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ABSTRACT

A theory for buckling of three-dimensional space frames by

finite Element methods is developed. A procedure for automation of

buckling calculations is presented. An accuracy study is made of the

convergence of the theory by fini-:e difference methods and applied to

the pinned, fixed, and cantilever column problems. The semirigid

joints are introduced by a linear spring approach. Two— and three—

dimensional numerical examples are presented that show the influence

of semirigid joints on buckling loads. The procedure used to solve for

the buckling loads in the examples is determinant plotting. The results

for the problems studied show that practical moment resisting joints

may be assumed to be rigid with a slightly nonconservative buckling

load. Also, it is shown that practical moment free connections have a

substantial amount of residual strength for buckling.
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INTRODUCTION

The buckling of planar frames has been the subject o_ an

extensive amount of experimental and theoretical study. (1,2) A

survey of these investigations () has led to simple formulas from

which buckling loads can be calculated. Most buckling analyses

assume that the joints are rigid. For real structures, however, the

joints are not - •igid but have some flexibility due to the method of

connection (bolted or welded). Such practical joints can be termed

it
	 If it is assumed that the joint is rigid and is

actual semirigid, the buckl i ng load will be overstated. A joint

assumed to be pinned and is actually semirigid, the buckling load

may be understated. A safer and more economice.1 design would result

if the effect of the semirigidity of the connections were included

in analyzing a frame. Some work on the influence of semirigidity

for frames has been accomplished for planar frames. (1,3,4) For

instance, Goering (1) used a generalized slope deflection method

with fictitious members to represent the semirigid joints. Monforton

and Wu 
(2) 

modified the stiffness matrices for the members by using a

correction matrix. Also, the methods used for planar studies (rigid

or semirigid) do not appear to be easily extendable to three-

dimensional buckling and another approach seems to be required.

An approximate method which has merit for handling three-

dimensional buckling including the influence of joint flexibility is

I

1
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the finite element method of structural analysis. This method is a

Rayleigh-Ritz approximation as applied to the displacement shapes.

It is well suited for calculation on a digital computer and has the

potential of being applicable to almost unlimited cases of complicated

structures composed of beams, plates or shell segments. Because of

its advantages the finite element method has been chosen for use in

this study.

The purpose of thes thesis is to extend the finite element

method to compute buckling loads of three-dimensional structures

allowing for joint flexibility. A linear spring is used to

approximate the semirigidity of the connections. Torsional stiffness

C^
for any given member is provided; however, torsional semirigid

h

joints are not considered. Twist buckling is not included in this

study and limits zhe sample problems to frames composed of cross

sections consistant with simple beam-column behavior. The derivation

and a study of accuracy of the three-dimensional buckling matrices

are presented, as well as sample problems for two- and three-

dimensional frames having both rigid and semirigid joints. The

development assumes inextensional buckling behavior for all compression

members. The stiffness values used for the semirigid joints were

based on the series of tests performed by Rathbun (5) on

representative joints for real structures.



CHAPTER II

MATRIX ANALYSIS BY FINITE ELEMENT METHODS

2.1 Derivation of Three-Dimensional Stiffness and Geometric

Matrices

In the finite element method it is customary to obtain a

characterization of the stiffness properties, CK] , of each element and

relate the end nodal displacements, {u} , to the end internal forces

(F) by	 (F) = tK {u)	 (1)

A symbolic finite beam element with ends at points 1 and 2 is shown in

Figure 2.1.1. The vectors {w and{Fi)a2t he respective vectors of

I 
fF	

t

	

(u1) ' ` 1^	 N J, `Fa
Figure 2.1.1- Finite element.

end displacements and force resultants. Thus Equation (1), as applied

to Figure 2.1.1, is

	

Fl	 ul	 (2)

	F 2	u2

where CKI is the stiffness matrix of the finite element. For buckling

problems there are two parts to[K](ref. 6) in Equation (1^ the bending

stiffness portion IV] and the portion dependant on P [K]. Thus,

for buckling, Equation (2) can be written in tha form

Fl _ CKo ûl + 

CK] 
ul	 (3,

F2	u2	 u2

This section contains a derivation of the CKo, and[K] matrices for

three-dimensional column buckling.

3
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The sign convention for rotations used in this thesis follows

the right hand rule and is shown in Figure 2.1.2. Consider a

continuous prismatic beam element with a length h and a symmetrical

cross section subjected to a constant axial load P. The strain energy

of the beam which takes into account bending about both axes and

constant torque is

_ 1 h 	
( )U - 2 

(u [EI'V^2"'
 + EIyw2x + h2 X ^ x dx	 4

The terms EI, GJ are the bending and torsional stiffnesses and v, w,

6x are the relative displacements of the beam element (Figure 2.1.2).

The r?istance along the element is x and the subscript x following

a comma denotes differentation with respect to x. If inextensional

behavior is assumed, the bowing effect of a differential segment dx in

the x-y and x-z planes of Figure 2.1.3(b) due to out of plane motion is

e=dx — (

j	 l
e, (5)

	

e= 1—C1— (^x +v2	 dx
IX

Expand the total bowing term of Equations 
(5) 

in a binomial series.

The result for the segment is

e =dx 1— 11 -2  v.1x2 +wYx2 } + ...^

e = C 2 + w x2 dx	
(6)

1
The external potential energy of the bowing effect for the element is

= f J Ch e ax dA

where	
ax = A



8
y

x,u

x

u

r
v

E)z

F u
v

V

ct-s- 
u

e
y

P	 dx
P

(a)

dx

Ev

e

Pw-
dx

Z,w

5

y,v

Figure 2.1.2.- Sign convention.

Figure 2.1.3.- Bowing effect.
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Then, if the axial force and

Jh

the area of the member are constant:

 (=2 Qh 	 v,x2 + w,X2
	 ax	 (7)

The total potential energy of the element is the sum of Equations

(4) and (7)

V = n + U

JI 
h 

rEI z vJP^2 + EIy w^XX2 + - 6x x2 + P f vJSx2 + w ax )]dx

L T
(8)

The Rayleigh-Ritz method is used to approximate the behavior

of the finite element. The displacements shapes (v,w) are assumed

that satisfy the boundary conditions at each end. The simplest set of

approximations that satisfy the boundary conditions — the arbitrary

displacements and rotations at the ends of the element — is the

following:	 49x = a0 + al x

v=b0+bl x+b2 x2 +b3 x3

w=c0 +cl x+c2 x2 +c3 x3	(9)

where ai , bi , and ci are constants of integration. These displacement

states correspond to that resulting for a prismatic beam undergoing

small displacements and subjected to end loads.

It can be seen from Equation (8) and Equations (9) that the

bowing effect as well as the various energies are uncoupled from each

other and can be handled separately. Therefore, the bending derivation

will be restricted to two dimensions to compare with Martin's work

(ref. 6) and these results will be subsequently utilized to obtain the
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complete three-dimensional behavior.

