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ELASTIC ANALYSIS OF A LONG THIN CYLINDER AND CORE
SUBJECTED TO AXISYMMETRIC RADIAL LOADS

by

Robert F. Melworm, Irwin Berman, Bernard W. Shaffer

Abstract

The problem of a long, thin cylinder on a core, subjected to a finite
band of axisymmetric radial load is considered. The core is analysed by
elasticity theory. The cylinder is analysed by thin-shell theory. Appro-
priate displacements and stresses are matched at the cylinder-core interface.
After careful numerical evaluation of improper integrals, which appear in
the solution, non-dimensional displacement and stress ratios for the core
and cylinder are presented for different widths of uniform pressure band
load. A comparison to existing solutions for the limiting case of a line
load is made and shows the maximum radial stress to be significantly larger
than previously reported. It is also found that an increase in the band
width from the limiting case of a line load decreases the stresses and
displacements in the assembly significantly even though the external resultant
force in kept constant.

Introduction

In recent years the development of solid propellant rocket technology

has been very rapid. Considerable attention has been given to the struc-

tural safety and reliability of the motor case and its contents, which are

a major component of such rockets. The present investigation is concerned

with the effect of a uniform band of load intensity p and width 26 applied

to a motor case assembly, as shown in Figure 1. Such a loading may arise

when a clamp is placed over the assembly. The motor case is taken as a

long, thin cylinder and its contents, consisting of solid propellant grain,

is taken as a long solid cylinder or core.

The core and cylinder are assumed to behave elastically. The core is

examined by the use of equations from the theory of elasticity and the

cylinder by the use of equations from classical thin shell theory. The

elasticity equations for the core will be written in terms of displacements

and solved with the aid of displacement functions. The shell theory equations
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used to analyze the cylinder, are written in terms of its middle surface

displacements in the radial and in the axial directions. It is then

required that continuity of appropriate stresses and displacements at the

interface between the core and cylinder be satisfied. In this way the

cylinder unknowns may be related to the elasticity functions.

The core displacement functions satisfy partial differential equations

that will be solved by a separation of variables technique. Tile functions

may be expressed in terms of coefficients of a Fourier integral representa-

tion. When the load is also represented by a Fourier integral, the coeffi-

cients may be evaluated from the shell theory equations which constitute

the boundary conditions for the evaluation of the functions.

To obtain desired stresses and displacements, improper integrals

have to be evaluated. These are evaluated numerically after appropriate

non-dimensionalization. A convergence test that established accuracies of

one percent in the final results is incorporated in the computer program

written for the numerical integration.

In the limiting case as the width of band load becomes infinitely

small, the assembly is loaded by an axisymmetric line load. The limiting

case is of special interest and the results obtained are compared with

those obtained by previous investigators. Comparison of the band load

results obtained herein is also made to a plane strain solution for a

finite cylinder.

Field Equations of the Core

The governing elasticity equations for the axisymmetric solid cylinder,

or core, problem shown in Figure 1 are given below. For the cylindrical

coordinate system (r,8,x) and W and U representing the radial and axial

displacement components respectively, the strain-displacements equations
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may be written [11*
*

Er Tr	 e6 r	 x 8x	 rx 2 K t r)	 ( la-ld )

where, Er , Ee , Ex and 
Erx 

are the radial, circumferential, axial and

shear strain components respectively. The stress-strain relations are

ar = Jae + 2Gr ; ae = ae + 2G E6	 (2a, 2b)

ax = Xe + 2G E x ' 
Trx = 2G r

x	(2c,2d)

where, 
ar' ae' ax' and 

Trx are the radial, circumferential, axial and

shear stress components respectively. The term a is three times the mean

normal strain so that

e = r + Ee + X	 (3)

The terms G and X are the Lame material property constants. They are

related to the modulus of elasticity, E c , and Poissons's ratio, v, by the

relations

_	 vEc
(1+v)(1-2v)	 (4)

_ E,
G 	E

2(1+v)	 (5)

The stress components satisfy the equilibrium relations[1]

a-+ r 
+ 3 Trx - aerar 

= 0	 (6a)

	

r	 8a

a- - + a x + 
Trx = 0	 (6b)

When the strain-displacement relations of Equations (1) and (3) are

substituted into the stress-strain relations of Equations (21) one obtains

the stress-displacement equations.

ar = 
aGl [a 8 + (2-a)(r + 2 X)](7a)

*Numbers in superscripted brackets [ ] designate references in the Bibliography.
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a9
 = dGl C(2-a)(ar + ax) + a

r J	 (7b)

	

Qx = acl C(2 -a)(ar + r) + OlX ]	 (7c)

aw	 au
Trx = G[ ax +	 1	

(7d)

J

where the quantity a is defined as

a = 2(1-v) 	 (8)

Substitution of the stress-displacement relations of Equations (7)

into the equilibrium relations of Equations (6) expresses the equilibrium

equations in terms of the displacement compcnents

3 2W 1 aW W	 1 a 2W 1 32U
+ r Dr - r2 + 

(1- a
) axe + a arax = 0
	 (9a)

Drz

3 2 U	 1 a 2U 1 aU	 1 a 2 W	 1 aW
a^ + (1 - a)( ar2 + r Tr-) + a ( arax + r ax) = o	 (9b)

These equations were previously given by Marguerre [21 with a different

notation,as his Equations (23').

