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RESPONSE OF A PLASTIC CIRCUTAR PIATE TO

A DISTRIBUTED TIME-VARYING MADING

By

Deene J. Weidman

ABSTRACT

The bending response of a plate to dynamic loading has been of

interest in plasticity theory for some time. Generally, marry restrictive

assumptions are made on both the material behavior and the loading applied

to the plate. The plate material is considered rigid-plastic, and four

basic yield criteria are discussed and evaluated, with the Tresca yield

condition being selected from these four criteria as allowing the most

generality of solution. This dissertation, however, removes the restric-

tions made concerning the applied loading for the Tresca yield condition.

The plate is considered to he simply supported, and therefore, only one

point (or circle) of discontinuity is considered to exist across the

plate radius. The location of this circle of discontinuity is not

generally constant but varies with time. The movement of this "hinge

circle" is the key to solution of plastic plate problems under general

loadings that vary with radius and time. The differential equation that

defines the motion of the hinge circle is derived, and solved exactly

for same cases. A short computer program is also presented that allows

the numerical solution of the general non-linear differential equation

for hinge circle location.

Many previous authors have considered the radial loading distribu-

tion to be either a partially (or fully) uniform radial distribution or



else a "concentrated" load, and either statically or impulsively applied

in time. A few papers allowing slightly more general loadings are avail-

able, but in all previous work the authors make assumptions that require

the radial location of the hinge circle to decrease with time. This

assumption simplified the solution of the problem considerably, but it is

not a valid assumption in general. In the present approach, the hinge

circle is allowed to move as the loading dictates, and outward hinge

motion is seen to occur. In some cases of general loading, the hinge

circle does only move inward, but the actual rate of deflection could

not have been calculated by previous analyses. Eventually, however, the

hinge moves to the center of the plate, and the plate deforms conicelly

until the hinge circle finally disappears, leaving a rigid, deformed

plate. All of the quantities of interest (plate velocity, bending moments,

stresses, etc.) are written in terms of the variable hinge circle location.

The location of the hinge circle is then defined in the general case.
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INTRODUCTION

The prediction of the plastic response of a simply supported circular

plate has been a problem of considerable interest in recent years. Much

of the current knowledge in plastic-plate problems stems from original

analyses instituted at Brown University in the early 1950's by H. G.

Hopkins and W. Prager and others. In these early papers, the plastic-

plate material was considered to follow the Tresca yield criterion and the

loading was considered to be uniform over an annular or circular region

on the surface of the plate and statically applied. The load-carrying

capacity (or load at which the initial yielding occurs) was determined

and the rate of deflection was found. Even though these earlier papers

(as examples, see refs. 1 through 6) solved for only a few of the quan-

tities of interest in plastic-plate theory, these papers presented a

basic approach to the analysis of general plasticity problems.

After the first few papers on plastic plates were published and the

significance of these analyses was realized, many more extensive analyses

were initiated and other effects were investigated. The influence of

changing the yield condition from the Tresca yield condition to other

forms (von Mises, etc.) was investigated (refs. 4 and 7) and relatively

small differences in carrying capacity were noted due to the change of

yield condition ( for the various loadings considered).

The influence of including the inplane forces and thus allowing for

membrane action, has also been investigated (refs. 8 through 14) and

this effect is shown to cause the deflection to be reduced fron the

deflection due to bending theory. This is a very difficult problem

1
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involving the interaction of several yield variables (two bending moments

and two inplane forces). Sometimes the interactions between moments and

forces are neglected (see refs. 13 and 14 for current interaction

theories). These inplane forces are present in plastic-plate problems

as soon as deflection starts, and become increasingly important as deflec-

tions increase. Initially, bending action strongly predominates, indica-

ting that membrane forces start tc have a significant effect only when

the plate central deflection becomes greater than about twice the plate

thickness. Thus, if the initiation of deflection is of primary interest,

then the need for inclusion of membrane forces is greatly reduced. These

membrane analyses (refs. 8-14) included small computational approxima-

tions in addition to the assumption of a uniformly distributed impulsive

loading. Thus, a bending and membrane solution for a plate under a

loading that :caries with radius and time is still not available, and the

results presented for uniformly distributed impulsive loadings may not

be directly applicable to more general loading cases.

The consideration of additional material properties such as strain

hardening, viscosity, elastic deformation etc., has also been made

(refs. 7, 9, and 15 through 17). In these references, consideration of

any one of these properties allowed the theoretical analysis to predict

the experimental results well. For example, reference 7 shows that the

addition of viscosity effects could yield agreement of the theoretical

with experimental final maximum deflections; however, the magnitude of

the viscosity coefficient is unknown, and its value was selected for the

specific case of a uniformly distributed impulsive loading.
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Interaction problems have also been receiving attention more

recently (see refs. 18 through 21). Interaction problems are defined

as those problems in which more than two stress resultants are con-

sidered necessary to define the yield surface. The analyses including

inplane forces (refs. 8 through 14) are examples of this type of prob-

lem. A three- or four-dimensional yield s ,irface is needed, with each

stress resultant allowed a range of values before it causes yielding by

itself. Within this range of values, an interaction exists between all

of the allowed stress resultants. Most often, the interaction is deter-

mined to be either linear or quadratic in these stress resultants. The

influence of shear forces (see ref. 21) is a particularly important

interaction problem that has not been widely analyzed. For example,

even though it ii a well-recognized fact that shear forces are of primary

importance for concentrated load prcilems, bending theory has still been

used to predict the loading-carrying capacity of plates under a concen-

trated load. Also, the success of using a viscous-shearing model of

failure for ballistic impact problems (ref. 22) indicates the need for

the consideration of shearing forces.

The investigation of other boundary conditions (such as clamped

supports or elastic supports, refs. 23 through 25) and other geometries

(such as annular plates, refs. 26 and 27) has also been initiated. An

attempt to discuss all of the literature on the plastic theory of thin

plates would not be appropriate here. An excellent group of bibliogra-

phies and rev!ews can be found in references 28 through 32. Those

papers directly discussed and referenced herein are thought to be

representative of the best of current work in this field.
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Two experimental papers must be mentioned here as essential to

proper justification of the theoretical analyses. Analyses employing

piecevis, ling yield surfaces indicate that points (or circles) should

exist across which a discontinuity is expected. These discontinuities

would not be expected for smooth yield surfaces. Such a discontinuity

has been observed and recorded for a beam (ref. 33), yielding the

definition of a hinge. More significantly, such a "hinge circle" has

also been recorded for a thin plate (ref. 34). Vaese experimental

observations lend creditability to the use of piecewise linear yield

surfaces, which have only been considered approximations in the past.

In nearly all of the papers referred to above, the radial variation

of the loading was considered to be either uniform over all or part of

the plate surface or concentrated at the plate center. The analysis of

a more general radial load distribution is needed, and this variation

is allowed in this thesis.

The solutions of the references centered around determining that

unique single locati:.i ; n these plates at which the hinge circle occurs.

Initially, static loadings were considered., but in a classic. paper by

Hopkins and Prager (ref. 2) the influence of a time variation was first

considered. In this reference, a uniform load was applied over the

surface of the plate for a finite length of time and then removed. This

analysis introduced the fact that the location of the hinge circle does

not remain fixed, but after the loading is removed, the hinge circle

shrinks to a single point at the center of the plate. This moving
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boundary separates two different regimes (or regions of solution) and

causes many complications. The difficulty of the moving hinge circle

is also important in impulsive loading problems, and therefore the

problem of defining its motion had to be solved.

After the initial papers were presented, the investigation of

impulsive loadings soon proceeded to dominate the literature (see, for

example, refs. 5, 6, 8, 11, 18, 27, 35, and 36). A general radial varia-

tion of the loading on the plate has been attempted in only one case

(ref. 36) where a Gaussian radial load distribution was assumed to be

impulsively applied.

The solution of the response of a plastic plate to a general time

variation of loading is a considerably more involved problem. The

location of the hinge circle varies strongly if the loading changes

with time. Very few references are available that allow time variation

of loading (for example, refs. 2, 37, and 38). Considering only

uniformly loaded plates, with a time variation that quickly decays

toward zero and never increases, Perzyna (ref. 37) states thW.; the

actual shape of the time variation has very little effect on the final

deflections. However, in this reference the uniform load is maintained

on the ].late for a considerable length of time before rapid removal

of the load, and thus it might be expected to show only small variations

due to load removal.

Sankaranarayanan (ref. 38), on the other hand, has shown that

for spherical caps under a similar uniform loading the time variation

of the loading greatly influenced the final deformation. Therefore,
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a need is seen for the general determination of the motion of the hinge

circle, and, indeed, this unique movement of the hinge circle is the

key to solution of involved dynamic plasticity problems in plates.

Although this dissertation is concerned with the dynamic loading

of simply supported, rigid-plastic plates, the basic problem that

prompted the analysis is the ballistic impact problem. This problem

is concerned with determination of the response of a plate when impacted

by a projectile (or spray of projectiles) traveling at a high velocity.

Retaining the integrity of the plate is of prime concern. At low impact

velocities, the response of the plate is entirely elastic. As the

projectile velocity increases, the response of the plate becomes pre-

dominantly plastic, and it is this problem of plasticity that is of

interest herein. An excellent review of this impact problem (from the

elastic point of view) is found in reference 39. The basic point of

interest is that the loading on the plate is definitely not impulsive,

or indeed, not even uniformly distributed across the surface of the

impacted plate. Therefore, a general analysis allowing a loading

variation in both radius and time is desired.



LIST OF S13MLS

a,a, parameters in example loading cases

b outer radius of plate

C,Ci arbitrary functions and constants used for solutions

f(Qi ) functional form of the yield surface

fl (r,p,t) function used in solution for regime 	 AB, see

equation (50)

h half-thickness of plate

ll (p,r),I2 (p,r) general functions defined by equations (57)

and (58)

M bending-moment resultant

MO yield-moment resultant,	 aOh2

P(t ) time variation of applied loading

po the value of loading at which initial hinge forms

pl the value of loading at which hinge occurs away from

origin

Amax maximum value of loading applied (maximum value of

p(t))

Pi specific points on a general yield surface

q(r) radial variation of applied loading

Q shear force resultant

r,9,z radial, circumferential, and transverse coordinates,

respectively

R(r),T(t) functions for separation of variables solution, see

equation (41)

7
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s coordinate along	 p(t)	 curve, see figure 5

t time

to initial time

ti time hinge circle disappears

t* time pate comes to rest

t(r) time needed for hinge to reach point 	 r

t(p) time needed for hinge to reach current location	 p

u radial displacement in plate

Vo arbitrary applied velocity for impulsive loading

w plate deflection

p general flow rule constant, see equation (33)

e,E strain and strain rate in plate, respectively

TIA dummy variables of integration

K curvature rate

µ mass per unit area of plate

P( t ) general hinge circle location

po initial hinge circle location

pl,p2 two general functions of 	 p, see equation (65)

a an average stress, defined by equation (8)

co yield stress in simple tension or compression

vi principal stress components

cZ,TrZ vertical and shearing stresses, assumed small

To octahedral shear stress

TrO,TeZ shearing stresses
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Subscripts

1,2	 refer to two planar coordinates (often r and 8)

r,9	 refer to radial and circumferential quantities,

respectively

Extra Symbols

denotes the jump in a quantity across the hinge

Idenotes quantity evaluated at a given point



GENERAL PLASTICITY CONSIDERATIONS

In this section some of the basic considerations for any flow (or

incremental) theory of plasticity are discussed. Several possible

choices are evaluated, and from these choices the methods and cases con-

sidered in the body of the text are selected. These methods have been

chosen to yield a theoretical solution to a general group of plasticity

problems. This is done without recourse to a large digital computer

prograg► solving high-order, coupled differential equations and utilizing

multivariable difference techniques, iteration procedures, etc., for a

solution.

