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DYNAMICS OF TOWED DECELERATORS

By
James Frankiin Campbell

ABSTRACT

A preliminary investigation has been undertaken to theoretically
determine the geometric and aerodynamic parameters which have the
greatest influence on the stability and performance of the nonporous
toved decelerator. To aid in this endeavor a mathematical model was
generated to describe the flexible tow line - decelerator dynamical
system as a rigid two-body problem. The resulting second-order gov-
erning differential equations of motion were used to obtain the charac-
teristic equation (quartic) desceribing the coupled motions of the two
bodies. Evaluation of the coefficients of the quartic yielded expres-
sions which illustrate when the i mamical system is unquestionably
unstable.

The two single-degree of freedom cases investigated were the

motion of the decelerator about its nose and the motion of the rod
and decelerator about the pivot point. For both of these cases
expressions were derived for the natural angular frequency, damping
factor, steady-state solution, and time to damp to one-half amplitude.
Specific comments were made concerning a conical shaped decelerator to
illustrate some of the geometric and aerodynamic parameters affecting
the spring constant and the natural angular frequency. The boundary
between stability and instability was obtained for these two single-

degree of freedom cases.
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IV. INTRODUCTION

Advent of super- and hypersonic aircraft, missiles, ard space-
craft has dictated the need for adequate deceleration systems capable
of performing emergency rescue and/or payload recovery. For example,
rescue of a pilot ejecting from his aircraft or spacecraft at extremely
high speeds is dependent on some decelerator system to stabilize him
and to slow his fall to the point where a conventional terminal descent
system, such as a parachute, can be utilized. Also, the success of
a mission to place an instrument package on the surfaces of Venus and
Mars largely depends on proper deceleration of the payload through
their respective atmospheres. One such system being considered to
perform these types of missions is the towed deployable decelerator
which utilizes aerodynamic drag to decelerate and stabilize the payload
or capsule, Two of the approaches made in designing towed deceleratnrs
required to function at supersonic and hypersonic speeds are: (1)
adaption of existing subsonic parachute configurations and (2) genera-
tion of nonporous inflatable bodies having specific geometric shapes.
Of these two approaches, the nonporous body i1nTlated either by
compressed gas or by ram-air (inlets) rresently appears to provide
the more promising approach to high-speed deceleration problems, as
well as having perhaps the greater growth potential for future
applications.

Some insight into the stability and performance of several
nonporous deceleratc~ configurations i1s provided in the experimental

wind-tunnel investigations of references 1 and 2. The scale of the
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test models, however, was severely limited by the size of the wind
tunnel facilities, thus limiting the usefulness of the data. The
degree of decelerator stability reported in these investigations

was obtained by observation, a method typical of most wind tunnel
tests of towed decelerator systems. Because of the inherent difficulty
in obtaining adequate measurements of decelerator stability, emphasis
has been placed by some investigators on the use of analytical
techniques to determine decelerator stability (references 3 and 4).
Though the experimentsl investigations and analytical studies have
1llustrated some trends in decelerator dynamics, there still exists

& general lack of understanding of the prineipal factors afflecting
the dynamic stability of a towed decelerator.

In an effort to shed new light on this problem, a preliminary
investigation has been made to determine the geometric and serodynamic
parameters which have the greatest influence on the stability and
performance of the nonporous towed decelerator. One of the inherent
difficulties arising in this type of study is the variable nature of
the geometries of the tow cable and decelerator, both of which are
flexible. Also, the towed decelerator is required to operate in the
nonuniform flow field aft of the forebody which is being decelerated.
As a first step in the analysis of this complex stability problem,
several simplifying assumptions are made; the tow cable is assumed
to be a rigid rod with a pin connection at each end and the decelerator
is assumed to be a rigid body of revolution, the resulting dynemical

system being described as a coupled two-body problem. Since the cone



is thc basic shape about which other decelerator configurations are
designed, specific comments are made concerning this shape during the
course of this study. For the present analysis the stability and
performance of the towed decelerator are examined for uniform (free
stream) flow conditions; such conditions would exist when the wake
of the forebody has essentially disappeared, corresponding to a very
large tow cable length. Appropriate comments are made to relate the
effects of the wake on the stabllity and performance of the

decelerator.
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V. LIST OF SYMBOLS

aerodynamic axial force on decelerator

reaction forces at attachment point between payload and
decelerator system

length to rod center of gravity, measured along rod axis
from origin of rod

length to decelerator center of gravity, measurcd along
decelerator axis from nose of decelerator

reaction forces at attachment point between rod and
decelerator

length of rod

aerodynamic axial force
QS
aerodynamic drag force
qu
aerodynamic 1ift force
q,5

lift-force coefficient slope at zero angle of attack

axlal-force coefficient,

drag-force coefficient,

lift-force coefficient,

aerodynamic pitching moment
S T
pitching-moment coefficient slope at zero angle

pltching-moment coefficient,

of attack

aerodynamic normal force
9,5
normal=force coefficient slope at zero angle of attack

noruel- force coefficient,

center of gravity

damping term in equivalent spring-mass-dashpot

dynamical system
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critical damping representing the limiting case
between oscillatory and nonoscillatory motion

reference length of decelerator, taken to be base
diameter for conical shapes

aerodynamic drag force on rod

aerodynamic drag force on decelerator

acceleration due to gravity

height of conical decelerator

sum c¢f mass moments of inertia of rod and decelerator
about the respective centers of gravity of the rod
and decelerator

mass moment of inertia of rod about the center of
gravity of the rod

mass moment of inertia of decelerator sbout the center
of gravity of the decelerator

spring _onstant in equivalent spring-mass-dashpot
dynamical system

aerodynamic 1ift force on rod

aerodynamic life force on decelerator
slope of lift-force curve at zero angle of attack

rate of change of 1ift force with rate of change of

angle of attack

rate of change of 1lift force with pitch angle
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and r

rate of change of 1lift force with pitch velocity

aerodynamic pitching moment on rod

aerodynamic pitching moment on decelerator
slope of pitching-moment curve at zero angle of attack

rate of change of pitching moment wit! rate of change

of angie of attack
rate of change of pitching moment with pitch angle
damping of pitch

mass term in equivalent spring-mass-dashpot iynamical
system

mass of rod

mass of decelerator

aerodynamic normal force on decelerator

slope of normal-forece curve at zero angle of attack
pitch velocity of decelerator, é2
free-str-eam dynamic pressure

