Table 3.6.1 (a). If it is assumed that the numerical solution for
PCR. approaches the exact solution according to the order of error,
the exact result can be extrapolated by assiming a linear relation(lz)
for order of error (h/L)u. Also, the perturbation solution to the
finite element equation can be applied to simple problems. It is
given in Chapter 3, Equation (60) and gives higher but relisable
estimates for the results given in Table 3.6.1 (a). The perturbation
results were obtained by solving Equation (60).

Results were also obtained for the KO + K' for string, O(h?)
for the case of a pinned column. As an example, the data is given in

Table 3.6.2 and plotted in Figure 3.6.4. The numerical data in

Teble 3.6.2 also shows a close comparison between the O(h?) numerical
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Pog. L°/EI
Col. Number of elements (h/L)u o
end act
1 2 3 b 1 XExTRAP
Pinned [12.0000{ 9.9200| 9.8847] — 9.8760| 9.8696
Fixed —— |40.0000|40.3432[39.7754(39.5126] 39.4784
Cant. 2.5000[ 2.4855( 2.4711] —— 2.4676] 2.4674

(a) Numerical calculations
PCR. L2/E1
Number of elements
gié. Exact
1 2 3 In
Pinned
1.2049{ 9.9531| 9.8861| — 9.8696
Cant. | 2.8012| 2.4883[ 2.4715( — 2.4674
Fixed —~  |44.8194 [40.5334 |39.8122 9.478&]

(b) Perturbation solution estimates
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TABLE 3.6.1.- NONDIMENSICNAL BUCKLING LOADS,Q(ﬂﬁFOR K'

Peg, L°/EI

Pinned
col.

Number of ele

ments

2 3

4

Exact

Num.

12.0000|10.8000

10.3866

9.8696

Pert.
Est.

11.8990[10.7715

10.3769

9.8696

TABLE 3.6,2,.,- NONDIMENSIONAL BUCKLING BQADS OBTAE;ED FROM

"STRING" APPROXIMATION TO K1 —
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fgure S.0.1.- Buckling loads for pinned colwnn, K9 + K1
Lrertarbet’ u
Fstimate
Numerical

4o.0 ¢t

39.8 T

39.6 T

o - Calculation pcints
Order of error

0 -+ + + + + 4 y
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Figure 3.6.2.- Buckling loads for fixed column, K° + K'.
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Figure 3.6.3.- Buckling loads for cantilever culumn, K* + K'.
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Numerical

Perturbation
Estimate

12.0 Fy
11.51
11.01

Fer.
El 10.5

10.0 0 — Calculation points

9.5
C% Order of error
O : ra 2 2 4

0 05 .10 .15 .20 .25 (n/L)°

Figure 3.6.4.- Buckling loads for pinned column, K° + K'
for string.
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results and the perturbation estimates of the numerical results.
They also demonstrate that the string finite element does have an
order of error of h2. Therefore, from a practicel point of view of
seeking the grcatest accuracy from the least amount of work, it is
cbviously advantageous toc use K° + k' matrices having O(hh) in lieu
of the K° + K' for the string having 0(h%).

The results also show that the O(h&) approximation gives good
accuracy and has excellent convergence properties. The O(h&)
approximation results were high but were converging to the correct
answer as the number of finite elements was increased. The finite
element approximation is used in the remaining portion of the study
to obtain calculations for frame buckling with and without joint

flexibility.




CHAPTER IV
PRESENTATION OF NUMERICAL RESULTS

4.1 Introduction
The homogencous linear equations expressed by Equation (36) have

a trivial solution, that is all displacements equal zero, and a non-
trivial or unique solution where the determinant of the [%0 + Kz]
matrix equals zero. Since the triviael solution is

useless, the unique solution is the one of interest here. By

holding all values in the K° and K' matrices fixed, the only
parameter 1s the axial load, P. The procedure used in this paper to
determine the buckling load 1s to obtain the lowest nonzero value of P
{1oad) that causes the determinant to vanish. This is accomplished by
plotting the determinant versus the magnitude of the load. The
numerical results were calculated using theContrcl Data 6600 digital
computer at the Langley Research Center. Since the results &re
obtained for three- dimensional frame structures, several types of
member properties are required. To give realistic results, specific
dimensions were selected for the representative structure. The columns
are all taken as 8M34.3 steel members and the beams as standard AISC

8WF31 sections. Table 4.2.1 shows the properties of these members.