Two functions (f l and f2 ) of the coordinates r and x are now intro-

duced in the following manner

W - 2G [- of - r 
are 

+ (2a-1) f2 ]	 (10a)

U=- 2G [ 3x1 +r ax ]	 (10b)

The introduction of displacement functions in this manner has been referred

to as a Two Function approach 1 "' 41 . In these references it is shown that

substitution of Equations (10) into (9) leads to the following relations that

the functions f l and f2 must satisfy

22
8rz + r aar t
	 = 0	 (lla)

i
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2	 2
8_ f2 + r 2a - r f2 + aTx = 0	 (llb)

The stress components may be written in terms of f i and f2 by use of

Equations (7). In view of Equations (10), the stress relations are

Q = a 2f1 r a— - t a a f2r	 dry	 ar2	 8r
(12a)

r a + 
(1-a)ar + (l+a) 1	 (12b)

Qx = - a 
2' - 

r 
2f

7 	 + ( 2-a) t-a + f2`)	 (12c)

T = - a 2fl - r a ra + (a -1) 3	 (12d)„} 

Equations (9) and (12) constitute the relationship of the displacerent and

stress components of the axisymmetric problem to the displacement ,:unctions

f i and f2 of the Two Function approach.

Thin Wall Cylinder

Classical thin-shell theory for a cylinder is often associated with

the names of Timoshenko
[51

 and Donnell 161 . The derivation of the governing

equations of this theory will be presented herein based on a simplification

of the related problem ds formulated by the theory of elasticity. This

simplification is accomplished by the use of the following assumptions.

In terms of geometry, stress,and displacement, the assumptions are made that

(i) the wall thickness is considered negligible in comparison to the
mean radius.

(ii) the normal stress in the direction of small dimension is small as
compared to t.ae normal stresses in the other dimensions and may be
neglected.

(iii) plane sections initially normal to the undeformed mi,jdle surface
remain unextended and plane and normal to the deformed middle 	 •
surface.
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The elasticity Equations (1), (2), and (6) can be rewritten in terms

of the shell theory notation for the z, y, x coordinate system shown in

Figure 1, so that the strain-displacement relations are

-

 w	

w

Ezz	 z	 RR+z ' xx -	
(13a-13c)

C =1x	 ax +as )	 (13d)

The stress-strain relations are

Qzz = Xse + 2Gs zzCY = a
se + 2Gs 

YY	
(14a,14b)

Cr
xx = use + 2G  xx ' Tzx = 2G  Ezx	

(14c,14d)

while the equilibrium relations are

a Q zZ a
_
T̂ 

t 
_ Qyy - Qzz

8 z + 8 x	 R+z	 - 0
	 (15a)

	

a s zx + a s x + RR+z = 0
	 (15b)

where, three times the mean normal strain a is related to the radial,

circumferential, axial and shear strains respectively, by the relation

e = E + E + E
	xx 	 yy	 zz

The quantities w  and u  are the radial and axial displacements respectively and

R is the radius to the middle surface of the cylinder. The terms G s and X.

are the material properties with the same definitions as given by Equations (4)

and (5) where E is the modulus of elasticity of the cylinder and Poisson's

ratio is given by p.

Shell theory assumption (ii) indicates that a zZ « Cy xx and CF zz << oyy

so that azZ may be neglected. Rather than deal directly with the surviving

stress components Q
xx

, Qyy , and TMC, it is more convenient to deal with

(16)
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resultants. They are defined as forces or moments per unit length of

middle surface. Nx , N  are the normal force resultants, Q  is the shear

force resultant, while Mx , My are the bending moment resultants. They

are related to the stress components by the definitions
t	 t
2	 2

N 	 txx(1 t R)d z ; N
Y
 =	 tayydz	 (17a,17b)

2	 - 2
t
2

Qx = -	 Tzx(1 t R)dz	
(18)

t2
t	 t
2	 2

Mx = -	 taxx(1 t R)zd
z 	; My = - ayyzdz	 (19a,19b)

2	
_ 2

where, z is the radial coordinate measured radially outward from the mean

surface of the cylinder and t is its wall thickness. The directions of

these forces and bending moments are indicated in Figure 2. Shell theory

assumption M states that t/R << 1 and since IzI < 2 the quantities z/R
may also be neglected in comparison to unity. Thus, Equations (17a), (18)

and (19a) can be written simply as

t
2

N =	 a dz	 ( 2^• )
x	 t xx

_2

t
2

Qx = -	 Tzxdz
	 (21)

t
2
t
2

M = -	 a zdz	 (22)
x	 txx

_ 2

Shell theory assumption (iii) is generally called the Love-Kirchoff

hypothesis for shells. From the assumption of inextensibility of the
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cross-section, the radial displacement at a distance z from the middle

surface is equal to the radial displacement at the middle surface. From

the assumptions that plane sections remain plane and that sections initially

normal remain normal, the axial displacement at a distance z from the middle

surface can be related to the displacements at the middle surface. Denoting

the radial and axial displacements at the middle surface by w ar.d u respectively,

one concludes that

aw
wz = w	 ;	 uz = u - z 

aw	
(23a,23b)

Sutstitution of these equations into Equations (13) and neglecting z com-

pared to R in Equation (13b) by shell assumption (i) the strain components

become

ezz = 0
	 ;	 eyy = R
	

(24a,24b)

a U	

z2

	

exx ax ax'F ' Yzx = 0	 (24c,24d)

Since it has been assumed that 0 z << a xx , and azz << ayy so that

azz vanishes, the constitutive elasticity Equations (1.4b) and (14c) together

with Equation (14a) lead to

a = 1-	 Cexx + ueyy]	
(25a)

xx 

ayy = -7 Ceyy + uexx]	 (25b)

The stress-strain equations which involve z quantities equations (14a),

(14d)) can be seen to be violated. This is an expected consequence of the

additional assumptions that have been made for shell theory for quantities

in the z direction. Substitution of the strain-middle surface displacement

relations of Equations (24b), (24c) into the stress-strain relations of

Equations (25) givas the stress-middle surface displacement _q,.ations

E	 au za 2 w	 tw
Crxx = i 1̂  [a. - — x̂-E + ]	 (26a)R 
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2
CT 