Solving for the constants of Equations (9) in terms of the nodal

displacements of the element results in the following:

Ax = ( Ax2 — Axl )x
	

(l0a)

V = vl + AZl x +	 ^v2 - vl) - h C2 AZ1 +9
z 2 
1 

x2 + h (Vl V2)

+ h (Q'l 
+ 0Z2 / ]X3

	
(10b)

W = wl - Ayl x + 2 (W2 - wl) + h (29y, + Ay2 1 x2 + h (Vl w2)

1 (9l + 8	 x3
h y  y2

(100

Let Vl be the two- dimensional portion of the potential energy and V2

the remaining portion. Using the calculus of variations(incrementin& Vl

by a virtual displacement), Equation (8), excluding w,xx and w,x terms,

is
h	 1Vl+ AV1= 

2 O 
EIZ	 Cv,xx + Sv^xx f2 + h (Ax" + Bgx^x)2J 

+p'x+bTx)2 dx	 (11)

Expanding and grouping together those terms linear in the virtual

displacement SV1 and quadratic as 82V1 yields
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Vi + Av1 = V1 + svl+ 82V 	 (12)

From energy principles it is known that sV = 0 for equilibrium and

s2V > 0 for stability ( See ref. 7). Since the only term that is of

interest in buckling is the second variation 62Vl , it will be evaluated.

Note that for this problem the potential function is quadratic and the

variations higher than the second vanish. Thus

h82V1= 
2 j(.
EZ s2 vx +	

82Ax, x) 
+ P 52 vex dx	 (13)

The appropriate variations of Equations (10a) and (10b) are substituted

into Equation (13). The result after expansion and integration is

the following:

82V1= ,21— Gj a8X2 — 5exl 2

+ .^- Z + Sh / (&,2 - )v
11 2 	 1. 7 Z + ^(sv2

h	 /	 h

- svl) (beZ + se Z +	 hIZ + 7(s2 eZ+ s2 eZ
 1 	 2)	 1	 2)

4EIZ Ph
+ -^- - 15 8ell 

be 
Z2(

14)

Equation (14) can be written in matrix form as

82V3.= ^ {su3T [K] (su)	 (15)
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Separating K into two matrices, Ko and K' gives the following

result:

5v 
se

Xl
Bez

1	 I
5v 

be
2

Bez

2

12EI 6EI	 I 12EI 6EI^— 0 = I - 0 —
0 - 0	 I 0 - h 0
6EIz 4EIz	 , 6EIz 2EIz

h
0 h -	 h2

0 h

Ko = (16)

12EIz z6EI 12EIz 6EIz_ h3-- 0 _= --T-- 0 _=h

0 -h 0! 0 h 0

6Eiz 2EIz I 6EIz 4EIz

hh 0 h - h
0

^_

Where the ordering of

I
the Svariations is	 shown. along the top of the

matrix.
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8v1 be
7G1

Be
L1

8v
I	 2

88
x2

be
L2

6
5h 0

1
10

I	 6
I	 3R 0

1
17

0 0 0 0 0 0

1
10

0 2h
15

I	 _1
10 0 -h

K^	 P

6
- 7 0

1
--17

6

'5fi 0
1to

0 0 0 I	 0 0 0

1
10 0

h
3_0

1
I	 JZ 0

2h

1^j --

(17)

Equation (16) is the standard, two-dimensional finite element

stiffness matrix and Equation (17) is the two-dimensional geometric
(6)

matrix repoiced by Martin, but derived in a different manner.

To extend this in the third dimension, Equation (10c) and the

remaining portion of Equation (8) are used to obtain, through the same

procedures as Equations (7.1), (12), (13), and (14), the following

additional terms to the second variation (52V2):

12EI	 12EI
8 = 2 -- + 1 (BW2 - e7

ll2 + --^ + 5 I
/

s'w2 - Bwl) (5eyl

+ beY2 )+(^X + ^ (82 9y1 + 52 8y2)

AEI
+ ^e -	 80 be

z1 z2
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It is seen in Equations (16) and (17) that there is no eater!--

sional contribution in the Ko and K' matrices. Extensional behavior

is neglected in the buckling behavior of the element corresponding to

the usual inextensional assumption made when deriving the differential

equation for column stabily. The final three-dimensional finite

element stiffness matrix K° obtained by adding 'the applicable pert of

Equation (18) to Equation (16), is the following:

Sv1	
8x1 BeeXl Be 

Y1
89'1	 8v2	 Bw2 88

X2 be Y28e'2

12EI	 6Ei	 12EI	 6EI
--	 o	 o	 —2 -	 0 0 0	 .2

K° _1

o

12EI

7 o-
h

6EI
—7
h

o
I

o	 -
12EI
z 0-
h

6EI
--
h

0

0 0Ch'—`r 0 0 0 0 - W 0 0

0
6EI

.. —.	 0
4EI

0 0
6EI
—	 0

2EI
Y 0

6EI
—2
h

 0	 0 0
4EI	 6EI
-	 --

h
0	 0 0

2EI

h
12EI

Z

_
79E-1z Uzi -EI -

- -^
h

0	 0 0 --
h

^z
h

0	 0 0 -
h

0
12EI

--	 0
h

6EI.
-
h

0	 0
12EI
--	 0
h

6EI
--
h

0

0 0	 -F- 0 0	 0 0	 h 0 0

C)
6EI

0
2EI
-Z 0	 0

6EI
—	 0 'Elh 0

6EI
0	 0 0

2EI	 6EI
h z - -- 0	 0 0

4EI

(19)
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The final three-dimensional finite element geometric matrix

K' is obtained by adding the rest of Equation (18) to Equation (17):

bvl bwl S@X, S@yl beeZ1 bv2
 6w

2 60X2
 S@ Y2 be '2

5h 0 0 0 to - 5h 0 0 0 10

I o	 5h 0 - to 0	 0 - 5h 0 - l00

0	 0	 0	 0	 0	 0	 0	 0	 0	 0

I	 1	 2h	 1	 h
1 0 - l0 0	 i5 0	 0	 10 0 - 3u o

to 0 0 0 15- 10 0 0 0 - 30
K^ = P	 (20)

5h 0 0	 0 - 10 5h 0 0	 0 - 10

6 6
0 - 0

1
0 0 0

1
05h 10 5h l0

0 0 0 0 0 0 0 0 0 0

1 h 1 2h0 - 0 0 0To- -3-0 10 17

10 0 0 0 0 0 0-G 0

The equilibrium equations describing the end forces (F) in

terms of any set of nodal displacements (virtual or real) is

(F) = fe+K'] (u)
	

(21)

where
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(u)

vl Pyl 1
wl

PZl
A

Xl
M

Xl

Ayl Yl
8

{F) -
vZl

M
PZl

2 Y2

V2
P 2

A
X2

M
X2

8
Y2

M
Y2

A
Z2

M
Z2

(22)

2.2 Introduction of Semirigid Joints

In this study the influence of semirigidity Will be studied.

Some method of introducing joint flexibility must be provided. The

method selected is the use of a linear spring between members at a

joint. The strain energy of the spring is

(' A
Us = J M8dA where Ms = RA

0

	

f
eUs =	 RA dA	 (23)

0

	

U	
RA2

s = 7 -

Where R is t__e spring or joint stiffness.
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Some typical examples of this approach for semirigidity

are shown in Figures 2.2.1 and 2.2.2. In all cases the column angle

is used as the base angle (datum plane) for determining the slippage

of the joint. A typical deformed joint is shown in Figure 2.2.1(a).

