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THE RESPONSE OF A smGLE WALL SPACE STRUCTURE TO lMPACT 

BY COMErARY Mm'EOROmS OF VARIOUS SHAPES 

By 

~obert J. Hayduk 

ABSTRACT 

Linear, small-deflection plate theory is used to study the stress 

at the contact axis and the deflection of an infinite plate caused by 

the impact of an axisymmetric cometary meteoroid. The analysis assumes 

that momentum exchange is the pr:Lmary mechanism, that the t 1me of exchange 

is instantaneous, and that the mgmentum of the meteoroid is negligible 

after impact. The stress at the origin is reduced to a single definite 
~ , . 

integral and the deflection t? the Hankel inversion integral, both 

requiring definition of the particular projectile before further evalua-

tion. A particular cometary meteoroid is mathematically represented in 

the analysis by its projected momentum per unit area onto the plate. 

The three specific shapes studied are the usual projectile shapes . 
used in hypervelocity laboratories - cylinder, cone, and sphere - even 

though the analysis is not intended for the high-strength, high-density 

laboratory projectiles. ~ojectile comparisons based on equal mass, 

diameter, and total momentum indicate that frangible, low-strength cone 

projectiles cause significantly higher stresses and larger displacements 

of the plate at short times after impact than similar sphere and cylin­

der projectiles. 
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V. INTROOOCTION 

The literature indicates general concern over tbe hazard of travel 

in the meteoroid envirorunent of space. Catastrophic failures of manned 

and unmanned space vehicles can result from meteoroid penetration of an 

underdesigned. spacecraft hull, The National Aeronautics and Space 

Administration is investigating the reactions 01' space structures sub­

jected to impact by hypervelocity projectiles. These investigations 

along with added knowledge of the meteoroid envirolUDE!nt are continually 

upgrading the spacecraft design equat:f.ons. 

Present laboratory eimulation capabilit1.es are barely reaching the 

lower limit of the meteoroid velocity range with moderately large proJec­

tiles. Since space structures cannot be subjected to an extensive simu­

lation ot the environment I ~ design equation can only receive l:lJlu:ted 

verification before being extended to the environment. Any analytical 

model, then, should be as realistic as possible in the approximation of 

the hyperveloc1ty phenomenon of meteoroid impact. 

This thesis presents an analytical model of the h1Pervelocity impact 

between an axisymmetric cometary meteoroid and a single wall space struc­

ture. Linear, small-deflection plate theory is used to st~ the stress 

at the contact axis and the deflection of the single wall. 

Classical plate theory has been used by many investigators to study 

the response of plates to proj~~tile impact. Reference 1 contains solu­

tions to impulsivelY loaded infinite plate problems treq~~nt~ reterenced 

in the literature. Particular problems are an impulsive point force at 

the origin, an impulsive force unifo~ distributed over a circle, and 

1 
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an impulsive Gaussian distribution ot pressure. In reference 2, the 

deflections away trom the impact point of a large plate centrall1 

impacted by a bullet agreed after a short time with those obtained by 

mathematically simulatins the impact bY' an impulsive point force of 

finite duration on an infinite plate. Also presented in reterence 2 are 

solutions to the impulsive point torce problem tor various time tunc­

tions: tinite duration, step function, and unit impulse tunction. 

The hypervelocity impact between a right circular cylinder and a 

thin elastic plate was analyzed in reference ,. It was assumed that the 

projectile gave the contact portion of the plate a unitor.m initial 

velocity deter.m1ned from conservation of momentum. The stress at the 

axis of symmetry was used as an indicator ot the tailure threshold to 

obtain a simple ballistic limit thickness expression. The analysis pre­

sented here was performed usins an approach similar to tbat used in 

reference " but gener'alizes the problem to al'lY' a.xisymmetric projectile. 

The displacement of the single wall and the time variation ot the stress 

at the origin are investigated. Solutions for three particular projec­

tiles u cylinder, cone, and sphere - are presented tor comparison. 



VI. SYMBOLS 

a radius ot contact between proJectile and plate 

B(x,y) beta tunctiC'l 

c speed ot aOUDd in plate material, J E/(jt 

D flexural ri8idity ot the plate, E~/12(l - .,2) 

E elastic ~odulus of plate material in tension and compression 

e etrain 

F nypergeametric function 

g projectile functional 

h target thickness 

J Bessel function 

M bendins ~oment resultant 

l projectile length 

p Hankel transform parameter 

P V 
Q = K :R. .:.E. 