Reynolds number based on decelerator base diameter
Routh's d<scriminant

radius

roots of governing differential equations of motion

describing the transient (or complementary) solutions

reference area of decelerator, taken to be the base

ares for conical shapes
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X2s Yo

time

time to damp to one-half amplitude

cone volume

flight speed of payload-decelerator system

vertical velocity of decelerator center of gravity

vertical velocity of nose of decelerator, resulting
from rotation about the attachment point between
payload and decelerator system

vertical velocity of center of gravity of decelerator
with respect to nose of decelerator, resulting
from rotation about the attachment point between
rod and decelerator

cartesian coordinate system (X axis tangential to
fiight path)

cartesian coordinates of rocd center of gravity

cartesian coordinates of decelerator center of gravity

angle of attack of decelerator center of gravity

angle between payload reference axis and horizontal

angle between flight path and horizontal

cone semiapex angle

angle between rod axis and tangent tu flight path

angle between decelerator axis and tangent to flight
path

induced angle of attack resulting from vertical

velocity of the decelerator's center of gravity




)

. (dot)

.. (double dot)
Subseripts

i

1

particular (steady state) solution of the differential
governing equation of motion for decelerator rotating
about its nose

damping factor (ratio of actual damping to critical
damping)

density

damped angular frequency

natural angular frequency

exponential

natural logarithm

sumation
partial derivative
first derivative with respect to time

second derivative with respect to time

induced angle

large

initial conditions (time equal zero)
particular solution

small



VI. THEORETICAL DESCRIPTION OF TOWED DECELERATOR

Mathematical Model

This analysis was performed in order to determine the geometric
and aerodynamic parameters having the greatest influence on the
stability and performance of the towed decelerator system. In the
most general case the dynamics of the towed decelerator are necessarily
coupled with the dynamics of the peyload, and vice versa, making a
straight forward analysis of the decelerator's dynamic characteristics
rather difficult. 1In this investigation, therefore, the angular
motion of the payload is assumed zero, so that the problem is sim-
plified and the following analysis can be concentrated on the towed-
decelerator dynamics. 3ince orientation of the flight path dces not
affect the stability of the decelerator, the decelerator system will

be considered in a horizontal
Decelerator F(’

Tight
’/<;——path

mode of operation (7 = 0 in

Figure 1). It should be noted Tow line

that the most common method of Payload B Horizontal
experimentally testing towed y

decelerators utilizes a payload //

mounted rigidly in & horizontal V""/

position. Figure 1.~ Schematic 6f payload-

decelerator system.
In reality, the tow line and decelerator are both flexible and

represent a multidegree of freedom problem. A general approach to

describing this system would be to consider N number of particles
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having individual masses. The more restrictive approach of assuming
the tow line and decelerator as rigid bodles of revolution is utilized
in the present analysis. Only plane motion is considered, yawing

and rolling moments being neglected.

Rigid
Rigid rod
A \\ B decelerator

\__ Pins —/

Figure 2.- Two-body system.

The towed decelerator system is illustrated in Figure 2, where
pin A represents a fixed pivot point and has no motion, and where pin
B is free to rotate with the system. Attachment of the rigid rod
and decelerator is at the nose of the decelerator (pin B). This
resultant two-body problem is strikingly similar to the double-
compound pendulum described by Myklestad in reference 5. The basic
differences between the two dynamicel systems are: (1) weights in
the present analysis represent near constant foreing functions for
the system, whereas they act as spring constants in the double-
compound pendulum problem, and (2) aerodynamic forces and moment
are included in the present analysis. The method of obtaining the
differential equations of motion for the present study is identical
to that performed by Myklestad. The cartesian coordinate system

employed for the two bodies 1is illustrated in Figure 3, and the
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Y Figure 3.~ Cartesian coordinate sy=tem.

Figure 4.~ Free body diagram of rod.
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resulting free-body diagrams in Figures 4 and 5. The X-axis is
oriented to coincide with the direction of the free-stream velocity
vector. The aerodynamic forces and moments of the rod and decelerator

are shown in the figures to act at the respective centers of gravity.

By BaYo

94 ! > X
1 D;“\\ ap 8

o 4 L2
X
My

myXy l — D
Y

Flgure 5.- Free body diagram of decelerator.

In the analysis to follow, the aerodynamic forces and moment on the
rod are assumed to be negligible, and likewise the rod's aserodynamic

damping.

Equations of Motion

First, the internal reactions BX and BY are found from summing

forces in the X and Y directions to be,

Bx + m2 §2 - Db =0
(1)
By =Dy - m, %,

and
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By +my y, + L, -mg =0
(2)

BY‘—-L2-m2y2+m28

Two equations of equilibrium can be obtained from the free~body
diagrams by taking moments about pins A and B, Summing moments about

A ylelds
z MA =0 = m, g8, cos 61 + m X, 8y sin 91 - m,¥,8, cos 61 - Jlel
- Bxbl sin 91 + BYbl cos 91

Substitute for B, and B, from equations (1) and (2) to get

z My ="~-= mge, cos 91 tmX e sin 91 - my, 8, cos 91 - Jlel

- le2 sin 61 + bl sin 91 mX, - bl cos 61 oY,
- (3)

+ bl cos 61 ( L, + m2g)

Summing moments about point B yields

z M'.B =0 = m,ga, cos 92 + w X8, sin 62 - myy,8, COS 92 - L28'2 cos 92

- D8, sin 6, - J, 6, + M, (%)
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It is desirable to change the cartesian (CG) coordinates to the

generalized coordinates of Gl and 92. To accomplish +his the

following relations are used:

e
]

&, cos 61 X, bl cos 61 + a, cos 92

bl sin 91 + ae sin 92

s
H

Yy = 8 sin 8 Vo

Differentiating with respect to time yields

xl = - alel sin 61 x2 = - blel sin 91 - aeée sin 92
= 5191 cos Bl vy = blel cos 91 + a2é2 cos 8,
X = - alel sin 91 Xy = - blel sin 91 - blel cos 61
2 . 2 2
- alél cos 61 - 32é2 sin 92 - 8,8," cos 92
. .. ve e 2
¥y = alel cos 61 ¥, = blel cos 91 - blél sin 81
8.2 sin 8 +ab 0 8.2 sin ©
- 8% 85 8% COS Uy = 855, 8in S5,

(5)

Substitute the appropriate expressions into equation ‘5 to get

e e 2
m, gs, cos el + e g8in 91 (T alel sin 91 - alei cos 81)

1) ') 2 .
- may cos 8 (‘191 cos 9, - 8,0, " sin 91) - 918




. . 2
5 - - )
b D, sin 0 + bim, sin 8, ( b6, sin 8, - b,8.% cos 0,

.