The total strain energies for the two-dimensional springs of

Figure 2.2.1 (a) and (b), respectively, are as follows:

	

Us = 21 (81 92)2 	(24a)

^us = 
22 

(83 _ 94 )
2 + 23 C83 - 85 )2 	(24b)

The total strain energies for the same joints but adding the

third-dimensional member, Figure 2.2.2(a) and (b), respectively, are

as follows:	 R

X Us = 24 (e6 - 97)2 + 2 (86 - ^1 )2 	()

Us = 26 198 9912 + 2 r (e8 - 810)2 + 28 (88 _ 02)2 (^5b)

For example, the matrix format of the second variation terms

that come from Equation (24a) is

SA 1	 S 82

j'	
Rl	 Rl	 1

(26)
- Rl	R1	 2

where [fl ̂s the spring stiffness matrix for the joint of Figure 2.2.1(a).



Semirigid

0	 R2 R3

7- 95
3

Rigid

e

(b)

Typical deformed joint
15

Actual

i
Col.	 ! Bm.

Rigid	 Semirigid
1

t	

61	

' ' 82

1	 1
► 	 1

el	
(a)	 el

Figure 2.2.1.- Two-dimensional joints.

r	 Actual	 Rigid	 Semiri id

e	 f01
I I	 6

	

Col	 Bm.	 _	 9 	 - 9
^m.	 6 	 7
II	 i 

	

r=__;	 e	 8

	

t	 6	 (a)	 6

t•	 , Actual	 Rigid	 Semirigid
i	 t
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Figure 2.2.2.- Three-dimensional ,joints.
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The semirigid connection may be thought of as a locally

weakened section between the end of a beam and the face of the column

to which the connection is made. Reference (1) points out that only a

small part of the rotation of a semirigid joint is due to bending of

the angles. Most of the rotation is due to slip and extension of

its rivets or bolts. Since this semirigid joint is quite complex

and involves other types of movement such as local bending of the

column, this thesis will be concerned only with the use of a linear

rotational spring to represent the semirigid joint.

The rotational  springs of the column and beam have additional

	

nodal stiffnesses, C
	 column and ('EhI ) beam- The rigid joint

stiffness form can be expressed as the following:

(591 ) column + (591)beam

	

K _	 E	 + 4EI	
(27)

h column	 h beam

Equation (27) must be included in Equation (26) to obtain the

complete semirigid stiffness of the joint. The result is

^l
4EI
h column + R1

^K]u}=

— Rl

592

— R1

(Z5621

6 (28)

4EI	 + R 
h beam	 1
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where Cy] is the semirigid joint stiffness matrix of Figure 2.2.1(a).

2.3 Automated Technique of Matrix Methods

2.3.1 Procedure for stress analysis. The irocess for

generating a computer program of any structure that is composed of

many finite elements is to first pick a set of coordinates convenient

for a typical element. The generalized element displacements are {8}

and forces are {P} . The energy in terms of element coordinates is

U - 2 ^5	 CK] C8)

	
(29)

The displacements (8) and stiffness matrix CK] are partitioned corm--

sponding to ends i and j

[K] (8) - CP)	 (30)

Kii	 K 	 Pi

Kji	 KJj	 8j	 P 	 (31)

In the process of connecting elements, it is found that one

element's local coordinates are not the same for another element.

Therefore, a set of system coordinates is chosen that is convenient

for a system of elements and the local coordinate points are numbered

(points 1, 2, 3, ...).

A systematic numbering process for the node points and members
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is chosen. The element properties (E, A, I, Q are given. The stiffness

Kij for each element is calculated in local coordinates where i and ,j

refer to the end points of each element.

If the system coordinates are called Cu) , the transformation

from an element's coordinates to a system's coordinates is accomplished

by a transformation matrix,CJ. (8)

' 

That is

6)=R0	 (32)

The stiffness of the element is transformed to system coordinates by

Equation (32) . 	

[K-]- 
[
R]T CKJ Ca,	 (33)

Consider several elements t̀hat are connected. The next step

is to generate the master stiffness matrix 
CKi^^ 

M by summing all member

stiffnesses. It can be shown that the elements of N il M can be

obtained as follows: 	 J
KiJ	 =	 Kii	 (34)

All
members

For all displacements that are constrained(boundary conditions),

it can also be shown that this can be handled by striking out rows and

columns corresponding to the displacement constraints, resulting in the

reduced master stiffness matrix [K] R.

Finally, the system applied external forces {Q) are identified

and the equation	

R ^, }R ^^R
CK] u = Q	 (35)

is solved.

2.3.2 Buckling procedure. For the buckling
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problem the steps are essentially the same as for the preceding

section except that the stiffness matrix K for an element is composed

of two parts, Ko, the stiffness of the structure and K', which

contains P — the eigenvalue portion of the problem. The remaining

steps are the same with the external concentrated axial loads at

the joints equal to the internal forces of the column elements in

the K' matrix. Since the external lateral forces and moments at the

junction of the beam elements are equal to zero in all cases studied

in this thesis, the equilibrium equation for inextensional behavior is

K°	 + K'
R

(u)	 = 0.	 (36)
R 

A nontrivial solution to equation (36) requires that the determinant

I

Ko R + K' R 
1 

= 0.	 (37)

A similar condition results for stability based on the second

variation of the potential energy of the structure. This is then

solved by some standard procedure for determining eigenvalues such

as determinant plotting, matrix iteration, or other procedures. The

method used in this study is determinant plotting.

When the eigenvalue has been computed, the mode shape or

eigenvector is obtained by assuming a value for one of the components

of the eigenvector and solving for the remaining components in terms

of it.
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2.3.3 Semirigid joints. The process of allowing for joint

flexibility adds only one additional step from that described in

the previous sections. After transforming the element coordinates

into system coordinates, the next step is to add the system spring

stiffness matrix [Ri j ] similar to that in Equation (26)

s	
Rii	 - Rij

Rij =	 (38)

- Rji	 R 1
to the transformed element matrix or matrices. For instance, if a

semirigid join; occurs between points i and j, the resulting

stiffness matrix is

Exijj 
=IR, 

J 
+ Rij 	 (39)

Any combination of Sections 2.3.1, 2.3.2 and this section can

be used to give ralues (two- or three-dimensions) for stresses,

displacements, eigenvalues, or eigenvectors either by allowing for

joint flexibility or by using rigid joints.



CHAPTER III

STUDY OF CONVERGENCE

3.1 Introduction

Since the finite element method is an approximate numerical

solution to structural problems , some knowledge of its reliability in

these applications is desirable. This section gives the results of

an investigation of the convergence and accuracy of the finite element

matrices derived in Chapter I1. The results are limited to simple

planar buckling; however, they provide a basis for extending the

methods to more complicated problems. There are many ways to study

convergence and accuracy, most of which are based on numerical

solutions to special problems. The approach used here is that of

classical order of error analysis procedures borrowed from finite

difference methods; (9) that is,to expand the discrete equations in a

Taylor series about the i th point.

0
3.2 Order of Error Analysis for K + K

Consider a continuous prismatic beam element of length h

subjected to a constant axial load P (Fig. 3.2 .1). The generalized

displacements are taken to be rotation 6 and deflection v at the

end of the element.

^I e

i-1	 1	 i	 i+l
(a)	 (b)

Figure 3.2.1.- Beam element.

21
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Since the out-of-plane displacements and rotations are uncoupled from

the in-plane displacements, it allows for separation of the two and

only in-plane behavior will be considered to evaluate buckling

reliability.