Pt h 

r 

t 

v 

w( '1,t) 

r 
'1=­a 

radial. coordinate 

time 

velocity 

transverse displacement of the plate's midplane 

v Poisson's ratio 

p density 
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streslS 

t T--K 

Subscripts 

t target 

p projeotile 

00 o one 

oyl oylinder 

r radial 

eph sphere 

e ta.ngentia.l 

~ indioates order of Bessel function 

\I indioates order ot Bessel funotion 

Supersoripts 

• derivative with respeot to time 

nond1mensional 

.. transfor.m 

:: nondimensiollal equi-mass and .. diameter 

j.L indioates order ot Bessel funct:f.()n 

" indicates ordel- of Bessel funq1J:to:n 



VII. MATm.iATICAL DEVEWPMENT OF THE PROBLEM 

Transtor.med Governing Equation and General Solution 

The governing equation for the bending of a thin plate from linear, 

elastic,small-detlection theory is 

(la) 

where 

(lb) 

and the operator in polar coordinates is 

(lc) 

w( T},t) is th~l transverse displacement of the midplane of the plate, 

a is the impacting projectile radius, c is the speed of sound in the 

plate material, h is the plate thickness, Y is Poisson's ratio, and 

~ is the radial coordinate r divided by the projectile l~dius, 

Having conveniently selected the plate as infinite in extent makes 

the problem amena~le to a zeroth order Hankel transfor.m in the nondimen-

sional radial coordin8:'ce T}. The forward and inverse trans:f'or.ms are, 

respectively, 

5 

(2a) 
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(~1b) 

Multiplying the governing equa.tion (la) by l).T o(pl) and integl'ating with 

respect to q by parts several times yields the following result: 

If the boundary conditions of zero deflection, slope, and shear per 

unit length at infinity and zero slope and finite shear at the origin 

are assumed and coupled '.lith the kernel of the transformation .. the term 
t 

in bra.ckets vanishes. If the time is nondimensionalized to ,. = r' 'the 

transfor.med differential equation becomes 

(4) 

with general solution 

Applying the zero deflection initial condition (w(p,O) = 0) indicates 

that B(p) must be zero. The coefficient A(p) is deter.minable from the 

transform of the initial target velOCity, that is, 



Therefore, 

7 

!( t) 1 OW{p,T) 
w p, ;::. X OT 

A(p) = Kp-2~(p,0) 

Deter.mination of Initial Plate Velocity 

(Cometar,y Meteoroid Impact Model) 

(6) 

Reference 4 summarizes the interplanetary meteoroid environment as 

consisting of debris in two distinct forms: hard, dense asteroidal 

particles in relatively sparse quantities and porous, fragile cometary 

particles constituting almost 100 percent of the total. These cometary 

meteoroids, as described in reference 5, are thought to have a density 

on the order of 0.5 gm/c~ and extremely low crushing strength such as 

cigar ash. 

Upon impact with a structllre at a velocity between 11 and 72 km/sec, 

a cometary meteoroid is assumed to a~t as a projectile consisting of 

discrete small particles which interact negligibly since the crushing 

strengtb is so low. Th1.s leads to a model of continuous momentum 

exchange during impact if the further assumption is made that a momentum 

balance is of primary' importance. This time variation of the loading, 

so to speak, is extremely difficul.t to include in an analysis. There-

fore.. this model 'will assume the worst case - all the momentum of the 

cometary meteoroid impacts instantaneously. 

j. 
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Any axisymmetric projectil~ will be represented in the analysis by 

the function representing its total momentum projected onto the plate 

rather than th~ anal;ytic expression for its shape. Figure 1 illustrates 

this point for a sphere. The upper diagram shows a sphere and its 

analytic expression 

The lower diagram shows the functiQnal representing the total projected 

momentum per unit area of the sphere, that is, 

(8) 

Hence I the momentum impacting an annuJ.ar ring of radius 1) and 

width dT) is 

Balancing momentum between the projectile and target yields the initial 

velocity of the target as 

W(T},o) = (10) 

where the momentum of the projectile has been neglected after impact. 
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z 

2a 

...... =-----.:...;,--1 -----.' 'rJ = a 
Geometric Equation: z • a [I ± (I - 'rJ2 )2 ] 

~--------~~--.----------~. 'rJ~a 
! 

