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By
Kobert J. Hayduk

ABSTRACT

Linear, small-deflection plate theory 1is used to study the stress
at the contact axis and the deflection of an infinite plate caused by
the impact of an axisymmetric cometary meteoroid. The analysis assumes
that momentum exchange i1s the primary mechanism, that the time of exchange
is instantaneous, and that the momentum of the meteorcvid is negligible
after impact. The stress at the origin is reduced to a single definite
integrai a;d the deflection to the Hankel inversion integral, both
requiring definition of the particular projectile before further evalua-
tion. A particular cometdary meteoroid is mathematically represented in
the analysis by its projected momentum per unit area onto the plate.

The three specific sQapes studied are the usual projectile shapes
used in hypervelocity laboratories - cylinder, cone, and sphere - even
though the analysis is not intended for the high-strength, high-density
laboratory projectiles. Projectile camparisons based on equal mass,
diameter, and total momentum indicate that frangible, low-strength cone
Projectiles cause significantly higher stresses and larger displacements
of the plate at short times after impact than similar sphere and cylin-

der projectiles.
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V. INTROIICTION

The literature indicates general concern over the hazard of travel
in the meteoroid environment of space. Catastrophic failures of manned
and unmanned space vehicles can result from meteoroid penetration of an
underdesigned spacecraft hull. The National Aeronautics and Space
Administration is investigating the reactions of space structures sub=-
Jected to impact by hypervelocity projectiles. These investigations
along with added knowledge of the meteoroild environment are continually
upgrading the spacecraft design equations.

Present laboratory simulation capabilities are barely reaching the
lower limit of the meteoroid velocity range with moderately large projec-
tiles. Since space structures cannot be subjected to an extensive simu-
lation of the environment, any design equation can only receive limited
verification before being extended to the environment. Any analytical
model, then, should be as realistic as possible in the approximation of
the hypervelocity phenomenon of meteoroid impact.

This thesis presents an analytical model of the hypervelocity impact
between an axisymmetric cometary meteoroid and a single wall space struc=-
tuwre. Linear, small-deflection plate theory is used to study the stress
at the contact axis and the deflection of the single wall.

Classical plate theory has been used by many investigators to study
the response of plates to projectile impact. Reference 1 contains solu-
tions to impulsively loaded infinite plate problems fregu=ntly referenced
in the literature. Particular problems are an impulsive point force at

the origin, an impulsive force uniformly distributed over a circle, and



an impulsive Gaussian distribution of pressure. In reference 2, the
deflections away from the impact point of a large plate centrally
impacted by a bullet agreed after a short time with those obtained by
mathematically simulating the impact by ;n impulsive point force of
finite duration on an infinite plate. Also presented in reference 2 are
solutions to the impulsive point force problem for various time func-
tions: finite duration, step function, and unit impulse function.

The hypervelocity impact between a right circular cylinder and a
thin elastic plate was analyzed in reference 3. It was assumed that the
projectile gave the contact portion of the plate a uniform initial
velocity determined from conservation of momentum. The stress at the
axis of symmetry was used as an indicator of the fallure threshold to
obtain a simple ballistic limit thickness expression. The analysis pre-
sented here was performed using an approach similar to that used in
reference 3, but generalizes the problem to any axisymmetric projectile.
The displacement of the single wall and the time variation of the stress
at the origin are investigated. Solutions for three particular projec-

tiles - cylinder, cone, and sphere - are presented for comparison.