4.2 Rigid Joints
Several calculations were obtalned for the frames of

Figure 4.2.1, where the joints were assumed to be rigid. The first

3L




’ Big I|Smal)] J, [Lengt] E G
Member Type it i i gg* | £t | pst | ped |
Columns | 8M34.3 [115.5] 35.1| 0.72] 2k.0f 30.0] 21.2
X .'LO6 X lO6

Beams 8WF 31 1109.7] 37.0f 0.54] 30.0

TABLE 4,2.1.- MEMBER PROPERTIES

(a) One-bay. (b) Two-bay.

Figure 4,2,1.,~ Two-dimensional frames.

~ Frane,

Finite PCR. , Lb.

Elememt KO + K' | Literature| % Diff.
 One-bay,one| 111380 110280 +].01
Two-bay,one] 112300 111110 +1.08
Two-bay,two| 111700 111110 +0Q, 54

TABLE 4.2.2.- BUCKLING LOADS FOR TWO-DIMENSIONAL FRAMES

og l &
u -l u -
Oy ey K J
" \T‘
ot
——— u | a—

-7 -
7 Ly = 35.1 by

Figure 4.2.2,- Three-dimensional, one-bay frame.
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results are for the case when the frames buckled as planar structures.
These results were computed to compare with existing or known resultgl,e)
as well as to provide check points for the three-dimensional results.
The comparison is shown in Table 4.2.2. For these buckling loads, the
associated sidesway buckling mode shapes are indicated by a dotted
line in Figure %.2.1.

The frame of Figure 4.2.2 together with the indicated loading
is used as the typicel example of the three-dimensional finite element
buckling theory. For various values of ALPHA (a), buckling loads were
calculated, Table 4.2.3. Calculations were made for the case where
the columns and beams were apnroximated by both one and two elements.
Using these results, the graph of Pop versus ALPHA, Figure k,2.3,
was obtained. Curve I shows results for a cne elemant approximation

where the columns were not allowed to twist (column GJ = ® ). Curves
II and III are results for one and two element approximaticns to the
three-dimensional structure where the columns were allowed to twist.

The eigenvector values (Curve III), using the procedure described
in ChapterIl are given in Table %.2.4. With these values, the mode
shapes for a = 0.0, 0.5, and 1.0 are shown in Figures 4.2.4 (a), (b),
(c), (a), (e), and (f). These mode shapes are typicel examples of
those obtained for the problems. The mode shapes have been normalized
so that the u displacements of node 1 are unity. Also, the following

displacements are assumed to be equal (inextensional behavior):

Up =upg =y o ouy o= u§B = u§ 3 W3 = Wzo =Wy and wj = Wéc= Wy .
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Pog. (Ib)

A%gha withoutItorsion withIiorsion witiliorsion

one element one element two elements
0.0 166900 138980 138140
0.1 162600 137840 137040
0.2 157800 136560 135760
0.3 152600 135060 134300
0.4 147000 133300 132560
0.5 141200 131180 130480
0.5 135100 128580 127300
0.7 129000 125360 124740
0.8 123000 121420 120820
0.9 117000 116720 116160
1.0 115000 111380 110840

TABLE 4.2.3.- BUCKUING LOADS FOR THREE-DIMENSIONAL ,0NE-BAY FRAME




Buckling load P , kips
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170 +
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160 ¢ N
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\
\
\
\
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\
\
\
\
\
140 ¢ N
130 1
120 -
- - - - I, without torsion
II, with torsion
110 4 one element
~— «=—~ ITI, with torsion
Ciﬁ two elements
0 } — —— - - S + e o]

0 1 2 3 A4 5 6 .7 .8 .9 1.0

Alpha (a)

Figure 4.2.3.- Effect of load parameter (a) on Pog, for three-~
dimensional,one-bay frame.