= 1-u2 ^R + u3x - uzax2 ]	 (26b)

Substitution of the foregoing into Equations (17b), (19b), (20) and (22)

which define the stress result ._ ,and performance of the indicated inte-

grations, shows that the stress resultants are related to the middle surface

displacements as

Et au uw	 Et 
11—auw

	

'fi	 f + ] ; N =	 ax + R]	 (27a,27b)x 1-u2 ax	 R y 1-u2

Mx = Dax ; My = 
Du- aX2	 (27c,27d)

where, the flexural rigidity of the shell D is defined

_ Et 
D 120 - P7)

Equilibrium requirements in the x and z directions as well as moment

equilibrium about an axis in the y direction, as shown in Figure 2, demands

as	 + pX = 0	 (29a)
ax

+ a: - pz = 0
	 (29b)

am - Qx = 0	 (29c)

where, p  and p  are the radial and axial loads per unit middle surface area.

These are shown in Figure 2. Substitution of Equation (29c) into Equation (29b)

gives

+aM -pz=0 	 (30)

Substitution of Equations (27a-27c) into Equations (29a) and (30) gives

-T

2 2

	

	 2

	

x2 + 
axW + (1-u2) Et 

px - 0
	 (31a)

2 2 4	 2

uaxu + w t R12 a
	

- (1-u2) Et pz = 0	 (31b)

t	 -_

(28)
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When no axial surface load is present (i.e. p x = 0) these equations reduce

to the single familiar equations for axisymmetric cylindrical shell problems

and beam on elastic foundation problems. This is shown and used in Appendix 1.

Boundary Conditions

Equations (10) and (12) for the core and Equations (26) and (31) for the

cylinder are the relations that must be satisfied to obtain solutions for the

stresses and displacements. The core unknowns have been expressed in terms

of the displacement functions f l and f 2 . The boundary conditions provide

the means of relating the cylinder unknowns to these functions and necessary

relations for the evaluation of the functions themselves.

The following boundary conditions for the cylinder-core problem must

be satisfied. The stresses and displacements must all remain finite as

X -} t 00. Continuity of radial and shear stress as well as continuity of

radial and axial displacements must exist at the cylinder-core interface

for all values of axial coordinate. Let the core radial and shear stresses

at the outer radius of the core (r = a) be designated a s and Tax and let the

radial and axial displacements at the same surface be designated U  and Wa.

The stresses at the cylinder-core interface are assumed to act on the cylin-

der middle surface. For an axisymmetric externally applied radial load on

the cylinder p*(x), chosen outward positive in accord with the coordinate

system, the cylinder unit loads are

	

pZ = p*( x) - Qa	Px -Tax
	 (32a,32b)

From Equations (23) the cylinder displacements at the interface are given by

	

wZ	= w ;	 uZl	 t = u + 2x	 (33a,33b)

	

(	
t	 (Z = _	Z =

2	 2

Since the left hand side of Equations (33) must equal W  and U  respectively,
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by the displacement continuity conditions above, the middle surface dis-

placements of the cylinder may be written as

w = Wa 	u = Ua - 
2 aaa	

(34a,34b)

Wher, the condition imposed by Equation (34b) is used the results obtained

are referred to as an interface matching solution.

It is in the boundary condition expressed by Equation (34a) that pre-

vious investigators of the line load solution 
[7,81 

assumed

u = U	 (35)
a

When this boundary condition is used the results obtained are referred to

as a middle surface matching solution. The axisymnetric line loading of a

cylinder with no core helps to shed some light on the difference in the

matching. In Figure 3 the axial variations of the axial displacement para-

meter 2Guz/q x 10 3 are plotted for the cylinder inner and middle surfaces.

The quantity q is the resultant force per unit circumferential length. The

results in this figure were obtained from shell theory expressions derived

in Appendix 1. The effect of the difference in the use of Equation (34b) or

(35) in the final results of the cylinder-core combination will be evidenced

once numerical results are obtained.

In addition to the boundary conditions for the stresses and displace-.

ments it is necessary to relate the radii of the outer radius of the core,

a, and the radius to the middle surface, R. Since

a = R (1 - 2R)	 (36)

and it is assumed that t/R << 1 for thin-shell theory it is taken that

a = R	 (37)

The cylinder displacements can be expressed in terms of the elasticity

stress functions f l and f 2 through the substitution of Equations (10) and

r	
=

t
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(34) into Equations (33). No additional information for the re.dial displace-

ment would result since this can be evaluated as the core radial. displacement

at the outer core radius. When the following definitions are made

fla = flIr
	

f 2 
= f21	

(38a,38b)
 = a	 r = a

the axial displacement is given as

uz = - 21 [flax + af2a,x - (z + 2)(f
la,rx + 

af2a,rx - (2a-1) f2a,x)7

(39)

The cylinder stresses can similarly be expressed in terms of fla

and f 2 defined in Equations (38). By the substitution of Equations (10),

(34), (37) and (39) into Equations (26), it is found that

cxx - Gm{-Cfia,xx+af2a,xxI + (z + 2) [fia,rxx+af2a,rxx-(2c-1)f2a,xxI

-u [fia r + af2d,r -(2a-1)f 2aD 	 (40a)
a	 '

Q = G { - 1 [f	 + af	 -(2a-1)f ] -u[f	 + of	 )
yy	 m	 a	 la,r	 2a,r	 2a	 la,xx	 2a,xx

+u(z +1)[f
la,rxx + af2a,rxx -(2a-1)f	 112a,xx 

(40b)

where the quantity Gm is defined by

1	
(41)

Gm _ 2 G/E 1-U2 

Equations (39) and (40) thus express the cylinder axial displacement

and stresses in terms of the elasticity functions f l and f2.