Yield Criteria and Flow Rules

Initially, a basic criterion of material yielding must be selected.

The engineering material to be used, and the application to which it will

ultimately be put,dictate the type of material yielding to consider.

This philosophy of yielding (whether maximum tensile stress, maximum

shear stress, etc.) defines the actual shape of the yield surface. Once

the shape of the yield surface is determined, the generalized flow rule

is applied. It is assumed herein that the material is always isotropic

during flow, so that principal stress directions are the same as the

principal strain-rate directions. The flow rule then states that the

principal strain rates are in the same proportions as the direction

cosines of the outward facing normal to the yield surface at that point.

This approach breaks down only in cases where the yield surface has sharp

corners, and the outward normal direction is not unique. Such cases are

10
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important, since many yield surfaces do possess ccrners. However,

additional information is available in such cases that allows a unique

solution to be found. This fact will be illustrated later in this

section.

'

	

	 In the case of an isotropic, perfectly plastic solid, the yield

condition f(ai ) = 0 can be considered as a three-dimensional surface

in the principal stress space as shown in figure 1. The type of yield

criterion selected would affect the yield condition f(a i ) and thus

change the shape of this surface. The flow rule states that a relation-

ship exists between a given point (a i ) on the yield surface and the

principal strain rates (e i ) at that point. The flow vector at a point on

the yield surface has direction cosines with the ratios of e i values,

and is normal to f(ai ) = 0, or

Aaf ( ai )
E^ = 6 a

where the quantity ^, is the constant of proportionality.

The flow rule is then a function of the local normal to the yield

surface and at any point on the yield surface at which the normal is

unique (say points Pl and P2 in fig. 1) the strain rate directions

are well defined. Using strain displacement relationships or (taking

time derivatives of these expressions) strain rate displacement rate

expressions, the strain rates can be used to solve for the deflections

in regions where the flow rule vector is well defined. However, at any

point where the normal is not unique (say the point P 3 in fig. 1), the

flow rule vector may lie anywhere within the cone of vectors that is

(1)
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formed by the normals to all possible surfaces of f(a i) = 0 that pass

through the given point. For the point P3, it appears that one flow

mechanism corresponds to the surface containing Pl , and another flow

mechanism corresponds to the surface containing P 21 so that at the point

P3 , a linear combination of these two mechanisms might be expected to

occur. Thus, 3 times one flow .mechanism is added to (1 - p) times the

other flow mechanism, to yield the combined mechanism at the point P3.

The constant, p, should then lie between 0 and 1. Note that the discon-

tinuity between the Pl and P2 types of flow mechanisms disappears

toward the rearward portion of the yield surface, indicating that, in

general cases, the occurrence of sharp corners may vary with the state of

stress (or even with time).

A short comment must be made concerning the influence of boundary

conditions in yield criterion (or yield curve) selection. If a plane

stress problem for a circular plate is assumed, the yield surface becomes

a curve in the a,, a2 plane. A portion of this plane is shown in

figure 2. The three points (marked +) must be on the yield surface,

and if a simply-supported plate is being analyzed, only the shaded region

A is to be considered (U, = a. at the center of the plate, and ar = 0

at the outer edge). Any yield condition that has simple differential

equations in this region is then of interest for simply-supported plates.

However, if a clamped plate is being analyzed, both of the shaded regions

A and B are of interest. An entirely different yield condition may

have simpler differential equations in this larger region.

In summary, the procedure to follow is to first select a yielding

criterion and from this criterion determine the yield surface. Next the
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specific associated flow rules are written for that particular surface,

and the necessary equations for solution are written. In all cases, care

must be taken to include the desired material properties, and even to

consider the boundary conditions of a specific problem when selecting

the yield criterion. Current yield criteria are discussed in the

following sections to illustrate the manner in which this approach is

applied. In these sections it is assumed for simplicity of discussion

that the plate under analysis is in a state of plane stress (a 3 = 0),

and the yield surfaces are drawn as curves in the (a l ,a2) plane. It is

important to note that, while the yield surface is considered a curve in

the a3 = 0 plane, the normals to the three-dimensional surface are not

in this (al ,a2 ) plane. However, the projection of these normal components

onto the (al ,a2 ) ple.ne is normal to the yield curve, and the principle of

the flow vector is still applicable. Only bending stresses are considered

herein, so that al and M1 are related, as well as a2 and M2 . Thus,

equations can be written in terms of either moments or stresses. Also

it is a general fact that for an isotropic plastic body the yield surface

is symmetric with respect to a 450 line through the origin. With these

general thoughts in mind, the specific yield curves will now be discussed,

considering the xi coordinates are r, 8, and z, respectively.

Maximum octahedral shear stress - von Mises.- The octahedral shear

stress is written in general as

To =3 (al-a2)2
+(al -

a3)2+(a2-a3)2
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and, for the plane stress case of a c'.rcular plate of thickness 2h

al =Mr = -7	 a2 = cre = ^	 a3 0

and therefore

To =	 ) V(

where ao is the yield stress in simple tension, and is related to the
M

yield moment ao = 7.	 In terms of the moment resultants, equation (2)

can be written in the form of a yield surface equation as

Mr+Me - MA -Mo =0	 (3)

If equation (3) is plotted in the Mr, Me plane, an ellipse (with its

major axis at 45 0 ) is found as s:.own in figure 3.

In the equilibrium equations developed later, the differential

equation for Mr contains a single term in Me, and this term is

removed by solving equation (3) for Me and substituting into the

equilibrium equation. From equation (3), then

Mr _+2	 14
Me T	 MO4

The upper sign refers to the upper half (above the major axis) of the

yield surface and the lower sign to the lower half. From equation (4)

it is seen that the expression for Me would cause a strongly nonlinear

differential equation for Mr with a nonremovable square-root term.
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Therefore, any approach utilizing the von Mises yield condition would

usually require a large-size computer program for solution of all the

variables involved. However, it may be noted that this yield surface is

the only yield surface considered herein that is smooth and regular (no

corners), and various plasticity regimes (particular regions of solution)

need not be defined for suc ?4 a yield function.

Maximum tensile stress - Johansen.- In the case of piecewise linear

yield surfaces, the definition of the yield surface (or yield function)

is not a continuous function as it was for the von Mises yield surface.

Instead, piecewise linearity means that the statement of the conditions

for yielding should be expressed as a maximum or set of maximum ¢ta,,e-

ments. For a homogeneous material with a low yield strength in tension

(such as a uniformly mixed concrete, for example), the tensile stress

governs the yielding; of the material, and the yield condition can be

written in the form

max . O ai) ) - Qo =0	 (5 )

For the plane stress conditions considered herein, only the stresses

or and aq are included.. Then, if I ar I is greater than I ae ! , then

Iorl = Iaol is the yield condition. This portion of the yield surface

consists of two straight vertical lines at ar = ±vo, and Mr = _+Mo on

these lines. The differential equation for Mr then just defines

exactly Me, and the solution is completed. Similarly, for 
I%i

greater than Iarl, the yield surface becomes two straight horizontal

lines at aq = ±ao and Me = 410 along these lines. The differential
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equation for Mr is then solved exactly and the solution is again

completed. The yield condition is therefore a square, and is shown in

figure 4. The use of this yield criterion leads to simple, solvable

differential equations to determine the moments and deflections. However,

most metals have high tensile strengths and often fail in a shearing

manner. Since the equations for the Johansen yield condition are quite

similar in form to the equations for the Tresca yield condition (which

is a shearing failure criterion) consideration of the Johansen yield

surface is deferred here for future study.

Maximum shearing stress - Tresca.- The maximum shearing stress yield

criterion of Tresca is by far the most often used yield criterion. It

defines a piecewise linear yield surface, and, therefore, the equation of

the surface is expressed as a maximum type of statement. All points on

the yield surface have a maximum shear stress equal to 2 , so that the

equation of the yield surface (a six-sided surface in general) can be

written

max. 	 - o= 0	 #i	 (6)

Consideration of the plane stress problem analyzed herein (Q3 = 0), and

the yield condition of equation (6), the yield surface (in the al, a2

plane) becomes a hexagon as shown in figure 4. Since a3 = az = 0, the

equations of the yield curve are directly written in terms of the moments

as
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h2ae = Me = tMo	 h2cr = Mr = -TMo	 Mr - Me = T-Mo	 (7)

The upper signs refer again to the upper half of the yield curve. Each

of these equations, by itself, can be easily solved for Me, and this

value of M8 substituted into the differential equation for Mr. The

equations for Mr are then solved, and the procedure for solution can

be continued. However, each straight-line portion of the yield curve has

its own unique solution, and it must be determined exactly which regimes

apply to each part of the plate at each instant of time. Four of the

corners of the Tresca yield hexagon would also be plasticity regimes of

finite width on the plate. Thus, although the differential equations

are simplified, the solution of any specific plate problem involves

keeping track, in time, of each boundary between different regimes of the

solution. Even with this difficulty it appears that use of the Tresca yield

cond_.,ion offers a consistent,well-known approach for the general solution

of plate problems in plasticity, and therefore it has been selected as

the yield condition to use in the main analysis of this thesis.

Maximum reduced stress - Haythornthwaite.- This yield criterion was

introduced some time ago (see ref. 4o), but has not been extensively

investigated as yet. Since this yield condition is a pl9cewise linear

yield surface, a maximum statement for yielding is expected, and the

yield surface can be written as

max.	 ai - a 1) - 3 ao = o	 (8)
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(01 + a2 + a3)where a is the average str-ss, or - =	 3	 . This six-sided

surface is somewhat similar to the Tresca yield surface (see eq. (6)).

For the case of plane stress (a3 = o), equation (8) becomes a hexagon in

the al , a2 plane as shown in figure 3, and the equations for the sides

become

( gal - a2) = T2ao	 (2a2 - al ) = ±2ao 	al + a2 = +2ao	 (9)

where again the upper signs refer generally to the upper half of the

yield curve, and the lower signs to the lower half. Since these stresses

are related directly to the moments, equation (9) is seen to yield linear

relationships between the moments Mr and M8 as in the case of Tresca

yield criterion. However, from figure 3, it is seen that the Haythorn-

thwaite yield condition closely circumscribes the von Mises ellipse, and

can be used very effectively to provide, for example, an upper bound for

load-carrying capacities of circular plates, while still retaining linear

equations as in the Tresca yield condition. Also the Tresca yield con-

dition can still be used effectively for a lower bound, and close approxi-

ma-i.non to actual load-carrying capacities can be obtained.

This yield condition also has additional advantages over the 2'rescr.

yield criterion in a few cases. The Tresca condition allows as many as

three hinge circles to form (when considering the upper half of yield

surface), but the Haythornthwaite condition allows only one hinge circle

to form. These differences can cause a considerable variation in the

computational effort required for a general solution. In the analysis

a
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of a simply supported plate, however, the region of interest (shaded

region A in fig. 2) is such that the Tresca yield criterion allows

either one or two solution regimes, whereas the Haythornthwaite yield

criterion always requires two regimes. For this reason, the Tresca

yield condition is assumed in the main body of this dissertation.

Hinge Circles and Discontinuity Conditions

The term "hinge circle" and the definition of such a cicclA for

plastic-plate problems can be directly traced to beam analyses that were

conducted previously. Experimental results for beams (ref. 33) have

verified that points occur along the beam across which a large change

in the character of the deflection exists. The location of these points

varies with time, and propagates along the beam in dynamic loading

problems. In fact, the measured velocity of propagation of these

"discontinuities" along the beam can be compared with the expected rate

of propagation for the "hinges" that naturally occur in the rigid-plastic

analysis of a beam. The calculated velocity of the hinge (using the

Tresca yield criterion) agrees quite well with the experimental propaga-

tion rate except for very early times, and indicates that the rigid-

plastic analysis yields reasonable results for a beam (see ref. 33).