Disp.ja = 0.0ja = 0.5]a = 1.0
w, | 1.000 | 1.000 | 1.000
w [- I8 ]- 1060
By, [- 52 [- 1% [0
Bx1 .Oh5 03T | 0
B23 1k ‘ RSRT-2 A 0
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TABLE 4.2.4,- EIGENVECTOR COMPONENTS FOR

[DTsp. a = 0.0|la = 0.5{a = 1.0
—— - ——
6y3A -0.126 [-0.09T | O
x3a| 050 | 0N
25| 170 | 1% | 19
Uy, | OF | X S
N A 005 L0451 0
eyuA - 226 |- .097 | ©
xl{-A - 0685 - -OYI
82,5 176 N 2159
wlB 0 0 0
ele - 0666 - -062 O
exlB 0 0 0
z1p|- 010 |- 0% |- 072
VBB 0 0
GXQB - 066 |- .062
Oxp| O 0
8255 020 [~ .032 - .072
Uz 624 .716 | 1.000
GZE 0090 0103 lﬂu
Byz [~ <438 |- 328 ] 0
eng - 022 |- .019]0
Uy N .716 | 1.000
eZZC .090 .103 L1hh
Sy c |- LA38 1o 328 | 0O
Oxog |- 022 [~ .019 | O
V.gn 0 0 0
VBB 0 0 0
VBC 0 0 0]
VEC 0 0] o] J
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THREE-DIMENSTONAL ,ONE-BAY FRAME
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(b) Plan view.

Figure 4.2.4.~ Mode shapes for three-dimensional, one-bay frame.
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(¢) Front elevation view.

(@) sSection A-A of Figure 4.2.4(b),

Figure 4.2.4.- Mode shapes for three-dimensional, one-bay frame.
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(e) sSide elevation view.

(f) sSection B-B of Figure 4.2.4(Db).

Figure 4.2.4.. Mode shapes for three.dimensiomal ,one-bay frame.
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4.3 Semirigid Joints

The two-dimensionel rigid freme of Figure 4.2.1 (b) is used
as a semirigid frame as shown in Figure 4.3.1. All of the stiffness
values (R) are the same for each joint. For joints 1 and 3, the
semirigid joint procedure of Chapter II as applied to Figure 2.2.1 (a)
is used. This same procedure, but using Figure 2.2.1 (b) as the
guide, is applied to Joint 2. The comparison of the buckling loads of
Figure 4.3.1 with known values based on slope deflection procedures
with fictitious members as springs(l) is shown in Table 4.3.1. The
two results are plotted in Figure 4.3.2. Also shown on the plot is
the range of practical moment connection stiffness obtained by

Rathbun in experimentel studies of Joints-(5) Rathbun's tests

08 in-1b.
red.

4.5 x 108 —lﬁgéhé for the standard AISC pinned connections and

) in-1b.
from 1.9 x lO8 —igiihé to 180 x 308 T for moment conneetions.
rad. .

obtained joint stiffnesses that ranged from .00l x 1 to

The semirigid, three-dimensional frame, Figure 4.3.3 is
developed in a similar manner as the previous frame. The results
from Figure 2.2.2 (a) are us: > obtain Figure 4.3.3 (Ry to &, for
members 1 - 2 and 3 - 4, 6, for members 1 - 3 and 2 - 4; and Ry to
ey). For most connections, the relative torsional slippage at the
Joint will be very slight.(k) Therefore, the torsional stiffness
of each member, (gi) , was assumed to be constart over the member
(veam or cclumn). Therefore, torsional semirigid joints are not

considered in this thesis. The buckling loads for the various values

of Ry and R, are computed and shown in Table 4.3.2. Using
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representative values of these eigenvalues, the graphs of Ry versus