Unknown Coefficients and Their Evaluation for a Band Load

'The solution for the core unknowns can be achieved with the aid of the

functions f l , f2 which must satisfy Equations (11). These functions can be

solved for by a separation of variables technique 
[3,4] 

If even functions of

the axial coordinate are considered the expressions for f l and f2 can be written
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CO

f l = a	 A Io (n a) cos 	(n a) do(42a)fo
f2 = To B I 1 (n a) co s (n a) do	 (42b)

where A and B are functions of n and Io and I 1 are modified Bessel Functions

of the first kind or order one. The quantities A, B depend upon the continuity

relations between the core and cylinder. Before the evaluation of these

quantities is considered, it is beneficial to express all the displacements

and stresses of interest in terms of A and B.

For the core, substitution of Equations (42) into the displacement an

stress relations of Equations (10) and (12) and noting the derivatives of

the Bessel functions

8[I (n r')]

	

O 
8r a = 3 I 1 (n a)	 (43a)

eCI I (n r)]
	a _ nI (n r) _ 1 I (n r)	 ( 43b)

r	 a o	 a	 r 1 a

it is found that the radial and axial displacements of the core are given

by the expressions

2GU =	 n CAIo (nra) + BE I1 (n-'-)] sin 	 ( ') do	 (44a)

F{-AnIl

0

2GW =	 ( a) + B [2a I1 ( a
) a Io ( a)]} 

cos ( a) do	 (44b)
0

The radial, circumferential, axial and shear stresses within the core are

given by the relations

z
Crr = F{A C - Ha lo(') + r J i (')]

	

-B C(n2r t 2r)I 1 ( ')- ( l+a) a Jo ( ')]} cos 	 ( ') do	 (45a)
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Cr	 = f'{-An I (nr) + B[(1-a) n I (rr ) t 2a I (nr)]} cos (nx) do	 (45b)
r8	 o	 l a	 a o a	 r	 a	 a

Q = 
J
'{ Ant I (nr) + B[(2-a) n I (nr) t n?r I ( nr )]}cos (nX) do	 (45c)

X	
o	

a o a	 a O a	 a2 1 a	 a

f'0
Trx = {Ana I1( a) -B[	 a Il( a)-n2 a2 Io ( a)]} sin ( a) do	 (45d)

It can be noted that similar expressions for the displacements and the

shear stress were given by Yao [7] for the line load solution. For the line

load solution particular values of the coefficients A and B apply. A dis-

crepancy in the radial stress expression he used exists. This was carried

through by Yao in his subsequent equations and calculations.

Since the quantities Ua, Wa ,
 a  and Tax are necessary for the boundary

conditions expressed by Equations (32) and (34) they may be written simply as

	

2GUa = Fn[AI 
0 
(n)  + BI 1 (n)] sin ( a) do 	(46a)

0

2GWa = J {-AnI,(n) + B[2aI i (n) - nIo (n)]} cos ( a) d.n	 (46b)
0

0
a = a fOO{AO 	 [nI,(n) - n2Io(n)]

0

	-B [(n2+2a) I 1 (n)- (l+a,)nIo(n)]} cos ( a) do
	 (46c)

Tax - a F{An 
2 I 1 (n) -B[anI l (n) - n 2 Io (n)]} sin (a) do	 (46d)

The cylinder axial displacement and stress expressions in terms of

A and B can be arrived at by the substitution of E quations (42) into

Equations (39) and (40). This gives
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uz = 2G f
o

Go

(A [nI(n) -nI,(n)]
 

o

tB [nI,(n) +n(2a II,
n 	

on) - I(n))]} sin ( a)  do	 (47a)

f
'{A
	 z

xxCm 	 [ na Io(n) - a (u+n) I1(n)]
0

-B L a (u+n) Io (n) - a (n2+2a( u+n)) I 1 (n)]} cos ( a) do 	(47b)

cyy 
= CmjOO {A C ^- Io (n) - a (l+pn)I,(n)]

0

-B C a (l+un)I o(n) - a (un 2+2a(l+pn))I 1 (n)]} cos ( a) do	 (47c)

where the quantity n is given by

n 2 (2Z + 1)
n =	 t	 (4s)

2(t)

From Equations (44), (45) and (47) and a mathematical theorem pre-

sented in SneddonC91 the displacements and stresses can be shown to satisfy

the boundary condition requirement that they remain finite as the axial

coordinate goes to infinity.

The radial load, which up to this point could be any general axisymmetric

distribution, can be represented by a Fourier integral. In correspondence

with the forms of the expressions for f l and f2 given by Equations (42) the

band load representation is taken as

p*(x) = na 
TO 
Ccos (a) do	 (49)

where, C is a function of n given by

C
 =F-0

p*(x) cos( a)d x	 (50)

This expression for the Fourier integral representation of an even function,

to which the load is restricted, may be found in any mathematics text in

which Fourier integrals are discussed (e.g. Kreyszig [10] ). For the particular
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(55b)
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case of a band load of uniform pressure p, C reduces to

sin(n6 )
C = -q----^-	 ( 51)

( a)

where q is the resultant force per unit circumferential length as shown in

Figure 1 and 26 is the total axial width of the load with

q = 26p (52)

Substitution of Equations (32),(34),	 (37),	 (46),	 (49) and (51) into

Equations (31) leads to two integral	 relations containing A and B , namely

J	 -
2G CX 11A + A 12 BIsin( a)	 = 0d o (53a)	 -

°o°
1 2^ [A21A + X22 	

cos( a) do = 0 (53b)
0

where the parameters

1 31 = -n2 Io (n)
2

+ (g + n2a )n I1	(n) (54a)

X 12

2

- (g + n2a)
n Io (n) - En 2(1+ aa) + a(u+g)] I 1 (n) (54b)