Considering a generalization of this beam hinge concept for

dynamically loaded circular plates, the term "hinge circle" was introduced

to define the locations across the radius of the plate at which discon-

tinuities in the circumferential curvature rate - 1 3 aw occur. These
r at (ar

discontinuities have all of the appearances of hinges as in beams, and
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again, experimental results (ref. 34) for plates generally verify the

hinge propagation rates, even though the rigid-plastic theory yields

infinite initial velocities under certain conditions. This agreement

between experiment and rigid-plastic theory is somewhat surprising, since

the material of the plate is inherently elastic, strain hardening, and

under inplane and shear forces, etc., whereas the theory is derived for

only the bending of a rigid-plastic material. This agreement in hinge

circle motion implies that the bending theory gives a good estimate of

plate motion until large deflections occur.

Since moving circles of discontinuity are a fundamental part of

dynamic plastic-plate pro lems, a definition is needed for the changes

in the solution as a discontinuity circle passes any given point. These

changes are the so-called "Jump conditions" of plastic-plate theory, and

can be determined from the knowledge of the quantities which are contin-

uous. For example, to retain integrity of the plate, the deflection w,

as well as the plate velocity 
at , 

must be continuous everywhere in the

plate, or

[w] = 0 and IT
11tr] = 0
	 (10)

where the bracket denotes the difference in the variable enclosed in the

bracket between one side of the circle of discontinuity and the other

side. Thus, the bracket denotes the ,jump of its argument as a discon-

tinuity passes. Now, if the location of the circle of discontinuity is

defined as p(t), this location can be plotted as in figure 5 as the

a
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curve r = p(t) in a rectangular r, t space. Moving along this

curve, the rate of change of deflection may be written

dw _ aw dr + aw dt	
(11)

ds ar ds at ds

Using the bracket notation presented in equation (ln), the change of the

quantities in equation (11) as the curve is crossed can be written

[

dw 	 aw dr + adt	 (12)
s	 ar ds 

I;—tlds

Since w is continuous along the curve, the left -hand side of

equation ( 12) must be zero, and multiplication by 
d 

yields

aw + aw d t = 0	 (13)
at ar dt

This equation shows the basic form of the discontinuity ,jump conditions

for plastic-plate problems. Since ((LW) is also continuous everywhere,

equation (13) simplifies considerably. Also replacing w by 
at 

in

equation 113) yields another discontinuity condition; these two conditions

can be written as

L aw = 0
dt ar

a2w +
a2w = 0	 (15)

at2	 dt ar 
6t

(1^+)
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These two discontinuity conditions are consequei ,_zs of maintaining the

continuity of the plate (no breaking or plate failure). Dynamic equili-

brium also requires that the moment Mr and the shear force Qr be

continuous in moving across a circle of discontinuity. By following the

same procedure as for the deflections, the other two discontinuity

conditions become:

1

Mr + 12 6̂Mr _ 0
t	 dt 

1IQr + dt aQr = 0	 16)

In addition, for the case of a moving circle of discontinuity only, the

only other second derivative jump condition can be written from equa-

tion (14). Since 
d is nonzero, 

aw 
must be continuous, and therefore,ar

from equation (13) directly

a2w + d^Lr,]2w = 0	 dP	 1

ar at	 dt 	 (Tt O I	 (17 )

With all four of the basic ,jump conditions derived in general, in

equations (14) through (16), the difference between moving and stationary

discontinuitieG, and between hinge circles and nonhinge circles, becomes

clear. If the discontinuity is not moving, then 
d 

is zero, and all

terms not containing 
d 

must be continuous. Also, all bracketed terms

that multiply 
dt 

terms may then have discontinuities at the circle.
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If the circle of discontinuity is considered a hinge circle, then the

terms containing 
a62W 

are nonzero, and the other terms that appear in

conjunction with 
—6 at 	 must be discontinuous across the hinge circle.

In general, whenever a bracketed term can be shown to be zero across

some circle of discontinuity, then its argument may be substituted into

equation (13) for w, and another jump condition on higher derivatives

can be written. The basic jump conditions, however, are still equa-

tions (14) through (16). With these general jump conditions then, the

solutions in two different regimes may be related, and problems solved

more readily. If a problem to be solved contained two circles of

discontinuity, the jump conditions that would apply, if the two circles

ever met, would have to be derived for the case of intersection of

two curves of the same type as the single curve shown in figure 5. After

two such curves intersect,a new solution must be initiated, and the

resultant single curve that would apply after intersection would

necessarily have a discontinuity in its slope at the intersection point.

Such a discontinuity in velocity of propagation would be bothersome to

analyze, but since this dissertation concerns only simply supported plates,

only one circle of discontinuity is possible, and therefore, the diffi-

culties caused by interfering circles are not present.

Plasticity Regimes

After selection of the yield criterion and the boundary conditions

for any given problem, the yield curve and its associated flow rule must

be applied for solution of the problem. Depending on the selections

made, several possible regions (or "regimes") of solution can occur.
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The solutions in each of these regimes must be matched at the circle of

discontinuity between them, so that the continuity (and discontinuity)

conditions of the previous section are satisfied. In this manner, the

complete solution is found.

In the case of the von Mises yield criterion (see fig. 3), and for

either simply supported or clamped boundary conditions, the plate is

always in a single regime with uniquely defined normal directions.

Therefore, the problems of different regimes of plasticity and solution

matching at a circle of discontinuity are avoided. However, the nonlinear

equations are generally not solvable in closed form, and numerical

integration methods must be employed for solution.

All other yield curves discussed herein are piecewise linear, and

various regimes of solution must be determined and matched. An additional

difficulty also appears when the loading varies with time and radius. In

very general cases, some regimes may appear and disappear as time increases.

Therefore, proceeding to solutions in the general cases must be done

slowly and carefully lest some regime of solution be improperly allowed

or restricted. For piecewise linear yield curves, the linear portions of

the curves are always possible regimes on the plate in the final solution.

However, the corners of the yield curve may also be regimes of finite

size, and each problem solved must be thoroughly analyzed for this

possibility. Generally, it appears that a corner of the yield surface

could represent a finite size regime on the plate only if that corner

could possibly be a hinge circle. Indeed, if this is the case, then an

estimate of the possible regimes for a given problem can be found simply
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by the definition of a hinge circle as follows. Across a hinge circle,
^2w

ar w is discontinuous by definition, and is directly related to the

strain rate. In fact, at the outer fibers of the plate

a2w __ _ r

ar at	 h ee
	 (18)

If equation (1) is used at a hinge circle, then the normal to the yield

curve has the direction cosines (E8 ) ; 'Er ). For unbounded e e , the

normal to the yield curve must therefore have the possibility of being

horizontal. Thus, all corners of the piecewise linear yield curves that

admit the possibility of having a horizontal normal are possible finite

regimes on the plate. From figures 3 and 4, for both simply supported

and clamped plates, the possible finite corner regimes can then be read

off directly: for Tresca, regimes A and D; for Johansen, regimes A

and C; and for Haythornthwaite, none. Table I shows a listing of all

the possible plasticity regimes for transversely loaded, circular plates

considering all four yield criteria discussed herein. Whether all (or

indeed any) of these regimes occur in any particular problem depends upon

the manner and magnitude of the transverse loading, and care must be

exercised in the process of solution.

Low Loading Cases - 
p  :5 pmax. :^ p 

As a general loading of sufficiently small magnitude is applied to

a circular plate, the state of stress everywhere within the plate

corresponds to a point inside of the yield curve, and for a rigid-plastic

L
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material the plate must remain rigid. Irrespective of the type of loading

and manner of application, the plate does not move or yield. As the

magnitude of thv loading increases, the F1ate has some states of stress

corresponding to points closer to the yield curve, and, consequently,

closer to yielding. As the magnitude of the loading increases still

further, the state of stress at some location in the plate finally

reaches a point on the yield curve and yielding starts. For a rigid-

plastic material the stress is vo everywhere through the d o.pth at that

location, and the value of the loading that causes this yielding is

defined as the "load-carrying capacity" of the plate. Since work

hardening is neglected herein, all states of stress may not move beyond

the original yield surface. The type of yielding that occurs and where

It occurs is in the general case a function of the type of yield surface

and the type of loading. In order to proceed further in this escession,

the Tresca yield condition for a plate with simply-supported edg3s is now

assumed.

The load at which yielding starts and a hinge circle is first formed

is defined as po. This value of loading is the load-carrying capacity

for the Tresca yield criterion, which has been shown to yield a lower

bound (ref. 4o) for the actual load-carrying capacity of a plate with

any general yield criterion. Thus, po can be used as a cons,cvative

estimate for design of rigid-plastic circular plates. For the Tresca

yield criterion, the value of po is determined as follows: For initial

yielding, a hinge circle (actually a point hinge) is formed at the origin

of the circular plate. Then, Mr = M9 = Mo, and the center of the plate
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it; located at point A of the Tresca yield curve shown in figure 4.

At the edge of the plate, the moment Mr is zero and point B of the

yield carve applies. `Therefore, the entire plate is in regime AB, the

moment N = Mo everywhere in the plate, and (neglecting the inertia

term since the rigid regime is dust ending) the differential equation for

M. becomes (see analysis section, eq. (39)),

ar(rmr) - Mo = -	
r 

q ( r )P( t ) r dr (19)
0

If the time axis is shifted so that t = 0 corresponds to the initiation

of motion, then p(o) = po . Solving equation (19) for Mr then yields

(using the condition that Mr = Mo at r = 0)

	

I

r
Mr = Mo - T Po 	 ( 9(r)r dr dry	 (20)

0	 0

Now, the boundary condition (that Mr at r = b is zero) is applied,

and po can be calculated as

b
Pc =	

Mo
	 (21)

rb

	

J	 q(r)r(b - r)dr
0

This expression allows the calculation of the magnitude of p(t), for

which a general q(r) loading will dust cause a hinge to form. If the

loading is considered to be uniform over either a circular region around
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the origin or an annulus near the supports, the expressions for load-

carrying capacity shown in reference 1 for such loadings are found.

For the problems analyzed herein, another quantity is also of

interest. This quantity, called p l , is defined as the magnitude of the

time variation of loading (p(t)) above which the hinge circle on the

plate must Exist away from the origin. The determination of pl is a

much more difficult problem than the determination of po , and it has not

been calculated previously except for an impulsively applied uniform

load (ref. 2). If the loading applied to a plate is increased above the

value po , then inertia terms become important in the differential

equation as the plate continues to deflect. However, the hinge remains

at the center of the plate, and therefore the single regime AB still

applies everywhere on the plate. As the load is increased,

eventually the load p1 is reached at which the distribution of moment

Mr forces the hinge to move away from the origin. That is, below the

load pl , the moment Mr = Mo at the origin and decreases monotonically

with radius to zero at the supports. Above the load p l , however, the

moment gust beyond the origin attempts to reach a value greater than

Mo. Since the yield criterion precludes such a value, the hinge, there-

fore, must occur away from the origin.