Momentum Per Unit Area Functional: fspt/.'rJ)" 2a(f - 7]2)2 

Figure 1.- Comparison of the sphere's geometric equation and 
functional form of the projected momentum per unit area. 
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Transfor.ming this initial velocity evaluates the coefficient A(p) 

(eq. (6)) as 

(11) 

P V 
where the nond1mensional quanttty K 2 i has been represented by Q, 

Pt 
and the functional fp( T)) has been represented by a chara.cteristic 

length, ~p, times another functional Sp(T)). 



VIII. MATHEMATICAL SOLUTION OF THE PROBLPM 

Displacement of the_Plate 

Substituting equation (ll) and B(p) = 0 into equation (5) and 

inverting a.ccording to equation (2b) yields the displacement of the plate 

in integral f'Ol'JJl as 

or dividing by Q~p to nondimensionalize yields 

(l2b) 

stresses, Strains, and Bending Moment Resultants 

at the Orisin 

From linear, elastic plate theory, the appropriate equations for 

stress, strain, bending moment resultants, and shear stress resultant are, 

respect i vely , 

r1rr = - a2(~_ V2)~~ + ~~~ 
r1ee = - a2(~ _ v2 ) {~ ~ + v ~:~} 

z 02w 
err = - ~ 0'1)2 

11 

(13a) 

(13b) 

(14a) 
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(l;a) 

(l;b) 

(16) 

where the remaining quantities are zero because of thin plate assumptions 

and the axisymmetry of the problem. 

Due to symmetry and the monotonically decreasing projectile shape the 

maximum stress, strain, and bending moment resultants occur at the axis 

of symmetry. Knowledge of these maximum plate responses is essential 

for hypervelocity impact stUdies of spacecraft with protection of the 

occupant s (both equipment and people) in mind. 

At the axis of symmetry (origin of coordinate system), both the 

radial and circumferential stresses, strains, and bending moment resu1~ 

tants are identical because 

by l'Hospital's rule. Thus, the nondjmensional stress, strain, and 

bending moment resultants are identical at the origin, that is, 

~ N N d2W 
a = e = M = - d~2 ~=O (18) 



.. 

where 

(20) 

(21) 

Before differentiating the displacement (eq. (12b» to evaluate the 

stress at the origin, substitute the integral expression (eq. (11)) for 

~(p) and switch the order of integration to get 

Differentiating twice with respect to Tl and lettins Tl go to zero 

gives 

and the stress at the origin (eq. (18)) can be written as 

1 Jl foo op = - usp(u)dU pJo(pu)sin(p2T)dp 
200 

(24) 
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After evaluation of the infinite integral (see appendix), the stress 

at the origin reduces to a single definite integral, that is, 

which. can be integrated once sp( u) :La known for the particular axisym­

metric projectile. 



IX. PARTICUIAR SOLt11'IONS FOR CYLINDRICAL, CONICAL, 

:;,;;;;;AND;,;,,;;;;.. .. SPHER;.,;;;;;;;;;;;;,,;;;I ... C,;;,;;;AL;;;;;;..,;;;;PR .... OJE ................ CJr .... I .... I!§. 

The three partioular axisymmetrio projeotiles to be studied are the 

usual ones used in hypervelooity laboratories - oylinder, cone, and 

sphere • even though the analysis is not intended for the high-strength, 

high-density laboratory projectiles. Since it is assumed that the total 

momentum of the projeotile ;1,s imparted to the plate instantaneously, 

this analysis does not distinguish betwe~n the conical projectile (or 

any other projectile for that matter.) impacting base down from the same 

projectile impaoting apex down. 

Figure 2 presents the three partioular axisyxnmetric projectiles and 

their functional representation in the analysis, 

Displacement of the Plate 

C~linder,- gcyl(~) = 1 

Substituting gcyl(~) = 1 into equation (11) yields 

(26) 

The nondimensional displacement (eq. (12)) for the cylindrical projectile 

thus becomes 

15 
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Projectile Cylinder Cone Sphere 

Figure 2.- Specific projectile shapes studied and their mathematical 
representation in the analYsis. 
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~.- gco(~) = 1 - ~ 

Substituting gco(~) = 1 - ~ into equation (11) yields 

(28) 

(see appendix for evaluation of second integral) which when substituted 

into equation (12) gives the nondimensional displacement of the plate 

for the conical projectile as 

The first integral represents the deflection of the plate due to a 

cylindrical projectile of the same length as the cone, and the second 

integral represents the correction necessar,y to account for the cone's 

taper. 