X21 n2  Io ( n)
2

- C1+	 12
	 + kn' + g-u]n I 1 (n)

at
(54c)

X22
2

= -C1 + 
u2at

+ kn 4 -(l+a)(u-g)]n Io(n)

2
2 +2ot	 '') + un ] I 1 (n)+ [(n	 at)g + 2a (1-u+kn (54d)

and the material and geometric parameters C, k and g are given by

sin(a)-	
--^r-- q (55a) 

n
a

g = u	 2) E t	 (55c)

If it is taken that the axial displacement matching condition is the
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middle surface matching given by Equation (35) rather than Equation (34b)

some of the terms of Equations (54) would not apply, but instead one would

f ind

-n2I0(n) + gn I 1 (n)	 (56a)
11

{	 ^12 = gnIo(n) -[n 2 +01(11+g)] I 1 (n)(56b)s

X21 = n 
2 
g Io (n) -[1 + kn 4+ g-u ]n I, (n)(56c)

X 22 = -[1 + kn 4 + ( 1+a)(u-g)]n I0(n)

+ [(n 2+2a)g + 2a(1-u+kn 4 )] I 1 (n)	 (56d)

To satisfy Equations (53) it is necessary that

X13A + X 12B = 0	 (57a)

X 21 A + 
X22B 

= ^	
(57b)

The direct evaluation of the coefficients A and B which are functions of

n is not necessary. Substitution of the algebraic solution of the simple

linear relations of Equations (57) shows that

A=- 11.rs	 ;	 B 	 (58a,58b)
D^	 D^

where the denominator, D^ is given by

X 11	 X12

D J1 _ 	 X 11 X 22 - X1221	
(59)

X 21	 X22

Appropriate values of A and B can be substituted into the desired displace-

ment and stress expressions. When the values of A and B given by Equations

(59) are substituted into Equations (44), (45), and (47) the final forms of

the expression to be evaluated numerically result. These are easily obtained

and are all included here in nondimensicnal form for completeness.

The expressions for core displacements are given in nondimensional form

as	

FO

2GU 
= Un D sin(a ) do	 (60a)

q
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2GW 

= To Wn D cos ( a) do 	 (60b)
4 	 A

where the terms under the integral are

tin = n[-A l2 Io
(a) 

+ All a I,(a)]	 (61a)

Wn ° Al2n I1(a) + A ll [2a I 1 ( a) - a I'( r),(61b)

and the parameter Z is defined

' = 4	 (62)

The corresponding nondimensional core stress relations are

qL FO(ar)n D cos( a) do 	(63a)

I- FO(a8)n D cos( a) do	 (63b)

Q
EX  = To (ax)n D cos( a) do	 (63c)

aTE _
(Trx )n D sin( a) do 	(63d)

q	 To	 A

where the terms under the integral are

(ar )n - A l2 [n2 1 ( a) - 11 11( a)]

-all[(rr r + ra) I 1 ( a)-(l+a)nIo( -	 (64a)
a

a i
(a) _	 n I (n=) + A [(1-a)nI (nr) + 2a I (nr)7	 (64b)
8 n	 12r l a	 11	 o a	 r l a i

a	 a

(ax)n = -J112n2I0( a)t 	 A 11 [(2-a)n Io ( a) + n2a I 1 (a) ]	 (64c)

(TrX )n y -A l2 n2 I 1 ( ,) - A 11 [anI - -n2 a Io ( a)]	 (64d)

MINN" - - -
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The computed core values to be presented herein are to be evaluated

at the interface, r = a, only. For this case, Equations (61) for the

displacements and Equations (64) for the stresses reduce to

Un^ = n[-X12I0(n) + X11I1(n)]
r=a

(65a)

Wn) = Al2nI1(n) + X 11 [2aI 1 (n) -nI0 (n)]	 (65b)

r=a

(ar )n )	 = X12[n2Io(n) - nI,(n)]
r=a

	

-X11[(n2+2a)I1(n)-(l+a)nI0(n)]	 (65c)

(oe)nl== 
X 12 nI.(n) + X 11 [(1-a)nI0 (n) + 2aI 1 (n)]	 (65d)

ra

(ax)n
Ir=a
 = - X 12n 2 I0 (n) + X 11 [(2-Q nI0 (n) + n2 I 1 (n)]	 (65e)

(Trx )n ) _ -X 12n 2 I 1 (n) - X 11 [anI l (n) - n 2 I (n)]	 (65f)

r=a

The nondimensional cylinder axial displacement and stresses are

given by

 
D sin(a) do	 (66a)TO (uz)n X

-
G
m (axx )n D cos ( a ) do( 66b )

q	 o	 X

	

aq - Gm To (ayy )
n D cos(a) do	 (66c)

X

where the terms under the integral are

(u ) = -X [nI (n) - nI (n)] + X [nI (n) + 
n( 2aI,(n) 

_ I (n A (67a)
z n	 12	 0	 1	 11	 1	 n	 o

(v
xx )n = -X 12 [n2 I0(n) - n(U+n)I1(n)]

X 11 [n(u+n) 10 (n) - (n2+2a(U+n))II(n)]	 (67b)
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yy )r = -^12[ur^ 
I0 (n) - n(l+un )I r (n))

-X 11 [n(l+un)I0 (n) -0un2 +2a(l+un))Ir(n)]	 (67c)

The computed cylinder values to be presented herein are the stresses which

are evaluated at the cylinder outer surface, 2t = 1, only. For this, the

quantity n from Equation (48) reduces to

n	 = n`

2z	 (t^
t
-1

Computational Difficultie s

The formal solution to the band of load on a cylinder and core assembly

as derived in the previous section is sufficiently complicated to cause

computational difficulties. The methods used to overcome these difficulties

will be discussed in the present section.