If two element;: are ,joined together at the i th point, two

finite element equations result f2om the sum of forces and moments

at the point. They are respectively,r

(- - + h	 vi-1 + 2v
i - v , + 

\h	
10

am + P J \-	
+ A 1 = 0

i+1	 ` h	 -1	 i:1J

(40)

and

6 Ph

 C h 30-) (Ai-1 + Ai+1)C

+ 8EI + aPh 8 = 0
h 30) i

To study the convergence character,the terms in these e,-L, .ons

are exp&ided about the i th point by using Taylor series such as

ih2 	 ^r
V itl = v i f hVi + 2. ° i 

t .. .

This leads to

	

5h - 
h 2 vi _ 12 v IVi _ h6 v VI - ha	VIII

	

v	 -
C	

+
h	 1	 33-0 i	 5 3	 i	 J

+ 6EI + 10 (2h6i '

	

 + ^ 
Ai r, - 

' 
Aiv + -	 Ai II + ... 0

(41)

(42)
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and

c

6EI

	

	 "Y	 '	 h3 	'	 h5 V	 h7	 VI11
hr+ 1 - 2hv1 - 3- vi	 F0  vi - S	 vi

	

+ 2EI _ Ph (20 + h2 8 '' + h
4 8 IV + h6 8 VI + h8	 8 VIII

	

(h TO-) 1	 i 1ff i 0 1 -30757 1

+ (8EI + 8Ph 1 8 = 0
h	 i

Since 8 1 is not an independent variable in the continuum sense it

is useful to eliminate it from Equation (42) and (43). By solving

Equation (43) for 81, obtaining the successive derivatives and

substituting these derivatives back into Equation (43), it becomes

	

X11	

( l
'	

v 

V	 ( JP"i
81 - v1 + h4 	 - 1 OOEI + C h6 = 0	 ( 44 )

Substituting the derivatives of 8 1 into Equation (42) leads to

	

^ "	 v VIII
vi	

EI
IV _	 + h4 1-FO + 3^ vi

	

Vi +46)= 0	 (45)
J

Equations (44) and (45) sho es the convergence character of the

finite element Equations (40) and (41) and show that they converge

to

81 - v1 ^	 0	 (44a)

and
Pv

	

v1IV - 
Em— = 0	 (45a)

with both equations having an error of order h4.

(43)
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e	 0

3.3 Order of Error Analytiis for K  .. 	 for String

Reference (6) suggests that a simpler method be used to obtain

K' by the superposition of a string and a beam without any interaction

between the two. This combination than leads to the same result of

K° previously derived but a modified K'. The K' for the string

as applied to the planar column is

5V Set BV  set

1 0 -1 0
P	 0 0 0 0	

(46)
h	 -1 0 1 0

0 0 0 0

By applying the same procedure as before, the two finite element

equations at the i th point are

rh + h (- Vi-1 + 2vi - Vi+1i +	 C ei-1 + 91+1/ = 0
l	 /	

(47)

h J ( Vi+l + Vi-1) + M (9 `-1 + 49 J. + 81+1, = 0

Expanding as before results in

	

C

12EI,+
—^  	 h) (- 

h2 Vi It _ 12 Vi IV _ h
6 V VI	 h8	 V VIII)

	

h	 36o 1 - 33MYC556T i

+ 6EIl 2h 9i ' + 3
3 9i , , f+ 	

h5
5 

8iV 
+ 7 3 

7 91 "VI = 0	 (48)
h

and
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6EI	 ' h3	 rrr h5 y	 h7	 VI1)h2 - 
2h vi - 3 vi 	 - -6 vi	 2520 vi J

+ h 	 + h2 ei
rr

 + 12 ei
IV 

+ h6 9	 + ha
	 6 VIII = 0

W 	 366T-57 i

(49)

Solving Equation ( 49) for 91 and substituting successive

derivatives back into this equation leads to

	

h4	
V h6 viVIII

vi + 170 vi + 42(36) = 0 	 (50)

Substituting the derivatives of 9i into Equation (48) and collecting

terms gives

rr	 N	 -	 VIII	 VI^
v IV - PV  + h2 

_ Pvi	
+ h +	

vi	 Pvi	
+ 6, = 0i	 EI12EI	 720 3^EIJ

(51)

Equations (50) and ( 51) shots that the string approximation

converges to the required continuum equations but Equation ( 51) has

+I Thus its expected accuracy is less than that given in the

previous section.

3. 4 Application of Order of Error for K o + K'

The results on order of error can be applied to obtain some

further information on the accuracy of the discre-;,e approximations

in a particular set of problems. (10' ll) Consider a pinned column

with effective length, L
e , 

and subjected to a constant axial load, P.
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If only the first order of error term is retained, the differential

equation representing the finite element equation is

viIV - i 
vi 1 1 + h4 Cl vi VIII+ 

C2 'Ai vivY
J 

= 0	 (52)

where

1 EI

The constants C1 and C2 taken from Equation ( 45) have

values of - 720 and 3 , respectively. Since h4 is small,

Equation ( 52) can be solved utilizing the perturbation procedure in

references (10) and (11) • Let
1,i = 1b + h4 X1	 (53)

Where Xl corresponds to the order of error term.

Substituting (53) into (52) yields (retaining up to h4 terms)

IV i IV - TO 
vi ' r + h

4 C1 viVIII + C2 ^0 
vi VI- ;Nl vi ,I = 0

(54)

Assume

vi = P,,,
 sin (7)
	

(55)

The first part of Equation ( 54) becomes

4	 2
( } + ^ (L } sin 	 `	 (56a)

and this must be zero independent of h4J terias, thus

a0 ° _ (12	 (56b)
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Let	
2

PL
T = T L

et = EI

(57)

70 = - (Mir) 2

The second part of Equation (54) becomes

Mel8_
	 mrt  +(mn l2 si mil=0

-17^o / 1̂ 	 e^Le 	`L / n(Le /

Therefore	 (58)

(m:K)2X14
720 (Le

and
4

_	 2/ h	 aut)Ti = (^) 1 + ( Le J 720

or	 (59)

2	 h 4 (mx)^ EIPCR . _ - ( m n) 1 + CLe / 720 L 22

/	 e

Now let N equal the number of elements per half wave, this is

Le
N	

h m

The final equation form is

2	 1 n4 EI	 (60)PCR . _ - (mac) 1 + x 720 
Lee
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Where the negative sign says that for buckling the member must be

in compression. This shows that the error in a buckling load calcula-

tion is determined by the contribution of the principal error term
4

C., 	
E	 n—. Representative values of E for various number

7
of elements are as follows:

E	 N

20,%	 0.91
109	 1.08	 (61)

1,%	 1.92

Then, two elements per buckling half wave gives the buckling load to

about 1% error.

3 . 5 Application of Order of Error for Ko + K' for String

The ^ame procedure as the previazs section is used with

order of error h2 . The differential equation of the column effect

approximated by a string is

	

viIV - ?^i vi + h2 Cl 
X  vIV]

 = 0	 (62)

Where

Xi -X0+h2"1

The constant C1
 
=-L
  

from Equation (51) and Eq. (62) becomes

1

	

vi IV - A0 vi I + h2 Cl X0 vi IV ^'i vi	= 0	 (63)

Solving this in the same manner as before

2

pCR. - - (^)2 1 + 7 1^ L2	 (64)
e



29

2

	

The principal error term	 E = N
	

, for various number of elements are

as follows:
E	 N

	

20%	 2.03
	10%	 2.87

	

1%	 8.72

Thus nine elements per buckling half wave are required to obtain the

buckling load to about 1% error.

3.6 Numerical Comparison

To complete the study of convergence, numerical results for

the classical columns (pinned, fixed, and cantilever) were obtained

for several numbers of finite element segments per column.