Sphere.- gSPh(~) = (1 _ ~2)1/2 
Substituting gSPh(~) = (1 - ~2)1/2 into equation (11) yields 

f 1 1/2 
gSPh(P) = u(l - u2) JO(PU)dlJ, 

o 
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(see appendix for evaluation of this integral) which when substituted 

into equation (12) gives the nondimensional displacement of the plate 

for the spherical projectile as 

The sine function in the integrands of eq\mtions (27), (29), and 

C~l) can be apl')rox:f,mated for T« J. by the first term of the s:i.ne 

series, that ls, 

This substitution renders the short time d,isplacements for the three 

cases integrable (see appendix) yielding for the cylinder 

= {'T'; 
OJ 

0<1}<1 

for the cone 

1}); 0<1}<1 

and for the sphere 
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For very short time, then, the deflection of the plate is linear in 

time, is confined to that portion of the plate impacted, and has the 

shape of the projected momentum per unit area of the projectile. 

Tnus far, in the three examples, only projectile sha,pe has been 

specified. To make realistic comparisons of the plate's deflection at 

various times, select projectiles of equal mass and diameter. The 

characteristic lengths then will be Zcyl = ~ a, Zco = 4a, and 

ZsPh = 2a. The comparable nondimensi~lml deflections can be written as 

wcyl = wcyl :2 'W 

2aQ = '3 wcyl (35a) 

wco 2Wco (35b) wco =-: 
2aQ 

~ wsph 'W 

(35c) wsph = ---- = wsph 2aQ 

The short time displacements of the plate for comparable projectiles 

are plotted in figure 3. Figures 4 through 7 present plate deflections 

at T = 0.15, 0.4, 0.6, and 1.0, respectively. As early as T = 0.15 

the shape of the projected momentum per unit area of the projectiile is 

no longer evident in the plate's deflection. As time increases, the 

velocity of the plate origin decre~ses faster than at positions away from 

the origin and a flexural wave moves radially outward. 

The maximum q4~flection (T) = 0 in eqs. (;2), (33), and (:~4) com­

bined with eqs. (35a), (35b), and (35c}) at a particular time (T « l) 

due to the cone impact is three times and due to the sphere is one and 

one-half times that for the cylinder. As early as T = 0.15 these large 
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a. Cylinder projectile I t-

W 
T 

b. Cone projectile 

tv 
T 

c. Sphere proJec tile 

-w 
"f' 

Figure 3. - Short time deflection of the pl!~te (T « 1). 
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Figure 4.- Comparison of the plate's deflection at T = 0.15 for 
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Figure 7.- Comparison of the plate's deflection at T = 1.0 for 
impacting equ1-mass and -diameter projectiles. 
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differences in deflection have drastically diminished. (:co • 1.~7 ar.d 
o ' ~ Wcyl 
.spn & 1.18 as shown in figure 4. By T. 1.0 the deflection of the 
wcyl 
plate is nearly the same for all three projectile impacts. 

~he short time and T = 0.15 plate deflection curves indicate that 

the cone projectile causes the largest deflection at early times after 

impact. ~he sphere causes correspondingly less deflection of the plate 

than the cone, but more than the cylinder. 

Maximu'1l stress for Speci:t'ie Cases 

Since the maximum stress, strain, and bending moment resultants 

have been shown to be of the same functional for.m, the discussion will 

be restricted to max;;tmum stress with the understanding that the comments 

are applicable also to the maximum strain and maximum bending moment 

resultant. 

Cylinder.. gcY1(~) = 1 

Recalling equation (25) and gcyl(T}) = 1, the nondimensiona1 stress at 

the origin for the cylindrical projectile is 

1 fl (u2) aCyl = 4; 0 U cos 4,=' du (;6a) 

which readily integrates to 

(36b) 
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This result indicates that the nondiroensional stress at the or~gin 

oscillates between tl/2 with initially infini'be frequency and d:lm1nishing 

frequency as .,- increases. 

Cune.· gco(~) = 1 - ~ 

Substituting gco(~) = 1 - ~ into equation (25) yields the nondtmen­

sional stress at the origin as 

(37a) 

which, after integration by parts and an appropriate change of variables, 

becomes 

(4,-)-1/2 
aco = ,-1/2 f sin y2 dy 

o 
(37b) 

The integral is the familiar Fresnel Sine Integral which is tabulated 

in mathematics handbooks. 

Sphere.- gSPh(~) = (1 - ~2)1/2 
The sphere always presents problems in impact analyses; this one not 

being the exception. Rather than getting nice, clean expressions for 

the stress at the origin as equations (36b) and (,7b) for the cylinder 

and cone, respectively', the sphere gives a series answer to the integral 

resulting from substituting gSPh(~) = (1 - ~2)1/2 into equation (25), 

that is, 

~ 1 f1 ( 2)1/2 (u2) asph = ~ 0 u 1 - u cos ~ du 
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wbich is evaluated in the appendix as 

(38b) 

AgBin in the three examples, only projectile shape has been specified. 