VI. SYMBOLS

a radius of contact between projectile and plate
B(x,y)  beta functica
c speed of sound in plate material, \/E/pt

D flexural rigidity of the plate, Eh3/12(1 - v2)
E elastic modulus of plate material in tension and compression
e gtrain
F hypergeametric function
g projectile functional
h target thiclkness
J Bessel function
K = %‘,‘;2- 3(1 - v8)
M bending moment resultant
1 projectile length
P Hankel transform perameter
a-x2%
py h
r radial coordinate
t time
\4 velocity

w(n,t) transverse displacement of the plate's midplane

=
i
L he

v Poisson's ratio

p density



g stress

Subscripts

t target

P projectile

co coune

cyl cylinder

r radial

sph sphere

8 tangential

H indicates order of Bessel function
v indicates order of Bessel function
Superscripts

. derivative with respect tc time

~ nondimensional

- transform

= nondimensional equi-mass and -diameter
" indicates order of Bessel function

indicates order of Bessel funcvion



VII. MATHEMATICAL DEVEILOPMENT OF THE PROBLEM

Transformed Governing Equation and General Solution
The governing equation for the bending of a thin plate from linear,

elastic, small~deflection theory 1s

2
Py = 12 %‘é (1a)
where
2
K = g%- V3@ - v2) (1»)

and the operator in polar coordinates is

* - [1.460 )3 36 %) 2o

w(n,t) 1s the transverse displacement of the midplane of the plate,
a 1s the impacting projectile radius, c¢ is the speed of sound in the
plete material, h i1is the plate thickness, v 1s Poisson's ratio, and
n 1s the radial coordinate r divided by the projectile radius.

' Having conveniently selected the plate as infinite in extent makes
the problem amenable to a zeroth order Hankel transform in the nondimen=-
sional radial coordindte 7. The forward and inverse transforms are,

respectively,

ie) = [ ne(alag(enan (2a)
(o)



L9 2Y

() = [ pEp)To(en)ap (2b)
v 0
Multiplying the governing equation (la) by w,(pn) and integrating wlth

respect to 1 by parts several times ylelds the followlng result:

W (pn) ° [‘1 aan< gE)J + P -%(n g—wﬂ)d‘l(m)

Kg daw l;-

- pn g% Jolpn) - p3w7ﬂ1(:pn)\ 5t PW a0 (3)

\ T=0

If the boundary conditlons of zero deflection, slope, and shear per
unit length at infinity and zero slope and finite shear at the origin
are assumed and coupled 'rfith the kernel of the transformation, the term
in brackets vanishes. If the time is nondimensionallzed to T = E? the
transformed differential equation becomes

d%w b= _

_.....+p

are =0 ()

with general solution
w(p,T) = A(p)sin(p2r) + B(p)cos(p4r) (5)
Applying the zero deflection initiasl condition (w(p,0) = 0) indicates

that B(p) must be zero. The coefficient A(p) 1s determinable from the

transform of the initial target velocity, that is,



{-'<P;t) = Ilé é"w'(g%’l)‘

= ;3;- p® A(p)cos(p®r)

Therefore,

A(p) = Kp=2W(p,0) (6)

Determination of Initial Plate Velocity

(Cometary Meteoroid Impact Model)

Reference 4 summarizes the interplanetary meteoroid environment as
consisting of debris in two distinct forms: hard, dense asteroidal
particles in relatively sparse quantities and porous, fragile cometary
particles constituting almost 100 percent of the total. These cometary
meteoroids, as described in reference 5, are thought to have a density
on the order of 0.5 gm/cm5 end extremely low crushing strength such as
clgar ash.

Upon impact with a structure at a velocity between 11 and T2 km/sec,
a cometary meteoroid is assumed to &nt as a projectile consisting of
discrete small particles which interact negligibly since the crushing
strength 1s so low. This leads to a model of continuous momentum
exchange during impeact 1f the further assumption is made that a momentum
balance is of primary importence. This time variation of the loading,
so to speak, 1s extremely difficult to include in an analysis. There-
fore, this model will assume the worst case - all the momentum of the

cometary meteorold impacts instantaneously.