It can be seen from Equations (60), (63) and (66) that a typical inte-

gral requiring solution may be expressed as the nondimensional quantity S

defined as

sin (n6 )	 sin (rr )
^S = J	 s{() --

6
- a ){ or a } do	 (69)

o	 ( a)	 cos ( a)

where, s is the quotient of two expressions that involve powers and modified

Bessel functions of n. It may be written as

s
	s = Dn	

(70a)
a

where sn takes on values given by Equations (61), (64), and (67). General

computational difficulties encountered in elasticity solutions for cylinders

were discussed in a previous report by the authors [31 . In that report, it

was indicated how the modified Bessel fur._tions can be evaluated and the

general method to be used herein for the accurate evaluation of the improper

N

(68)
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integrals was given. At this point the details of the numerical evaluation

of the particular typical integral of the cylinder - core problem in Equation

(59) are given. The difficulties that arise are caused by the function s

and by the presence of the trigonometric functions for both band width and

for axial location. They will be discussed in this order.

For both ' small' and ' large' values of Bessel function arguments,

val:ies of the numerator, s  and denominator, D X of s too small or too

large to be handled by a digital computer will occur. To elminate this

difficulty both numerator and denominator in s are divided by n 3 IO2(n).

Equation (70a) is rewritten to read

s
S = n̂	 (70b)

D

where, 'he nvmeratr^r and denominator are given by

s
_	 n

sn n I n)
0

DA
D^ 

= n I-3' z (n) _ 11 22 - X12A21	
(72)

The is are taken as

X11 n—ZI (n) = -1 t(g + n2 2a)g 	
(73a)

0

X 12	 nI^(n)
 - (g - n2 2a) 

-En	 ta(u+g)]g	 (73b)
0

1X 2 	 n2t
X 21 - n 2In)2	 = g -[1 t 2a (211-g) + kn 4 t g-u7g	 (73c)

X 22 - nI^22	
-C1 + n2a (211- ,1) + kn"- (l+ot)(U-g)7

0
2

+ [(n 2+2a) g + 2a(1-p+kn 4 ) t n2at (3u-g)7g	
(73d)

where, g is the ratio of modified Bessel functions given by

I1(n)
g	 nI (n)	

(74)
0

Again some terms would have been lost had displacements been matched

with the middle surface so that the i t s would be given as

(71)
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1i 11 = n^zi(n) = -1 + g g	 (75a)
O(

X 12 nI 0(n) = g -[
n2 + a(u + g)]g	 (75b)

x 21

1i21 = n
-^I (n) = g -C1 + kn4 + g - u]g 	(75c)

0
a

X 22	 nI (n) = -C1 + kn" - (1 + a) (u - g)]
0

+[(n" + 2a) g + 2a (1-l.i+kn
4
)]g 	(75d)

The values of the displacements necessary for computational purposes

for small and large arguments from Equations (61), (71) and (73) are

Un = n C - a 12go + 7. 11 ( a) 2 g` ]	 (76a)

_ r
W	

a {a
12g i + a 11 C2ag 1 - go 7}	 (76b)

where g0 and g 1 are the ratios of modified Bessel functions given by

	

IO ( a)	 I1( a)
g = 	 g =	 (77a,77b)
o	 Io(n)	 1	 (nz) Io(n)

Similarly for the core stresses, from Equations (54), (71) and (73), the

values for small and large arguments are

(&r )n
= a 12 Cgo - g 1 ] -71 11 C( a)2 + 2a] g 1 -(1 + a) g0}	 (78a)

(& 6 )n = 
^12g1 

+ ^ 11 C(1 - a) g0 t 2ag 1 ]
	

(78b)

(6X )n = -J1 12go t ,1 11 [( 2-a)go + (a) 2 g 1 ]	 (78c)

(Trx )n= a C-1i	
(78d)

12g 1 - 1, 11 (ag 1 - go)] 

At the outer radius (r = a) g 0 = 1 and g 1 = g. The quantity g, given

by Equation (74), is evaluated for small values of n (less than .001) by the

division of Equation (42b) of C31 by Equation (42a) of C37 . For large values

of n (greater than 50) g is evaluated by the division of Equation (45b) of [31

by n times Equation (45a) of C37 . For a < 1 and n < .001 the quantity g0

may be evaluated by the division of Equation (42a) of C31 for n = a by the

same Equation for n = n. For the same condition g̀ 1 may be evaluated by the

i
i

c	 `	 ^
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division of Equation (45b) of[3] for n= a by Equation (45a) of^ 3] for n=n.

For r/a < 1 and n > 50 two methods of evaluation of each of i o and it

must be considered. These methods depend upon the magnitude of n r/a.

For a < 3.75, io and i t may be evaluated by t}:le division of Equations

(42a) and (42b) of C31 respectively for n = a by Equation (44a) of

for n = L. For a > 3.75, i o and it may be evaluated by the division of

Equations (44a) and (44b) of (3] respectively for n = na by Equation (44b)

of 
[3] 

for n = n. In this case io and i t can be expressed more simply as

r
S (rrr) a-n(1 - a)

	

8	
o a=

	

o	 (79a)

3 a S0(n)

r
S 1 ( a) a

-n(1 - a)

	

g	 =	 (79b)

	

1	 n(L)"" S
0
 (n)

Since the computed core values to be presented herein are to be

evaluated at the interface r = a only, the final expressions needed to

evaluate the core displacement and stress integrals at the outer radius

for small and large values of n become, from Equations (76) and (78).