The value of pl can be determined by solution of a general

plasticity problem as follows: since the inertia force is important,

the velocity must be determined in regime AB such that the velocity

of the supports is zero. -anus, in regime AB, the curvature rate and

support velocity are
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63w 
=0	

3w 1 	
=0	 (22)

6r26t	 6t r=b

Integrating twice with respect to r and using the boundary velocity

equal to zero, the velocity can be calculated from equations (22) as

at = Cl( t )( r - b)	 (23)

The differential equation for the moment M r in regime AB (with

M8 - MO) is written (from the analysis section, eq. (39)) as

^(rMr) - M. = - f r [q(r)p(t) - µ at] r dr 	 (24)
0

Substituting the plate velocity from equation (23) into equation (24),

and solving, the moment 1:r becomes

_ _ P(	 'µClIrC3t

Mr-Mor
 ) 

I

r f 9(^)^ d^ d^+ r 
	
(J T' (^ b )^ d^ d^+ r

o l 0	 0	 0

(25)

Two boundary conditions must be satisfied on M r . These are

Mrl r=0 = MO and MrI r=b = 0	 (26)

To apply the boundary condition at r = 0, the two integral terms in

equation (25) must be evaluated using L'Hospital's rule and Leibniz'

rule for differentiation under an integral sign. Thus, for example,

Kr
=-
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fr q (E)t dt
0

= lim	 (1)	 = 0	 (27)
r-0

J'(J' 9(t)t dt dq
0	 O

lim
r -4 0
	 r

In this manner, both of the integral terms vanish, and application of the

first boundary condition yields C3 = 0. Application of the second

boundary condition is direct, and yields

(' b
-bMo + p (t ) J	 q(E)t d t dTl

0	 0

	

µdl = 	 (28)

(-b4)

12 

Therefore, Mr is fully known. Calculation of the derivative of Mr

follows directly from equations (25) and (28), and is

amr	 r	 r

a - P(t)	 ^ ^ 9( ^)^ d^ dTi ' r f 9(t)E dE + lb

	

0	 0	 0

P( t )b f
ob ! 

-q q(E)g de del 	 r	 rf(t
 0	 0	 0

-

- b )k d	 d'1 + r I r ( g - b)t d^	 (29)

0

By simultaneous application of L'Hospital's rule and Leibniz' rule,

all of the terms in equation (29) become zero as r approaches zero.
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Therefore, the origin is an extremum point for the moment. To determine

whether the origin is actually a maximum point (as required by the yield

criterion) or not, the second derivative of the moment must be evaluated

at the origin. Again, the same method is applied, and at the origin the

second derivative becomes

62Mr	

= -p(t)^ 
+ b -bMo + p(t) jb f I q(t)t dt d^

r=0	 0	 0

(30)

This expression changes sign from minus to plus at a value of p(t)

equal to pl , and equating expression (30) to zero yields

P1 -

	 bMo	
(31)

J

b 	
q(o)b3

q (t)t( b	t)dt	
120

For values of loading less than this value, the moment curve has a true

maximum at the origin. For values of loading greater than pl , this

moment distribution would increase with r from its value of M O at

the origin. Such an increase would violate the yield criterion and

cannot be allowed. In such cases, the hinge circle moves outward from

the origin, causing a finite region of regime A to appear, and the

difficulties of a moving hinge circle must be surmounted.
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High Loading Cases - pmax. > pl

If the maximum loading applied to the plate is less than p 1 , then

the actual variation of the loading can be analyzed directly. This is

due to the fact that the hinge circle remains at the origin, and a single

regime (AB) applies to the entire plate. For higher values of the

loading, however, the hinge circle exists away from the origin and the

actual shape of the loading is of prime importance. While the term

"time varying loading" can refer, in general, to any variation with time,

this term is restricted herein to loadings containing a single peak, that

is an initial increase in loading followed by a decay toward zero. This

restriction is applied for several reasons. As mertioned previously, the

main problems of interest to dynamic plasticity for circular plates are

impact and ballistic problems, in which the loading is expected to have

a single peak. In fact, estimation of the contact force experimentally

(ref. 41) by photographic means for a ballistic problem indicated that

the force varied as

F = Fot2e-at
	

(32)

In addition, an excellent discussion of theoretical analyses of such

ballistic problems (ref. 39) indicated that the method developed by

Karas (ref. 42) also yields reasonable results for ballistic problems.

Essentially, this approach assumed that a simply supported rectangular

elastic plate was impacted by a spherical elastic projectile. Considering

a Hertzian type of elastic impact, a difficult integral equation was
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derived for the contact force history between the two elements and solved

numerically. The numerical results for a specific case (20 em by 20 em

steel plate with a thickness of 0.8 cm impacted by a 2 cm radius steel

sphere) with a very low 1 meter/sec velocity, showed a response similar

to equation (32). The magnitude of the maximum applied force was high

(320 lb) and the duration of the loading was very small (12.8 4-sec).

These values are quite surprising, since the velocity and mass of the

projectile are small, and the resultant loading on the plate appears

large. These results lend support to the often-applied assumptions

that the loading starts at a maximum value and decreases rapidly. In

any case, the theoretical results agree with the experimental results in

predicting at most a single maximum peak. A short general discussion of

both the increasing and decreasing phases of loading is given in the

next two sections.

Increasing loading above pl .- In this case, the plate has initial

conditions determined from the solution with the hinge circle fixed at

the origin as mentioned in the -,ection entitled Low Loading Cases.

Increasing the loading above pl causes the hinge circle to move

outward on the plate in a continuous manner. If the loading is allowed

a discontinuity in time (such as an impulsive ,jump in loading), then all

variables for the problem except w and 
at 

as required by continuity

of the plate can have discontinuities. The initial location of the

hinge circle (po ) can, therefore, be nonzero for a large initial impulse

in loading. However, once the hinge has moved away from the origin, it

4.	 .
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may not have a discontinuous ,jump in position thereafter. This fact can

be shown directly from the ,jump conditions derived previously.

Therefore, it might be helpful to assume that as the loading

increases, the hinge would move outward at a calculable rate, until it

reaches a maximum value, after which it monotonically decreases toward

the origin. Whether this is actually the case or not depends on the

shape of both the radial and time variations of loading. There is the

possibility that the shapes of these loadings may cause the hinge to

move outward and inward several times before reaching the origin. If

this is the case, great difficulty arises, for example, in determination

of deflections, since the velocity expressions in the different regimes

must be integrated for as long a time as they apply to any particular

point. Finally, the yield surface restrictions on curvature rates

(greater than or equal to zero in regime A) may preclude solution for

some loading conditions. A discussion of this possibility follows

equation (47).

Decreasing loading below pmax. .- In this case, many of the

accompanying difficulties of the previous section apply. As the loading

is reduced, in general, the hinge may move inward or outward, and its

exact location is important. For the case of a loading that is suddenly

removed (see ref. 2), the hinge circle has been shown to decrease mono-

tonically to the origin. If the loading is removed relatively

quickly, then, it is reasonable to expect that the hinge will still move

continually toward the origin. However, only careful solution of the

hinge circle movement equation will tell how the hinge circle moves.



BASIC ASSUMIONS

In the solution of any general problem in plasticity a number of

assumptions are needed to allow analytical solutions to be written. Some

of the assumptions stated in this section have been discussed in earlier

sections and will only be mentioned briefly for completeness. General

discussion of these basic assumptions is available in references 1

through 6. There are three general types of assumptions necessary for

solution: assumptions on constitutive equations, assumptions on deforma-

tions to be allowed, and geometrical assumptions required for the problem

of interest.

The material of the plate is assumed 410 be rigid-perfectly plastic.

Rigid-perfectly plastic theory disallows the inclusion of work-hardening

effects. Inclusion of work-hardening would necessitate a continually

changing yield surface to be allowed, and the conditions for yielding

would soon vary with the location on the plate and time, creating

severe difficulties for solution. The material of the plate is also

assumed to follow the Tresca yield criterion, which is a maximum shearing

stress criterion (see fig. k). Considering the boundary conditions to be

only simply supported, the two regimes that apply are A and AB (see

table 1), and the flow rules associated with these regimes define the

strain-rate ratios from the normals to the yield surface as

Regime A	 Er :Ee = 1 - P:P	 (0 < R < 1)

Regime AB	 4:4 - 0:1
	 (33)

These flow rules allow solution for the deflections in many cases and are

often applied most effectively by means of curvature rates. Assuming that

35
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normals to the original middle surface of the plate remain normal to the

deformed middle surface, the strain rates throughout the plate depth are

directly related to the curvature rates of the middle surface. In fact,

the strain rates through the depth are

E _ — = -z a3w	 u
and E = = - z 1 a2w	 (34)

r 6r	 ar2at	
9 r	 r drat

and the curvature rates of the middle surface are

2•

	

Kr - 6r2 and ke = -r 
Tr_	

(35)

so that

Er:Eg = kr :ke
	

(36)

It is also seen that the stress at each value of z must be at the yield

condition for the plate to bend. Therefore, the stress above the middle

surface of the plate is defined by one point on the yield surface, and

the stress below the middle surface of the plate is defined by the

diametrically opposite point on the yield surface. In this manner, the

moments and stresses are related as

+h	 f o	 (' +h
M.Y.= h arrz dz = arh z dz + Qr J o z dz = arh2	 (37)f

This stress distribution is discontinuous at the middle surface, but such

a discontinuity is allowable for rigid-plastic theory.
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The plate is also assumed to be axisymmetric with respect to both

loading and boundary conditions. This is a usual assumption for circular

plate problems, and leads to the very desirable result of removing the

shear stresses Tre and Tez identically. The twisting moments Mre

and the shear force Qe resulting from these stresses likewise vanish.

If the plate is considered thin, then the vertical stress az and the

shearing stress Trz can be considered, on the whole, to be small in

comparison to the bending stresses a r and ae. This is the usual bend-

ing theory for plastic plates and should be 4pplicable for initiate deflec-

tions under dynamic loading. If membrane forces were allowed, then as

soon as deflection started, additional load would be required to continue

the deflection and, instead of allowing only bending moments to affect the

yield surface, the inplane forces Nr and Ne would have to be included. A

f ou r-dimensional yield surface would then be necessary with an appro-

priate theory for interaction between these quantities at yield (see

ref. 11). Such a generalization herein would obscure the desired insight

into general plastic plate problems and is not included. Similarly,

shearing deformation of the plate is neglected. This assumption is valid

if the loaded surface of the plate extends over a region of the plate

that is large compared to the thickness. In view of the allowance herein

of rather general radial load distributions, the application to concen-

trated loads is not made here. One final assumption is also made, that

the loading on the surface of the plate is separable into radial and

time functions, so that the influence of both effects can be investigated

separately. With these basic assumptions, then, the ana4sis can pro-

ceed directly to evaluate the influence of load distribution.
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Under the basic assumptions of the previous section, a typical plate

element is shown in figure 6 with Lhe applied forces and moments. In

addition to the principal bending moments and shear force, the plate has

a general surface loading q(r)p(t) and a resisting inertia force as

well.

Basic Equations

From the plate element shown in figure 6, the bc.aic differential

equations can be derived. Taking the summation of forces and moments,

and neglecting higher order differentials, these equations become

ar ( rQT) + rq( r )p( t ) ' 
µr at2

(38)

;,-r (rMr ) - M8 = rQr

where p represents the mass density per unit area of the plate middle

surface. The shear force is eliminated from these two equations to yield

one differential equation for the moments.

ar (r;r) - Me - -f [q(r)p(t) - µ	
J
r dr	 (39)

For a simply supported plate, the moments Mr and Me are equal at the

center of the plate, and at the boundary the moaoent Mr is zero. There-

fore, from the Tresea yield condition (see fig. 4) the center of the plate

38
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corresponds to point A on the yield surface, and the edge of the plate

corresponds to the point B. Since B cannot be a plasticity regime

(table 1), at most a central region of regime A and an outer annular

region of regime AB exist, separated by a hinge circle located at

r = p(t). The differential equation (39) must then be appropriately

solved in each regime. The moment Mg is constant between points A and

B of the Tresca yield hexagon, and consequently, it has been replaced by

MO in the following sections.