Any axisymmetric projectile will be represented in the analysis by
the function representing its total momentum projected onto the plate
rather than the analytic expression for its shape. Figure 1 1llustrates
this point for a sphere. The upper diagram shows a sphere and its

analytic expression
z=a<l*-‘ \jl- n2> (7)

The lower diagram shows the functional representing the total projected

momentum per unit area of ithe sphere, that is,
£oon(M) = 28 V1 - (8)
sph
Hence, the momentum impacting an annular ring of radius 7n and
width dn is

2xa°n an fp(n)Vppp (9)

Balancing momentum between the projectile and target ylelds the initial

velocity of the target as

-
(gf)(;?>fb(n); 0o<n<1

#(n,0) = ¢ (10)
0 3y 1<M<®
.

where the momentum of the projectile has been neglected after impact.
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Geometric Equation: z=a [l t (1-m? )2]
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24
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Momentum Per Unit Area Functional: fsu{'q)-ZO(l—'qz)

Figure l.- Comparison of the sphere's geometric equation and
functional form of the projected momentum per unit area.
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Transforming this initial velocity evaluates the coefficient A(p)
(eq. (6)) as

A(p)

1
g [ ne i (eman

QL,p=2E,(p) (11)

p. V

vhere the nondimensional quantity K 52 -};12 has been represented by Q,
t

and the functional fp( 1) has been represented by a characteristic

length, 1y, times another functional gp(n)



VIII. MATHEMATICAL SOLUTION OF THE FROBLEM

Displacement of the Plate

Substituting equation (11) and B(p) = O into equation (5) and
inverting according to equation (2b) ylelds the displacement of the plate

in integral form as
-} 2
wp(n,7) = Qly /; P&, (P)I (PN )sin(pT)ap (12a)
or dividing by QZP to nondimensionalize ylelds

Fo(n7) = f " 57X, ()70 p 1 )sin(pPr)ap (120)

Stresses, Strains, and Bending Moment Resultants

at the Origin

From linear,elastic plate theory, the appropriate equations for

respectively,
_ zE Py v Ow
LI -TE R -Tp b i : (13a)
o = - zE iy @.‘L + & (ljb)
% a?(1 - v2) | on on
3w
€ry = - é%‘giz (14a)
1 ow
egg = - ;zg 7o (1kb)

11



vV ow
M= - B R (158)
D )1 dow 3w ,
Qr=-§~§-’ﬁ(v2w> (16)

where the remalning quantities are zero because of thin plate assumptions
and the axisymmetry of the problem.

Due to symmetry and the monotonically decreasing projectile shape the
maximum stress, strain, and bending moment resultants occur at the axis
of symmetry. Knowledge of these maximum plate responses is esgsential
for hypervelocity impact studies of spacecraft with protection of the
occupants (both equipment and people) in mind.

At the axis of symmetry (origin of coordinate system), both the
radial and circumferential stresses, strains, and bending moment resul-

tants are identical because

13w W
nlj-f)no ﬁ FTI‘ = -B_TI-E 10 (17)

by l'Hospital's rule. Thus, the nondimensional stress, strain, and
bending moment resultants are identical at the origin, that is,

%W

a"=g=ﬁ=-a—n? (18)

=0
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vhere
~ af(l -
g = 9’—&1———& o'rr or oOge (19)
ZEQZP ﬂ=0
~ @
e = eprr Or egg (20)
ZQ'ZP nN=0
|
N f
M= M, or Mg (21)

Before differentiating the displacement (eq. (12b)) to evaluate the
stress at the origin, substitute the integral expression (eq. (11)) for

ép(p) and switch the order of integration to get

1 00
¥ ) - fo g (u)du f 17 (pu)g (pn)sin(periap  (22)

Differentiating twlce with respect to n and letting n go to zero

glves

2%, 1 ”
S5 = -3 L/ﬂ ugp(u)duk/m pJo(pu)sin(peT)dp (23)
Y N=0 0 ' 0

and the stress at the origin (eq. (18)) can be written as

1l 0
%=k [ vegwan [ wg(aulatn(eRriar (24)
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After evaluation of the infinite integral (see appendix), the stress
at the origin reduces to a single definite integral, that is,

~ 1 2
o = f%r;/‘ ugp(u)cos<5;>du; r40 (25)
0

which can be integrated once gp(u) 15 known for the particular axisym=-

metric projectile.