The results for Figures 3.6.1, 3.6.2, and 3.6.3 were obtained

by the 0(h) finite element approximations (K o + K') and shown in

Table 3.6.1 (a). If it is assumed that the numerical solution for

PCR. approaches the exact solution according to the order of error,

the exact result can be extrapolated by assuming a linear relation()

for order of error (h/L) 4 . Also, the perturbation solution to the

finite element equation can be applied to simple problems. It is

given in Chapter 3, Equation X60), and gives higher but reliable

estimates for the results given in Table 3.6.1 (a). The perturbation

results were obtained by solving Equation (60).

Results were also obtained for the K  + K' for string, 0(h2)

for the case of a pinned column. As an example, the data is given in

Table 3.6.2 and plotted in Figure 3.6.4. The numerical data in

Table 3.6.2 also shows a close comparison between the 0(h2 ) numerical



PCR, L2/EI

Col.
ende

Number of elements (h/L)4

XEXTRAP
Exact

1 2 3 4

Pinned 12.0000 9.9200 9.8847 - 9,8760 9.8696

Fixed --- 40.0000 40.3432 39.7754 39.5126 39.4784

Cant. 2. -5000 1 _ 2.48 2.4 11 - 2.4676 2.4674
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(a) Numerical calculations

PCR. L2/EI

Col. Number of elements

end Exact
1 2 3 4

Pinned
1.2o49 9.9531 9 .8861 - 9.8696

Cant. 2.8012 2.4883 2.4715 -- 2.	 7

Fixed --- 44.8194 40.5334 39.8122 39.4784

(b ) Perturbation solution estimates

TABLE 3.6.1.- NONDIMENSIONAL BUCKLING LOADS,Q(h) FOR K'

Pnp L2/EI

Pinned Number of elements

col. Exact
2 3 4

NUM. 12.0000 10.8000 10.3866 9.8696
Pert. 11.8990 10.7715 10.3769 9.8696Est.

TABLE 3.6.2.- NQ DIMENSIONAL BLCKLING 10)ADS OBTA:VM FROM
"STRING" APPROXIMATION TO Kl - 0(h )
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Figure 3.6.2.- Buckling loads for fixed column, Ko + K'.
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Numerical

2

PCR. L
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Figure 3.6.3.- Buckling loads for cantilever column, K u + F;'.
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Figure 3.6.4.- Buckling loads for pinned column, Ko + K'
for string.
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results and the perturbation estimates of the numerical results.

They also demonstrate that the string finite element does have an

order of error of h2 . Therefore, from a practical point of view of

seeking the greatest accuracy from the least amount of work, it is

obviously advantageous to use Ko + k' matrices having 0(h4 ) in lieu

of the Ko + K' for the string having 0(h2).

The results also show that the 0(h 4 ) approximation gives good

accuracy and has excellent convergence properties. The 0(h4)

approximation results were high but were converging to the correct

answer as the number of finite elements was increased. The finite

element approximation is used in the remaining portion of the study

to obtain calculations for frame buckling with and without joint

flexibility.



CHAPTER IV

PRESENTATION OF NUMERICAL RESULTS

4.1 Introduction

The homogeneous linear equations expressed by Equation (36) have

a trivial solution, that is all displacements equal zero, and a non-

trivial or unique solution where the determinant of the [F; o + K

matrix equals zero. 	 Since the trivial solution is

useless, the unique solution is the one of interest here. By

holding all values in the KO and K' matrices fixed, the only

parameter is the axial load, P. The procedure used in this paper to

determine the buckling load is to obtain the lowest nonzero value of P

(load) that causes the determinant to vanish. This is accomplished by

plotting the determinant versus the magnitude of the load. The

numerical results were calculated using th.e Cuntrol Data 6600 digital

computer at the Langley Research Center. Since the results are

obtained for three- dimensional frame structures, several types of

member properties are -required. To give realistic results specific

dimensions were selected for the representative structure. The columns

are all taken as 8M34.3 steel members and the beams as standard AISC

8WF'31 sections. Table 4.2.1 shows the properties of these members.

4.2 Rigid Joints

Several calculations were obtained for the frames of

Figure 4.2.1, where the Joints were assumed to be rigid. The first

34



Member Tyke Big41 Smal J4 Lengt
ft

E
psi

G
'

Coliumzs 8M34.3 115.5 35.1 0.72 2 J+.o 30.0

x 106

11.2

x 106
Beams 8WF 31 1109.7 37.0 0 . 54 30.0

TABLE 4.2.1.- MEMBER PROPERTIES

35

P	 I p

IBM. =109.7 t

/	 r

/

ICOL. =35.1
(a) One-bay.

P	 ^ P	 ^P

r	 !	 /

ICOL.=35.1/IBM.=109.7

(b) Two-bay.

Figure 4.2.1.- Two-dimensional frames.

Frame,
Finite
Elememt

PCR.	 , Lb.
Ko + K Literature Diff.

One-bay one 111 1580 110280 +7.01
Two-bay,one 112300 111110 +1.08
Two-bay,two 111 00 131110 +0.54

TABLE 4.2.2.- BUCKLING LOADS FOR TWO-DIMENSIONAL FRAMES

I 
aP	

i aP

W

9g	
P	

u
P	

^---•

	

l	 ^	 I = 10''i 7•
u	 #	 uGy	

ex	 v
^w

v

1-0_ 
u	 w ^--  Iw = 109.7

I u = 35.1	 l v

Figure 4.2.2.- Three-dimensional one-bay frame.
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results are for the case when the frames buckled as planar structures.

(1,2)
These results were computed to compare with existing or known results

as well as to provide check points for the three-dimensional results.

The comparison is shown in Table 4.2.2. For these buckling loads, the

associated sidesway buckling mode shapes are indicated by a dotted

line _n Figure 4.2.1.

The frame of Figure 4.2.2 together with the indicated loading

is used as the typical example of the three-dimensional finite element

buckling theory. For various values of ALPHA (m), buckling loads were

calculated, Table 4.2.3. Calculations were made for the case where

the columns and beams were approximated by both one and two elements.

Using these results, the graph of PCR. versus ALPHA, Figure 4.2.3,

was obtained. Curve I shows results for a one element approximation

where the columns were not allowed to twist (column GJ = CJ). Curveu

II and III are results for one and two element approximations to the

three-dimensional structure where the columns were allowed to twist.

The eigenvector values (Curve III), using the procedure described

in Chapterll are given in Table 4.2.4. With these values, the mode

shapes for m = 0.0, 0.5, and 1.0 are shown in Figa es 4.2.4 (a), (b),

(c), (d), (e), and (f). These mode shapes are typical examples of

those obtained for the problems. The mode shapes have been normalized

so that the u displacements of node 1 are unity. Also, the following

displacements are assumed to be equal (inextensional behavior):

u2 = ulB = ul ; u4 = u3B = u3 ; w3 = w3C = wl ; and w4 = VP-C= w2 .