Solution - Regime A

In this regir.e, Mr = Mo and the differential equation (39) reduces

to

f/'a2w

	

p(t)q(r)rdr-µ
J 

2 rdr=0	 (40)
o	 o at

To solve this equation for the "deflection rate" aw/c)t, a separation of

variables solution is written, so that

ax = q(r)R(r)T(t) 	 (41)
at

Substituting this expression into equation ( 40) and separating the radial

and time variables yields

P(t) dt	 ('r

dT t 	 0
fr q(r) r dr

,l o
{	 q(r)R(r)r dr

	 (42)

where C is a constant of separation. Solving these equations for the

T(t) and R(r) expressions,

_ _	

a

1	 '^
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T ( t ) = µ	 p(t)dt	 (43)

1 r R(r)q(r)r dr = 1 r'r
J	 J	

q(r)r dr	 (44)
o	 C o

Taking the derivative of equation (44) with respect to r (or by inspec-

tion), R(r) is seen to be simple 
C. 

Substitution of this value and

equation (43), both into equation (41), the deflection rate in this regime

is found to be

q(r) 
J p(t)dt

at - µ

Since the moments are already known, the solution is then complete.

If the deflections are desired, then equation (45) must be integrated

with respect to time. If the strain rates are desired, equation (45)

must be differentiated with respect to r. Equation (45) shows the

important fact that the velocity distribution in the interior region

follows the radial distribution of the loading. This fact has generally

been listed as an assumption previously, although only uniform radial load

distributions have been investigated extensively.

This expression has several restrictions on its applicability; for

example, it applies only for r < p(t). If tl+h loading increases in time

to a peak and then decreases, the equation (45) does not apply until

p > pl (defined in a previous section), since below pl regime A does

nit exist. When p > pi , the regime A exists until the hinge circle

(45)

a
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shrinks back to a point at the origin. This time must be determined

directly from solution of the equation for hinge circle motion. Both

before and after regime A appears, the hinge remains at the origin for

a finite length of time. Otherwise, the plate remains rigid. Thus, the

limits of integration in equation (45) are not directly defined. This

is the basic difficulty caused by hinge circle movement.

The flaw rule also must apply in regime A. From equations (33) and

(35), the flow rule in this regime states that

K _ _ d3w = _ 1 aar2 f p(t)dt > 0
r dr2at	 µ arz 

and	 (46)

_ _ 1 ()2w_ _ 1 —sr f 
p(t)dt > 0Ke	

r drat	 rµ ar

Since p(t) and	 r) are considered only positive quantities, then in

regime A the following restrictions on radial load distribution must

apply

62q(r) <0 and &q(r) < t,	 (47)
a 

If the loading under investigation does not meet these restrictions,

then two possibilities exist. Either regime A does not ever exist in

that problem, or the present approach is inapplicable. It appears most

logical to assume the plate remains entir_=;l in regime AB, and for some

cases that have been analyzed, this was the case. Finally, it must be

mentioned that the jump conditions between regimes A and AB across the

hinge circle p must still be satisfied.
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Solution - Regime AB

Obtaining the solution in this regime is easier if the velocity

expression aw/at is found first. Then, the acceleration term can be

evaluated in the moment equation, and the moment Mr can be calculated

directly. To determine the velocity distribution, the flow rule must be

applied. In this regime, this is simply

a3w

	

Kr = - arnat 0	 1a$)

Solution of this equation for the velocity can be accomplished directly

by separation of variables. With consideration for the requirement that

the solution for velocity must be continuous across the hinge circle

r = p(t), the general solution will be written instead as

aw

	

at = q
(P)fl( r,P, t )	 (49)

Substitution of this equation into equation (48) yields a differential

equation for fl(r,p,t) with the solution

fl( r, p ,t ) = r'Cl(P,t ) + C2(P, t )	 (50)

Realizing that the velocity must be zero at the supports (r = b), the

44unctions Cl(p,t) and C2(p,t) must be related as follows:

C2(P, t ) = -bCl(P,t )	 (51)
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Now, the velocity must be continuous across the hinge circle r = p(t),

and the velocities in both regimes are

Regime A	 aw q(r) ('

at = µ J p(t)dt

(52)
Regime AB	 aw

Ft = q( p ) ( r - b)Cl(P,t)

Equating these two velocity expressions at r = p yields C l(p,t) as

Cl(P,t ) _ 1
µ(P	

f p( t )dt	 (53)
-b)

Substitution of equations (50), (51), and (53) back into equation (49)

yields, finally, the velocity distribution in regime AB

au► _ q(P) ( r - b)f 
p(t )dt	 (54)1t	 µ(P - b)

This velocity expression for regime AB only applies for r greater than

P(t). It is seen to be linear in r, so that the outer annulus of the

plate deforms into a corical shape even in the general case. When the

initial loading on the plate is less than p o, the plate remains rigid.

Othervise, regime AB applies for some region on the plate until motion

ceases. The strain rate and deflection can be calculated directly from

equation ( 54) by differentiation and integration, and the solution can
be completed in this regime by determination of the maJment Mr. The

expression for the acceleration term ^2v/at2 is

b
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62w _ (r - b)	 dP 6q(P)	 q(P) 11

ate µ(P - b) P(
t ) q(P) + d^ ap - (P - b) Jf P(t)dt	 (55)

C //

and substitution of this expression into equation (39) yields the differ-

ential equation to solve for M r . Note the rate of hinge circle motion

(dp/dt) appears and must be evaluated. Solution of the equation for Mr

(eq. (39)) yields

-I2( P ,r)	 _	 r

. = r(P - b) P(
t )Q(P) + dp

dt aP

g(P)	

(P -
q(P) b))J P(t)dt

+ (r - P)
M _ P(t) 

I (P, r ) 
+ C3(P,t)	

(56)r	 o	 r	 1	 r

where

r	 T1

Il(P, r) _ ^ f q(t) g d dyl	 (57)
P	 P

and

I2(P,r) = 
r

f f n (b - 9)9 dt dq	 78)
P	 P	 )

These integral expressions are rather involved, but can be reduced .o

single integrals by interchanging the order of integration, and inte-

grating. In general, interchange of order can be written for integrals

of this type as

fr f q g( g ,v)d^ d-q = fr  f r g( g ) TI) d^l dt	 (59)
P	 P	 P	 E

and since the integrands in equations (57) and (58) are not functions

of T1, they can be integrated. In this manner, these integrals become
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I1(P, r ) =j r q( j ) j(r - 9)dt
P

r
12(P,	

r
r) = J	 (b - t) g ( r - 9)dt 2 ( r2 - P2)

P

( r b) 
(r3	

r,	 "
3	 p3) + —^---

Two functions still remain undefined, 
C3( pt) 

and dp/dt. However,

the moment Mr has two boundary conditions to be satisfied, and these

are

Mr Ir=b 

= o and 
Mr I r-p 

= Mo

If it is realized from equations (6o) and (61) that when r = p both

integrals are zero, the second of these boundary conditions yields

C3(p,t) as

C3(P1t) = PMo

Application of the first of boundary conditions (62) yields the differ-

enti:-1 equation to solve for p(t). This equation is discussed in the

next section and will not be discussed here. However, the expression

for Mr contains dp/dt and, using the dp/dt equation, this term can

be eliminated. After much algebraic manipulation, the moment expression

can be written

bM.I2(p,r) p(t)I2(P,r)
Mr = MO	

rI2(p,b)	
—(Il(p,r) - Il(P,b) (p b)	 ( )

(60)

(61)

(62)

(63)
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Therefore, once the location of the hinge circle is known, the moment can

be calculated, as well as ,,the velocity from equation (54), and the solu-

tion for regime AB is complete.

Hinge Circle Movement

Consideration of the manner in which the hinge circle moves across

the plate is a prime requirement for the solution of dynamic plasticity

problems for thin plates. The rate at which the hinge circle moves can

be defined from ::he moment expression in regime AB, as mentioned

previously. That is, equation (56) for the radial moment (with

C3(p,t) = pMo )	 A be set equal to zero at the supports (r - b). This

expression is tuien solved for the hinge velocity dp/dt and yields

dp _ bMn - p(t)Pl	
(65)

dt

J p(t)dt P2
where

P1 = I1(P,b) +	
q(P)

P - b; 
TL(p,t)

and

aq(P) _	 q(P)	 I2(P,b)
P2	 =p 	 p - b P-b

Now, the basic manner of hinge circle movement can be discussed.

The basic question of whether the hinge circle moves inward or out-

ward depends on the sign of dp/dt. The time functions shown are all

positive, but the p functions can have either sign and can cause the

hinge to move in any direction. The integrals I l(p,b) and I2(p,b)
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are both only positive, but p l is negative only if

I (A,b) <	
'I(P) I (A,

b )	 (66)
l	 (b --p )  2

and A2 is negative only if

1	 aq < q(A)	
(67)

(A-b) 3p	(P-b)2

The four quantities shown above are all pcsitive, but their magnitudes

may cause the hinge to move inward or outwa.-d depending on the shape of

the q(r) function selected. The only possibility that exists in the

general case is to use a computer to solve for p(t). A computer program

to solve equation (65) for any general functions q(r) and p(t ) has

been written and a listing of the program is presented in the appendix.

Exact solution of equation (65) is possible in only two general

cases. The variables in the equation are directly separable whenever

either p(t) or pl are zero or constant. When no loading is applied

to the plate, p(t) is always zero and a trivial case exists, but when

p(t) becomes zero after a fL_.te length of tirae, then the motion of the

hinge circle can be exactly calculated from that point onward. The

function p(t) could also be zero in one other very important case.

That case is any general impulsive loading, in which p(t) is defined

as zero, but the integral of p(t) is defined as a finite impulse applied

to the plate. This general class of problems is very important, and a

later section is devoted to the impulsive loading problem. The condition

that p(t) is a constant occurs if the load is applied as p(> po) and
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remains on the plate. Then, a fixed hinge circle problem is to be solved

and equation (65) is not needed.

The case in which pl is a constant can be determined directly as

follows. The function q(p) must be found that makes the following

equation true:

b
P1 =

J	
q(9)9(b - 9)dI - q(p) (b - P)2(b + 3P) - C	 (68)

P

Taking the derivative of this equation with respect to p and combining

terms yields

(b-P)dgp,=-q
	

(69)

Solution of this equation shows that the distribution under discussion is

q(r) = C(b - r)
	

(?o)

This is a triangular loading case and would allow the differential equa-

tion on p to be separable. However, for this loading distribution,

the hinge must only occur at the origin, and equation (65) is inapplicable

anyway. The deflectIon of the plate is conical in both regimes, and the

definition of the hinf*± circle breaks down in this case. Due to all these

difficulties, the triangular loading case is not considered herein,

Matching Solutions at the Hinge Circle

The solutions on both sides of the hinge circle must satisfy the

dump conditions derived in a previous section for hinge circles. These

Jump conditions can be written out and proven to be satisfied in general.
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in regime AB then A-c-.tward moving hinge

	

w(r,t) ftt(r)	 P) r - b 
f

P(t)dt dt +^ t(P) ^J P(t) y, I(dto	 µ(P b) 	 t(r)	 µ	 J

po<r<p

where t(p) is the time at which the hinge circle has moved to its

current locution, and t(r) is the time at which the hinge circle first

reached the point r. These functions, as well as the functions of p

that occur under the integral sign, must be determined from thethe solution

of the hinge circle movement ( eq. (65)) as functions of time to yield

deflections. Now, if the dump conditions on radial derivatives are to be

written at the hinge circle, the deflections at points adjacent to the

hinge must be writt - 4. If the hinge nos only moved outward, then the

deflection on the inside of the hinge circle is exprasssed as the last of

equations (71), and the det "A etion on the outside of the hinge circle is

the second of equations ( 71 1 . if the hinge only moved inward, then the

other two of equations (71) would apply. Por an outward moving hinge,

the dump in aw/3r when pasr, :ng from the inside to the outside of the

hinge is

ll = J t(r) -- —p(t)dt dt +f
t(r )

t(P) a4̂r) (' p( t)d* dt

	

tµP	 Jo

	

+ a r µr -bb) q( p ) f P(t )dt I	 - dtCr ^ fp(t)dt
i t-t(r)t=t(r) 

	

r	
)

	

- t(p)r	
µ P- b f p(t )dt S dt	 (72)

0	 J
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If r = p all the integ,-al terms cancel directly; and all dt/dr terms

(when multiplied by dp/dt) also cancel, satisfying the dump condition

(lk). For the other case of an inward moving hi,^;e, the same equa-

tion (72) is identically found. If the hinge moved inward and outward

several times, then each time it passed a given point r another tnte-

gral factor would have to be added to the deflection expressions to

denote the change in regime. However, the dump condition on cr/ar is

directly satisfied whether the hinge moves either inward or outwae,..