IX. PARTICUIAR SOLUTIONS FOR CYLINDRICAL, CONICAL,
AND SPHERICAL PROJECTILES

The three particular axlsymmetric projectiles to be studied are the
usual ones used in hypervelocity laboratories - cylinder, cone, and
sphere - even though the analysis 1s nct intended for the high-strength,
high-density laboratory projectiles. Since it 1s assumed that the total
momentum of the projectile 1s ilmparted to the plate instantaneously,
this analysie does not distingulsh between the conical projectile (or
any other projectile for that matter) impacting base down from the same
projectile impacting apex down.

Figure 2 presents thie three particular axisymmetric projectiles and

thelr functional representation in the analysis.

Displacement of the Plate

Cylinder.- gcyl(n) = 1
Substituting gcyl(n) = 1 into equation (11) ylelds

1
écyl(p) = f U-J'o(pu)du
o]

= p7L3 () (26)

The nondimensional displacement (eq. (12)) for the cylindrical projectile

thus becomes

Wey2(M,T) =fw 22 J,(p)7o(pn)sin(pPT)dp (27)
Q

15
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| ‘ i
'cy] 'co 20
PRS- ¥, J—— Lm*m-2a-~J
Projectile ; Cylinder Cone Sphere
1
P gm: 1) ol =7) 241~ n2)°

Figure 2.~ Specific projectile shapes studied and their mathemstical
representation in the analysis.
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Cone. - gco(n) =1 =1
Substituting sco(ﬂ) = 1 = N d1nto equation (11) yields

1 1
BooP) = _/; uJ (pu)du - fo u? 7 (pu)du

L) - 3 lFE(g;l,g;- T pE) (28)

(zee appendix for evaluation of second integral) which when substituted
into equation (12) gives the nondimensional displacement of the plate

for the conical projectile as
4 [ ]
Wooln,T) =_/; p"? J,(p)7,(pn)sin(p2r)dp

'%fo P~ 11"2(2 ,%, I:P‘?)Jo(pn)sin(pef)dp
(29)

The first integral represents the deflection of the plate due to a
cylindrical projectile of the same length as the cone, and the second

integral represents the correction necessary to account for the cone's

taper.

Sphere.- g, (n) = (1 - 12)*/2

Substituting gsph(ﬂ) = (1 - n2)1/ 2 into equation (11) yields
1
- 1/2
ssph(p) =b/; u(l - u?) / J (pu)aw

= (g_)l/E p«-5/2 J3/2(p) (30)
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(see appendix for evaluation of this integral) which when substituted
into equation (12) gives the nondimensional displacement of the plate

for the spherical projectile as

/2 pe
Wepn(MsT) = (§>/ j; p-5/2 I3 /5(P)3 o(pn)sin(p2T)dp (31)

The sine function in the integrands of equations (27), (29), and
(31) can be approximated for T << J. by the first term of the sine

serles, that is,
sin pET ~ pET
This substitution renders the short time displacements for the three

cases integrable (see appendix) yielding for the cylinder

~ Ty 0< <1
Wbyl(n,T << 1) = (32)
O; 1<73<w

for the cone

N ™(1-m); 0o<n<1
VoolilsT < 1) = (33)
0 ; 1< < w

and for the sphere

~ (1 - @Y% o<n<1
wsph(n,T < 1) = (34)
0 3 1<N<ow
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For very short time, then, the deflection of the plate is linear in
time, 1s confined to that portion of the plate impacted, and has the
shape of the projected momentum per unit area of the projectile.