Per. (Figs. %.3.4, 4.3.5, and 4.3.6) were obtained. This is to

show the upper and lower limits of each type of connection for a = 0.0,

0.5, and 1.0. Figure 4.3.7 shows the cirect of a on the buckling

load for various values of the joint stiffness. Also shown is the

result for the joint stiffness corresponding to the weakest

stiffness obtained by Rathbun in studies of typical moment connections.
Figure 4.3.8 is a sample plot of load versus determinant

value at o = O for the three-iimensional, one-bay frame. This graph

is presented to illustrate the procedure used in this paper and

described in Section 4.1.
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Figure 4.3.1.- Semirigid,two-dimensional, two-bay frame.

R Peg.s 1P
10, 3%&%9 Finite s1ope(l)
element deflection
0.001 800 500
.1 47500 36600
.3 77800 66800
.8 96400 89400
1.h 102500 97700
2.1 105400 101800
3.0 107200 104500
5.0 106000 107100
10.0 110300 1091.00
® 111700 111100

TABLE 4,3.1.- BUCKLING LOADS FOR SEMIRIGID, TWO-DIMENSIONAL,TWO-

BAY FRAME
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Figure 4.3.3.- Semirigid, three-dimensional,one-bay frame.
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Pog.s LibS 48
Is R2
Bl “ [1a000] 1o 50t o’ Baxoaao’ 1 bad ladd | @
0.q 32.68| 3k.7q 39,34 41.53 42.58 4k.58| 45.19 45.64 45.7
.0a/0.3 32.68] 34.54 37.58 38.62 39.06| 39.76] 39.93 ho.oe[ 40.08
1.9 ' 32,24 J
0.d 71.06| 73.44 79.5d 83.04 84.92] 88.7 | 89.7d 90.88 91.0
' 109 71.06] 73.3 | 78.18 80.4 | 81.46] 83.32] 83.8 84.24 8u.3
1.0 70.68
0.0 91.98| 94.4 10.1.051105.2 107.5 |112,4 [113.86115.36115.54 “
.30.991.98{ 9k.3 | 99.88102.72p04.14[106.78|107.5 p08.18{108.26
1.0 91.6
0.0103.18{105.6d 112.54116.96119.5 [125.1 [126.8 128.58/128.88
.80-3103.18105.54 11144114 .62016.26[119. 42/ 120.28121.12| 121 .22
1.G 102.8k
[ 0.G106.64 [109.08116.04120.58023.2 [12 8 7.50]
. . . . . 9.02|130.8132.7 |132.92
.4 |0.9106.64]109.0 |114.98118.28020.0 [123.34| 124 .26125.16]125.26

1.9 106.3

[ 0.108.281110.72(117.7 |122.28024 .94 1130.86]132.7 L3k.64134.86 ]

1{0-3108.28{110.62116.66120.0121.76{125.18{126.1027.06[127.16
1.0 107.94 1 E
0.0109.28111.72118.72{123.340126.02|132.0 {133.88135.840136.08.
3.0/{0-90109.28 |111.64{117.68]121.08122.84[126.3 |127.28028,22128.34
1.0 108.94
0.0110.24{112.66/119.7 |124,3427.04]133.1 |134.98036.98]137 .22
l5.o 0.5110.24 [112.58]118.661122.08125.88 [127.4 |128.38129.34[129 46
1.0 109.9 |
0.0810.98 [113.4 120.44]125.1 h27.8 [133.92|135.84137.84/138.08
10.0{0.5110.98 [113.32]119.42]122.861 24 .66 [128.22] 129.23130.2 |130.32 L
1.0 110.64 |
0.00111.64]114,04121.12]125.78028.52 |134.68|136.6 L38.64/138.88
100[0.5111.64[113.98120.1 [123.56125.38 [128.98 129.961130.98 131.1

