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DYNAMICS OF TOWED DECELERATORS

By

James Franklin Campbell

ABSTRACT

A preliminary investigation has been undertaken to theoretically

determine the geometric and aerodynamic parameters which have the

greatest influence on the stability and performance of the nonporous

towed decelerator. To aid in this endeavor a mathematical model was

generated to describe the flexible tow line - decelerator dynamical

system as a rigid two-body problem. The resulting second-order gov-

erning differential equations of motion were used to obtain the charac-

teristic equation (quartic) describing the coupled motions of the two

bodies. Evaluation of the coefficients of the quartie yielded expres-

sions which illustrate when the u rnamical system is unquestionably

unstable.

The two single-degree of freedom cases investigated were the

motion of the decelerator about its nose and the motion of the rod

and decelerator about the pivot point. For both of these cases

expressions were derived for the natural angular frequency, damping

factor, steady-state solution, and time to damp to one-half amplitude.

Specific comments were made concerning a conical shaped decelerator to

illustrate some of the geometric and aerodynamic parameters affecting

the spring constant and the natural angular frequency. The boundary

between stability and instability was obtained for these two single-

degree of freedom cases.
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IV. INTRODUCTION

Advent of super- and hypersonic aircraft, missiles, and space-

craft has dictated the need for adequate deceleration systems capable

of performing emergency rescue and/or payload recovery. For example,

rescue of a pilot ejecting from his aircraft or spacecraft at extremely

high speeds is dependent on some decelerator system to stabilize him

and to slow his fall to the point where a conventional terminal descent

system, such as a parachute, can be utilized. Also, the success of

a mission to place an instrument package on the surfaces of Venus and

Mars largely depends on proper deceleration of the payload through

their respective atmospheres. One such system being considered to

perform these types of missions is the towed deployable decelerator

which utilizes aerodynamic drag to decelerate and stabilize the payload

or capsule. Two of the approaches made in designing towed decelerators

required to function at supersonic and hypersoni,. speeds are: (1)

adaption of existing subsonic parachute configurations and (2) genera-

tion of nonporous inflatable bodies having specific geometric shapes.

Of these two approaches, the nonporous body ii^'lated either by

compressed gas or by ram -air (inlets) presently appears to provide

the more promising approach to high -speed deceleration problems, as

well as having perhaps the greater growth potential for future

applications.

Some insight into the stability and performance of several

nonporous decelerate- configurations is provided in the experimental

wind-tunnel investigations of references 1 and 2. The scale of the

1
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test models, however, was severely limited by the size of the wind

tunnel facilities, thus limiting the usefulness of the data. The

degree of decelerator stability reported in these investigations

was obtained by observation, a method typical of most wind tunnel

tests of towed decelerator systems. Because of the inherent difficulty

in obtaining adequate measurements of decelerator stability, emphasis

has been placed by some investigators on the use of analytical

techniques to determine decelerator stability (references 3 and 4).

Though the experimental investigations and analytical studies have

illustrated some trends in decelerator dynamics, there still exists

a general lack of understanding of the principal factors affecting

the dynamic stability of a towed decelerator.

In an effort to shed new light on this problem, a preliminary

investigation has been made to determine the geometric and aerodynamic

parameters which have the greatest influence on the stability and

performance of the nonporous towed decelerator. One of the inherent

difficulties arising in this type of study is the variable nature of

the geometries of the tow cable and decelerator, both of which are

flexible. Also, the towed decelerator is required to operate in the

nonuniform flow field aft of the forebody which is being decelerated.

As a first step in the analyais of this complex stability problem,

several simplifying assumptions are made; the tow cable is assumed

to be a rigid rod with a pin connection at each end and the decelerator

is assumed to be a rigid body of revolution, the resulting dynamical

system being described as a coupled two-body problem. Since the cone
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is the basic shape about which other decelerator configurations are

designed, specific comments are made concerning this shape during the

course of this study. For the present analysis the stability and

performance of the towed decelerator are examined for uniform (free

stream) flow conditions; such conditions would exist when the wake

of the forebody has essentially disappeared, corresponding to a very

large tow cable length. Appropriate comments are made to relate the

effects of the wake on the stability and performance of the

decelerator.



V. LIST OF SYMBOLS

A	 aerodynamic axial force on decelerator

AX, Ay	reaction forces at attachment point between payload and

decelerator system

al	length to rod center of gravity, measured along rod axis

from origin of rod

a2	length to decelerator center of gravity, measured along

decelerator axis from nose of decelerator

BX, By	reaction forces at attachment point between rod and

decelerator

bl	length of rod

CA 	 axial-force coefficient, 
aerodynamic axial force

900

CD	drag-force coefficient, aerodynamic dra
g 	force

900

CL	lift-force coefficient, 
aerodynamic Sif t force

aC	
900

CL =	 lift-force coefficient slope at zero angle of attack
a

Cm	pitching-moment coefficient, 
aerodynamic pitching moment

aC	
9°° c

Cm = m
	

pitching-moment coefficient slope at zero angle
M

of attack

CN	normal-force coefficient, 
aerodynamic normal force

acN	
9°°

CB =  -	 normal-force coefficient slope at zero angle of attack
a

CG	 center of gravity

c	 damping term in equivalent spring-mass-dashpot

dynamical system
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ccr critical damping representing the limiting case

between oscillatory and nonoscillatory motion

c reference length of decelerator, taken to be base

diameter for conical shapes

Dl aerodynamic drag force on rod

D2 aerodynamic drag force on decelerator

g acceleration due to gravity

h height of conical decelerator

J sum cf mass moments of inertia of rod and decelerator

about the respective centers of gravity of the rod

and decelerator

J1 mass moment of inertia of rod about the center of

gravity of the rod

J2 mass moment of inertia of decelerator about the center

of gravity of the decelerator

k spring -onstant in equivalent spring-mass-dashpot

dynamical system

L1 aerodynamic lift force on rod

L2 aerodynamic life force on decelerator

aL
ra slope of lift-force curve at zero angle of attack

aL
rate of change of lift force with rate of change of

angle of attack

aL
M

rate of change of lift force with pitch angle
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oL	 rate of change of lift force with pitch velocity
1)62

I1il	aerodynamic pitching moment on rod

K_	 aerodynamic pitching moment on decelerator

aM
	 slope of pitching-momentp	 p'	 ng-moment curve at zero angle of attack

aM	
rate of change of pitching moment wit s rate of change

ad

of angle of attack

aM
9c-2

rate of change of pitching moment with pitch angle

aM aM
aA2 7-

damping of pitch

m mass term in equivalent spring-mass-dashpot 3ynamical

system

ml mass of rod

m2 mass of decelerator

N aerodynamic normal force on decelerator

aN
3a

slope of normal-force curve at zero angle of attack

q pitch velocity of decelerator, 62

q. free-steam dynamic pressure

Re Reynolds number based on decelerator base diameter

Ro Routh's d:.scriminant

r radius

rl and	 r2 roots of governing differential equations of motion

describing the transient (or complementary) solutions

S reference area of decelerator, taken to be the base

area for conical shapes
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t time