Tnus far, in the three examples, only projectile shape has been
specified. To make realistic comparisons of the plate's deflection at
various times, select projectiles of equal mass and diameter. The
characteristic lengths then will be Ioyy = % 8, ly, = ba, and

zsph = Pa. The comparable nondimensiciial deflections can be written as

o - EE-LJ'- F3 .?- b4
Yoyl = Zaq 3 "oyl (358)
= Weo p
Weo = Zaa = 2Wao (35b)
¥sph = Zaq - “sph (35¢)

The short time displacements of the plate for comparable projectiles
are plotted in figure 3. Figures 4 through 7 present plate deflections
at T = 0.15, 0.4, 0.6, and 1.0, respectively. As early as T = 0.15
the shape of the projected momentum per unit area of the projectile is
no longer evident in the plate's deflection. As time increases, the
velocity of the plate origin decreases faster than at positions away from
the origin and s flexural wave moves radially outward.

The maximum dzflection (n = G in eqs. (32), (33), and (34) com-
bined with eqs. (35a), (35b), and (35c)) at a particular time (t << 1)
due to the cone impact is three times and due to the sphere is one and

one-half times that for the cylinder. As early as T =0.15 these large
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0 5 1.0 r
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a. Cylinder projectile |:.
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Figure 3.- Short time deflection of the plate (T << 1).
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AX10 1,0

1.5

20+

Figure 4t.- Comparison of the plate's deflection at T = 0.15 for
impacting equi-mass and «dlameter projectiles.
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1.0 -

X110 15
Cylinder

2.0

25 |-

30

Figure 5.- Comparison of the plate's deflection at T = 0.4 for
impacting equi-mass and -diameter projectiles.
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Figure 6.- Comparison of the plate's deflection at T = 0.6 for

impacting equi-mass and -dlameter projectiles.
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Figure 7.~ Comparison of the plate's deflection at T = 1.0 for
impacting equi-mass and -dlameter projectiles.
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w
differences in deflection have drastically diminished. ( ,_,__°° = 1.37 ard
= W,
W cyl
- 1 1.18> as shown in figure 4. By T = 1.0 the deflection of the
Yoyl

plate 1s nearly the same for all three projectile impacts.

The short time and T = 0.15 plate deflection curves indicate that
the cone projectile causes the largest deflection at early times after
impact. The sphere causes correspondingly less deflection of the plate

than the cone, but more than the cylinder.

Maximun Stress for Specif'ic Cases

Since the maximum stress, strain, and bending moment resultants
have been shown to be of the same functional form, the discussion will
be restricted to max!imum stress with the understanding that the comments
are applicable also to the maximum strain and maximum bending moment
resultant.

Cylinder.- gqq(n) = 1
Recalling equation (25) and chl(n) = 1, the nondimensional stress at

the origin for the cylindrilcal projectile is

Ooyl = s fo u cos|— du (36a)

which readily integrates to

= % 1n(1+r)'l (36b)
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This result indicates that the nondimensional stress at the origin
oscillates between.tl/a with initially infinite frequency and diminishing
frequency as - T increases.

Cong.- geoln) =1 -1
Substituting eco(ﬂ) = 1 - n into equation (25) yields the nondimen-

sional stress at the origin as

‘ 1
3;0 = ﬁ%';/\ uw(l - u)cos(ﬁé)du (37a)

0

which, after integration by parts and an appropriate change of variables,

becomes

M -1/2
oo = /2 f( 7T 2 oy (37b)
o]

The integral 1s the familiar Fresnel Sine Integral which is tabulated
in mathematics handbooks.

Sphere.- g p(n) = (1 - 12)L/2
The sphere always presents problems in impact analyses; this one not
being the exception. Rather than getting nice, clean expressions for
the stress at the origin as equations (36b) and (37b) for the cylinder
and cone, respectively, the sphere gives a series answer to the integral

resulting from substituting gsph(n) = (1 - n2)1/2 into equation (25),
that is,.