1.0 .7
111.5 J

TABLE 4.3.2.- BUCKLING LOADS FOR SEMIRIGID, THREE-DIMENSIONAL,
ONE-BAY FRAME
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CHAPTER V

DISCUSSION OF RESULTS

The buckling load given in Chapter IV for the two-dimensional
one-bay frame is the same as for the case when a = 1.0 for the
three-dimensional problem. The difference from the known literature
value was only 1.0l per cent. Curve I of Figure 4.2.3 neglects tor-

sional deformations in the columns and was found to be approximately a
linear relationship between P and a. Curve II considers torsion and
shows that the influence of torsion can reduce the buckling load
by as much as 27,920 pounds or 20 per cent (a = 0.0). Therefore,
by not allowing the columns to twist, 1t would be possible to have
a 20 per cent nonconservative estimate of the buckling load for the
frame. As expected, the curves (I and II) became the same when
a = 1.0. The two-element curve (III) is shown to compliment the
study of convergence in the same manner as the cantilever beam.

The two-dimensional, two-bay rigid frame was found to be the
upper limiting case (R ~»@ ) for the semirigid cne. The semirigid
buckling loads agree very favorably with the known values. The
three-dimensional rigid frame corresponds to the upper limiting

case (@ = 1.0 and Ry — @) for the semirigid example. Also when
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a = 1.0 the same eigenvalue was obtained for R, = 1 x 105 to 0.
This is due to the fact that ey = 0 and stiffness Rp is not
necessary. Also, as expected, the semirigid buckling loaed curve for
a = 1.0 is slightly higher than the semirigid, two-bay frame.
To develop complete rel: . ility of the results presented, the
eignevalues were checked by the following methods: (1) carefully
plotting P versus determinant value (Fig. 4.3.8) to elimincte the
possibility of missing the first buckling load; (2) obtaining
eigenvectors to assure agreement with the assumed ones; (3) performing
the check poiuts (upper and lower limits) previously mentioned;
(4) develcping the study of convergeuce (Chapter III) to have a feel
for the expected accuracy; and (5) comparing semirigid joint results
with the known values.
Figures 4.3.2, 4.3.4, 4.3.5, 4.3.6, and 4.3.7 indicate that
standard woment connections in both two-dimensions and three=
dimensions give a close appruximation to rigid joints. However,
buckling loads obtained by assuming pinned connections instead of é
the more realistic semirigid joints considerably underestimates the E

buckling loads of the frames studied.




CHAPTER VI

CONCLUSIONS

A general theory for buckling of three-dimensional space frames
taking into account joint flexibility has been studied. This
procedure, while directed toward buckling problems,is also applicable
for determining stresses and deflections of general finite element
structures. This method is ideally suited to high-speed digital
computation by use of a completely automated computer program.

It has been shown from the convergence study that in all cases
She buckling loads will converge to the correct answer bty increasing
the number of finite elements. If a high degree of accuracy
for calculating the eigenvalue is not needed (greater than about
1 per cent), one element is sufficient to represent the sidesway
buckling behavior. By comparing the pinned column to the symmetrical
buckling case, two elements are adequate for computing the buckling
loads. Results on semirigidity of Joints show that buckling loads
will be conservative if assumed to be pinned and slightly

unconservative if assumed to be rigid.
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APPENDIX
SAMPLE COMPUTER PROGRAM SHOWING THREE-DIMENSIONAL SEMIRIGID BUCKLING LOAD

RMFANL6. LRC COMPUTER COMPLEX
JOR,1,2000, 060000, A1 774, v2s JAMES W RAMSEY ,GMF40T, MS 254 ,

PROGRAM [UCKLG { INPUT, QOUTPUT , TAPES=INPUT , TAPEG6=0UTPUT)