At time to damp to one-half amplitude

V cone volume

V flight speed of payload-decelerator system

v vertical velocity of decelerator center of gravity

v1 vertical velocity of nose of decelerator, resulting

from rotation about the attachment point between

payload and decelerator system

V2 vertical velocity of center of gravity of decelerator

with respect to nose of decelerator, resulting

from rotation about the attachment point between

rod and decelerator

X, Y Cartesian coorainate system (X axis tangential to

flight path)

X1, y1	 Cartesian coordinates of rod center of gravity

x2 , y2	Cartesian coordinates of decelerator center of gravity

angle of attack of decelerator center of gravity

(3	 angle between payload reference axis and horizontal

Y	 angle between flight path and horizontal

9c	cone semiapex angle

91	angle between rod axis and tangent tu flight path

62	angle between decelerator axis and tangent to flight

path

92	induced angle of attack resulting from vertical
i

velocity of the decelerator's center of gravity
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e2	 particular (steady state) solution of the differential
p

governing equation of motion for decelerator rotating

about its nose

damping factor (ratio of actual damping to critical

damping)

P	 density

and	 damped angular frequency

n	 natural angular frequency

exp	 exponential

In	 natural logarithm

summation

a	 partial derivative

. (dot)	 first derivative `rith respect to time

..(double dot) second derivative with respect to time

Subscripts

i	 induced angle

I	 large

0	 initial conditions (time equal zero)

p	 particular solution

8	 small



VI. THEORETICAL DESCRIPTION OF TOWED DECELERATOR

Mathematical Model

This analysis was performed in order to determine the geometric

and aerodynamic parameters having the greatest influence on the

stability and performance of the towed decelerator system. In the

most general case the dynamics of the towed decelerator are necessarily

coupled with the dynamics of the payload, and vice versa, making a

straight forward analysis of the decelerator's dynamic characteristics

rather difficult. In this investigation, therefore, the angular

motion of the payload is assumed zero, so that the problem is sim-

plified and the following analysis can be concentrated on the towed-

decelerator dynamics. Since orientation of the flight path does not

affect the stability of the decelerator, the decelerator system will

be considered in a horizontal
Decelerator	

Flight
mode of operation ( y = 0 in	 —^^ ^_ path

Figure 1). It should be noted 	 Tow line

that the most common method of 	 Payload	 p Horizontal
experimentally testing towed

7
decelerators utilizes a pNrload

mounted rigidly in a horizontal 	 00,

position.	 Figure 1.- Schematic of payload-
decelerator system.

In reality, the tow line and decelerator are both flexible and

represent a multidegree of freedom problem. A general approach to

describing this system would be to consider N number of particles

9
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having individual masses. The more restrictive approach of assuming

the tow line and decelerator as rigid bodies of revolution is utilized

in the present analysis. Only plane motion is considered, yawing

and rolling moments being neglected.

Rigid rod	
Rigid

A	
B	 decelerator

Pins

Figure 2.- Two-body system.

The towed decelerator system is illustrated in Figure 2, where

pin A represents a fixed pivot point and has no motion, and where pin

B is free to rotate with the system. Attachment of the rigid rod

and decelerator is at the nose of the decelerator (pin B). This

resultant two-body problem is strikingly similar to the double-

compound pendulum described by Iyklestad in reference 5. The basic

differences between the two dynamical systems are: (1) weights in

the present analysis represent near constant forcing functions for

the system, whereas they act as spring constants in the double-

compound pendulum problem, and (2) aerodynamic forces and moment

are included in the present analysis. The method of obtaining the

differential equations of motion for the present study is identical

to that performed by Myklestad. The cartesian coordinate system

employed for the two bodies is illustrated in Figure 3, and the
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!^— a	 b
vOD^-- A	 1	 1 - ----__ .

el

^ Xl.y B	 a2	 2

-2Y21

X

Figure 3: Cartesian coordinate sY.,Aem .

m`l yl

a 	 XAX f — --- - —.._.. _ T

­^.D

—	 -- -- --- -- —^-

4^A
Y	 m1xll	 1

^lg	
—^ Bt	 X

^1e1
By

Y

Figure 4.- Free body diagram of rod.
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resulting free-body diagrams in Figures 4 and 5. The X-axis is

oriented to coincide with the direction of the free-stream velocity

vector. The aerodynamic forces and moments of the rod and decelerator

are shown in the figures to act at the respective centers of gravity.

By
	 m2y2

B	
91	

a2 92	 L2

	 X

X	
M2

m2X2 {—	 D2

	

m2g	 J2e2

Y

Figure 5.- Free body diagram of decelerator.

In the analysis to follow, the aerodynamic forces and moment on the

rod are assumed to be negligible, and likewise the rod's aerodynamic

damping.

Equations of Motion

First, the internal reactions BX and By are found from summing

forces in the X and Y directions to be,

BX +m2 x2-D2=0

(1)

BX =D2 -m2 x2

and
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BY+m2y2+L2 - m2g =0

(2)

By =-L2 -m2 y2+m2g

Two equations of equilibrium can be obtained from the free-body

diagrams by taking moments about pins A and B. Summing moments about

A yields

EM
A = 0 = mlga1 cos 01 + mlxlal sin 81 - mlylal cos el - J101

- BXbl sin 01 + -Ybl cos 01

Substitute for BX and By from equations (1) and (2) to get

MA = r = mlgal cos el + mlxlal sin 01 - mlylal cos 01 - J101

- b1D2 sin 81 + b  sin 01 m2x2 - bl cos 01 m2y2

+ b1 cos 01 (- L2 + m2g)
	

(3)

Summing moments about point B yields

ZM13 0 = m2ga2 cos 82 + m2z2a2 in 92 - m2y2a2 cos 82 - L 2 a 2 cos 02

- D 2 a 2 sin 0
2 - 12 82 + M2	 (4}
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It is desirable to change the cartesian (CG) coordinates to the

generalized coordinates of Al and 82 . To accomplish ;.his the

following relations are used:

x1 a1 cos Al x2 = b1 cos 81 + a2 cos 82

y1 = a1 sin Al Y2 = b1 sin 81 + a2 sin 82

Differentiating with respect to time yields

x1 = - a181 sin 81 	x2 = - b161 sin 81 - a262 sin 82

Y1 = a161 cos 81	 j2 = b161 cos Al + a262 cos 82

x1 = - a181 sin Al	 x2 - b 1 
a 
1 

sin 61 - b1612 cos 61

alg12 cos 61	 - 0 sin 82 - a2d22 cos 92

Y1 = alA1 cos 61	 Y2 = b141 cos Al - b1612 sin Al

- a1812 sin 81	 + a242 cos 82 - '2622 sin 82

(5)

Substitute the appropriate expressions into equation 'jj to get

",gal cos 81 + mla1 sin 61 C a191 sin 81 - a16i2 cos 61)

Mill,^'1
cos8 ( 8 cose

1 al. 8 1 
2 sin 8 

1J
) -J6

1 Cpl 1	 1 1

f.
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- b1D2 sin 0  + b1m2 sin 01 (- b1 01 sin 01 - b1812 cos 01