Selecting the projectile characteristics as before} the comparable non­

dimensional stresses at the origin become 

:= a(l - y) 
O'cyl = 2z~ 

2 f'\J 

O'cyl lIS 3' O'cyl (39a) 

a = a(l - y) f'\J 

(~9b) O'co = 20'co co 2zEQ 

a = a~l - vl IV 

(39c) sph 2zEQ O'sph :: O'sph 

Equations (39&), (39b), and (39c) combined with equations (36b), (37b), 

and (38b), respectively" have been evaluated for l' ranging from zero 

to 1 and are presented in figure 8 to demonstrate the effects of these 

projectile shapes on the maximum stress at the origin. Note that in all 

three cases a distinct peak occurs after which the stresses rapidly con­

verge. The peak stress for the cone impact is 1.58 times and for the 

sphere impact is 1.22 times that of' the cylinder. Hence" the peak stress 

at the origin also indicates that the cone causes larger responses of 

the plate than either the sphere or cylinder. 
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X. CONCLUDING REMARKS 
.. t' 

Linear, elastic, small-deflection plate equations were used to study 

the response of a single wall structure to the impact of an axisymmetric 

cometary meteoroid. The analysis assumed that momentum exchange is the 

primary mechanism, that the time of exchange if instantaneous, and that 

bhe momentum of the meteoroid after impact is negligible. 

Three particular shapes were studied - cylinder, cone, and 3phere. 

Projectile comparisons based on equal mass, diameter, and total momentum 

indi~ate that frangible, low-strength cone projectiles cause signifi-

cantly higher stresses and larger displacements of the plate at short 

times after impact than similar sphere and cylinder projectiles • 
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XII. APPENDIX 

EVAWATION OF nfi'EGRALS 

In this thesis the Bateman Manuscript Project Volumes, ~bles of 

Integral Transforms (ref. 6), enabled the evaluation of many difficult 

integrals that probably would have been intractable had such a set of 

volumes not been available to the author. 

Integral Occurring in the General stress 

Expression (eq. (2411 

The double-integral expression for the stress at the origin was 

found to be 

The infinite integral can be evaluated from Weber's first exponential 

integre 1 (ref. 7, p. 394) 

JOO pJo(up)exp(-q2p2)dp = ~ exp(- u
2
2) 

o 2q 4q 

By letting q2 = iT and recalling that 

exp(-i9) = cos 9 - i sin 9 

the integral becomes 

31 

(Al) 

(A2) 



Equating real and imaginary parts yields 

and 

(A6) 

Sneddon applied this technique to Weber's second exponential inte­

gral and arrived at equation (114) on page 137 (ref. 1), which reduces 

to the first integral (eq. (A5» by letting r go to zero. Substituting 

the second integral (eq. (A6» into equation (Al) yields equation (25), 

that is , 

Determination of Sp(p) (eq. (11» for the 

Cone and Sphere 

Cone. - The integral 

which occurs in the displacement of the plate impacted by a conical 

projectile (eq. (28» can be evaluated by changing t.he integral to a 

Mellin transform of 

f(u) = Jo(pu); 0 < u < ). 

::.0 ; 1<'11<00 

(A7) 

(A8) 

(A9) 



" 
By definition the Mellin transform of a function is 

g{s) = f~ f{u)us-1 du 
o 

On page 326 of reference 6, volume 1, the Mellin transform of 

f(u) = Jy(PU); 0 < U < 1 

=0 ; l<u<co 

is given as 

(A10) 

(All) 

p v F (S + v. y + 1 s + y + 1. _ 1 p2) (A12) 
2\1(s + v)r(v + 1) 1 2 2' '2 '4' 

which yields the desired integral if v is ~ero and s is 3, that is, 

Sphere.- The displacement c' the plate impacted by a sphere con-

tains the integral (eq. (30)) 

which can also be evaluated as a Mellin, transform. On page 327 of 

reference 6, volume 1, the Mellin transform of 

(A13) 

(A14) 



.. 