1
3§ph = ﬁ% h/; u(l - u.e)l/2 cos<£§>du (38a)



eT

which is evaluated in the appendix as

= P(en + g-)

Again in the three examples, only projectile shape has been specified.
Selecting the projectile characteristics as before, the comparable non-

dimensilonal stresses at the origin become

= &(1 - V‘) 2~
Oyl = 2zEQ c"cy,',l, = '3" ocyl (39a)
= a l - VY ~
= (o f = 20 b
%co poEQ o co (39b)
=, 1 = v ~ :
Ogph = 9‘5;56‘1 Osph = %sph (39¢)

Equations (39a), (39b), and (39c) combined with equations (36b), (37b),
and (38b), respectively, have been evaluated for T ranging from zero
to 1 and are presented in figure 8 to demonstrate the effects of these

projeatile shapes on the maximum stress at the origin. Note that In all
| three cases a distinct peak occurs after which the stresses rapidly con-
verge. The peak stress for the cone impact is 1.58 times and for the
sphere impact 1s 1.22 times that of the cylinder. Hence, the peak stress
at the origin also indicates that the cone causes larger responses of

the plate than either the sphere or cylinder.
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Figure 8.- Variation of the maximum stress at the origin with time
for impacting equi-mass and ~diameter projectiles.



X. CONCLUDING REMARKS

Linear, elastic, small-deflection plate equations were used to study
the response of a single wall structure to the impact of an axisymmetric
cometary meteoroid. The analysis assumed that momentun exchange is the
primary mechanism, that the time of exchange it instantaneous, and that
vne momentum of the meteoroid after impact 1s negligible.

Three particular shapes were studied =~ cylinder, cone, and sphere.
Projectile comparisons based on equal rmass, diameter, and total momentum
indicate that frangible, low-strength cone projectiles cause signifi-
cantly higher stresses and larger displscements of the plate at short

times after impact than similar sphere and cylinder projectiles.
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XII. APPENDIX

EVALUATION OF INTEGRALS

In this thesis the Bateman Manuscript ProjJect Volumes, Tables of |

Integral Transforms (ref. 6), enabled the evaluation of many difficult )

integrals that probably would have been intractable had such a set of

volumes not been available to the author.

Integral Occurring in the General Stress

Expression (eq. (24))

The double-integral expression for the stress at the origin was

found to be

1 0
3y = %— f ugp(u)du f DT o( pu)sin(p®T)dp (Al)
0 o)

The infinite integral can be evaluated from Weber's first exponential

integre? (ref. T, p. 394)

. .
BT o( up)exp(-q2p2)dp = — exp<-u > A2)
J, s 2ol i <

By letting q° = it and recalling that
exp(~18) = cos 8 = i sin O (A3)

the integral becomes

Lmﬁ‘o(up)[cOS(ﬁT) -1 Sin(PET)}P dp = %[sin(‘f;) -1 °°S(E§)} (a%)

31
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Equating real and imaginary parts ylelds

0 2
f pJ o (up)cos(pr)dp = ‘,:,_L—T sin(}};) (A5)
0
and
‘jpm pJ (up)sin(p2r)dp = 1 cos<25> (A6)
° 0 or Y

Sneddon applied this technique to Weber's second exponential inte-
gral and arrived at equation (114) on page 137 (ref. 1), which reduces
to the first integral (eq. (AS)) by letting r go to zero. Substituting
the second integral (eq. (A6)) into equation (Al) yields equation (25),

that is,

1
3'p = El? f ugp(u)cos(ﬁ-f-)du (AT)
0

Determination of ép(p) (eq. (11)) for the

Cone and Sphere

Cone.~ The integral

1
[ B (u)a (48)
o

which occurs in the displacement cf the plate impacted by a conical
projectile (eq. (28)) can be evaluated by changing ihe integral to a
Mellin transform of

f(u) = Jo(pu); O<u<i

(A9)
= 0 ; 1< u<ow

e
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By definition the Mellin transform of a function is
® g=1
g(s) =L/‘ fu)u ™" du (A10)
0