0000C 4 DIMENSION A(32,32),IM{4),LG(2),LAMBI{2),IPIVOT(32), IR{5),JM(2}

000003 REAL M LG, IRLR,LAMB, UM

000007 WRITF(6.1)

000007 1 FORMAT({1X,53H PLEASF SEND RESULTS TO JIM RAMSEY, M5254, PHONE 4826
1/77/71X+36H SIDESWAY RUCKL ING LDAD VERSUS ALPHA)

000007 READ (542) (IM{I)41=144)(LGII)I=1,2)

900027 2 FORMAT(6F8.1)

000027 DO 41=1,3

000031 GO TN (SebsT)sl

000037 S ALPHA=0.0

000040 G3 10 100

000041 6 ALPHA=0,5

000043 GNP T3 100

000043 7 ALPHA=1.0

000045 100 DD 4K=1,10

000047 GO TO (30,31432,32434,435,36437+38939)4K

000064 30 R=1,0E+5

000066 GO TN 14

000066 31 R=]1,0F+7

000070 G TO 14

000070 22 R=3,0F+7

000072 60 TO 14

000072 33 R=8,0F+7

000074 GO TO 14

000074 34 R=1,4E+8

000076 G T3 14

2900076 35 R=2,1£+8

000100 GO TC 14

000100 36 R=3,0€E+8

8000102 GO 10 14

000102 37 R=5,0F+8

000104 GN T 14

000104 38 R=1,0€+9

000106 GO 10 14

000106 39 R=1.0F+10

000110 14 EM=30,0FE+6

000112 GM=11,2F+6

000113 JM{1)=0,720

000115 JM(2)=0,540

000116 X=0,0

000117 b0 15N=1,4



000120

000126
000127
000130
000131
000140
000142
000146
000147
000153
000155
000157
000162
..000165
000170
000173
000175
000176
000204
- 000206
000214
000217
000222
000223
000225
000226
000227
000230
000241
000243
000246
000250
000251
000252
000256
000257
000260
000264
000266
000270
000271
000274
000275

16

IR(1)=TIM(2)/1IM(1)

¥=10.0%%(6-N)

DO 17M=1,50

00 16J=1.32
N0 16 L=1.32
AlJeL}=0.0

IR(2)=GM*IM{1)/(EM2IN( 1))
IR(3II=IM{3)/7IM(1)
IR(4)=GMEIM(2) /7 (EM*IM{1})
IR(S)=IM{4)/IM(1)
LR=LG(2)1/1G(1)
C=R*LG(Y)/(EMIMIL))

D=(1, 0F+9)*LG(1)/(EM*IM(1})
I=M/S5.0

P=X+7%Y

IF (P.EQ.160000.)G0 TO 4

pP=—p
LAMAB(1)=P*LG{11*%2/{30.0%EM*IM(1})
LAMB(2)=ALPHA*LAMB(1)
All419=24.0%(1.0+IR(3)1/LRI+T72,0%LAMB(]1)
Alls4)=6.0%IR{3)}/LR
A(147)=-6,0-3,0%LAMBL(1)
All,11)=A(1,4)

All.14)=A(1,T)
All,16)==4,0%A(1,44)
All,18)=A(1 4

Alle24)=A01++)

A(2:,2)=22.0%{ IR{1}+IR(3)/LRI+3A, O%(LAMBL(L)+LAMB(2))
A{293¥==A(1+4%)
Al2,5)1=6.0%JR{1)¢3.0%LAMB(1)
A(249)=A(1,16)

A{2410)=A(2,3)

A{2,171=A(2,3)
A(2,19)=5.0%IR{1)+3,0%LAMB(2)
A{2423)=A02,43)