PCR. (Lb)

Alpha

o'

I
without torsion
one element

II
with torsion
one element

III
with torsion
two elements

0.0 166goo 13898o 138140

0.1 162600 137840 137,040

0.2 157800 13656o 135760

0.3 152600 135o6o 134300

o.4 147000 133300 132560

0 . 5 141200 131180 130480

0.5 135100 128580 127900

0.7 129000 125360 12474o

o.8 123000 121420 120820

F

117000 116720

111380

116160

1108401.0. 115000

TABLE 4,2,3.- HUCKIENG LOADS FOR THREE-DIMENSION_AL,ONE-BAY FRAME
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Di sp . a = 0.0 a = 0.5 a = 1.0

ul 1.000 1.000 1.000

wl -	 .12 - .106 0

0 Y
-	 .252 - .195 0

xl
.1 1

-.0-7- 0

zl .142 .144

0Y2 -	 .252	 .195 0

x2 - '04) -

ez2 .141 .142 .144

.2 .'32 1.000

w .12 .l0 0
eY3 _ .252 - .195 0

ex3 0 5 .037 0

ez .039 .065- .1

e 4 - .252 - .195 0
ex4 -	 .o45 - .037 0

e z4 .039 .o65 .1

ulA
.454 .454 .456

VIA - .052 -	 3 0

0YlA
-	 .126 - .097 0

ex1A . 086 .071 0

e z1A •747 .745 .739

u .454 .454 56

w2A .052 .043 0
9Y2A - .126 - .097 0

e - .o86 - .o71 o

e z •747 •745 •739

u3

to 
w A

.114 .198 .455
- .053 -

sp. a=0.0a= 0.5a =1.0

7- -0.12 70.097 0

x3A

z3A
.17 .31

u4A

w4A

eY4A - .126 097 0

x4A - -W) -

ez4A .176 .31 9

w1B 0 0 0

6YB- ' 
066 -	 .02 0

xlB 0 0 0

zlB -	 .O -	 1 -	 .

w3B 0 0 0

8YB- .o -	 .02 0

9 X3 o 0 0
- .072ez B - .020 - .032

u C

K

.624 .il 1.000

ez c .090 .103 .1

eY c - .438 -	 .32 0

ex c - .022 -	 .019 0

u2C 2 .716 1.000

eZ .090 .103 .1

0 Y2 - .438 -	 .328 0

exec - •022 - .019 0

VIB 0 0 0

v 3B, 0 0 0

v C 0 0 0

v 2
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TABLE 4.2.4.- EIGENVECTOR COMPONENTS FOR THREE-DIMENSIONAL,ONE-BAY FRAME



I
w

e
Z

u

89Y	 x

v

n.P	 rt?

(a) Actual frame.
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t B

A A

3C `\	 -- - -a=0.5	 2C	 \\
\\	 ---a, = 0.0	 1
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(b) Plan view.

Figure 4.2.4.- Mode shapes for three-dimensional,one-bey frame.
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(c) Front elevation view.

p P8
z

CFr

v

(d) Section A-A of Figure 4.2.4(b).

Figure 4.2.4.- Mode shapes for three-dimensional, one-bay frame.
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P	 P

(e) Side elevation view.

(f) Section B-B of Figure 4.2.4(b).

Figure 4.2.4.. Mode shapes for tbree-dimensional,one-bar frame.
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4.3 Semirigid Joints

The two-dimensional rigid frame of Figure 4.2.1 (b) is used

as a semirigid frame as shown in Figure 4.3.1. All of the stiffness

values (R) are the same for each joint. For joints 1 and 3, the

semirigid joint procedure of Chapter II as applied to Figure 2.2.1 (a)

is used. This same procedure, but using Figure 2.2.1 (b) as the

guide, is applied to Joint 2. The comparison of the buckling loads of

Figure 4.3.1 with known values based on slope deflection procedures

with fictitious members as springs 
(1)  

is shown in Table 4.3.1. The

two results are plotted in Figure 4.3.2. Also shown on the plot is

the range of practical moment connection stiffness obtained by

Rathbun in experimental studies of joints. (5) Rathbun's tests

obtained joint stiffnesses that ranged from .001 x 108 in-lb. to
rad.

4.5 x 108 in--1b for the standard AISC pinned connections and

from 1.9 x 108 in-lb.- to 180 x 308 
in-lb.
 for moment connections.

rad.	 rad.

The semirigid, three-dimensional frame, Figure 4.3.3 is

developed in a similar manner as the previous frame. The results

from Figure 2.2.2 (a) are us ,	-) obtain Figure 4.3.3 (R1 to eZ for

members 1 - 2 and 3 - 4, ex for members 1 - 3 and 2 - 4; and R2 to

ey). For most connections, the relative torsional slippage at the

Joint will be very slight. (4) Therefore, the torsional stiffness

of each member, (ah') , was assumed to be constart over the member

(beam or column). Therefore, torsional semirigid joints are not

considered in this thesis. The buckling loads for the various values

of R1 and R2 are computed and shown in Table 4.3.2. Using
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representative values of these eigenvalues, the graphs of Rl versus

PCE, (Figs. 4.3.4, 4.3.5, and 4.3.6) were obtained. This is to

show the upper and lower limits of each type of connection for m = 0.0,

0.5, and 1.0. Figure 4.3.7 shows the effect of m on the buckling

load for various values of the joint stiffness. Also shown is the

result for the joint stiffness corresponding to the weakest

stiffness obtained by Rathbun in studies of typical moment connections.

Figure 4.3.8 is a sample plot of load, versus determinant

value at m = 0 for the three-dimensional, one-bay frame. This graph

is presented to illustrate the procedure used in this paper and

described in Section 4.1.
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Figure 4.3.1.- Semirigid two-dimensional,two-bay frame.

R
8	 in-lb10 ,	 rad

PCR.' lb

Finite
element

Slope(l)
deflection

0.001 800 500

.1 47500 36600

.3 77800 66800

.8 96400 894 o
1.4 102500 97700

2.1 1G`400 101800

3.0 107200 lo4q

5.0 10%= 107100

10.0 11Q300 1091.00
CD 111700

TABLE 4.3.1.- BUCrMG LOADS FOR SEK[RIGID, TWO-DIMENSIONAL,TWO-
BAZ FRAME
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(a) Joint stiffness, R1.

(b) Joint stiffness, R2.

Figure 4.3.3.- Semirigid, three-dimensionsl,one-bay frame.



PCR. ,	
ips

8 M

R2

5 1	 0	 1	 07 7 7 9
v. 32.68 34.7	 39 .3	 41.5 42.58 44.58 45.1	 45.6 45..7

.0ca 0. 32.68 34.5	 37.5	 38.6 39.06 39.76 39.9	 4o. 40.08
1. 32.24
O-C 71.o6j 73.4 79-54 83.o4j 84.92 88.7 1 89.7	 90.8 91.0

.1 . 0- r, 71.o6i 73.3 1 78.1d 80.4 181.46183-321 83.8 1 84.2 84.3
1.(- 70.68
o.c 91.981 94.4 1101L.A105.2 07.5 1112 1.4 1113.84115-A115.54

.3 0. 91-981 94.3 1 99.8 102.72 04.14 106.78 107.5 08.1	 108.26
1. 91.6
0 • C 103.18 1105.64112-54116.9 19.5 1125.1 126.8	 28.58 128.88

.8 0. r 103. 18 1 105-5 111.4 114.6 16.26 119.42 120.2	 21.12 121.22
1-c 102.84
0. 106.64 I 109. A 116.0 120.	 23.2 129.02 130.8	 32.7 132.92

.4 0. 106.64 109.0 114. 118.2	 20.0 123.34 124.2	 25.1 125.26

1.0 lo6.3
0 108.281110.7d 117.7 122.2	 24.94 130.86 132.7 k34.64 134.86

.1 0• 08.28 110.6 116.6 120.0	 21.76 125.18 126.1	 7.06 127.16
i.c 107.94
0• og.28 111.72 118.72 123.3 26.02 132.0 133.8	 35.84 36,.o8.