- a202 sin 02 - 
a2622 cos 0

2
)
 - b1m2 cos 81 (b101 cos 81

- b1012 
sin 81 + 

a202 cos 8
2 - a2022 sin 02)

+ b1 cos 01 (- L2 + m2g) = 0

Assume small displacements so that

sin 0- 8 and cos 8 ft 1

Higher order and nonlinear terms such as 912 , 8182, and 922 are

neglected; that is, products of the angles and products of their

derivatives. Thus,

- mlgal + mlal (a1e1) + J181 + b1D281 + blm2 (b181 + a282)

- b1 (- L2 + m2g) = 0

Collecting terms,

(M2 a12 + m2b12 
+ J1) 

81 + b1D281 + a2b1m282 + b 1 L 2 = mlgal + m2gbl

(6)

Substitute expressions (5) into equation (4) to get

m2ga2 cos 82 + m2a2 sin 82 C bls1 sin 81 - blel2 cos 81 - s,282 sin 82

- a2e22 
c os 92 ) - m2a2 cos 82 

(b181 cos 8
1 - 

b1812 
sin 61
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2
+ a^,02 cos 02 - a202 sin 02 1 - L2a2 cos 02 - D2a2 sin 92

-1262+M2=0

Again, assume small displacements (sin 0 ft 0 and cos 0 - 1) and

neglect nonlinear termo. There results

- m2ga2 + m2a2 
(b1^1 + a2d2) + L

2a2 + D2a202 + J262 - t12 = 0

Rearranging,

m2a2b191 + (m2a22 + J2) 62 + D2a202 + Y-2 - M2 = m2ga2 	 (7)

It is now desirable to consider the aerodynamic forces and moment

existing on the decelerator. The reader should note that the subscript

2 associated with the decelerator's aerodynamics will be deleted during

the remainder of the discussion.

The angle of attack of the decelerator ' s center of gravity is

defined as follows:

a=02+02
i

where E2 represents the angle between the decelera-;or axis and the

X-axis and 02 represents the induced angle of attack resulting
i

form vertical velocity of the CG of the decelerator.

Note: The vertical velocity of the decelerator CG cons ists of

two components, vl and v2, resulting from rotation.
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about pin A and B, respectively (see Figure 6). The

component v2 is the velocity of the decelerator CG with

respect to pin B.

V —^
A

v1

— X
OD

B '^	 v2

CG

Figure 6.- Induced velocities.

Since small angles of attack are being considered, it follows that

v +v
9 

- ^v ,v - 1 2
2i	 Vo V o	 a^

It cat, be seen from Figure 3 that

vl
 = b1e1 and v2 = a2e2

Thus,

A - b161 

a2e2+ 
2i V	 V o

The angle of attack of the decelerator is then given by

cc =92 +

bv91

+ a182	 (8)
.	 m

Also,

a- 92+by1+ y82
00	 V.
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For this analysis the aerodynamic drag force (D) is considered to be

independent of angle of attack since D a2 . The lift force (L)

can be expressed as

dL	 aLL =5a+tea

In keeping with the assumptions of linearization, higher-order

terms are not considered. Substituting a and & into the

expression for lift force,

L _ 6L @ + bl 6L 6 + a2 aL 6 + 6L 	 + b1 aL 9 + a2 aL e
Ni 2 V^ c^a 1 V raa 2 da 2 V^ as 1 V^ 3d-2

(9)
The aerodynamic pitching moment can be expressed as

A4= a+JM-i+^62+ M @2
as	 2	 a@2

Substituting for m and a,

c3bi	
bl aM
	 a2 aM	 aM	 bl aM "	 a2 aM _'M= 	@2+V.	 @1+y^	 @2+	

@2 Vas
@1+

Vo 66. @2+66 @2
2
(10)

where

aM aM

a 2

Substitute the expression for lift force into equation (6).



19

b 2<< a ` +mb '+J 11	 +b D8 +abm© +b dL 0 + 1 3L 8
;ml 1	 2 1	 1 J 1	 1 1	 2 1 2 2	 1 as 2 V cTa 1

2a2bl dL
	 dL	

bl dL

	

.•	 a2b1 LL"

+ V. 7Q-82 + bl ^ $2 + o0 ad: 91 + V doc 82 ^ mlgal

+ m2gbl

Collecting terms,

b	
l	

b 2

(71a12 + m
2b12 + J1 + 

voo dar / 81 + vo	 gl + bl D81 + ra2blm2

a2b1LL} '	 ( a2bl dL	 aL 
l	

IL
+ V 3a1 9

2 + ` V TM- + bl da ! e2 + bl 7M 82 m1gal

+ m2gbl
	

(11)

Substitute the expressions for lift force and pitching moment into

equation (7).

a2bl
"' 2b1@1 + (m2a22 + J2 ) e2 + Da282 + a2 c^a e2 + V 3a e2l

a22 dLdL	 a2b1 dL	 a22 LL • _ aM

+ Voo	 82 + a2 doc 92 + V da. `1 + V"" doc e2 3a e2

bibm - a 2 M ' 6M  _b1dMe _a2dM --
^dm 1-Vera 2-dcc 2 	 , da 1 A da 2

cTq 82 = m2ga2

Collecting terms,
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a2b1 aL _ b  aM^	 (a2 b1 aL - b  aMl
	 (m2a2

2

(a2blm2 + V ad	 ad 81 + V da	 T 61
+ 	+ J2

00

2	 2
a2 aL _ a2aMl

	
a2 aL	 aL _ a2 6M _ am _ aM

+ V. as voo as / 62 + .V^ 7Q_ + a2 6	 ^ 3a as Tq e2

aL6Ml
+ (a2D + a2 7a,_ 7 82 = m2ga2

Thus it is seen that equations (11) and (12) represent a system of

second order, nonhomogeneous, linear differential equations with

constant coefficients.

Before proceeding to the discussion of the possible solutions

to these equations, a few comments are necessary concerning the aero-

dynamic forces and moment assumed to act on the decelerator. As

seen in equations (9) and (10) not all of the factors influencing

lift force and pitching moment are taken into account. It is

believed, however, that the exclusion of these terms will not have

an appreciable effect on the results of this analysis. It should be

emphasized that the equations of motion apply for any decelerator

shape as long as the shape is a body of revolution. One such body of

revolution often considered in decelerator problems is the conical

shape (this shape forms the basis for most decelerator designs).

Experimental data obtained on a series of cone bodies at free-stream

conditions (reference 6) are shown in Figure 7 and illustrate the

linear nature of lift force and pitching moment with angle of attack;

also, drag force is approximately constant at angles of attack near

(12)
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attack for family of cone models; M = 4.63, Re = M x loo6b.
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zero since D a2 . Such conditions would exist on a towed conical

decelerator when the wake of the forebody has essentially disappeared,

corresponding to a very large tow cable length (b1 ). The question

arises, however, of how the aerodynamic forces and moment vary with

angle of attack if the cone is subjected to the nonuniform flow field

associated with the wake. The answer to this question appears

formidable at the present time because of the dependence of the aero-

dynamics on the size of the cone (with respect to the forebody),

the location of the cone in the wake, forebody geometry, free-stream

Mach number and Reynolds number, boundary-layer buildup and separation

effects on the tow cable, and on cone semiapex angle. The possibility

exists that to adequately describe the aerodynamics of the cone in a

nonuniform flow field, it may be necessary to retain higher order

terms, thus defeating the simplicity of the approach of the present

analysis. For these reasons, free-stream flow conditions are assumed

to exist. The reader should note that the following analysis, though

concerned principally with the conical shaped decelerator, could be

applied equally well to any shape body for which -.he geometric and

aerodynamic parameters are known.