2 o
- - 9
a9, sin @, a2é2 cos 62) bym, cos 6, (blel cos 9,

2 2

- b, 8

[X] 02
191 sin 91 + a292 cos 62 - a2 2

sin 92>

+

b, cos 8 (- L, + ng) =0
Assume small displacements so that

sin 6 90 and cos 6 =1

s 2 2
31 ’ el 2

neglected; that is, products of the angles and products of their

Higher order and nonlinear terms such as 62, and 8 are

derivatives. Thus,

- mga) +ma ( 1) + 3, e +bD0, + bim, (p 0. + a262)
-bl(-L2+m23)=

Collecting terms,

o

2 2
(m1a1 + m2bl + Jl) 91 + le 6. + a2b1m292 + b L mlga1 + ngb

(6)
Substitute expressions (5) into equation (4) to get
. 2 *'e
m,ga, cos 92 + ma, sin 92 ( sin 91 blel cos 91 - a282 sin 92

: 2 . 2 2
- aauz cos 92) - m232 cos 92 (b 6. cos 8, - b8 sin 6

171 1 11 1
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+ agaa cos O, - a2622 sin 62) - L.a~ cos 0, - D.a. sin B

2 27a 2 22 2

-J202+M2=O
Again, assume small displacements (sin 0 = 8 and cos 6 = 1) and

neglect nonlinear terms. There resulte

- [ [ +J86 . -
m.g8a, + M8, (blél + aeée) + Loa, + D80, J2é2 M, =0

Rearranging,

. 2 .

magh 8y + (mpdy” *J) B, + Dyay8, + Loe, - My = mgay  (7)
It is now desirable to consider the aerodynamic forces and moment
existing on the decelerator. The reader should note that the subscript
2 associated with the decelerator's aerodynamics will be deleted during
the remainder of the discussion.

The angle of attack of the decelerator's center of gravity is

defined as follows:

a=6.+0
2 2i

where 62 represents the angle between the decelerator axis and the
X-axis and 921 represents the induced angle of attack resulting
form vertical velocity of the CG of the decelerator.

Note: The vertical velocity of the decelerator CG consists of

two components, A4 and v

oY) resulting from rotation
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about pin A and B, respectively (see Figure 6). The

component Vv, 1is the velocity of the decelerator CG with

2
respect to pin B.

A

Vv
¢!
Vw'——-» O ‘ X
\B\ V2

CG

Figure 6.- Induced velocities.

Since small angles of attack are being considered, it follows that

v, +vV
621=tan;:"==-;:= lvm 2
It can be seen from Figure 3 that
v, = blél and vy = aQé2
Thus,
. =blél fe_eg
21 A v,

The angle of attack of the decelerator is then given by

.6, a.®
11 2 2
a_62+v‘” +T (8)
Also, b5 .
" -
. - 11 2 2
a=%+t5=+y
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For this analysis the aerodynamic drag force (D) is considered to be
independent of angle of attack since D ~ «°. The 1ift force (L)

can be expressed as

oL oL .
L=ma’+5&d‘

In keeping with the assumptions of linearization, higher-order
terms are not considered. Substituting o and & into the

expression for 1lift force,

L=%92+%%él+:—2%é2+%ée+;l‘%el+;§§§é2
® o ©
(9)
The aerodynamic pitching moment ecan be expressed as
R .
bi:%‘a+%i+%;92+%;ee
Substituting for o« and 4,
M= oM o + El oM 0. + fg Mg M 6. - El oM 6. + fg oM g + M g
da 2V 3 1 V_ 3 2 35 27V, 3d& 1 V, 3& 2 aé22
(10)
where
M _ M
26, o4

Substitute the expression for lift foree into equation (6).




19

2 2 e . R
(mya,” + mb “ + Jy) O + D0y + agbmB, + by 20, + o= 26,

a,b S b 2 a.b
2°1 oL oL 1 OL = 2°1 oL 7}

+ == 8_+b 8, + — =06+ —=209_=nmga
Vw da 2 13 2 Vw & 1 Vm 3 2 1°71

+ mgb,

Collecting terms,

2
b . b
2 2 1 3L 1 JL

I A (a’2bl 3L AL & 3L
+ m,gby (11)

Substitute the expressions for 1lift force and pitching moment into

equation (7).

b
- 5 s dL #2°1 a1
ny2g0 8y + (myay” + I) &, + Dayd, +ay 570, ¢ V. % 1
2 2
%2 3L ALy 213 L% A M

Collecting terms,




a.b b a.b b
21 oL 1 oM\ < 2°1 oL 1 oM
(aSbl T 'a_a"ﬁéz>91+<vm5“':6&'él+meae * o

2 2
8 3 % bM) o ( 8 3L 3L %2 oM oM 8»19-
o ¥ o

(AR SRR A A AL

+ (a2D + a, gg - gg) 6, = m,ga, (12)

Thus it is seen that equations (11) and (12) represent a system of
second order, nonhomogeneous, linear differential equations with
constant coefficients.

Before proceeding to the discussion of the possible solutions
to these equations, a few comments are necessary concerning the aero-
dynamic forces and moment assumed to act on the decelerator. As
seen in equations (9) and (10) not all of the factors influencing
1ift force and pitching moment are taken into account. It is
believed, however, that the exclusion of these terms will not have
an appreciable effect on the results of this analysis. It should be
emphasized that the equations of motion apply for any decelerator
shape as long as the shape is a body of revolution. One such body of
revolution often considered in decelerator problems is the conical
shape (this shape forms the basis for most decelerator designs).
Experimental data obtained on a series of cone bodies at free-stream
conditions (reference 6) are shown in Figure T and illustrate the

linear nature of 1lift force and pitching moment with angle of attack;

also, drag force is aspproximately constant at angles of attack near
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Data obtained from reference 6.
1.8
1,6
1.4
Ca
1.2
1.0
.8
24 28 32

(a) Body axis.

Figure 7.~ Variation of longitudinal characteristics with e of

attack for family of cone models; M = 4,63, Re = 0.8 x 10°.
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-.08| 1.8
1.6
1.4
Cp
i,2
1.0
deg
.1 .8
0
-.l
-.2
CL
-‘3
-.4
-.5
-8 Y 12 16 20 2% 28 32
o, deg

(v) stability axis.

Figure 7.- Concluded.
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zero since D ~ u?. Such conditions would exist on a towed conical
decelerator when the wake of the forebody has essentially disappeared,
corresponding to a very large tow cable length (bl)' The question
arises, however, of how the aerodynamic forces and moment vary with
angle of attack if the cone is subjected to the nonuniform flow field
associated with the wake. The answer to this question appears
formidable at the present time because of the dependence of the aero-
dynamics on the size of the cone (with respect to the forebody),

the location of the cone in the wake, forebody geometry, free-stream
Mach number and Reynolds number, boundary-layer builldup and separation
effects on the tow cable, and on cone semiapex angle. The possibility
exists that to adequately describe the aerodynamics of the cone in a
nonuniform flow field, it may be necessary to retain higher order
terms, thus defeating the simplicity of the approach of the present
analysis. For these reasons, free-stream flow conditions are assumed
to exist. The reader should note that the following analysis, though
concerned principally with the conical shaped dec:lerator, could be
applied equally well to any shape body for which -he geometric and

aerodynamic parameters are known.