A{3,2)=A(2,3)
A(3,3)=4,0%IR(3)}/LR+D
A{3,9)=A(1,4)
A{3,10)=A(1,4)/3.0
Al4,1)=A(1,4)
Al444)=4,0%IR(3)/LR+D
Alay16)=—Al1,4)
A(4y18)1=A03,10)
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000277
000300
000307
000310
000312
000313
000316
0003290
000321
000326
000327
000331
000332
000333
000335
000336
000340
000341
000342
000344
000345
000346
000347
000351
000352
000353
000355
000356
000357
000361
000362
000364
000365

- 000367

000370
000371
000373
Q00374
000376
000377
000400
000401
000402

A{5,2)=A(2.5)

A(S545)=6. 0% LIR(L1I+LAMB (1) )I4C+IR{4)/LR

AlSe61==C
A{S5,12)=-IR(4)/LR
Alé&,5)=-C

Al6+6Y=C+4 0% IR(S) /LR
A(6,20)=2.0%IR(S)/LR

A‘791,=A(l'7’

A(7.7)=A{5,5)+4.0%(1.0-IR(1))

A(7,8)=-C
A(7,211=A(5,12)
A(8¢7)==C

A(Be81=A(6,6)
A{E4151=A(6,420)
A(9,2)=A(2+9)
A{943)=A(1,4)
Al9+490=A(2,2)
A{9+,10)=A(1+4)
A{9+12)=A(2,5)
A{9,17)=A(1,4)
A(9¢23)=A(1+%)
A(9425)1=A(2,19)
A(10,2)=A12,3)
A(10,31=A(3,10)
Al10.,9)=A(1,4)
A{10,10)=A({3,3)
A{ll,1)=A(1l,4)
All11,11)=A(4,4)
A{lls16)=A12,3)
Al(11,24)=A{3,10)
A(12,5)=A(5,12)
Al12,9)=A(2,5])
A{12,12)=A(5,5)
Al(12,13)=-C
A{13,12)=-C
Al13,13)=A16,4+6)
A{13:26)=A(6,420)
All4,y1)=A11,7)
All4414)=A1(T4+7)
4(14,15)=-C
A{14,27V=A(5,12)
A(15,8)=A(6,20)
A{15+14)=-C
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000403

..000405 .
000406

000410
000411

._000416

000417
000422
000423

_. 000425
. 000426

000427
000431
-000432
000433
000435
. 000436
000440

000441

000446
000450
000451
000453
000454
000455
000456
000460
000465
000466
000467
000471
000472
000474
000475
000477
000500
~ 000501
000502
000504
000505
0005G7
000510
000512
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A(15,15)2A1646)
AL1641)=A(1,16)
Al 16;’0’=-A( lv"’

A(16+111=A(2,3}

A(16416)=A(141)4¢72.0%(LAMB(2)-LAMB(1)}
Al16.18)=A(2,3)
A{16421}=~6.0-3.0%LAMB(2)

_A(16424)=A(243)

A{16427)=A(16421)
A(1742)=A(2,3)
Al17,9)=A01,4)

_A(1T7+17)=A13,3)

A{17,23)1=A(3,10]}
A{184+1)=A(1+4)
A{1Bs4)1=A(4,18)
A(18'16)‘-A(2'3)
Al{1B,1RI=A(4,4)

LAL19:2)1=A(2+19)

Al19419)=A(5,5)+4, 0% (LAMB{2)-LAMB(1))