On page 326 of reference 6, volume 1, the Mellin transform of

f(u) = J(pu); O<u<l
(A11)
= 0 3 1l<u<w
is given as
v + + 1
P iF2<%_-1;v + l,S Y 4 1;- in pé) (A12)
2¥(s + v)P(v + 1) 2 2

vhich yields the desired integral if v is zero and s 1is 3, that is,
1 2 1 3.4 9,1
/; uJ(pu)du = 3 1F2<2;1,2;- i p? (A13)

Sphere.- The displacement ¢.' the plate impacted by a sphere con-

tains the integral (eq. (30))

1
Bopn(®) = [ 52 - Y2 5 (pudew (1)

which can also be evaluated as a Mellin transform. On page 327 of

reference 6, volume 1, the Mellin transform of



B

f(u) =(1 - u?)% J(pu); 0<u<l
(A15)

n

0 ; 1<u<w

is given as

O] | o

14 ( 1
P B;@ + 1,2 8 +

)

12

— <% ; Yiv + 1,5 g Y41+ N % p2> (AL6)
2¥7 (v + 1)
provided
ReA > -l
and

Res > =Rev

By letting v be zero, s be 2, and A be 1/2, the desired integral

1s found to be
. 2)1/2 1 1
u(l - u) J,(pu)du =3 1F5 l;l,g;- 7 p2 (AL17)
0

The ideutical numerastor and denominstor parameters of the hypergeometric
function cancel, leaving OFl<g;- %-p?). This hypergeometric function

is related to the Bessel functions by the relationship

J,(p) = (E'P - oFl<? + 1;- % p2> (A18)
(ref. 7, p. 100)

Using this relationship, the hypergeometric function can be expressed as

' 1/2
oFl(-Z-;- r p2) - 3(g> (21272 3, 5(0) (819)
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Hence, the final result is
1 1/2
. syl/e o -
b/; u(i - u*) / Jo(pu)du = (g) P 3/2 J3/2(p) (A20)

Short Time Deflections of the Plate (T << 1)

For very small time after the impact, the sin peT in the inte=-
grands of the deflection integrals (eqs. (27), (29), and (31)) can be
approximated by pQT to obtain the short time deflections of the plate.

Cylinder.- The approximation in the cylinder case glves the short

time deflection of the plate as

i

0w
Vopr(mT << 1) = 7 fo J1(p)J ,(pn)dp

- ot/ [ g1/ 5 (o) (o) (o) ap (ae)
O

By definition this integral is the zeroth order Hankel transform of the
function p‘1/2 Jl(p). The transform is given on page 1k of reference 6,

volume 2, as

1/2,
n 0<n<1
1/2dp;[ ’

|10 5 1<r<w

[ 52 5, ), (on)an) (22)

The short time deflection of the plate for the cylindrical projectile is

T; 0<1<1

Won(n,T<< 1) = (A23)
eyl 0; 1<n<w
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Cone.=- For the conical projectile, the short time deflection

expression 1s
WeolMyT << 1) = TL/\ J1(p)To(pn)dp
0
-%r/;plgelﬁ,gp%J@M@ (A24)

The first integral 1s the same as in the cylinder case; the second inte-

gral can be rewritten as
rmfpmﬁ@%w%@ummw%p (A25)
o

which by definition is the zeroth order Hankel transform of the function
pl/2 F (g,l,i, -5 p2> On page 88 of reference 6, volume 2, the vth

order Hankel transform of
1
V+ =
D 21F2<a;a,v + 1;- i;p2> (A26)
is given as

T(v + 1)T(B) v+l nea-v-g(l - nR)B=a-l
I'(a)r(p - )