Also, the jump condition on 62w/6r2 can be proven, in general, by

carefully differentiating equation ('j2) and letting r - p for both

inward and outward moving hinges.

The dump condition of equation ( 15) can be verified, in the general

case of a moving hinge circle, by means of the velocity expressions

already derived in both regimes. Consider the jump as the magnitude

when passing from the inside to the outside of the hinge circle, then

C J 
= t dt - Q( P)	 r t dt	

^ 73
drat	 ar	 µ	 ( p - b) .J	 µ

rip

and

[1(r

D] 11) (p P(t)	 gµ (r b)b)	
P(t)

r - b)P(t)dt -
q( p ) +	 1	 a p) k	 (74)µ	 (p -b)7 (p - b) ao jdt

Ir-P
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Now, multiply equation (73) by dp/dt and add to equation (74), letting

r - p, so that the jump edition becomes

q(p) p(t) - q(P)(P - b)

µ P -b
p(t) - (P - b)('p(t)dt dp	 -q(p} +	 l

µ	 dt	 p - b)2	 {p- b)
a4(P)

oPµ

dP
+

aq( P)	 P(t}
J	 µ

_ q(P)	 P(t )dt
p-b	 j	 µ	 = 0 (T5)

By close inspection of equation (75), it can be seen that all terms are

canceled by similar terms and this jump condition is identically

satisfied.

The jump condition on m3ment Mr can also be easily verified in

the general case. Since Mr = 146 in regime A, the jump condition

(eq. (16)) defines the value of the derivatives of m r in regimt AB as

the hinge circle is approached. Then, in regime AB (eq. (64))

aKr _ bM0 tj 6I2(P,r) ^2(P,r)l aIl(P,r)
ar	 I2(p,b) r	 ()r	 r2	

- p(t) r ar

_ Il(P,r) _ Il(P,b ) l_ a^2(P,r) _ l	
(P,r )	 (76)I2( p,b) r	 ar

and

a3^2(p,r) aI2(p,b
- -	 (p,b) —	 - IZ(P,r) -	 --	 - p(t) dp a^(p,r)

r 2	 dt r it- a

(Ijp,b)}

C) Il(P,b)L2( p ,r) - 1 amt 
Il(P,r

) - ^(P,b)(Prr)	
(77)

^	 ^(P,b)	 r h	 ^(P,b)
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Noting that Il(p,r) = I2(p,r) = 0 as r approaches p, and that adding

equation (77) to dp/dt times equation (76) should yield zero (the jump

condition), then

bKo 21I2(P,r)	 dp _ p(t ) aIl(Psr )	 dp

pI2(P,b)	 r	 at	 P	 dt
1 r*P	 1 r--P

+ p(t) Il( P ,b) aI2( P,r)	 d -	
bKo 6I2( P,r )	 dp

	

PI2(P,b)	 or irtmp dt PI2( p,b)	 ar	 -P dt

	

- P(t)(&1(P,r)	 - Il(p,b ) aI2(P,r)dp _ 0	
(78)

P ^ oP 1r=P 
I2( p ,b )	 ap	

r)- 
dt

The derivatives that now remai- can be evaluated directly, and

aI (P,r) - rr	 aI (P,r)
1	 J q(t) g dt	 l	 = -,,P)p(r - P)
^'	 p	 aP

(79)

aI2(P ,r ) b	 1	 aI2(P,r)
^	 (^-p2)-3(r3-P3)	 —T---=-P(r-P)(b-P)

Since one of these integrals appears in each term of equation (78) and

they all become zero as r approaches p, the jump condition on moment

Mr is identically satisfied.

Initial Hinge Circle Location - Impulsive Loading

Definition of the motion of the hinge circle is the primary diffi-

culty in dynamic plasticity problems. Another basic difficulty is the

definition of the initial location of this hinge circle. If the loading
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varies from a low value up to a high peak value and then down again, the

hinge obviously forms at the origin as p = po, and moves away from the

origin at p = pl. It also reaches a maximum value at some later time

and decreases to zero thereafter. This type of smooth motion car. be

analyzed directly without difficulty. However, if a large step discon-

tinuity in time occurs initially in the loading (as in impulsive loading

and other problems), the hinge may form at a location away from the origin.

This is the only case in which the hinge may have such a "Jump," but this

case is important, and location of the initial hinge circle is required.

For regime A to exist in the center of the plate, the curvature rates Kr

and Kg must be non-negative. Therefore, the initial hinge location po

must be the smaller of the two values that make Kr and K 8 non-

negative in regime A. Therefore,

	

K = _ 
63w	 fAt)d a2q(r) 

> 0
r	 &-2()tµ	 ^r2

	

1 c)2w	 1 f It)d 6q(r)
K8 = -T

5; = - z.	 µ 7ST >0

The only restrictions, then, on initial hinge circle location are that

po must be the smaller of the two values

	

6q(po) <0 and aq—( ) < 0	 (81)

	

^o 	po

The shape of the loadings is seen to be very important for large initial

step loadings.



-bMo 12

µVo(b + 3Po)(Po - b)2 
)q(Po) + q(po)

^Po	 (b - Po)

dP^	 _ bMo

dt P=Po µVoP2
(82)
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If the loading is, indeed, a totally impulsive loading, then one

additional restriction on po is possible. For impulsive loading, the

load has been applied to the plate instantaneously, and the energy

imparted to the plate must be dissipated in plastic deformation as the

plate stops. If the hinge circle stayed at po or increased in size,

the energy of plastic deformation would not increase as it should. There-

fore, for impulsive loading the hinge circle must decrease or dp/dt must

be less than zero. For an impulse, p(t) = 0, and J p(t)dt = µVo is

the impulse applied to the plate. In this case, then, the initial hinge

velocity becomes

This velocity is less than zero whenever the following inequality is also

true:

3q(po)q(po)

aPo	 (b - po)

Thus, in summary, if a large initial discontinuity in load occurs,

the smallest value of p o determined from equations (81) applies. If

tihe loading is truly impulsive at t = 0, then the lowest p o from

equations (81) or equation (83) must be used. The magnitude of the load-

ing has no effect on these expressions, only the shape of the curve q(r).

(83)
-

A
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Exact Solution - General Impulsive Loadings

For a general impulsive loading, the equation for the motion of the

hinge circla can be solved exactly, and since most previous work har been

concernei with this type of loading, this general solution is presented

j

	

	 here. For the impulsive case p(t) = C and J p(t)dt = µV o so that the

equation (65) becomes

b
P2 ìP = µV dt	 (84)

U

and, since the variables are separated, direct integration yields the

solution. Using integration by parts, the p 2 integral becomes

f P
2 dP f I2(P,b) P (p(P)b)^ dP = (p(P)b)I2(P,b)

C

+ f 
Pq(P)(P - b)dP 	(85)

and after integration of equation (84)

P
bvo t +	 _ - q(P)(b - 122(b+	 3P)	

+ f p q(P)( P2 - bP)dP	 (86)
I1 o	

Po	 Po

Consideration of the initial conditions (t = 0, p = po) yields C4 = 0.

This is the general solution for hinge circle motion. Note that the only

integrations that remain are J p2q(p)dp and f pq(p)dp, and these

should be directly obtainable for nearly any function. The initial hinge

location po is found to be the smallest value for either equations (81)

or equation (83).
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Also, the velocity distributions become (from equations (45) and

(54))

Regime A	 21w
3t = V,q( r )

Regime AB	 aw	 (r - b)
=Q(P) p-b vo

The moment Mr in regime A is MO, and in regime AB the moment Mr

becomes directly from equation (64)

Mr = MO -
	 12bMo	

rr2 - P2 ) - (r b){ r3 - P3 ) +
 (r4 - P4)

	

r (b - P)3(b + 3P) 2	 34
	
T

(88)

The hinge circle reaches the origin at the time tl, defined by the left-

hand side of equation (86) with p = 0 on the right-hand side.

ltl. = 
µ 2 

L
q(o) + q(Po)(1 - PTi° 2-/ ll + 3 -7) +  J Po 9(P) SCl - S)^J

0
(89)

After the hinge reaches the origin, dt = 0 and p = 0 and since

p(t) = 0, the acceleration in regime AB vanishes ( see eq. (55)), and the

velocity distribution in regime AB (eq. ( 87)) becomes

	

C"d
at 

I	 _ q( o )yo (l _ r^

t=tl 	`	 t/

For values of t > tl, th.^s velocity cannot remain constant in time

since energy is still being dissipated. Following the same approach as

outlined in reference 5 for a specific q(r), the velocity distribution

(87)

(90)

is assumed to decrease linearly with time ( t > tl) until the plate stops.
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•	 The velocity distribution then becomes

12M
= attl + ^ ( tl - t)(1 - b)	 (91)

(t > ti)

The plate finally comes to rest at the time t* when the velocity drops

to zero, so that

	

t* = t + µVoq(o)b2
	

(92)1	 12Mo

The solution for Mr in regime AB (eq. (88)) for p = 0 reduces to

	

Mr = M, 1 -2 2+r3
	

(93)
b

Thus, it is noted in this case that the shape of the loading affects only

the solution up until the time tl, and the final conical deflection that

decays to zero velocity is the same regardless of the loading shape.

Determination of Final Results

After selection of the loading functions q(r) and p(t), the

solution of a general plastic plate problem still remains a complex

operation. First of all, the loading must be checked to be certain

p > po and a hinge will form. Also, p > pl should be checked to

determine if the hinge occurs away from the origin. Assuming it does,

the dp/dt equation must be solved. T-c program in the appendix can be

used for general cases simply by adding the required definition of the

functions in the proper subroutines. After the variation of p with time

is determined, this value of p must be substituted in the proper
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expressions for velocity and moment to find their distributions at that

particular time. If other quantities are of interest (strains and strain

rates, for example), then the velocity expressions (eqs. (45) and (54))

and deflection expressions (such as eqs. (71)) must be integrated or

differentiated. In general pro`" ems, these manipulations become very

difficult if the motion of the hinge circle is more complex than simply

an outward then an inward movement. In the simple case of impulsive

loading, the exact expressions can be written in a straightforward manner.

Example Cases

To illustrate the influence of the time variation of loading, several

example cases were computed for general loading functions. To allow a

general type of loading that may be expected in practice, the loading

q(r) was selected to be Gaussian, and the time variation of the load was

considered to be essentially exponentially decaying. Since the combina-

tion of general radial and time functions has not been attempted before,

some latitude exists as to the exact shapes to select. For the. exsmples

herein, then, the radial distribution is

q( r ) = e s'2	 = e	 (94)

This load decreases from a max-.'mum at the origin to approximately 38 per-

cent of its maximum value at the support (r = b = 1), and is non-uniform.

The time function was selected so that a uniform load was applied until

a small total impulse had been given to the plate, then an exponential

decay was assumed. The general shape considered is shown in figure T.