::. 0 

is given as 

provided 

and 

v ( 1 1) 
P B " + 1'2 s + 2 y ~ \ F s + 

122 
2v+1 r(v + 1) 

Re" > -1 

Res > -Rev 

(A15) 
; l<u<oo 

(A16) 

By letting y be zero, s be 2, and " be J./2, the desired integral 

is fOWld to b(~ 

(A17) 

The identical numerator and denomina"'(jor parameters of the hypergeometric 

function cancel, leaving oFl~; - t p2) . This hypergeometric !'unction 

is related to the Bessel functions by the relationship 

(~pt ( l) Jv(p) ::. OFl Y + 1;- ~ Jl. (Al8) 
r( v + 1) '+ 

(ref. 7, p. 100) 

Using this relationship, the hypergeometric function can be expressed as 

(A19) 



3' 
Hence1 the final result is 

(A20) 

Short Time DefJ£ctions of the Plate (T « 1) 

For very small time after the impact, the sin pET in the inte­

grands of the deflection integrals (eqs. (27)1 (29), and (,1)) can be 

approximated by p2T to obtailt the short time deflections of the plate. 

Cylinder. - The approximation in the cylinder case gives the short 

time deflection of the plate as 

By definition this integral is the zeroth order Hankel transfor.m of the 

function p-l/2 Jl(p). The transfor.m is given on page 14 of reference 6, 

volume 2, as 

(A22) 

The short time deflection of the plate for the cylindrical projectile is 

{

T; 0 < T} < 1 
Wcyl(Tl,T « 1) = 

0; 1 < T} < 00 

(A23) 

-. 



Cone.- For the conical projectile, the short time deflection -
expression is 

The first integral is the same as in the cylinder case; the second inte-

gral can be rewritten as 

which by definition is the zeroth order Hankel transform of the function 

pl/21F2(~;1'~; - t p2). On page 88 of reference 6, volume 2, the vth 

order Hankel transform of 

(A26) 

is given as 

(A27) 
0; 1 < T} < co 

provided Rev> -1 and Re~ > R~ > O. 



,}7 

Since the order in which the numerator and denominator parameters 

of a hypergeometric function are written makes no difference, the choice 

of v = 0, ~ = ~,and ~ = ~ in the above t~,nsfor.m yields the desired 

integral, that is, 

0<11<1 

1<1')<110 

(A28) 

This integral plus the integral evaluated for the cylinder case combine 

(eq. (A24)) to give the short time deflection for a plate impacted by a 

con:f.cal projectile as 

!'oJ {T( 1 - 11); ° < Tl < 1 
Wco(Tl," « 1) = 

o ; 1<T)<00 

Sphere •• Using the short time approximation as before, the deflec­

tion for a plate impacted by e. sphere is 

(A;O) 

Again rewriting this as a zeroth order Hankel transform 

(A;l) 

the integral can be evaluated from the vth order Hankel transform of 

the function 



(A32) 

given as 

(A'3) 

0; a < T) < 00 

on page 48 of reference 6, volume 2, provided a > 0 and -1 < Rey < Re~. 

In this case y ~ 0, ~ Q ~, and a = 1. The desired integral is 

(2)1/2 / 1/2 

f 
00 / i TIl 2( 1 - Tl2) ; 0 < TI < 1 

O 
p-l J

3
/ 2(P)J

O
(pT))(pT))1 2 dp = 

o ; 1 < TI < 00 

which gives 

for the short time deflection of a plate after being impacted by a 

spherical projectile. 

Maximum stress in the Sphere Case (eq. (3Sa)) 

(A35) 

The integral for the stress at the axis of symmetry for the sphere 

case is 

(A36) 



Again, this integral can be handled as a Mellin transform if a change of 

variables is made. Let x.. u2 and b. yf,: , then 

N 1 f 1 
( ) 1/2 r b ) asph .. &r 0 1 .. X cos\ X dx 

On page ,20 ot ~eference 6, ~olume 1, the Mellin transform of 

v .. l 
f(x) = (1 - x) cos(bx); 0 < x < 1 

11\ 0 ; l<x<co 

Rev> 0 

is given as 

for Res > O. By letting v be ~ and s be 1, the desi!"'ed tntegral 

becomes 

The confluent bypergeometric function is the power series 

• • • 

(A'7) 

(A'9) 

(A41) 



• 

where Pochammer's notation used tor the numerator dnd denominato~ 

parameters iR 

(a)n • a(a + l)(a + 2) . . • (a + n - 1) 

and (A42) 

Adding the confluent l\YPergeometric functions 0'1 equation (A2!5) term by 

term eliminates aU the ~..mag1nary terms. In general .. then 

These results give 

(A4lt) 

which reduces to (eq. (38b)) 

(A45) 
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