; 0<n<1

(A27)
O; 1<nN<mw

provided Rev > -1 and Rep > Rea > O.
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Since the order in which the numerator and denominator parameters
of a hypergeometric function are written makes no difference, the cholce
of v=0, a= %, and B = g in the above trensform ylelds the desired
integral, that is,

w _ m3/2; o<n<1
1
f Pl/elFe(%il)gf’ T P2>J0(Pﬂ)(m)l/2 dp =
o 0 ; 1< n<w
(A28)
This integral plus the integral evaluated for the cylinder case combine
(eq. (A24)) to give the short time deflection for a plate impacted by a
conical projectile as
N M(1-1); 0<n<1
VoolMyT << 1) = (A29)
0 ; 1<n<ow
Sphere.- Using the short time approximation as before, the deflec-

tion for a plate impacted by a sphere is
N 1/2 %
opn(nr << 1) = (8) 1 [ R magenae (a30)
o}
Again rewriting this as a zeroth order Hankel transform

~ /2 . ® 1/2
Wsph(hT << 1) = (%) ™ l/2f ™ 75 1 (P) (o) (p1) /2 4
o L
(A31)
the integral can be evaluated from the vth order Hankel transform of

the function
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1
Vapts
P 2J,(ap) (A32)
given as
Vel+l V"'% 1
2 1 (a? - ne)“-v- ; 0<n<a
P(p = v)ak
(A33)
0; a<n<w

on page 48 of reference 6, volume 2, provided a > 0 and =l < Rev < Rep.
In this case v = 0, U = %, and a = 1. The desired integral is

1/2
-2-) /2 - 22 o <n<a

" el 1/2 gp - ("
| wt e o /e ap - (Y cnen

(A34)
which gives

1/2
o (1 - n°) / ; 0<<1
Weph(MyT << 1) = (A35)
0 ; 1< n<w
for the short time deflection of a plate after being impacted by a

spherical projectile.

Maximum Stress in the Sphere Case (eq. (38a))
The integral for the stress at the axis of symmetry for the sphere

case 1s

~ y 1 -
Oeph = E# L/; u(l - u.2)l/2 cos\ﬁ:)du (A36)
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Again, this integral can be handled as a Mellin transform 1f a change of
variables 1s made. Let x = u® and b = ﬁ%-, then

1
~ 1 1l/2
sph * By f; (2 - ©)M2 cos{bx)ax (A37)
On page 320 of reference 6, volume 1, the Mellin transform of

, V=1l
£f(x) = (1 - x) cos(bx); 0<x<1

= 0 ; 1<x<w (A38)
Rev > 0O
is glven 2s
%.B(g,y)[éFl(B;s + v;ib) + 1Fi(s;8 + v;-ibﬂ (A39)
for Res > O. By letting v be g and s be 1, the desired integral

becomes

1
fo (1 - )2 cos(bx )dx = %[J_FJ_(l;%;ib) * lFl(lsg;-ibﬂ (A%0)

The confluent hypergeometric function is the power series

chenm) - a z ala +1 22
lFl<a’b,Z)—l+b'iT+bb+l2!+ooo

(Ak1)

s



ko

where Pochammer's notation used for the numerator ..nd denominato.

parameters 1ir

(a), »a(a+1)(a+2)...(a+n-1)
and (Ak2)

(8) = 1

Adding the confluent hypergeometric functions of equation (A25) term by
term eliminates all the Jmaginary terms. In general, then

o0

(a) 2n
1F1(a;b;1z) + F (a;b;-1z) = 2 ,;) (-1)" (b)Z: (Zn)! (Ak3)

These results glve

C (1)py (4r)28
Baph = = Z (1) i (1) (AkL)
PR er 2\ (zn)!
n=0 \2 2n .
vhich reduces to (eq. (38b))
-(2n+1)

1/2 Z (-1)"(lr)

(A45)
n=0 I‘(Qn + %)

~ 1
Osph = § ®
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