Two-Body Problem

To evaluate the system of second-order differential equations,

the terms involving 
as 

and A	
yl

aM are assumed to be	 BM
negligible; this has been
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shown in the stability investigation of reference 7 to be a justifiable

assumption at high Mach numbers. Equations (11) and (12) therefore

reduce to

b
2

(Mi a, 2
 + m2b + 1

1
) 81 + V. 61 + b

1 D81 + (a2blm2) 82

	

+ (a2bl aL 6 + b aL 8	 t^ gal + m2 	 (13)`` V. aa) 2	 1 3a 2 - 1 	 2 1

and	
2

	

(— aL _ bl 3Ml	 (	 2	 a2 ^L
(a2blm2 } 81 + V^ cTa V c^a, el + 1m2a2 + J2) 82 +	 da

	

- V.- as - q g2 + i a2D + a2 ^ - rm) 82 = m2ga2 	 (1!E)

Characteristic equation.- To arrive at a characteristic equation

representing the system described by equations (13) and (14) it is

beneficial to write these equations as

A61 +B61 +C 81 +D82 +E 62+F82=G

(15)

H41 +181 +J 42 +K62 +L A2 =M

where

A = ml.al2 + m2b12 
+ J1

B _ b1 6L
V„ da

C=b1D

D - a2blm2

a2b1 aL
E _ -.7-

0 3a

F = b aLi3—M

G = m
1

gs'1 + m2gr1
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2
_ a2 aL _ a2 6M _ 6M

K T,,— c^a VQ, as 71-

	

(aL	 ) 6M=a	 +
T -Ta-

M = -,a2ga2

Ii = a 2 b 
1 M 2

a 2 b 1 6L _ bl 6M
V-
00 

^a V cTa

J = m2a22 + J2

I _	 L

Consider the homogeneous case.

Ae1 +B 81 +C e1 +D62 +E 62 +F 82 =0

H61 +I 61 +J 62+K62+L02=0

Assume solutions of the form

91 - e1 eat and 82 = g2 eAt

so that

81 = 61 e 	 = T 92 
eAt

81_ ^281ext	 82_^2a2eXt

Substitute and divide by e 
	

to get

A?2 91 +B? 91 +C 01 +DX2 92 +Ea 92 +F 92 =0

(16)

HT2 91 +I X91 +Jx2 92 +KT92 +L 92 =0

Collecting terms,
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(A-N2 + BT + C) Al + ( DT2 + ET + F) 02 = 0

(H?2 + IT) 01 + (J -X2 + KT + L) 02 = 0

These are algebraic, homogeneous, linear equations for the constants

N	 N
81 and 92 . They always have at least the trivial soltuion
N N
01 = 02 = 0, which corresponds to 9 1 = 02 = 0. These equations have

a nontrivial solution precisely when the determinant of the

coefficients is zero.

(AN2 + BA + C)

	

(DA2 + EA + F)

(HT2 + I-A )
	

(Ja2+n+L) = 0

Expanding this determinant and collecting terms yields the

characteristic equation,

(AJ - HD) T4 + (AK + BJ - HE - ID) X3 + (AL + BK +CJ - HF - IE) A2

+ (BL+CK - IF) X+CL =0
	

(17)

Numerical constants could be introduced and exact roots found from

this equation, but for the purpose of defining stability it is

necessary to look only at the signs which these constants carry.

Stability criteria.- The necessary and sufficient condition

for the stability of the dynamic system represented by t..e quartic,
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A' A4 +B' X3 +C' ?2 +D' a+E' =0

is that

All B', C', D', and E' > J

and

22--
R = B'C'D' - B' 2E

I
 - A'D' > 0

0

This latter grouping of constants is known as Routh's discriminant.

It is first necessary to evaluate the coefficients of the quartic,

equation (17), and to see under what conditions they might change

signs.

A' = AJ - HD = (mla12 + m2b12 + 'T (m2a,'2 + J2) a2blmL \-2"1n2/

m1.m2al2 + m2a22J1 + J2 (mlaJ2 + m2b12 + Jl)

Thus, this coefficient is positive for all combinations of masses,

mass moments of inertia, tow line lengths, and center of gravity

locations.

2

2	 2	 a2 aL a2 aid aMB' a AK + BJ - HE - ID = (mla1 + m2bl + Jl) 	 " —q

2bl aL
	 2	 a2b1 aLl _(&2%b1 aL  b1 aM

+0e^m2a2 + J - a2blm2/ 
	oo a2blm2

Expanding,
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III	 (mlal 2s,,2 + J1a22 + J2b12 J V. 7 rrr^al2a2 + J1a2/

aM(m:,al2  + m2b12 
t Jl/ rq

Since for bodies of revolution (such as the cone) dB and 
q 

are

usually negative, B' is definitely positive when 7- > 0. When

B' = 0, the lift-curve slope is of negative value and is given by

the expression

1Ma12a22 + J
1a2

2 + J2b12
1 F _ 

(mlal2a2 
+ J1a2) IM

+V^(mlal2 +m2b12+J1)
	

(18)

Also,

C' =AL+BK+,CJ - ?B: - IE _ (m1a1
2 +m2b12 +J_1 a2(IL

22	
/ 

b  aL a2 aL a2 aM aM	 2	 2 aL+ —	
3	

+bDma +J -ab
a a a - V 3a -	 1 2 2	 2J 2 1 m2 3aV^ 3 

a2bl aZ a2b1 aL bl aM
V 3a	

_
V. M V: 3m)

Expanding this expression and at the same time noting that 6N_ 6L+ D

(see subsequent discussion on page 42), it can be shown that

b 2C'	 2g aN+ ab
2D+a^J aN +bD^	 2+J	 l aLaM

= D°ls1 2 3a m2 2 1	 2 1 3E 1 1m2a2 	 2) - V. 3a dq

_

(mjal2 + m
2b12 + Jl/
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As seen in Figure 7 for conical bodies, 
7- 

is always greater than

zero. Thus, when? 0, this coefficient is definitely positive.

tc".en a < 0, C' is probably positive since the negative term

involving M would be outweighted by the otaer positive terms.

Nov,

D ` = HL + CK - IF = b1
2 aL a aL + D _ aM + b a22 aL

V 7M 2(^a )	 1

a2 aM aM 	aL a2b1 aL bl aM^^_^_ bl^  

which expands to give

D	 (a2bl2	 2b) D aL _ a'2blD aM _ bD aM=+ a2 1 V
- y- V T 1 r

When the lift-curve slope is greater than zero, the coefficient D'

is definitely greater than zero. When D' = 0, the lift-curve slope

is of negative value and is expressed as

	

aL_	 1	 am	 ^	 am_ a
2 + bl ^ + a2 a2 + bl 3q	 (19)

Lastly,

E' = CL = b1D[a2 ( 6L + D) - 7_]

= r D (a2 
aN_aM)

 TM_ cTa.