4The loading remained constant until an impulse of 1 x 10-  had been	 =
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applied. Thereafter, the loading dropped of exponentially as e*' Q't , and

the value of m decided how rapidly the loading decreased. The total

impulse applied to the plate during the unloading phase was also held

constant at one. Attention is centered on solution for the hinge circle

movement, since this motion is considered the basic kernel of the problem.

The first sample case is shown for m = 1 in figure 8. Since these

cases all have an initial dump in loading, the hinge starts at a location

other than the origin. In this case, the hinge starts at po - r2_12

(as required by the radial load distribution), but it quickly moves to

the origin of the plate. This same type of motion has been seen pre-

viously for uniform loading and is an example of a continually decreasing

hinge circle.

The second sample case is shown for m - 1 x 105 in figure 9. In

this case, the first example of an outward moving hinge circle is seen.

Due to the radial load distribution again, this hinge also starts at

Po = J-2/2, but soon after the load variation starts, the hinge moves out

to a maximum value of 0.984 before it slowly moves inward. Note that the

hinge circle moved outward even though the loading is decreasing with time.

Previous results on very high impulsive loadings (ref. 2) indicate that

the initial hinge circle location was seen to approseL b r, , as the

loading approached infinity. Therefore, this example of a high initial

loading seems to verify this effect. Note also that even after the same

total impulse has been applied in both cases, the location of the hinge

circle is vastly different from case 1 due to the time factor only.

Perzyna (ref. 37), for a uniform radial distribution and different time

expressions, states that the influence of time variation of the loading
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is unimportant in determination of hinge circle location, but this is

not generally the case. The velocity and moment distributions have been

calculated for case 1 and are shorn in figures 10 and 3.1. respectively.

As expected, figure 10 shows the velocity distribution is lir mr (or

conical.) in the region outside of the hinge circle. The shape of the

velocity distribution inside of the hinge circle is non-uniform and of

the same general shape as the loading function q(r). However, it can

be seen that the velocity in the central region of the plate is contin-

ually increasing. This effect was not seen previously (ref. 36) for

impulsive loading of this general shape, and is caused by the time varia-

tion of the loading. The moment distributions in figure 11 are seen to

smoothly decay from Mo at the hinge circle to zero at the support.

There appears to be no discontinuity in slope at the hinge, and the

curves tend to have a slight reverse curvature near the support (especi-

ally for later times).

The velocity and moment distributions have also been calculated for

case 2, and are shown in figures 12 and 13, respectively. Since the

hinge circle has been allowed to move outward, the velocity distributions

in the center region of the plate have a reverse curvature in them at

r - 0.707 b. This same reverse curvature exists it q(r), and the shapes
of the velocity distributions agree with q(r) out to the hinge circle.

These distributions are also conical in the outer region of the plate.

The increase of velocity with time in the central region is even more

Pronounced in this case than in case 1. The moment distributions in the
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plate for case 2 (fig. 13) show that for early times the moment distribu-

tion is similar in form to case 1. However, as the hinge moves outward

with time, the moment distribution becomes steeper and the reverse curva-

ture seen only slightly in figure 11 becomes very pronounced in this

case.



CONCLUSIONS

From the results and equations shown herein, several important con-

clusions are evident. The equations derived here considering bending

deformations only are seen to be more general in form than existing solu-

tions, and reduction to the existing cases is direct. For example if the

loading is considered uniform in r and impulsive or step-wise uniform

in time, the equations derived directly for such cases by Hopkins and

Prager and Wang (refs. 2 and 5) appear exactly. Also, if the radial

load distribution is considered uniform, and a general function of time

is allowed (but assuming only inward hinge circle movement), the non-

linear equations of Perzyna (ref. 37) are found exactly. The conclusion

of Perzyna that time variation is unimportant appears to be caused by

an unfortunate choice of example time functions. He solves the specific

non-linear equations for his example, and does not present any means

for evaluation of his numerical method of solution.

.Zf the loading on the plate is considered to be a distributed

Gaussian loading in r and impulsively applied, the equations derived

directly for this case by Thomson (ref. 36) appear exactly herein.

These two papers (by Perzyna and Thomson) are the only two papers avail-

able at present that allow variations of the loading, one in r and

the other in t, and both sets of equations are included in the general

expressions herein. In fact, the solutions currently available for

bending theory are found to exist as special cases of these general

equations.

63
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Two other results presented herein are also of direct interest. The

equations for impulsive loading of general radial shape are shown to be

directly solvable, and expressions for the solution are written. Mary

cases of practical interest are, therefore, seen to be available now in

a direct manner without numerical integration or other approximation.

Also, the general load-carrying capacity of circular plates under arbitrary

radial load distribution is presented for the Tresca yield criterion.

This load value (po) is known to yield a lower (conservative) bound for

the load-carrying capacity and can be used effectively for design purposes.
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APPENDIX

GENERAL COMPUTER PROGRAM FOR HINGE CIRCLE MOTION

A general computer program that solves the dp/dt equation

(eq. (65)) for arbitrary functions of r and t has been written in

Fortran IV computer language, and a listing of the deck is included in

this appendix. Many comment cards have been included in the deck to

directly define the expressions and quantities involved and should be

essentially self-explanatory. If a new radial distribution is to be

investigated, it must be defined in the function Q(R), and its first

and second derivatives written as the functions QP(R) and QPP(R),

respectively. If the exact expression for I l(p,b) can be written,

this expression should be put into the subroutine ILEX. If it cannot

be expressly written, the main program will numerically integrate

(simp=y set IEX = 0). Similarly, if a new time function is to be

investigated, it must be defined in the function P(T). If the exact

expression for J p(t)dt can be written, this expression should also

be included in the subroutine PTEX. If not, the main program will

integrate numerically (simply set NEX = 0). A sample case is also

included, and the initial printout shows the procedure used in the

machine to determine the initial hinge circle location. If a totally

impulsive loading is applied to the plate, an additional possible

restriction on p o (eq. (83)) must also be considered. However, for

impulsive loading it is more reasonable to use the exact expressions

derivable as shown in the text.
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PROGRAM GLNPLAS	 (INPUT,OUTPUT)
C THIS	 IS THE MAIN PROGRAM FOR SOLUTION OF THE ORHU/DT FQUATInN
C AND IS THE SAME FUR ALL GENERAL TYPES OF LnADINGS

+	 C 87RADIUS OF	 TnE PLATE	 ,MZ=INITIAL YIELD MOMEN T 	 M ZERn
C 11,	 12,	 RHO1,	 RHO2	 ARE DEFINED FUNCTIONS OF THE HINGE LOCATION
C TZ=INITIAL	 TIME,	 A SHORT TIME DURING WHICH THE LOAD IS CONSTANT
C DELT	 IS AN EXPECTED TIME STEP USED TO PLOT RHO VS TIME
C E1,E2,	 ARE	 RELATIVE	 ERRORS	 USED	 IN	 ITR;	 TO FIND RH •]	 INITIAL
C MAXI=	 MAXIMUM NUMBER OF	 STEPS ALLOWED	 IN RHO VS TIME RESULTS
C RB,RE,RI	 ARE THE	 STARTING	 ,ENDING	 ,AND	 INCREMENT	 VALUES DF RHnZ
C USED	 IN THE	 IT12 ROUTINE
C Y.1,K2,K3,K4	 AKE	 INTERMEDIATE ANS.	 USED	 IN	 THE	 RU.','G-KUTTA	 SOL.
C A"IS	 A CONSTANT	 THAT TYPIFIES THE	 RADIAL	 LOAD VARIATION
C ALPHA	 IS A CONSTANT	 THAT TYPIFIES THE	 TIME LOAD VARIATION
C IEX=C	 USE NUMERICAL	 INTEGR.	 FOR	 I1,IEX=NON-0 EXACT EXPR.	 IS USED
C NEX=C USE NUMtRICAL 	 INTEGR,.	 FOR PT,NEX=NOM-0 EXALT EXPR.	 IS USED
C OERSUB IS THE ROUTINE THAT CALCULATES DERIVATIVE DRHn/DT
C RHOINT	 IS	 THE ROUTINE THAT CALCULATES THE	 INI T IAL HINGE LOCATTON
C ANS ALWAYS RLFERS TO THE DERIVATIVE ORHO/OT

-_	 C X AND Y REFER TO TIME AND RHO IN RUNG-KUTTA SOLUTION
C ITR2	 IS A MACHINE ROUTINE THAT	 SOLVES FOR THE ZEROS OF A FUNCTION
C MGAUSS	 IS A MACHINE ROUTINE THAT	 INTEGRATES NUMSPICALLY

DIMENSION RESULT(2)
REAL	 K1,K2,K3,K49MZ9I19I2
COMMON/BLK1/6,A,ALPHA
COMMON/BLK2/MZ
COMMON/BLK3/I19I29RHOI,RHO2
COMMON/3LK4/t1,E2,MAXI,T1
COMMON/BLK5/IEX,NEX
COMMON/8LK6/IRR
NAMELIST/INPUT/TZ,MZ,B,A,DELT,ALPHA,MAXI,EI,E29IEX,NEX

1 CALL	 DAYTIM (RESULT)
PRINT	 2 9	RESULT

2 FORMAT(*1DATE*3XA10,5X*TIME*3XA10/* ROBINSON-WETDMAN,	 SRO-A20589
1OP-308*/* GENERAL	 °RESSURE LOADING ON PLASTIC THIN PLATFS*//)
READ INPUT
IF	 (IEX.FQ.0)	 PRINT	 25
IF	 (NEX.EQ.0)	 PRINT	 30

Z5 FORMAT(	 *ONUMERICAL	 INTEGR.	 USED FOR	 I1*)
30 FORMAT(	 *ONUMERICAL	 INTEGR.	 USED FOR PT*)
3 CALL RHOINT(RHOL)

PRINT	 20,	 MZ,ALPHA,B,A,DELT,RHOZ,TZ



T2

20 FURMAT(5X*MZ=*E15.895X*ALPHA=*E15.8/
16X*B=*E15.699X*A=*E15.8/
23X*DELT=*E15.6,6X*RHOZ=*E15.8/
35X*TZ=*E15.8//)
PRINT 4

4 FOR.MAT(IOX*T*•16X*RHO*916X*11*r16X*I2*r15X*RHO1*r14X*RH02*r14X*ANS
1*//)
RHO=RHOZ
T=TZ
HrOELT
".=0

5 X=T
Y=RHO
CALL DERSUB (X,YoANS)
PRINT 81 XrYvIIvI2rRHOlvRHO2rANS

8 F0RMAT(7(3XE15.8)1
IF (RHO.LE.0.0) GU TO 1
K1=ANS*H
X=T+H/2.
Y=RHO+K1/2.
CALL UERSUK (XtYrANS)
K2=ANS*H
Y=RHO+K2/2.
CALL DERSUd (X,YsANS)
K3=ANS*H
X = T+H
Y=RHO+K3
.CALL DERSUd (X#Y/ANS)
K4=ANS*H
DELRHO=(K1+2.*K2+2.*K3+K4)/6.
I=I+1
IF (I.GT.MAXI) GO TO 6
IF(A8S(DELRHO).GE..I5*B) GO TO 9
IF(ABS(OELRHG).LE..001*B.AND.ABS(A')S).GE.I.E+2) GO Tn 10
T=T+H
R HO=RHO+DELF.HJ
GO TO 5