Two-Body Problem

To eveluate the system of second-order differential equations,

A
the terms involving g% and
a
éﬂ are assumed to be

4
negligible; this has been
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shown in the stability investigation of reference 7 to be a Justifiable

assumption at high Mach numbers. Equations (11) and (12) therefore

reduce to
b 2
2.2 +mb. 2+ )6 + 1 L g 41 Do, + (a.b.m.) 8
M%7 T 1T s 1T 1 (2201m2) %5
a.b
2°1 OL\ g oL
+( T 53) O, + b, 5= 0, = mga, + m,gb, (13)
and o
8,.b b 8,
. 2°1 3L 1 BM) . 2 3L

2 O0M OM oL, oM
-7 % - a—q-)ée + (a,2D +8, 50 - Fa:) 92 = n,ga, (14)

Characteristic equation.- To arrive at a characteristic equation

representing the system described by equations (13) and (1k4) it is

beneficial to write these equations as

AS +B él +C 6, +D 8 +ES. +F6. =0

1 2 2 2
(15)
H91+I91+J92+K92+L62=M
where
a,b
2°1 oL
A—mlal +m2bl +J1 E=vw§a
5. 1L p_p L
= ¥, o = "1 da
C=le
G = mea + mek;
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2
a 8
2 oL 2
H:B.lema K-t—a-v;
o2 o Loa (D
B v, da A da. - 2 \3da
J = 8, 2 + J M= ngs
= m8, 2 )

Consider the homogenecus case.

A 61 + B el + C el + D 92 + B 92 + F 92 =0

HO +1 él +J 6, +K08,+L0,=0
Assume solutions of the form
~ At At
91 = el e a,nd 82 = 92
50 that
. ~ x’t L ~ )\t
el = x el e 92 = x 92 e
. 2~ At 4 2% At
91 = A el e 92 = A 92 e
Substitute and divide by e%t to get
ANTE +82A% +c8 +DN 0 +EANT. +F5. =
1 1 1 2 2 2

2~ ~ 2~ ~o ~y
HA 91 +IA 91 +J A 92 + KA 62 + L 82

Coliecting terms,

(16)
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(A7\2+B7\+C) 'é‘l+(D>\2+E7\+F)'é‘ =0

+ (sz + KA + L) 8. = 0

(}D\g + I)\)'é' A

1

These are algebraic, homogeneous, linear equations for the constants

~

Bl and gé. They always have at least the trivial soltuion

DR

1= 5é = 0, which corresponds to el=;92 = 0. There equations have
a nontrivial solution precisely when the determinant of the

coefficlents is zero.

(A‘)\e + BA + c) (D)\2 + EA + F)
=0
(m2 + 1) (2 + 10+ 1)

Expanding this determinant and collecting terms ylelds the

characteristic equation,

(A.I-H:D)7\1‘+(AK+BJ-HE-ID)7\5+(AL+BK+CJ-H.F-IE)7\2

+ (BL+CK-TIF) A+CL =0 (17)

Numerical constants could be introduced and exact roots found from
this equation, but for the purpose of defining stabllity it is
necessary to look only at the signs which these constants carry.

Stabillty criteria.- The necessary and sufficient condition

for the stability of the dynamic system represented by t.s quartie,




AN B N4 D A+ E =0

is that
A'yB',C', D', and E' >0
and

]
R, = B'C'D' - B'%E - A'D'Z >0

This latter grouping of constants 1s known a&s Routh's discriminant.
It is first necessary to evaluate the coefficients of the quartic,
equation (17), and to see under what conditions they might change

signs.

— - _ 2 2 2 ) _
A' =A] - HD = (mlal + mEbl + Jl) ('mga.2 + 3, e,eblm.2 (“2‘¢n2)

0

mme® + mye, ) + 0, (mlalg + g, ® + Jl)

Thus, this coefficient is positive for all combinations of masses,

mass moments of inertia, tow line lengths, and center of gravity

locations.
32 8
Vo= AR _ 2 2 2 0L 20 oM
B _Ax+m-}m-m_(mlal + mby +Jl)(.v;_.&z.t a-ﬁ)
2
b a.b a.b b
1 JL 2 2°1 oL 2°1 AL 1 oM
T & (mp,” + Tp) - egbym, (—vm 33) - (—vm i Ea,)‘abl“‘e
Expanding,



2 2 2 2\1 JL 2 1
= (\mla.1 a, + Jla2 + J’&bl ) 75 (mlal a, + Jlae) ﬁ 3
2 oM
- (mlal + me + Jl) S‘i
Since for bodies of revolution (such as the cone) %M and oM are
a dq
usually negative, B' is definitely positive when gé 2 0. When

B' = 0, the lift-.curve slope is of negative value and is given by

the expression

(m1a125,22 + Jla‘22 +J 2‘b ) ( mla, a, + J a,e) g%’f
+ vV (m1a12 + m2'l:»lz2 + Jl) gl‘_; (18)
Also,
C' = AL+ BK+CJ - ¥F - IE = (ma? 2 oL o
= , - HF - I -mlal +m2bl +J1) a, §E+D - 3

2 2 2
T % |V % V. % 3 +b1D(m2a2 +J2)-ab1m23—

Expanding this expression and at the same time noting that g—g = g% + D

{see subsequent discussion on page 42), 1t can be shown that

)2
1 OL oM
'“‘1"1"L mz“ele*“’la'*bD\me"e +J2)'V—3'5'

- %2 (’“1‘12 +mgp,® + Jl)




As seen in Figure 7 for conical bodies, gg is always greater than

zero. Thus, when 2 0, this coefficient is definitely positive.
5 ?
a

W.en gg <0, C' 1is probably positive since the negative term

involving gé would be outweighted by the otuer positive terms.