'thus, this coefficient is always positive.
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It. has been mentioned that it is a necessary condition for the

coefficients of the s tability quartic to be positive valued to ensure

a stable dynamical system. If any of the coefficients, say B' and/or

D', were to become negative, then the dynamical system is unques-

tionably unstable. This has been shown to be the case when the lift-

curve slope has a negative value less than that expressed by equations

(18) and (19). Some support for this argument in the form of

experimental data has been published in reference 1. These data

indicate that towed cones with semiapex angles up to 400 are definitely

stable, 45  cones being marginly stable, and cones with larger semi-

apex angles being unstable. The major change in any of the aerodynamic

parameters between a 40° cone and a 50° cone is the change in sign

of the lift curve slope (see Figure 7), 
61 

being > 0 for the 400

cone and 
t 

being < 0 for the 500 cone.

To show definitely that the quartic, expressed in equation (17),

represents a stable system it is necessary to analyze Routh's

discriminant,

R  _ B'C'D' - 
B' 2E' - 

A'D'2

However, manipulation of the coefficients to provide a general

expression for Routh's discriminant without making any simplying

assumptions or without substitution of numerical values is extremely

tedious. Though evaluation of this discriminant is left to future

investigations, it is believed that Routh's discriminant will be

greater than zero if the lift-curve slope is greater than zero.

a	 ^
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Descartes' Rule of Signs.- To determine the rnamber of real roots

existing for the quartic, equation (17), Descartes' Rule of Signs is

used and is stated as follows:

A polynomial equation, f(x) = 0, with real coefficients and
arranged in descending powers of x, can have no more positive
real rocts than there are variations of sign between successive
terms in f(x), and can have no more negative real roots than
there are variations of sign between successive terms in f(-x).

(reference 8)

As has been shown, the quartic of equation (17) may be written as

A 1 A4 + B'A3 + C fW
2 + DIA + E' = 0	 (20)

where A', B', C', D', and E' are real coefficients and are equal

to those constants shown in equation (17). If Z0, it has been

shown that all the coefficients in equation (20) are positive,

A',B',C',D',E' > 0

Applying Descartes' Rule of Signs it is seen that for f(a) all the

coefficients are positive so that there is no variation of sign. Thus,

there can be no positive real roots. For f(-A), equation (20) becomes

A'A+ -B'T3 +C'A2 -D I X+E' =0

showing that there are four (4) variations of sign. Therefore, there

can be up to four negative real roots. Since there are no positive real

roots, there will be either zero, two, or four negative real roots.

If	 < 0, it has been shown previously that A',C',E' > 0 and

B' and D' can be less than zero. Letting B' _ - B11 and
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D' 	 in equation (20),

A'A4 - 
B'A3 + C'A2 - D"A + E' = 0	 (21)

Applying Descartes' Rule of Signs it is seen that for f(A) there

are four (4) variations of sign indicating that the quartic can have

no more tha.- four positive real roots. For f(-A), equation (21)

becomes

A' A4 + B' ' A3 + C' A2 + D"A + E' = 0

showing that there are no variation of sign. Therefore, there can

be no negative real roots. Thus, if any real roots er..ist, they will

be positive indicating instability.

Review of Solutions to Second-Order Differeiitial

Equations and Stability Criteria

It is now desirable to consider two particular cases of single

degree of freedom. These two special cases are (1) motion of the

decelerator about its nose (pin B) with 8 1 = Oo, and (2) motion of

the rod and decelerator about the pivot point (pin A) with 8 2 = 81.

Since both of these special cases are represented by a second-order

differential equation, it may be beneficial for the reader to review

the types of transient motions possible with this type of equation.

The equivalent spring-mass-dashpot dynamical system is described

by the equation of motion,

m6+c 6+k6 =0	 (22)
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the roots of which are given by

c	 c2 k	
rlt	 r2 

rl 2 = -	 ±	
2 -
	 where B = Al e	 + A2 e

'	 4m

The limiting case between oscillatory and nonoscillatory motions is

when the radical equals zero. The value of damping for this condition

is called critical damping, ccr'

ccr2 = 4 mk or ccr = 2 Va

and since

(n = m , then 
c
cr - 2m' n

The dimensionless ratio cic cr is called the damping factor, g.

ccc _ c	 actual damping

c	 n _ criti cal dampingcr 2 YZ ^ 

Using these definitions, the original equation (22) can be written

in the form

6+29(0n6+ n20=0 	 (23)

where the root:; are now given by

rl^ 2 = -I CO ± n

It is seen that the roots are:

=
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(a) real if g > 1; the motion is overdamped and the transient

solution is defined by two exponential terms

(b) equal if g = 1; the actual damping is equal to the critical

damping

(c) complex if g < 1; the motion is underdamped and the transient

solution is oscillatory

(d) imaginary if g = 0; oscillates at natural frequency with no

damping.

As a consequence, g = 1 separates the regions of motion (see Figure 8).

UNSTABLE
	

cn 2	 STABLE

QUADRANT
	

n	 QUADRANT

g<1
divergent oscillation

V e

1g >1

divergence	 \

g<1
damped oscillation

y^ g > 1

convergence

2g n
Figure 8.- Regions of motion.

This figure also illustrates one of the basic characteristics of a

dynamical system: the motion can be classed as stable provided the

coefficients of the governing equation of motion (23) are greater than
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zero. Thus,

2t u)	 c>0 and cut=k>0n m	 n m

This simply states that the damp-'.ng and spring constants have to be

positive valued to insure a stable system. For a more detailed review

of the transient solutions of second-order differential equations

and the resulting stability criteria, the reader is referred to

references 5 and 8.

Now that the types of transient motions possible for a dynamical

system have been reviewed, the special case of the motion of the

decelerator about its nose (pin B) will be considered.

Motion of Decelerator About Its Nose - Special Case No. 1

Using equation (14) and letting 61 = 1 61 = 0,

the equation of motion of the decelerator about

— —'
its nose (pin B) car. be shown to be	

B

2

(m
2

	

	 a2 aL a2 aM aM	 aL	 11 aM
2 a 2 + 12) 62 + V^ as _ V. da -	 62 + a2 (7M + D

J -
	 82

m2ga2

(24)

Looking first at the nonhomogeneous condition, from equation (24) it

is seen that

( 
2 	 aL a2aM aM	 aL	 aM

m2a2 +121e2p
+(a,22

V as _ V: 33.- aq 62p + [8,2 ^M + D -	
62p

m2ga2
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Assume a solution to match the right side of this equation.

e2 = constant

p

Therefore,

^2 = 9
2 = 0

p	 p

and

(
6L	 ah:

a2^ + D - M 82p = m2ga2

The particular solution for equation (2 = ' . ), giving the equilibrium

position of the cone, is thus

9 _
	 L2g 2	

M1
	 (25)2

p Cat 3a + D ^av J

The homogeneous condition of equation (24) is seen to be

2

C
2

	

	 1	 s'2 6L a2 aM aM	 (6L	 6Mm2a2 + J2 A2 +( ^ ra - 7- - ^ 62 + a2 `^ + D - 	62 = 0

(26)

This is in the same form as equations (22) and (23) in the review,

there	
(^L	 ) aM

f1k	 a2 ^ + D -
can 

	 ma +Jt

	

2 2	 2
and

2
a2 aL__ a2 aM aM

V. ;-m3a Tq
9 = 2	 = 2

^

2 	 aM
m282 + J2) 

[a2 
cra + D - as
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As pointed out in the review of solutions to second-order differential

equations, the types of roots depend on the value of the damping factor,

g. The transient (or complementary) solutions associated with the

homogeneous equation, (26), for various values of damping factor are

derived in the following discussion and are added to the particular

solution, equation (25), to obtain the complete solution of equation

(24) .