Un

l r=a=

 n (-^	
;. 1 11 17 (Boa)

Wn

y

= 1 12i t 1 11 (2ai - 11 (Bob)

(ar)n

l r=a=

112(1 - ^11U n 2 + 2a)i - (1 + a)) (80c)

(a@ )n
I

= 1 12' + 1 11
[1 - 

a+ 2Q] (80d)

`
x )n -1 12 + 111(2

- a+ n 2g) (80e)

0rx )n = n[ -1 12' - 1 11 (
0tgl

- 1)] (80f)

r=a
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Similarly for small and large values of n, the cylinder displacements

and stresses given by Equations (67) are written

(uz )n = n {-1 12 (1 - rlg) + 1 11 [n2g t n(2ag -1)11	 (81a)

(axx ) n	 -112E1 - N + n)g7 -1 11 {u+n-[n 2t2a(u+n)7g}	 (81b)

( yy )n = -1 12 [u-(l+un)V -1 11 {l+un-[un2 + 2a(l+un)]8}	 (81c)

For evaluation at the outer radius of the cylinder Equation (68) appro-

priately gives the quantity n.

Equations (59), (61), (64) and (67) apply in the intermediate ranges

of values of n. Equations (72), (76), (78) and (81) apply in the small

and large ranges of values of n. These equations thus provide the necessary

quantities for the evaluation of s given by Equations (70) in the typical

integration of Equation (69). For evaluation at the outer core radius

Equations (65) and (80) apply as the special cases of Equations (61) and

(64); (76) and (78).

It should be noted that for small values of n the final bracketed
x

quantity in the integrand of Equation (69) reduces to {or}. The 
a

 term
1

applies to the core and cylinder axial displacement and core shear stress

quantities. The multiplication of the n of 
a

 with On and (uz ) n must be

done prior to evaluation to avoid division by zero in the computations.

For a given nondimensional displacement or stress parameter, the

quantity s in Equation (69) was found to remain the same sign and converge

to zero with increasingly larger values of n. The general nature of the

integrand of Equation (69) is effected by the periodicity produced by the

trigonometric functions. Greater difficulty is encountered in the numerical

integration for the band load problem than for the limiting line load
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problem. This is due to the presence of two periodic functions and the

greater frequencies of oscillation associated with the consideration of

larger axial length values.

Typical plots of the integrand as functions of n for the radial

deflection for a line and two widths of band load are shown in Figure 4.

From these plots it can be seen that the contributions to the total inte-

gral occur in a continuous fashion for a = 0, 2a = 0 but in discrete

intervals between the zeroes of the trigonometric functions for0
a # 

and/or 28 # 0. The method of arriving at a satisfactory evaluation of
a

the integral was different for these cases. Basically, however, four

groups were formed in both cases. These gave partial contributions towards

the accurate evaluation of the integrals. These were obtained by numerical

integration using Simpson's rile. In the case of a = 0, 2a = 0 the

groups in Figure 5 were chosen. These are shown by Roman numerals. For

a# 0 and/or 2a # 0, the groups were formed as the contributions of suc-

,cessive intervals between the zeroes of the trigonometric functions. These

are shown in Figure 6. Four groups were arbitrarily chosen, in that a

second group may sometimes be small compared to the first and yet subse-

quent groups may contribute to the overall integral. This is shown to

some extent in Figure 4 for a = 0.1 and 2a = 0.5.

After these groups were formed a check was made comparing the second 	 a

group with the first, the third with the sum of the first two and the

fourth with the sun of the first three. Tests of 3%, 2%, and 1% were made

to establish adequate convergence. If any group was not less than these

specified percentages, the test was rerun with the formation of additional

groups as necessary.

The computer program that was set up to perform the numerical integra-

tion is included as Table 1. This particular program was used to calculate

i
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the core deflection and stress distributions in the axial direction for

different band load widths. For convenience an equilvalence table is

included for the algebraic and computer symbols for the different variables.

As compiled and listed by an IBM 360 Model 50 computer in Table 1, the

equations of the Two Function approach with interface matching used herein 	 -

are shown. This is designated Run (1) and used to obtain results for band

load solutions and, in the limit, for the line load solution. By a simple

change in some of the cards of the Fortran source deck, middle surface

matching solutions can be obtained. The Two Function approach with middle

surface matching represents an approach that should lead to results in

agreement with those obtained by Yao
[71

. This solution has been designated

Run (2). The Love Function approach with middle surface matching, which

is considered in Appendix 2, is designated Run (3). For the line load

solution, Run (3), results obtained should correspond to those obtained

by Yogananda181.

The program as set up for an 'accuracy' of 1% took relatively large

amounts of computer time, especially for the larger values of 26/a. For

the most part, computer results were obtained on a Control Data G-20

digital computer. On this machine for the run printed in Table 1 the

total time for 2 6 /a = .5 was close to one-half hour. As rerun on the IBM

360 Model 50 this was cut down to six minutes. It was surprising that such

a large reduction in time occurred in that, although the 360 is acknowledged

to be faster, almost identical results were obtained even as far as the

necessary number of groups to satisfy the convergence criter-on.

Numerical Results

In all the results graphed, the material parameters are G/E = 4 x 10-5

and v = u = 0.3. The geometric parameter which controls the relative thick-

ness of the cylinder was taken as a/t : 400. Although only these particular

i
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parameters are used, and results at the core and cylinder outer radi' were

obtained, the results for a wide range of values can easily be obtained.

Table 2 presents the core displacement and stress parameter results

of Run (1) for the band load solution with 26/a = O.S. These are a set of

typical results from the computer program of Table 1. Table 3 presents

typical results for the outer surface cylinder stress parameters. Tables

4 and 5 present the core displacement and radial and shear stress para-

meter results for the line load solutions of the interface matching Runs

(2) and (3).

Figures 7 through 12 show the distribution of core displacements and

stresses at the outer core radius for 26/a = 0, 0.1, 0.25 and 0.5. For

these same band width values the outer surface cylinder axial and circum-

ferential stress distributions are shown in Figure 13 and 14. Results

for the limiting case of line load (ad= 0) are shown in all these

Figures 7 through 14.