. A(19:20)=-C

A{19,25)=A(5,12)
A{205601=A16,20)
A(20,19)=-C
A(?20620)=A16,6)
Al21,7)=A15,12)
A{21,16)=A(16,21)
Al21,21)=A(T47)+4,0¢(LAMB(2)-LAMB(1)}
A(21,22)=-C
A(22,21)1=-C
A(22¢22)=A1646)
Al22,2B1=A16,4+20)
Al?23,2)=A(2,3)
A{23,9)=A(1,4)
A(23,17)1=A(3,10)
Al 23,23)=A(3,3)
A1240.1)=A(1,4)
Al24411)=A(3,10)
A(24416)1=A(2,3)
Al24424)=A0444)
Al(25,9)=A(2,19)
A(25,19)=A(5,12)
A(25,25)=A(19,19)
A(25426)==C
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000513 Al264,13)=A(6,20)
000515 A{26425)=~C
000516 Al26he926)=AL 6y 6) ’
000517 AL27,14)=A15,12)
000521 Al27,161=A(16421)
000527 A(2T7,27)=A(21,21)
000524 A(27428)=-C
000525 A(?B,22)=A(6,420)
000526 A(28,2T7)==C
Q00527 Al{28492R)=A(646)
000531 A(3,429)=-D
000532 A{4429)==D
000533 A(29,3)=-D
000534 A(2944)=-D
000535 A(29,291=1R(2)42.0%D
000540 A(10430)=-D
000541 Al11,20)=-D
000542 A{304101=~=D
000543 A(37,11)=-0
000544 A130+30)=A(29,29)
000546 A{17,431)=-D
000547 A(18,31)==0
000550 A{31417)=-D
000551 A{31,18)=-D
000552 A(31,31)=A129,29)
000553 Al23,432)==D s
000554 A{24,32)=-D
000555 A(32,23)=-D
000556 A(32424)==D
000557 A(32432)=4(29+29) .
000560 CALL DEYEV (A,32,DETERM,IPIVOT,32,ISCALE)
000564 CF{DETERM) 15,4417
000566 17 UONTINUE
000570 10 7:X4(2-0.20)%Y
000577 #=-X
000600 & WRITF (641B1P,ALPHA,R
000616 18 FORMAT (10X+F16.5+F6¢29E1645)
000616 sTop

000620 END




PLEASE SEND RESULTS TO JIM RAMSFY,

SIDESWAY BUCKLING LOAD VERSUS ALPHA

-4.564006+04
-9,08800E+N4%
-1.15360F+05
-1 ,2R53R0F 405

-1.32700E405

-1.34640F+05
-1.35840F+05
-1.,36980E+05
~1.37340F+0%
-1.23P640E£+4CS
~4.N0300F+04
—8.42400F+04
-1.08180E+05
-1.21120F+05
-1.25160F+05
-1.27060E+405
-1.728220€E+05
-1429340F+05
-1.30200F+05
-1.30930F+0%
—3.22400E+04
-7.06R00E+0¢4
~9.16000E+04
-1.02840FE+05
-1.06300E+05
-1.07940F+05
-1.08940E+05
-1.09900F+05
-1.10640E+05
-1.11300E+05

02719768 LRC SCOPE 3.0
16.26.50.RMF6016,

14.26.50.

14.26.50,.008+1,29300,0A0000.

14.2¢€¢,50, JAMES W RAMSFY

14.26.51 RUN{
14.7€.58.5ET1]
14.2€.,59.L60.

$)
NDF .

14.37.15.57T0P

14,37.,15.CPU
14.37.,15.FPU

0.09
0.00
0.00
.00
0.00
0.00
0.00
0.00
0.00
0.00
+50
50
«50
«50
«50
«50
«50
50
«50
«50
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

€600C-131K 02/12/68

LRC COMPUTER COMPLEX
Al774,
'GMF40T .

386,822971 SEC.
006+1594R8 SEC.
RMF6016, PRINT-PP 00365 LINES

MS254, PHONE 4826

1.00000E+05
1.00000E+07
3.,00000F+07
8.00000E+07
1.40000E+08
2.10000E+08
3.00200E+08
S.N0000E+08
1.00000E+09
1.00000€+19
1.00000E+05
1.00000E+07
3.00C00E+07
8.00000E+07
1.40000E+08
?2.10000E+08
3.,00800€+08
5.00000F+08
1.70000€E+09
1.,00000€+10
1.,00N00E+05
1.00000E+07
3.00000E+07
3.,00000E+07
1.40000E+08
2.10000F+08
3,70000E+08
5.00000€+08
1.00000€E+09
1.00C00€E+10

254

'2'
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