> l.- The transient solution of equation (26) for f > 1 is

rt	 rt
82 =Ae 1 +Be2

where

rl - awn + n R-1 and r2=- gwn - n 12 -1

The transient solution can be written as

62 = Aex
-p	

n +n 1)t+Bexp n- n F __l)t

or

92 _ 
e- 

5 rt I A expV - 1 n	

\\

t J + B exp I - 197--1 wnt I (27)

Combining equations (25) and (27), the complete solution of equation

(24) for 9 > 1 is seen to be

92 _ e-ant A exp C ^2 - 1 nt) + B exp C- ^ 2 - 1 nt) + 82
P

(28)

where the constants A and B are determined by initial conditions.

The motion of 82 as a function of the dimensionless parameter

cunt is shown in Figure 9 for several values of damping factor. As

would be expected, the motion is an exponential function of time, the
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more sluggish motion occuring for the larger damping factor. To

obtain the so!ution for I = 1 it is necessary to again utilize

equation (26).

J.Z- 1.- The roots of the characteristic equation are

r  = r2 = -wn

so that the solution is

-wt	 -wt
	9 2 = A e n + Bt e n	 (29)

Combining this with equation (25), the complete solution of equation

(24) for g = 1 is

-w t

	

92 = (A 4 Bt) e n + 9
2	(30)
p

Note that 82 -+82 as t -+-.  This is the expression used to
p

illustrate the motion of A2 with nt in Figure 9 for g = 1.

1.- The type of dynamical motion occuring more often than

not in aerodynamic st&aility problems is that which is oscillatory

in natare, having a value of actual damping less than the critical

damping (g < 1). In this case the roots of the characteristic

equation are complex and are written as

r1 =-gwn
+in 1- E and r2 =-1 n- in 1-

The solution of the homogeneous equation (26) is thus,

92 = e-twnt 
(A cos F, ^2 

co t + B sin 1 - E2 
nt/ 

(31)

^ -where wd n 1 _ 2̂ is the damped frequency of the motion.
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Figure 9.- Effect of damping factor on aperiodic motion.

Equations (28) and (30)
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Figure 10.- Effect of damping factor on oscillatory motion.

Equation (32)
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Combining this transient solution with the particular solution,

equation (25), yields the complete solution of equation (24) for

g<1.

62 - e-
twnt 

{A cos 1 - g2 nt + Bs in 1 - t2 ntl + ^2
\\	 111111	 p

(32)

The motion resulting from this expression is shown in Figure 10 for

several values of damping factor. The largest value of 5 results in

the motion being damped at the least value of cunt; the smaller the

damping factor the larger the amplitude at any given time and the

longer it takes the motion to damp. This trend is more easily noted

by examining the time to damp to one-half amplitude.

Time to damp to one-half amplitude.- Using the exponential part

of a uation (32), the exponential envelope of the oscillatory motions

seen in Figure 10 is obtained as

-^ n
82 = C e	

t

where C is a constant. Letting 
e2 

correspond to a time t l , and

82 ' correspond to a time t2, it is desirable to determine the time

necessary to damp to a condition where

82
28' _ r .

Thus,

g2f l e-t nt2	 -j(On`t2-ti)

 - wltle
e
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Define At = t 2 - t  as the time to damp from an amplitude of @ 2 to

an amplitude of ©2'.

In 2 = _g can At

and

	

At = In 1/2 = - In 2 = In 2	 (33)

-t n	 -t n	 gwn

Recalling that	 2

a2 aL _ a'2 aM _ aM
c m ^a m ^a cTq

n 2m	
2 (m2a22 J2

the time to damp to one-half amplitude then becomes

2(m2a22 + J2^ In 2
At =	 (3^ )2 

a2 aL_ a2 aM aM_
19:_ raa	 ^ aq

Spring constant.- It has been shown that P criterion for

stability is that the spring constant be greater than zero. From

the governing equation of motion for the decelerator rotating about

its nose, equation (24 ), the spring constant is seen to be

k=a2 ( +D) -

This expression can be rewritten as

k = c.S c	
(CL + C

D
)
 - Cm ,

	
(35)

a	 aJ

--MW



This can be simplified by considering the lift force in terms of

normal and axial forces.

L =N cos a - Asina

6L 6N	 6A=	 Cosa - N sin g -	 sin a - Acosm

Recalling that drag was assumed to be constant with angle of attack

(D ar,2),and for small angles drag force is equivalent to axial force,

then 6A = 0. The above expression is evaluated at m = 0° to get

6L 6N
_	 - A

or

aCL 6C 

- Na -CA

where CA is equivalent to C D a+ a = 0°. Substituting this into

equation (35), the spring constant is found to be

_ a
k = ci.S c c2 CN - Cm	 (36)

a	 a

To obtain some feel for the effects of the geometric and aero-

dynamic parameters on the spring constant, equation (36) will be

examined considering a conical shaped & ,-!tlerator. It is desirable

to determine the difference in the spring constant for two different

sizes of cone, the core semiapex angle being a constant. It is noted

that, since the semiapex angle is the same for the two cones, then
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the aerodynamic characteristics, CN and C m , are the same. Also,
CL
	 a

the value of a,/c would be the same.

s	 l
	 s = small

I = large

Writing the spring constant for both sizes of cone,

a2
ks 

qs 
Ss cs c 

Ca -
 
Coc

and

_ a

2
k =gISIcl 	

Ca - Car
 )

Thus,

	

k	 k

	

s	 t

qs Ss cs q, Sl cl

or

k = q  S  
cl k

l	 qs Ss es s

	 (37)

Therefore, knowing the aerodynamic spring constant of a cone having a

given size and semiapex angle, the spring constant for a cone of

corresponding semiapex angle but different diameter and/or dynamic

pressure can be determined. For example, consider the larger cone

with a diameter twice that of the small cone (i.e. e t = -as).

Assuming the same dynamic pressure (q t = qs), it is seen that
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k =SZctk
t	 Ss Zs s

where
— 2

n c
S	 s
S = T

and	 — 2
it c 	 _ 2

St=-4=ncs

Therefore,

k  = 8 
k 

Thus, doubling the cone diameter for a constant dynamic pressure

increases the aerodynamic spring constant by a factor of eight (8).