2
oM 8 3L
] ' bl”(t‘ 3

Now,

D'

fil

2

+

Q

~

=i

"

.I o

no

&
(e
N
~—
01

+
N
&1

which expands to give

. 2 D oL 22P1 _ M M
D =(8.2b1 +a22bl)'i;&-—vj-n&;-le§q-

When the lift-curve slope is greater than zero, the coefficient D'
is definitely greater than zero. When D' = 0, the lift-curve slope

is of negative value and is expressed as

3L 1 oM Vo M

= + (19)
da a, * b da aj(a, + b; dq

wastly,

E' = CL

oL oM
bl;)[}22(53:+ I) - 3%1
3N oM
FD (8‘2 3 - ﬁ)

Thus, this coefficient is always positive.
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It has been mentioned that it is a necessary condition for the
coefficients of the stability quartic to be positive valued to ensure
a stable dynamical system. If any of the coefficients, say B' and/or
D', were to become negative, then the dynamical system is unques-
tionably unstable. This has been shown to be the case when the 1ift-
curve slope has a negative value less than that expressed by equations
(18) and (19). Some support for this argument in the form of
experimental data Las been published in rcference 1. These data
indicate that towed cones with semiapex angles up to ho° are definitely
stable, 450 cones being marginly stable, and cones with larger semi-
apex angles being unstable. The major change in any of the aerodynamic
parameters between a uo° cone and a 500 cone is the change in sign
of the 1ift curve slope (see Figure T), gé being > 0 for the 40°
cone and gé being < 0 for the 500 cone,

To show definitely that the quartic, expressed in equation (17),
represents a stable system it is necessary to analyze Routh's

discriminant,

R = B'C'D' - B'2E' - A'D'?
[s]

However, manipulation of the coefficients to provide a general
expression for Routh's discriminant without making any simplying
assumptions or without substitution of numerical values is extremely
tedious. Though evaluation of this discriminant is left to future
investigations, it is believed that Routh's discriminant will be

greater than zero if the lift-curve slope is greater than zerc.
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Descartes' Rule of Signs.- To determine the number of real roots

existing for the quartic, equation (17), Descartes' Rule of Slgns is
used and is stated as follows:
A polynomial equation, £(x) = 0, with real coefficients and
arranged in descending powers of x, can have no more positive
real rocts than there are variations of sign between successive
terms in f(x), and can have no more negative real roots than
there are variations of sign between successive terms in f(-x).

(reference 8)

As has been shown, the quartic of equation (17) may be written as

- A'J\h + BN 4+ c'>\2 +D'A+E =0 (20)

where A', B', C', D', and E' are real coefficients and are equal
to those constants shown in equation (17). If g& > 0, it has been

shown that all the coefficients in equation (20) are positive,
A',B',C',D',E' >0

Applying Descartes' Rule of Signs it is seen that for f(A) all the
coefficients are positive so that there is no variation of sign. Thus,
there can be no positive real roots. For f(-A), equation (20) becomes
]
AN - B + A L DA+ E =0

showing that there are four (4) variations of sign. Therefore, there
can be up to four negative real roots. Since there are no positive real
roots, there will be either zero, two, or four negative real roots.

If g& < 0, it has been shown previously that A',C',E' > 0 and

B' and D' can be less than zero., Letting B' = - B'' and




D' = - D'' in equation (20),
}
A'7\4 - B"7\5 + C')\2 « D'A+E =0 (21)

Applying Descartes' Rule of Signs it is seen that for f(A\) there
are four (4) variations of sign indicating that the quartic can have
no more than four positive real roots. For f(-A), equation (21)
becomes

)]
AN + BN +C'N + DA+ E =0

showing that there are no variation of sign. Therefore, there can
be no negative real roots. Thus, if any real roots erist, they will

be positive indicating instability.

Review of Solutions to Second-Order Differenial

Equations and Stability Criteria

It is now desirable to consider two particular cases of single
degree of freedom. These two special cases are (1) motion of the

decelerator about its nose (pin B) with 6. = 0°, and (2) motion of

1
the rod and decelerator about the pivot point (pin A) with 6_ = 6.

2 1

Since both of these special cases are represented by a second-order
differential equation, 1t may be beneficial for the reader to review

the types of transient motions possible with this type of equation.
The equivalent spring-mass-dashpot dynamical system is described

by the equation of motion,

mB+cO+k8=0 (22)
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the roots of which are given by

n
e}
ct
"
t

+ | < Ewhere 9=A1e +Aee

—the-

The 1limiting case between oscillatory and nonoscillatory motions is

T,0°°

mle

when the radical equals zero. The value of damping for this condition

is called critical damping, ccr.

2
Cop =4 mk or Cop = 2 Jmk

and since

k
wn=\];, then ccr_men .

The dimensionless ratio ¢ ’ccr is called the damping factor, §.

_ actual damping
" critical damping

S __¢c __c¢
®er 2 fm 2%
Using these definitions, the original equation (22) can be written

in the form

e . 2
0+26w 8+w 0=0 (23)

wvhere the root:; are now given by

2
= - + -
rl,2 4 cun _wn 3 1

It is seen that the roots are:
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(a) real if & > 1; the motion 1s overdamped and the transient

solution is defined by two exponential terms

(b) equal if & = 1; the actusl damping is equal to the critical

damping

(c) complex if & < 1; the motion is underdamped and the transient

solution 1s oscillatory

(d) imaginary if & = 0; oscillates at natural frequency with no

damping.

As a consequence, £ = 1 separates the regions of motlon (see Figure 8).

UNSTAELE
QUADRANT

E<1
divergent oscillation

\

\
\ ¢

£>1 N\

N
divergence .

~

A

[ —

whe STABLE
QUADRANT
E <1

damped oscillation

/

/
/

%;i37/ £E>1
~ convergence
/

— o

. o

2§wh

Figure 8.- Regions of motion.

This figure also illustrates one of the basic characteristics of a

dynamical system: the motion can be classed as stable provided the

coefficients of the governing equation of motion (23) are greater than
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zero. Thus,

2

>0 and W ==>0
n

Bix

c
n m
This simply states that the damping and spring constants have to be
positive valued to insure a stable system. For & more detalled review
of the transi=nt solutions of second-order differential equations
and the resulting stability criteria, the reader is referred to
references 5 and 8.

Now that the types of transient motions possible for a dynamical

system have been reviewed, the special case of the motion of the

decelerator about its nose (pin B) will be considered.

Motion of Decelerator About Its Nose - Special Case No., 1

Using equation (14) and letting 6, = él = 31 = 0,
the equetion of motion of the decelerator about
B —
its nose (pin B) can be shown to be
8> 8
2 X 2 OL 20M OM)\: oL oM
(maae +J2)92+(ﬁ:‘a‘ﬁ?ﬁ' 7/t |2\&*Y "= %
= MHE8y
(2k)

Looking first at the nonhomogeneous condition, from equation (24) it
is seen that

2 o 8 3L %20M oM\: dL M
(mea2 +J2) 92p+(f35'7’_35'3€)92p+ E2(£+ D) -F;I 92p

- m89,
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Assume a solution to match the right side of this equation.

D
1]

constant

Therefore,

and

oL oM
E‘e (EE + D) - E:] 92P = myg8,

The particular solution for equation (2"), giving the equilibrium

position of the cone, is thus

m_ge.