.0 0• og. 281111A 117.6$ 121. 22.84 126.3 127.2	 28.22 128.34
1.0 lo8.94
0.0 110.24 112.66 119.7 124.34 27.o4 133.1 134.	 36.98 137.22

.0 0 - 10.24 112.58 118-66 122.0	 23,88 127.4 128.	 29.34 129.46
m i.c l 109.9
0• 10.96 113.4 -120.4 125.1	 27.8 133.92 135.837.84 138.08

.0 0. 10.98 113-321119.42 122.8	 24.66 128.22 129.2	 30.2 130.32
_i.c. lio.64

10. 0 111.64 114.0 121.12 125.7	 28.52 134.68 136.6	 38.64 138.88
00 0. 5111- 64 113. Al20.1 123.5	 25.38 128.98 129.88 30.98 131.1

11.0 ill.
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TABLE 4.3.2.- BUCKLING LOADS FOR SEMIRIGID, THREE-DIMENSIONAL,
ONE-BAY FRAME
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three-dimensional, one-bay frame (a= 1.0).
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CHAPTER V

DISCUSSION OF RESULTS

The buckling load given in Chapter IV for the two-dimensional

one-bay frame is the same as for the case when m = 1.0 for the

three-dimensional problem. The difference from the known literature

value was only 1.01 per cent. Curve I of Figure 4.2.3 neglects tor-

sional deformations in the columns and was found to be approximately a

linear relationship between P and m. Curve II considers torsion and

shows that the influence of torsion can reduce the buckling load

by as much as 27,920 pounds or 20 per cent (m = 0.0). Therefore,

by not allowing the columns to twist,it would be possible to have

a 20 per cent nonconservative estimate of the buckling load for the

frame. As expected, the curves (I and II) became the same when

a,=  1.0. The two-element curve (III) is shown to compliment the

study of convergence in the same manner as the cantilever beam.

The two-dimensiona-,two-bay rigid frame was found to be the

upper limiting case (R -+ OD- ) for the semirigid one. The semirigid

buckling loads agree very favorably with the known values. The

three-dimensional rigid frame corresponds to the upper limiting

case (m = 1.0 and Rl -+OD) for the semirigid example. Also when
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m = 1.0 the same eigenvalue was obtained for R 2 = 1 x 105 to 00.

This is due to the fact that 6y = 0 and stiffness R2 is not

necessary. Also, as expected, the semirigid buckling load curve for

m = 1.0 is slightly higher than the semirigid, two-bay frame.

To develop complete rel f :.;-ility of the results presented, the

eignevalues were checked by the following methods: (1) carefully

plotting P versus determinant value (Fig. 4.3.8) to elimint.te the

possibility of missing the first buckling load; (2) obtaining

e-genvectors to assure agreement with the assumed ones; (3) performing

the check points (upper and lower limits) previously mentioned;

(4) developing the study of convergence (Chapter III) to have a feel

for the expected accuracy; and (5) comparing semirigid joint results

with the known values.

Figures 4. 3 .2 , 4. 3 .4 , 4. 3 . 5, 4 . 3 . 6, and 4.3.7 indicate that

standard moment connections in both two-dimensions and three-

dimensions give a close appruximation to rigid joints. However,

buckling loads obtained by assuming pinned connections instead of

the more realistic semirigid joints considerably underestimates the

buckling loads of the frames studied.



CHAPTER VI

CONCLUSIONS

A general theory for buckling of three-dimensional space frames

taking into account joint flexibility has been studied. This

procedure,while directed toward buckling problems,is also applicable

for determining stresses and deflections of general finite element

structures. This method is ideally suited to high-speed digital

computation by use of a completely automated computer program.

It has been shown from the convergence study that in all cases

:he buckling loads will converge to the correct answer by increasing

the number of finite elements. If a high degree of accuracy

for calculating the eigenvalue is not needed (greater than about

1 per cent), one element is sufficient to represent the sidesway

buckling behavior. By comparing the pinned column to the symmetrical

buckling case, two elements are adequate for computing the buckling

loads. Results on semirigidity of joints show that buckling .loads

will be conservative if assumed to be pinned and slightly

unconservative if assumed to be rigid.
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APPEMDC

SAMPLE C01lP[T"M PROGRAM SI(0) M 1HREZ-DWRIMONAL SEIMUGID RUCl LIM LOAD

P MF6016.	 LRC COMPUTER COMPLEX
JOB. I.2000.06D000.	 A1774,	 .2, JAMES M RAMSEY 9GMF4079 MS	 254 ,

PROGRAM 4UCKLG	 (INPUT,OUTPUT,TAPF5=INPUT.TAPE6=OUTPUTI
OOOOG? DIMFNS[ON A(32.3219IM1419LG( 2),LAM812191PIVOT(32),IR(519JM(2I
000003 REAL	 IM.LG.[R,LP,LAMB,JM
00000'4 i(R I T F (6.1 )
000007 1 F(IRMAT(1x.53H PLEASF SFNO RESULTS TO JIM RAMSEY, MS254, PHONE 4826

1///IX,36H SIDFSWAY BUCKLING LOAD VERSUS ALPHA)
000007 READ	 (5,2)	 (IM(I),I= 1.41.(LG(I),I=1.2)
000027 2 FORMAT(6F9.1)
000027 DO 4I=1.3
000031 GO	 TO	 (5,6,7)9I
000037 5 ALPHA=0.0
000040 Gal TO	 100
000041 6 ALPHA=0.5
000043 GO TO 100
000043 7 ALPHA=1.0
000045 100 On 4K=1.10
000047 GO TO	 (3n.31.32.33,34,35,36,37,38939)•K
000064 30 R=I.OE+S
000066 GO TO 14
000066 31 R=1.OF+7
000070 GO TO 14
000070 32 R=3.OF+7
000072 GO TO 14
000072 33 R=8.0E+7
000074 GO TO 14
000074 34 R= 1.4E+8
000076 GO TO 14
000076 35 R=2.1E+9
000100 Gn TO 14
000100 36 R=3.0E+8
000102 GO TO 14
000102 37 R=5.OF+4
000104 GD TO 14
000104 39 R=1.OF+9
000106 GO TO 14
000106 39 R=1.OF+10
000110 14 EM=30.0E+6
000112 GM=11.2F+6
000113 JM(11=0.720
000115 JM(2)=0.540
000116 X=0.0
000117 DO	 15N=1,4
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000120 Y=10.0**(6-N)
0001-26  DO 17M=1, 50
000127 00 16J=1.32
000130 DO 16 L=1.32
000131 16 A(J.L)=0.0
000140 IR(1)=IM(2)/IM(1)
000142 IR(2)=GM*JM(11/(EM*IM(11)
000146 IR(3)=[M ( 3)/IM(1)
000147 IR(4)=GM*JM(2)/(EM*IM(1))
000153 IR(5)=[M(4)/IM(11
000155 LR=LG(2)/LG(l)
000157 C=R*LG(11/(EM*IMIII)
000162 0=(1.OF+91*LG(1)/(EM*[M(11)
_000165 7=M/5.0
000170 P=x+7*Y
000173 IF	 (P.E0.160000.)GU TO 4
000175 P= P
000176 LAM9(1)=P*LG(11**2/(30.0*EM*IM(11)
000204 LAMB(2)=ALPHA*LAMB(1)