If a particular size cone were considered in equation (37), it is

seen that doubling the dynamic pressure doubles the aerodynamic

spring constant. This is important since the wake has a lower

dynamic pressure than the freestream. If the cone aerodynamics are

assumed unchanged from freestream to wake, then equation (37)

predicts a lower spring constant in the wake than in freestream.

Another factor to be considered concerning the spring constant is

that it will remain the same magnitude regardless of center of

gravity location. This can be seen from equation (36), where C
ma

is the aerodynamic pitching moment referenced to the decelerator

center of gravity. To transfer this pitching moment to the nose of

the decelerator (pin B) it is seen that
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(CmacCCG a	 x	 B	 -x

N - CN +
a B 	 aCG

where x is the transfer distance. In the nomenclature of the

present investigation this is equivalent to a 2 . Thus,

Ca Cad a2

(CNCN c
°G B	 °t CG

or

a2

Ca, B C a, CG c CNa

From equation (36) the spring constant is therefore

k= - ci.SeC

ac, B

	 (38)

It is obvious from this expression that for any body of revolution,

Cm	will be negative valued so that the spring constant will
a, B

always have a positive value.

Natural atgidar frequency.- From equation (26) the natural

angular frequency is expressed as

a
^aL	 ) aM	 S c ? C - C

= 82 cSL + D ^a -	 c Na a,
n	 m2a2P. + J2'	 m2a2 + J2
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Assuming tLe decelerator to be a homogeneous solid cone, the terms

m,2a22 + J2 can be shown to be

2

m2a22 + J2 = 
m2 r2 15 a

2
 + 20	 (39)

r

(see reference 9)

Rewriting the expression for the natural angular frequency,

a

C S c ? CN - Cm

	

W _	
c	 a	 a	

(40)
n

a2'
m2r2 (T36

 r
^ + 20

It can be seen from this expression that increasing the distance from

the center of gravity to the apex of the cone (i.e. increasing a2)

results in corresponding decreases in the natural angular frequency.

Since a Aomogeneous distribution of mass for the cone has been

assumed, a center of gravity shift would necessitate adding mass to

the system. Equation (40) shows that increasing the mass twofold

	

would cause a decrease in n	 2by a factor of	 J2 .

It has been shown that if the diameter of the cone is doubled,

the aerodynamic spring constant increased by a factor of 8. The effect

of changing the cone diameter on the natural angular frequency will

now be investigated.

Let

	

r6k 	 kl

n =
	

and n

	

s 	
Z= IZ

where
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s - small cone

Z = large cone

Noting that a21r will be the same for any diameter of a cone having

the same semiapex angle, the i,.ertia terms can be written as

2

T 2 	 . a2	 3
"s = msrs ^15 ^ + 20

2 16 a2 
2 

3
I  = m lr1 15 r2 + 20

Assume the cor.a diameter to be doubled so that r  = 2 r s ; also

assume mZ - 2 ms . Thus,

a
2

	

I Z 2s l4rs^ , 
2 +	 8 Is
r

Therefore,

8 k
_	 s

wn t GIs ins

It is seen that, if the mass of the cone is assume? to double along

with the diameter of the cone, then there is no change in the natural

angular frequency. On the other hand, if the mass did not double

but was assumed to remain constant, then

n - n
t	 s

Another cone proper-:y, which might be considered along with the

mass, is volume. Increasing cone diameter necessarily increases cone

volume, so that it might be useful to consider two cones having the

same density (p).
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Density is expressed as

ms m 
P V
	 V
s	 Z

where cone volume, V, is given by 
3 

n r2h. Writing

1
V Z = 3 n r 2Z hZ

and considering the diameter and height of the cone to be doubled, it

is seen that

r Z = 2 rs and h Z = 2 hs .

Thus,

V Z= 
8 

n 
r2 

h = 8 V
s	 s	 s .

Because of the condition of constant density, the mass of the larger

cone is seen to be

ml =8 ms .

This leads to I  = 32 I s , so that the natural angular frequency of

the larger cone is

fIZk,8 ks_ 1
Wn- 	 ^ 2 wns

Stability boundary.- A final comment to be made about the motion

of the decelerator about its nose concerns the stability. It bzs

been stated that a criterion for stability is that the damping be
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positive values. From the governing equation of motion, equation (24),

It is seen that to insure stability it is necessary that

2
a2 aL a2 aM 6M 

0

As mentioned previously for conical decelerator shapes, lift-curve

slope is the aerodynamic parameter effected most by changing cone

semiapex angle (see Figure 7) so that the boundary between stability

and instability is given by

	

3L 1 M + ^ aM	
(41)

2

Motion of Rod and Decelerator About Pivot Point -

Special Case No. 2

For this particular case the 	 A
8

motion of the rod and decelerator about
B

the pivot point (pin A) is considered,

the rod and decelerator being rigidly attached at B. To obtain the

equation of motion of 8 it is beneficial to refer back to the

coordinate system shown in Figure 3 and to set up a free-body

diagram as follows:



X

m2y2

I

^L iM

--^ D

Y
	 ^1_1_rJ e
	

1
m2g

Figure 11.- Free body aiagram of rod and decelerator.

The symbol J repreeerts the sum of the mass moments of inertia of the

rod and decelerator about their -respective centers of gravity. In

summing the moments about A, the same procedure used in section 2,

page 13, is utilized here. That is, the moments are taken, the

cartesian coordinates are changed to generalized coora;nates, and the

resulting equation is linearized. This process yields the second-order

di"ferential equation,

[Ml al 2 + M2 (b 1 + a 2) 2 + Jj I + D (b, + a 2) 8 + !, (b 1 + a2) - M°mlgal

+ m2g rb1 + a2)
	 (42)

The angle of attack of the decelerator center of gravity is defined gs

a- 8+8i
where the induced angle, 8io can be shown to be

50
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8 
i 

=lhl 
V

+a2 8

x

Thus,

b + a .
CL 8+ 1V 2 8

V.

Substituting a and o. into the expressions for the aerodynamic

lift and pitching moment yields results similar to equations (9) and

(10).

aL	 3L lbl + a2)	 LL
	

(bl + 
a2)

FM rM as	 a«

M=aMe+lr±a21
TM-

V

F
IM  B+aMe+ (bl+a2) 6M6
a	 V.