2572

% ENETDRE (25)
L 2 \da d

The homogeneous condition of equation (24) is seen to be

2 o 2 JL 2o oM M\: dL M
(m2a2 + J2> 92 +(V— ga - ﬁ 6&,- - yqj) 92 + [:8.2 (m + D) - 5'&] 92 =0
(26)

This is in the same form as equations (22) and (23) in the review,

where . 3L o M
P 2\ Ja " Sa
n_\Jm "~ 2
m2a2 + J2
and
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As pointed out in the review of solutions to second-order differential
equations, the types of roots depend on the value of the damping factor,
£. The transient (or complementary) solutions associated with the
homogeneous equation, (26), for various valuess of damping factor are
derived in the following discussion and are added to the particular
solution, equation (25), to obtaln the complete solution of equation
(24).

$ > 1.- The transient solution of equation (26) for & >1 is

rt t

T
8 =Ael +Be2

where
T =-EWw +w \Ige-l end r,=-f0 - §2-l
1 n n 2 n n

The transient solution can be written as

62=Aexp(-§wn+wn \j§§-1)t+Bexp (-gwn-a)n \,gé-l)t

or

0, = e-éwnt [A exp (\l 2.2 wnt) + B exp (— ‘/?-_l “’ntﬁ (27)

Combining equations (25) and (27), the complete solution of equation
(24) for &£ >1 1is seen to be

e oo (i) wsem (- F e

P
(28)
wvhere the constants A and B are determined by initial conditions.

The motion of 92 as a functlion of the dimensionless parameter
wnt is shown in Figure 9 for several values of damping factor. As

would be expected, the motion is an exponential function of time, the
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more slugglish motion occuring for the larger damping factor. To
obtain the sniution for € = 1 1t 1s necessary to agaln utilize
equation (26),

§ = 1.~ The roots of the characterisiic equation are

80 that the solution is

-0 1 - 1t

6, =Ae © +Bte O (29)

Combining this with equation (25), the complete solution of eqguation

(24) for &£ =1 1is

4nnt
6, = (A+4 Bt) e + 8, (30)

P
Note that 92-+62 as t ==, This is the expression used to
P

illustrate the motion of 6, with aht in Figure 9 for ¢ = 1.

2
£ <1.~ The type of d&namical motion occuring more often than
not in aerodynamic sta.ility problems is that which is oscillatory
in nature, having a value of actual demping less than the critical
damping (§ <1). In this case the roots of the characteristic

equation are complex and are written as
T, = N @ + iwh J1 - & and r, = -t ®, - iwh l-¢
The solution of the homogeneous equation (26) is thus,

-Ew t -
92 =e © (A co8 Jl - ga wht + B sin Jl - §2 wht) (31)

where 0y =0 1l- g2 is the damped frequency of the motion.
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Initial conditions

2]
20
92 =0

constant

"

0]

10

Figure 9.- Effect of damping factor on aperiodic motion.

0.2

92, radians

-02

Equations (28) and (30)

3 Initial condition.

D
1]

constant

6. =0

- 2 i ot 6 8 10
n

Figure 10.- Effect of damping factor on oscillatory motion,
Equation (32)



ko

Combining this transient solutlon with the particular solution,
equation (25), yields the complete solution of equation (24) for
E <1,
-k t
62 = e n (A cos \’1 - §2 wt+ B sin \11 - 52 w t) + 3,
n n 4
p
(32)

The motion resulting from this expression 1s shown in Figure 10 for
several values of damping factor, The largest value of ¢ results in
the motion bteing damped at the least value of wnt; the smaller the
damping factor the larger the amplitude at any given time and the
longer it takes the motion to damp. This trend is more easily noted
by examining the time to damp to one-half amplitude.

Time to damp to one-half amplitude.- Using the exponential part

of e uation (32), the exponential envelope of the oscillatory motions
seen in Figure 10 is obtained as

-t t
92 =C e

vhere C 1is a constant. Letting 92 correspond to a time tl’ and

62' correspond to a time t2, it 15 desirable to determine the time

necessary to damp to a condition where

]
0, = m2
2 7% ¢
Thus,
-t ¢
1
' 1 e n2=e"“’n(t2"°1)
52 =3 Io t
e M 1
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Define At = t, - tl as the time to damp from an amplitude of 92 to

an amplitude of 62'.

1
ln§=-§wnAt

and
At:lnl/2=-ln2zln2 (33)
-beoy -ty toy
Recalling that 2
82 3L %M M
e YV, % V¥V 3a” dq
o == =
n 2m

-
2(n,8,” : J2)

the time to damp to one-half amplitude then becomes

At =

2
2gm2a2 + J2) In 2 -

8 3L %23M oM
TR R

Spring cunstant.- It has been shown that 2 criterion for

stabllity is that the spring constant be greater than zero. From
the governing equation of motion for the decel=zrator rotating about

its nose, equation (2k), the spring constant is seen to b

_ oL oM
k=ae(ﬁ*”) - Ty

This expression can be rewritten as

k=¢S¢ [;3- (CLG + CD) - Cm] (35)
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This can be simplified by considering the 1lift force in terms of
normal and axial forces.
L =Ncosa-Asina
gé = gg cos a - N sina - gé sina - A cos a
Recalling that drag was assumed to be constant with angle of attack
(D ~ a?), and for small angles drag force is equivalent to axial force,

oA

then i C. The above expression is evaluated at a = Oo to get

oL _OoN A
da oJa
or
BCL _ BCN e
da ~ da A

where CA is equivalent to CD at a = 0% Substituting this into

equation (35), the spring constart is found to be
I
k=qS8T|e=0Cy -C (36)
a o

To obtain some feel for the effects of the geometric and aero-
dynamic parameters on the spring constant, equation (36) will be
examined considering a conical shaped dc~<lerator. It is desirable
to determine the difference in the spring constant for two different

sizes of cone, the cone semiapex angle being a constant. It is noted

that, since the semiapex angle is the same for the two cones, then
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o ? 8re the same. Also,

the aerodynamic characteristics, CN and C
a a

the value of a_,/¢ would be the same.
L4

s = small

1 = large

Writing the spring constant for both sizes of cone,

k = S ¢ —2¢C - C
s qs s s z Nd ma
and
k, =q, S 'c‘(?éc -C )
l 111 r Na m
Thus,
ks ) kl
9% S5 % 9, 5, ¢
or
q. S, ¢
A 1
R, = L=tk (57)
g S_ ¢
s S S

Therefore, knowing the aerodynamic spring constant of a cone having a
given size and semiapex angle, the spring constant for a cone of
corresponding semiapex angle but different diameter and,'or dynamic
pressure can be determined. For example, consider the larger cone

~ -

with a diameter twice that of the small cone (i.e. ¢, = Cg).