_000206 A(1,11=24.0*(1.0+IR(31/LRI+72.0*LAMB(1)
000214 A(1,4)=6.0*IR(31/LR
000217 A(1,7)=-6.0-3.0*LAM8(1)
000222 A(1,11)=A(1,4)
000223 A(1,14)=A(1.7)
000225 A(1.16)=-4.0*A(194)
000226 A(1,18)=A(1	 4
000227 A(1924)=A(1.,i
000230 A(2.21=24.0*1[Rfll+[R(3)/LR ► +36.0*(LAMB(I)+LAMB(2))
000241 A(2,3)=-A(1,4)
000243 A(2,5)=6.0*IR(I)+3.0*LAMB(1)
000246 A(2,9)=At1,16)
000250 A(2,10)=A(2,3)
000251 A(2.171=A(293)
000252 A(2.19)=6.0*IR(I)+3.0*LAMB(2)
000256 A(2,23)=A(2,3)
000257 4(3.2)=A(2.3)
000260 A(3,3)=4.0*IR(31/LR+D
000264 Af3.91=A(194)
000266 A(3910)=A11.41/3.0
000270 A(4,1)= A(i.4)
000271 A(4,41 =4.0*IR (3)/LR+D
000274 A(4916) � A(1.4)
000275 A(4918)=A(3910)
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000277 A(5.7)=Al2.5)
000300 A(595)=4.0*([R(11+LAMB(11)+C+[R(41/LR
000307 A(5,61=-C
000310 A15.12)=-IR(4)/LR
000312 A(6.5)=-C
000311 A(6,61=C+4.0*IR(5)/LR
000316 A(6,20)=2.0*IQ(5)/LR
000320 A(7.1)=A(1,7)
000321 4(7.7)=A(5,5)+4.0*11.0-IR(1))
000326 A(79R)=-C
000327 A(7,21)=A(5,121
000331 A(8.71=-C
000332 A(8,R)=A(6.6)
000333 A(K.15)=A(6,201
000335 A(992)=A(2991
000336 A(993)=A(1941
000340 A(9,91=A(2921
000341 A(9.10)=A(1.4)
000342 A(9.12)=A(2,5)
000344 4(9,17)=A(1.4)
000345 A(9,23)=A(1.4)
000346 A(9,25)=A(2,19)
000347 A(10.2)=Al2.3)
000351 A(10.31=A(3.101
000352 A(10.9)=A(1.4)
000353 A(10910)=A(3.3)
000355 A(11.1)=A(1,41
000356 A(11,11)=A(4,4)
000357 A(11.16)=412,31
000 ,461 A(11924)=A(3910)
000362 A(12.5)=A(5,12)
000364 A(1299)=A(295)
000365 A(12.12)=A(595)
000367 A(129131=-C
000370 A(13,121=-C
000371 A(13,)3)=A(696)
000373 A{13.26)=A(6920)
000374 A(1491)=A(197)
000376 A(14,14)=A(797)
000377 A(14,15)=-C
000400 A(14.27)=A(5.12)
000401 A(15,8)=A(69201
000402 4(15914)=-C
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000403 A(15.151=A(6,6)
040405_____ A(1691)=A(1,16)
000406 A(16,41=-A(1941
000410_	 _ A(_16.11)=A(2.3)
000411 A(16916)=A(191)+72.0*(LAMB(2)-LAMB(1))
000416 A(16.18)=A(2.3)
000417 A(16.21)--6.0-3.0*LAMB(21
000422 A(16,24)=A(2,3)
000423 A(16.27)=A(16.21)
000425 - A(17,2)=A(2931
000426	 _ A(17,9)=A(1,41
000427 A(17,17)=A(3,3)
000431 A(17	 23)=A(3,10)
0.00432 A(18.1)=A(1,4)
000433 A(1894)=A(4,18)
000435 A(iR,161-A(2.3)
000436 A(18,1A1=A(4.41
000440	 _ _-_-A119_,2)=A(2919)
000441 _	 - A(19,19)=A(5,5)+4.0*(LAMB(2)-LAMB(1))
000446 A(19t2O)=-C

_000450 A(19,25)=A(5.12)
000451 A(2096)=A(6.20)
000453 A(20.19)=-C
000454 A(?0.20)=A(6.6)
000455 A(21.7)=A(5,12)
000456 A(21,16)=A(16921)
000460 A(21,21)=A(7,7)+4.0*(LAMB(2)-LAMB(1))
000465 A(21,?2)=-C
000466 A(22.21)=-C
000467 A(22,22)=A(6,6)
000471 A(22,28)=A(6,20)
000472 A(23,2)=A(293)
000474 A(23.9)=A(194)
000475 A(23,17)=A(3,10)
000477 A(L3.?3)=A(3,3)
000500 A(24.1)=A(1.4)
000501 A(?4,11)=A(3910)
000502 A(24,16)=A(293)
000504 A(24924)=A(4,4)
000505 A(25,9)=A(2,19)
000507 A(25,19)=A(5,12)
000510 A(25,25)=A(19919)
000912 A(25926)=-C
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1.

000513 A(26,13)=A(6,20)
000515 A(26925)=-C
000516 A(26,26)=A16,61
000517 A(27,14)=A(5,12)
000521 A(27916)=A(16921)
000522 A(27927)=A(21921)
000524 A(?7,28)=-C
000525 A(28,72)=A(6920)
000526 A(28.27)=-C
000527 A(28928)=A(6,6)
000531 A(3,291=-D
000532 A(4,29)=-D
000533 A(24,3)=-D
000514 A(29.4)=-D
000535 A(29,29)=IR(2)+2.0*D
000540 A(10,30)=-D
000541 A(11,?0)=-D
000542 A(30.10)=-D
000543 A(31),111=-D
000544 A(30t3O)=A(29*29)
000546 A(17,31)=-D
000547 A(19931)=-D
000550 A(31.17)=-D
000551 A(31,18)=-D
000552 A(31,31)=A(29,29)
000553 A(23,12)=-D
000554 A(24.32)=-D
000555 A(32,23)=-D
000556 A(329241=-D
000557 A(32,32)=A(29,29)
000560 CALL	 DETEV	 (A,32,OETFRM9IPIVOT9329ISCALE)
000564. 1F(DETERM)15,4917
000566 1?	 ;, f'NT I NUE
000570 1•	 %-X+(Z-0.20)*V
000577 „=-X
000600 4	 Wk;TF	 (6918)P,ALPHA,R
000616 18	 FORMAT	 (I0X,FI6.5.F6.2,E16.5)
000616 STOP
000620 END



PLEASE SFNO RESULTS TO JIM RAMSFY• MS254. PHONE 4826

65

SIDESWAY BUCKLING LOAD VERSUS ALPHA
-4.56400E+04 0.00 1.00000E+05
-9.08800E+04 0.00 1.00000E+07
-1.15360F+05 0.00 3.00000E+07
-1.?85R0F+05 0.00 8.00000E+07
-1.32700E+05 0.00 1.40000E+08
-1.34640F+05 0.00 2.10000E+08
-1.35840E+05 0.00 3.00000E+08
-1.36980E+05 0.00 5.00000E+08
-1.37940F+05 0.00 1.00000E+09
-1.3P640E+C5 0.00 1.00000E+10
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