+i3Mg

M as 66. 6 6
(45)

where

c3M aM

3e = 3q

Substituting these expressions into equation (42) and collecting terms

yields the following equation of motion for the one degree of freedom

system:

2
m1al2 

+ m2 (b + a2)2 + J + (̀ bl—^_ 6L_ bl + a2 aM 8
``	

°D	 aa.	 V.-as
2

+.(bi + a2 aL + rb + a aL _ bl 
+ a2) aM aM

64L V.	 ^ ` 1 2) as
	 a  	 1 9

(43)

+Cbl + a2) 
CD +

	 6M g = Olgal + mzg ^bl + g2)	 (46)l	 /	 J	 `	 J



t
J G.

k. previously, terms involving LL and M are neglected and this
a&	 rid.

equation reduces to

2

1
a 2 +m b +a 2+J A + [(

b1+a2) 6L (b1+a2) a? 
IM 

eml 1	 2 (1 2)	 a	 da	 OU	 r 7q

+ [(b, + a2) (D + 7IL) IM
 
3_.] 6 = mlgal + m2g (bl + a2)	 ( 47)

The particular solution is found from this equation to be

migal + m2g ( b1 + a2
8p =

[(b + awl	

\	 (48)

This can be simplified somewhat by recalling that

K=^- A at a=0°

Thus,

_ mlgal + m2g (bl + a2)	 ^(49))
P

8	 N	 M

	

(b1 + a2)	
_

3a

The homogeneous equation is given by

	

2	 (
2	 2	 1.b1 + a	 aL lbl + a2) aM _ aM

	

IM,ai + m2 (b1 + a2)	 L+ J g + —^ 2 /
 3a - V.	 d  Fqq 9

+ Cbl +e21 
C
D+r)-] 8=0) \	 !	 (5C)

which has the same form as equations (22) and (23), where



2 mlal2 + m2(b1 + a2)2 1 ] Zn 2

At _ —	 (51)

(bl + a2)
2
 aL (bl + a2) aM aM

V	 3a - V ,	 Cn ' coq

Spring constant.- From equation (50) the spring constant can be

written as

k _ (b,+ a2) (D + 
MI

1 M

Mondimensionalizing this expression,

k=ci.Sc (blca2 CD +CL l- Cm
CL) C

c3C	 6C..
where CL =	 and Cm = ' . This can be written as

CL	 a

k = c^S c[L1 ± 
a2 

CD - Cm 	( 52)
c	 a	 a

The spring constant is seen to be positive valued at all times, the

magnitude of which remains invariant with center of gravity location.

Similar to the argument presented in describing the motion of the

decelerator about its nose, equation (38), the spring constant in the

above expression can be written as

k = - %S c Cm	 (53)
m,A

where Cm	is the aerodynamic pitching moment referenced to the
a.,A

point of rotation, pin A. The magnitude of Cm 	 (and thus the
m,A
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springy; constant) in this expression is larger than C 	 in equation
b	 cL, B

(38) by the amount - 1 CN .
c	 a,

To evaluate the spring constant for two conical shaped decelera-

tors having the same semiapex angle, the spring constant is written as

follows:

\bl s + a2l	 s)ks = gsSscs	
cs	 C N - Cma]

— F
Cl2J 2

k = 4 ZS jc j ^ ---^-'__' C a - ma

where C 	 and Cm are the same for the two cones. Assume
M	 a

b  + a2
s	 s
cs

is equivalent to

b + 
a22t

ca

so that

k = 
gt s t ci	

(54)
t gssrs

which is the same expression obtained in equation (37). Considering

the larger cone to have twice the diameter of the small cone, the

comments made concerning equation (37) are appropriate here. However,

there is a condition placed on the length of the rod by the expression
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b l + a2 	b  + a2
s	 s	 t	 l

cs	 cl

Since

a 2 s all

c 	 c 

then

bls bll

c 
	 c Z

Therefore, when the diameter of the cone is doubled (c l = 2 cs),

the length of the rod for the larger cone must be twice that for the

smaller conerb = 2 b }} in order that equation (54) be valid.
1 1	 ls!

Natural angular frequency.- Frtm equation (50) the natural

angular frequency is expressed as

_'I, + a /
q.S c 	

2 
ON - 0m

_	 c	 °c	 °^ 	 (55)wn	
mla12 + 

m2 (bl + a2 )2 + J

Assuming the rod and cone to be homogeneous solids, the mass moment

of inertia (J) about their centers of gravity can be written as

J=J1+J2

where

1	 2

J1 = 12 mlbl
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and

3	 r 2 h2J2 = L0 m2 r +177

Letting ml = m2 , which isn't unrealistic for a decelerator system,

4	 b
h = 3 a2 , and al = 21 , the natural angular frequency can be

expressed as

((b + a
q.S c l 1	 2 C

N
	

Cm
c	 M	 M-

r+ m2b12 + 

m2 (bl + a2)2 + 12— m2b1 + 20 m2 Cr2 + 9 a22^

From this it is seen that increasing dynamic pressure causes an

increase in n, while increasing mass and/or the distance of mass

from the rotation point (pin A) causes corresponding decreases in

CO . Assuming the length of the rod to be much greater than the

distance from the cone CG to the nose of the cone (bl > > a2)

will not seriously alter these trends so that equation ( 56) uatiy be

reduced to

OWSc[

=
b1 CN - Cmc a	 a

W ='	 (57)

2 4 b 	 3
V 

mgr 3 
r2 + 20

The effect of doubling the cone diameter can be seen by letting

W =
n

(56)



C1 8

k: 	k t

W = I S and n t	 It

Where

b 2

	2 4 is	 3
Is - msrs 3 

r 
2 + 20

s

b 2
2 I	 1 Z 	 3

I l - mr l	 }3 r 2l	 20
t

b
it is noted that letting 

rl 
be the same for the two cones leads to

the same remarks made in the previous section (see page 47) concerning

the effects of doubling the cone diameter on the natural angular

frequency. With r2 2 rs , it is seen that

bl 
tt - bls or b = 2 b

rt - r 	 ll	 is

The reader will note that this is the same condition concerning the

length of the rod which resulted during the previous discussion of

the effects of doubling cone diameter on the spring constant.

Stability boundary.- Since the spring constant is always positive,

it is only necessary for the damping to be positive to insure stability

for the dynamic system described by equation (47). Thus, the boundary

between stability and instability is represented by

(b1 + a2) 2 3 (b1 + a2 am am 0	
(5a)VC.	 c2a- VW	 ^ -	 =^q
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In terms of lift-curve slope this becomes,

aL	 1	 aM
+	

00	 aM	 (59)7CL - b1 +a2 7M 	 +a 
12cTq

1	 2)

The similarity between this stability boundary and that obtained for

the cone rotating about its nose, equation (41), should be noted.



VII. CONCLUDING REMARKS

A preliminary investigation has been undertaken to theoretically

determine the geometric and aerodynamic parameters which have the

greatest influence on the stability and Fsrformance of the nonporous

towed decelerator. To aid in this endeavor a mathematical model was

generated to describe the flexible tow line - decelerator dynamical

system as a rigid two-body problem. The resulting second-order

governing differential _,quations of motion were used to obtain the

characteristic equation (quartic) describing the coupled motions of

the two bodies. Evaluation of the coefficients of the quartic yielded

expressions which illustrate when the dynamical system is unquestion-

ably unstable.

The two single-degree of freedom cases investigated were the

motion of the decelerator about its nose and the motion of the rod

and decelerator about the pivot point. For both of these cases

expressions were derived for the natural angular frequency, damping

factor, steady-state solution, and time to damp to one-half amplitude.

Specific comments were made concerning a conical shaped decelerator

to illustrate some of the geometric and aerodynamic parameters

affecting the spring constant and the natural angular frequency. The

boundary between stability and instability was obtained for these

two single-degree of freedom cases.
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