Assuming the same dynamic pressure (ql = qs), it is seen that
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S, ¢
171
K, = k
A SS Es s
where _2
ne
S, =
s K
and _
S, = T =nc 2
/AR )
Therefore,

Thus, doubling the cone diameter for a constant dynamic pressure
increases the aerodynamic spring constant by a factor cf eight (8).
If & particular size cone were considered in equation (37), it is
seen that doubling the dynamic pressure doubles the aerodynamic
spring constant. This is important since the wake has a lower
dynamic pressure then the freestream. If the cone aerodynamics are
assumed unchanged from freestream to wake, then equation (37)
predicts a lower spring constant in the wake thun in freestream.
Another factor to be considered concerning the spring constant is
that it will remain the same magnitude regardless of center of
gravity location. This can be seen from equation (36), where Ch
is the aerodynamic pitching moment referenced to the decelerator -

center of gravity. To transfer this pitching moment to the nose of

the decelerator (pin B) it is seen that
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C C CG
..r_ng = _i + X B
CNq CN@ T

B CG

where x 1is the transfer distance. In the nomenclature of the

present investigation this is equivalent to a,. Thus,

Cm Cm \ a,
o) f_e) .=
N s, ) 3
B ce
or
a
¢, =¢C  -=20¢
a,B a,CG ¢ a

From equation (36) the spring constant is therefore

k=-quCCmaB
3

(38)

It is obvious from this expression that for any body of revolution,

Cm will be negative valued so that the spring constant will
a,B
always have a positive value.

Natural angular freguency.- From equation (26) the natural

angular frequency is expressed as

a
L M se(=2c, -c
8.2 (&"-*’ D> - ﬁ ) q°° (E NO, mQ

n - ] - 2
myey  t+ Jdy \ my8, + Jp
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Assuming ti.e decelerator to be & homogeneous solid cone, the terms

2
m232 + J2 can be shown to be

2
a
me” + Iy = my T (i—% =+ %5) (9)
r
(see reference 9)

Rewriting the expression for the natural angular frequency,

—[ %
qu [ 'E— CNG‘ - Cma>
n a 2 (ho)
2(16 "2 3
myr (1‘5‘ Z + 56

It can be seen from this expression that increasing the distance from

the center of gravity to the apex of the cone (i.e. increasing a2)
results in corresponding decreases in the natural angular frequency.
Since a 2omogeneous distribution of mass for the cone has been
assumed, a center of gravity shift would necessitate adding mass to
the system. Equation (40) shows that increasing the mass twofold
would cause a decrease in o by a factor of % {_-.

It has been shown that if the diameter of the cone is doubled,
the aerodynamic spring constant increased by a factor of 8. The effect

of changing the cone diameter on the natural angular frequency will

’k ’k
8 1
w =r and ® =] oo
na 8 nl Il

now be investigated.

Let

where
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small cone

0
1]

o
]

large cone

Noting theat ae/r will be the same for any diameter of a cone having

the same semiapex angle, the iiertia terms can be written as
NG
=mr 2l .z + 2
8 s \I5 2 0
a 2
2116 2 3
A R 1'5':2"*%)

Assume the cone diameter to be doubled so that r, = 2 L also

e ]

H
1

assume m, = 2 m. Thus,

2
o 16% 3\
Iz=2.'.s khrsz)(ﬁ;é-—'P?O)—BIs
Therefore,

8 x

5

wnl i B-T; ) wns
It is seen that, if the mass of the cone is assume? to double along
with the diameter of the cone, then there is no change in the natural
angular frequency. On the other hand, if the mass did not double

but was assumed to remain constant, then
w =\I§CD
nl By

Another cone proper.y, which might be considered along with the
mass, 1s volume. Increasing cone diameter necessarily increases cone

volume, so that it might be useful to consider two cones having the

same density (p).
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Density is expressed as

<|B
o~ o

mS
p=-v—=
8

where cone volume, V, is given by i n r2h. Writing

3

and considering the diameter and height of the cone to be doubled, it

is seen that

H
N
n
]
[=¥
=2
[}

2h
]

Thus,

Because of the condition of constant density, the mass of the larger

cone is seen to be

mz=8ms.

This leads to IZ = 32 Is, so that the natural angular frequency of

k 8 k
w = —£= 5 =-];(D
nz Iz 32 Is 2 n,

Stability boundary.- A final comment to be made about the motion

the larger cone is

of the decelerator about its nose concerns the stability. It has

been stated that a criterion for stability is that the damping be
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positive values. From the governing equation of motion, equation (24),

it is sven that to insure stability it 1s necessary thet

As mentioned previously for conical decelerator shapes, lift-curve
slope is the aerodynamic parameter effected most by changing cone

semiapex angle (see Figure 7) so that the boundary between stability

and instabllity is given by

AL _l__aM_'_vw oM (lel)
da &, da  _ 23q
27 &y
Motion of Rod and Decelerator About Pivot Point -
Special Case No. 2
For this particular case the A
2]
motion of the rod and decelerastor sbout 7
B

the pivot point (pin A) is considered,
the rod and decelerator being rigidly attached at B. To obtain the
equation of motion of 8 it is beneficial to refer back to the

cocrdinate system shown in Figure 3 and to set up a free-body

diagram as follows:



\ e bl
N yl %]
. ~~1 .
o o ‘ 1 1“‘23’2
g
ml B a'2 \47/1»\ M
m, § - —» D
Y ~ . 272
Y
n.g

Figure 1l.- Free body aiasgram of rod and decelerator.

The symbol J repreeents the sum of the mass moments of inertia of the
rcd and decelzrator about their respective centers of gravity. 1In
summing the moments about A, the same procedure used in section 2,
page 13, is utiiized here. That is, the moments are taken, the

cartesian coordinates are changed to generalized coordinates, and the
resulting equation is linearized. This process ylelds the second-order

differential equation,
E%lalE + mE(bl + a2)2 + %] B+ D(bl + ae)e + L(bl + ae) - M= mga

+ m2g(bl + aa) (42)
The angle of attack of the decelerator center of gravity is defined as

=0+ 0
fo <] 1

vhere the induced angle, Gi, can be shown to be



= 6
Gi T
Thus,
h, + 8 .
a.=6+(lv 2/ o (43)

Substituting o and & into the expressions for the aerodynamic

1ift and pitching moment yields results similar to equations (9) and

(10).
b, +a,) , . b, +a,)
L=§LLe+§.Ii(1V 2)e+§£e+@(1 2)9 (44)
& @ ® da oa ®
toaa)) . . b, + 8 .
M= g% 9 + g- 7 2; gM 6+ Mg, ( lV 2) My, Mg
o < o0& © da 36
(45)
vhere
oM _ oM
36 o9