6 PRINT 7
7 FORMAT(5X *Ma::IMUM NUMBER OF STEPS TAKEN*//)
00 TO 1

9 DELT=DELT*.2
12 PRINT 15rDIM
15 FORMAT(SX*UL• LT HAS 6EEN CHANGED TO *E15.8)



H=OELT
60 TC 5

10 DELTsDELT*5.
H=OELT
PRINT 159DEL
GO TO 5
STOP
END
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SUB; fl NE DERSUB (T,RHO,ANS)
TIIIS AOUTINE CALCULATES THE DERIVATIVE ORHO/DT
AND IS TAE SAME FOR ALL GENERAL TYPES OF LOADINGS
FUNC1sFUNi.29FOFXI,F0FX29SUM19SUM2 ARE ALL ADDED FOR INTESR. ROUT.
IIEX CONTAINS THE EXACT EXPR. FOR I1 IF ANALYTICALLY KNOWN
PTEX CONTAINS THE EXACT EXPR. FOR PT IF ANALYTICALLY KNOWN
FOR OTHER OEFINITIONS OF FUNCTIONS SEE MAIN PROGRAM
EXTERNAL f—UWI,FUNC2
DIMENSION SUMI(1),FOFX1(1),SUM2(11,FOFX2(1)
REAL I291I,MZ,NUM,I2A
COMMON/RLKI/B,A,ALPHA
COMMON/BLK2/MZ
COMMON/BLK3/I19IZ,RHOI,RH02
COMMON/BLKS/IEX,NEX
I2=-(RHO-b)**3*(3.*RHO+B)/12.
12A=(9-RH0J vl 3.*RHO+B)/12.
IF (IEX.EQ.01 GO TO 1
CALL I(FX (II,RH0)
GO TO 2

1 INT=(B-RH01*10.
CALL MGAUSS (KHO,b,INT,SUMI,FUNCI,FOFX1,1)
I1=SUMI(1)

2 RH02=12A*IWP(kHUJ*(RHO- B)-Q(RHO))
RH01=II+Q(RHOI*IZA*(RHO-6)
IV (NEX.EQ.0) GO TO 3
CALL PTEX (PT,T)
GOT04

3 CALL MGAUSS IO.,T,30,SUM2,FUNC2,FOFX2,1)
PT=SUM2(1)

4 CEN=PT*RH02
NUM= B*MZ-PIT) *P.HUI
ANS=NUM/DEN
RETURN
ENO
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SUBROUTINE FHOINT (RHOZ)
C	 THIS ROUTINL CALCULATES THE INITIAL HINGE LOCATION
C	 AND 1S THE SAME FOR ALL GENERAL TYPES OF LOADINGS
C	 ICOOE IS AN EkROR DIAGNOSTIC WRITTEN TO DEFINE WHERE THE MIN.
C	 VALUE FOUND BY ITRZ IS LOCATED.
C	 ICOOE=O PROPER RETURN... ICODE=3 THEN RHO OUTSIDE OF THE PLATE
C	 ROIN IS ANUTHER EXPR. WRITTEN FOR RHO INITIAL.
C	 FOR OTHER DEFINITIONS OF FUNCTIONS SEE MAIN PROGRAM

COMMON/BLK1/B,A,ALPHA
CGMMON/BLK4/E1,EZ,MAXI,TZ
COMMON/9LK6/IRR
EXTERNAL QPP
EXTERNAL QP
RB=.001*B
RE=1.0*B
RI=.1*B
CALL ITR2 (RHUZ,Rb,kE,RI,QPP9EI9E29MAXI9ICODE)
IF (ICODE.NE.0) PRINT 1 9 ICODE
PRINT 2

2 FORMAT(*O*//)
IRR=O

1 FORMAT(*OEPP.OR FROM ITR2- QPP---ICOOE=*(3/)
IF( ICODE.EQ.31 RHOZ=0.
IF(ICOOF.EQ.3.ANO.QPP(O.).LE.O.) RHOZ=B
PRINT 2
RC=.001*B
CALL ITR2 (kOIN,RC,RE,RI,QP ,E1,E2,MAXI,TCO0E)
IF (ICODE.NE.0) PRINT 3, ICODE
PRINT 2

3 FORMAT(*OERROR FROM ITR2- QP ---ICOOE=*13/)
If( ICODE.EQ.3) ROIN=O.
IFIICODE.EQ.3.AN0.QP (0.).LE.O.) ROIN=B
PRINT 2
IRR=)
IF(ROIN.LE.RHOL) RHJZ=ROIN
RETURN
END
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SUBROUTINE FUNC1 (X,FDFX1)
THIS ROUTINE IS SIMPLY AN INTEGR. NECESSITY
AND IS THE SAME FUR ALL GENERAL TYPES OF LOADINGS
DIMENSION FOFX1(1)
CTMMON/BLK1/G,A,ALPHA
FOFX1(1)=(B-X)*Q(X)*X
RETURN
END
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SUBROUTINE FUNC2 (X,F()FX2)
THIS ROUTINE 1S SIMPLY AN INTEGR. NECESSITY
AND IS THE SAME FOR ALL GENERAL TYPES OF LUADINGS
DIMENSION FuFX2(1)
FOFX2I1)=P(X)
RETURN
END

A.
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FUNCTION W(R)
THIS ROUTINE IS WHERE THE RADIAL DISTRIBUTION IS DEFINED
AND MUST hE INDIVIDUALLY WRITTEN FOR EACH LOADING SiAPE...
COMMON/BLK1/B,A,ALPHA
O=EXP(-A#*2*R*R)
RETURN
END
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FUNCTION QP(R)
THIS ROUTINE CALCULATES THE FIRST DERIVATIVE OF THE RADIAL LOAD
DISTRIBUTION AND MUST BE WRITTEN FOR EACH LOADING S4APE...
COMMON/RLK1/8.A,ALPHA
COMMON/BLK6/IRR
QP=-2.*A*A *R*EXP(-A**2*R* *21
IF (IRR.EQ.U) PRINT 1tRvQP
FORMAT(5Xr,RH0=*E15.895X*QP=*E15.8)
RETURN
END
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FUNCTION QPP(RHO)
1HIS ROUTINE CALCULATES THE SECOND DERIVATIVE OF THE RADIAL LOAD
DISTRIBUTION AND MUST BE WRITTEN FOR EACH LOADING SIAPE...
COMMON/BLK1/6,A,ALPHA
APP=EXP(-A**2*RHU^*2)*(-2.*A**2♦4. *A**4*RHO**2)
PRINT 1, kHO,WPP
FORMAT(5X*RHO=*E15.895X*QPP=*E15.8)
RETURN
ENO
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FUNCTION FIT)
THIS ROUTINE IS WHERE THE TIME DISTRIBUTION IS DEFINED
AND MUST bE INUIVIUUALLY WRITTEN FOR EACH TIME VARIATION....
COMMON/BLK1/b,A,ALPHA
CONST=.IF--3/ALPHA
IF IT.LE.LONST) GO TO 1
P=ALPHA*EXP(-ALPHA#IT-CONST))
RETURN
P=ALPHA
RETURN
END
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SUBROUTINE 11EX (I19RHO)
THIS ROUTINE CALCULATES EXACT EXPR. FOR 11 IF ANALYTICALLY KNOWN
AND MAY BE WkITTEN UR OMITTFD FOR EACH SPECIFIC RADIAL LOADING
TYPIFIED 6Y A PARAMETER A
S.-T IEX=NUM-0 UN $INPUT CARD TO USE THIS ROUTINE
REAL 11
L0MMON/BLK1/b,A,ALPHA
P I= I.  141 592u535i3979
II=(EXP(-A** 24 :RHO*%, 2)*(A*B-A*RHO)/2.+SQRT(PI)*IERFIA*RHO1-
1EKF(A*B))/4.)/A**3
RETURN
END
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SUBROUTINE PTEX (PT,T)
THIS ROUTINE LALCULATES EXACT
AND MAY BE WRITTEN OR OMITTED
TYPIFIED 6Y A PARAMETER ALPHA
SET NEX =NUN—D ON $INPUT CARD
COMMON/BLKI/ooA,ALPHA
X=ALPHA*T
IF (X.GT.l.L-4) GU TO 1
a T=X
RETURN
PT=1.0tl.c-4—LXP(—(X-1.E-4))
RETURN
END

EXPR. F9R PT IF ANALYTICALLY KNOWN
FOR EACH SPECIFIC RADIAL LOADING

TO USE THIS ROUTINE
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DATE	 04123/68	 TIME	 13.26.25.
ROBINSON-WEIDMAN, SRD-A20589 RDP-308
GENERAL PRESSURE LOADING ON PLASTIC THIN PLATES

RHO= 1.00000000E-03
RHO= I.OI000000E-01
RHO= 2.01000000E-01
RHO= 3.01000000E-01
RHO= 4.01000000E-01
RHO= 5.01000000E-01
RHO= 6.01000000E-01
RHO= 7.01000000E-01
RHO= 8.01000000E-01
RHO= 7.5ln00000E-01
RHO= 7.26000000E-Ol
RHO= 7.13500000E-01
RHO= 7.07250000E-01
RHO= 7.04125000E-01
RHO= 7.05687500E-01
RHO= 7.06468750E-01
IHO= 7.06859375E-01
R:i]= 7.07054687E-01
RHO= 7.071 52 344E-01
RHO= 7.07103516E-01
RHO= 7.07127930E-01
RHO= 7.07115723E-01
RHO= 7.07109619E-01

WPP=-1.99999400E+00
WPP=-1.93931183E+00
WPP=-1.76560331E+00
QPP=-1.49575084E+00
QPP=-1.15525955E+00
QPP=-7.74906395E-01
QPP=-3.86882181E-01
QPP=-2.10423964E-02
WPP= 2.98182765E-01
QPP= 1.45647901E-01
QPP= 6.39349454E-02
QPP= 2.18354342E-02
QPP = 4.91341929E-04
WPP=-1.02521363E-02
WPP=-4.8 7450984E-03
WPP=-2.19010718E-03
WPP=-8.49012819E-04
QPP=-1.78742915E-04
QPP= 1.56322649E-04
QPP=-1.12043490E-05
QPP= 7.25605961E-05
QPP= 3.06784851E-05
QPP= 9.73715841E-06

RHO= 0.	 QPP=-2.00000000E+00

RHO= 1.00000000E-03
RHO= 1.01000000E-01
RHO= 2.01000000E-01
RHO= 3 01000000E-01
RHO= 4.01000000E-01
RHO : = 5.01000000E-01
RHO= 6.01000000E-01
RHO= 7.01000000E-01
RHO= 8.01000000E-01
RHO= 9.01000000E-01
RHO= 1.00000000E+00

WP 1.99999800E-03
QP=-1.99949872E-01
WP=-3.86082504E-01
QP=-5.49856011E-01
WP=-6.82872119E-01
GP=-7.79577637E-01
WP=-8.37600382E-01
WP=-8.57699725E-01
WP=-4.43371145E-01
QP=-8.00191791E-01
WP=-7.35758882E-01

ERROR FROM ITR2- QP ---ICOUE = 3
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TABLE 1-- POSSIBLE PIASTICITY REGIMES FOR CIRCULAR PLATES

WITH VARIOUS YIELD CONDITIONS

Yield
conditions

Possible regimes

Simply supported Clamped

von Mises AC AE

Tresca A, AB A, AB, BD, D

Johansen A, AB A, AC, C, CD

Haythornthraite AB, BC AB, BD, DE
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Figure 1. — Generalized yield conditions and flow rules.

87



al

a2

88

Figure 2. — Yield regions determined by boundary conditions

in plane stress problems for circular plates.



°r
ao ^ N,

89

a (Xe)
°O K

Figure 3. — Yield surfaces for vox-Mises and Haythornthwaite yield

conditions for plane stress problems.
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Figure 4. — Yield surfaces for Tresca and Johansen yield conditions

for plane stress problems.
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Figure 5. — General motion of a circle of discontinuty.
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Figure b. — Applied forces and moments on plate element.
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Figure 7. — General time variation allowed for exapple
cases.
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