Substituting these expressions into equation (42) and collecting terms
yields the following equation of motion for the one degree of freedom

system:

m1312+m2(b1+a,2)2+J+(—bl_;l)2§£‘.- (bllg)a_M '9'

© 3¢ Vo 3¢

+[(bl;°‘2228L (6 +a2)§£_§b1+aezam M |,
[ ]

5&+ 3 \A SE-BE,'TQ

* [(bl + ay) (D * ?TZ) - g%- O =megs) +mp(b +ay)  (46)




As previously, terms involving 2—1-‘- and % are neglected and this
a

equation reduces to

Enll my(by + ay) hﬂe{(b 1 %) AL (bl+a2)g%§’%:lé

o«

o) ) :
+ Bbl + 3,2) (D + B—L-) Mle - m g8, + myE (bl + a2) (47)
The particular solution is found from this equation to be

mlga. +m2g (b + a,

GP’[(bIW\ D ;_j

This can be simplified somewhat by recalling that

gﬁ gE-A at o« =0°

Thus,

gmeb
P [(b te) R

The homogeneoue equation is given by

2
[:”‘:L"l2 o, (bl * ae)z * ‘ﬂ 0 *[_(bl ;:2) % - (blv: ag) g'f: - g%]é

e

[(b +a2)( 51') 33.‘ 8 =0 (50)

which hae the same form as equations (22) and (23), where
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Spring constant.- From equation (50) the spring constant can be

written as
k = (bli-az) (D+g§)-?£

Nondimensionalizing this expression,

b
k=gqSc¢c (_!—;'zl(cn“cx.a)'cma

acL a(‘n
where CLG - v and Cma =35 This can be written as
b, +
- (1 &
k=gqgSc¢c = CN - Cm (52)

[+ a

The spring constant is seen to be positive valued at all times, the
magnitude of which remains invariant with center of gravity location.
Similar to the argument presented in describing the motion of the
decelerator about its nose, equation (38) » the spring constant in the
above expression can be written as

k=-q87¢ cmm,A (53)
vhere Cma A 1s the aerodynamic pitching moment retferenced to the
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point of rotation, pin A. The magnitude of Cm (and thus the
a,A



spring constant) in this expression is larger than Cm in equatiorn
bl a,B
(38) by the amount - =— CN .
¢
a

To evaluate the spring constant for two conical shaped decelera-
tors having the same semiapex angle, the spring constant is written as
follows:

(b + a, )
s N m

Cs >4 a

o
n

S SS

=
o
|

;=49 zzz"—‘é‘_' N"Cm

[+ 4

where CN and Cm are the same for the two cones. Assume
a a

is equivalent to

so that
= L
k=L ST, (54)

which is the same expression obtained in equation (37). Considering
the larger cone to have twice the dlameter of the small cone, the
comments made concerning equation (37) are appropriate here. However,

there is a condition placed on the length of the rod by the expression



ls 2S i lZ 2Z
cs cl
Since
a a,
QS 2z
- == >
cs cl
then
b b
s
cs cZ

Therefore, when the diameter of the cone is doubled (Ez =2 Es)’

the length of the rod for the larger cone must be twice that for the

1
s

Natural angular frequency.- Frum equation (50) the natural

smaller cone (bl =2b ) in order that equation (54) be valid.
1

angular frequency is expressed as
b, + a )
- g 1 2
q,S c{: — CN -CmJ
c a Q

m1812 + m2(?l + a2)2 + J

(55)

@D =

Assuming the rod and cone to bé homogeneous solids, the mass moment

of inertia (J) about their centers of gravity can be written as

J

1l

oy
+
[

where
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and

Letting m1 Y which isn't unrealistic for a decelerator system,
L b
h = 3 8 and a, = §l , the natural angular frequency can be

expressed as

S E[(fl—i—a—zzcn - cm:]

w = ¢ x 2 (56)
1

2 2 .1 2.3 2 4 2
Emel +m2(bl+32) +ﬁm2bl+%m2(r +-9-a2)

From this it is seen that increasing dynamic pressure causes an
increase in w ., while increasing mass and/or the distance of mass
from the rotation point (pin A) causes corresponding decreases in
mh' Assuming the length of the rod to be much greater than the
distance from the cone CG to the nose of the cone (b > > a2)

1
will not seriously alter these trends so that equation (56) uay be

w, = q,,SC(:—C - :] (57)
| = (xes)

The effect of doubling the cone dlameter can be seen by letting

reduced to




K. K,
w = -—0 and [43) - a—
n Is 1 Il
where
bl 2
2l 4 s 3
Ig = mgTg 3 L2 *%
s
bl 2
~ 2/ 4 1 3
L= |37 %%

b
It is noted that letting ;l be the same for the two cones leads to

the same remarks made in the previous section (see page L47) concerning
the effects of doubling the cone diameter on the natural angular

frequency. With r, = 2 o it is seen that

blz bl
__.—_—rs or bl =2b1 .
rl s l s

The reader will note that this is the same condition concerning the
length of the rod which resulted during the previous discussion of
the effects of doubling cone diameter on the spring constant.

Stability boundary.- Since the spring constant is always positive,

it is only necessary for the damping to be positive to insure stability
for the dynamic system described by equation (47). Thus, the boundary
between stability and instability is represented by

MBL (b1+°‘2 M _ M _

V. % TV Sa "33 °© (58)
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In terms of lift-curve slope this becomes,

3L _ 1 M, ‘= om (59)
o G L L

The similarity between this stability boundary and that obtalned for

the cone rotating about its nose, equation (41), should be noted.




VII. CONCLUDING REMARKS

A preliminary investigation has been undertaken to theoretically
determine the geometric and aerodynamic parameters which have the
greatest influence on the stability and yerformance of the nonporous
towed decelerator. To aid in this endeavor & mathematical model was
generated to describe the flexible tow line - decelerator dynamical
system as a rigld two-body problem. The resulting second-order
governing differential oquations of motion were used to obtain the
characteristic equation (quartic) describing the coupled motions of
the two bodies. Evaluation of the coefficlents of the quartic ylelded
expressions which 1llustrate when the dynamical system is unquestion=-
ably unstable.

The two single-degree of freedom cases investigated were the
motion of the decelerator about its nose and the motion of the rod
and decelerator about the pivot point. For both cf these cases
expressions were derived for the natural angular frequency, damping
factor, steady-state solution, and time to damp to one-half amplitude.
Specific comments were made concerning a conical shaped decelerator
to illustrate some of the geometric and serodynamic parameters
affecting the spring constant and the natural angular frequency. The
boundary between stability and instability was obtained for these

two single-degree of freedom cases.

€0
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