No measurable difference in results for the radial displacement and

radial stress for the two different axial displacement assumptions was

observed in the line load solutions of the different Runs (1), (2), and (3).

The distributions of nondimensional axial displacement and shear stress for

both interface and middle surface matching are shown in Figures 15 and 16.

The cylinder axial displacement results for a line load when no core is

present previously given in Figure 3 are also shown in the axial displace-

ment plot of Figure 15 by the dashed curves. The significance of these

curves is considered in greater detail in the discussion of results.

In Figures 17 through 20 a more general picture is given of how the

displacements and stresses at the Gore outer radius ( at the center of the

load) decrease with increasing band width. Figures 21 and 22 show the same

decrease for the cylinder stresses. In both these figures a dashed curve

--^------	 yr--	 - _--
i

r
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has been used to indicate the "plane strain" solution for a finite cylinder

and core combination where the 'length' of the cylinder is equal to the

band load 'width'. By plane strain, it is meant that the axial displace-

ment of both the cylinder and core is zero. In the latter calculations

the distinction between the interface and cylinder mean surface radius was

recognized. The derivation is given in Appendix 3.

Discussion of Results

Equations have been derived for the stresses and displacements within

a long cylinder encasing a core, subject to a band of compressive stress

uniformly distributed over a finite width 26. Results that show displace-

ment and stress distributions versus the axial coordinate for various band

widths and versus band width size are shown graphically in a number of

cases for which it was assumed that the material constants G/E is 4 x 10-5,

Poisson's ratio v = 4 = 0.3 and the core radius to wall thickness ratio a/t

is 400.

For an increasing width of band load 26 as considered in Fig.--: ,es 7

through 14 the decrease in magnitudes of the displacement and stress is

apparent. The maximum axial displacement and corresponding maximum shear.

stress necessary to satisfy the interface boundary condition are at similar

locations. The location of this maximum was at an axial length slightly

greater than the distance to the edge of the band load. In accordance with

St. Venant's hypothesis, the axial displacement at a large distance from

the load is independent of the particular width of load.

The radial, circumferential and axial stresses, as well as the radial

deflection, at the outer radius of the core, all have their maximum magni-

tudes at the center of the band width for small band widths. For wider

band widths, however, the peaks occur at axial locations closer to the edge

of the band. The radial tensile stress and shear stress at the cylinder

1
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to core interface are particularly important because they soecify the

bond strength required between the core and cylinder. The maximum radia:

tensile stress values as well as the maximum shear stress values occur

at an axial location slightly beyond the edge of the load. The maximum

radial stress tensile values are somewhat smaller than the maximum shear

stress values.

In Figure 13 the axial displacements at the middle and inner surfaces

of a cylinder with no core subjected to a line load are shown in the dashed

curves. These curves show the difference in axial displacements at these

two surfaces due to the presence of an axial bending moment. The correspond-

ing cylinder-core combination line load solutions given by the solid curves

in this figure can be seen to be a natural consequence of the particular

matched boundary conditions. For the material and geometric properties

considered the radial displacement and stress were not values effected 'y

the different matching (interface or middle surface) boundary conditions.

Although a similar method of solution to that used herein was used

for the limiting case line load solution by both Yao 
[7] 

and YoganandaC81

substantially different results from those herein and from each other were

obtained in each case. For example for the same parameters as those chosen

herein the maximum radial stress obtained by Yao and Yogananda is about 20%

and 37% lower respectively, than the current results. The reason for this

difference has been noted for Yao in terms of the error in the radial stress

expression. Yogananda's equations were computer checked with the convergence

criteria presented herein. Rather than the results he presented, the com-

puter results were found to lead to the values obtained in the present

investigation (with middle surface matching). Indeed, it can be shown that

the Two Function approach used herein by Yao and the Love Function approach

f
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which Yogananda used, are algebrai-:ally equivalent. This is shown in Part

B of Appendix 2.

It may be of interest to examine the stresses and radial displacements

within a section which passes through the center of the externally applied

pressure band in order to observe the changes that would occur as the band

width increases while the external force is constant. Stresses and radial

displacement at the midsection have been calculated by the use of equations

derived in the present paper and are shown by solid amines in Figures 17

through 22 for a band width 26/a which ranges from 0 to 2. By compariso,,,

results derived in Appendix 3 for a simplified solution of a cylinder and

core assembly under the plane strain assumption that the axial displace-

ment vanishes are shown in the same figures by the dashed lines. As expected

the greatest difference between solutions, as measured by the vertical

intercept between the dashed and solid lines, occurs for small band widths.

The difference decreases considerably once the band width exceeds a length

equal to the core radius. It is interesting to note that excep` for the

axial stress component, the simplified solution provides a reasonable

approximation to stress and axial displacement at the midsection of the

pressure band provided the band width exceeds a core radius.

All curves of Figures 17 through 22 show the rapid decrease in stress

and radial displacement as the band width increases from that of a ring load.

The rapid change emphasizes the advantage of designing away from very narrow

bands of pressure.

In conclusion it should be noted that tensile stresses can be created

in the bond between a case and its core even when the assembly is subject

to a compressive band of pressure. An increase in the width of a narrow

band of pressure significantly decreases the stresses and displacements in

the assembly even though the external resultant force is kept constant.
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APPENDIX 1

Axial Displacement of a Cyiinder Without a Core

The classical equations of thin shell theory are given by Equations

(31). When a cylinder is subject to a line load as shown in the sketch

below	 I

the boundary conditions and symmetry conditions, to be used in conjunction

with Equations (31), may be written

Cw, x 1	 = 0 ; IQx I	 = - a ;	 limit w = 0	 (l.la-l.lc )
x=0	 x=0

In addition the unit surface loadings p  and p2 vanish. Equation (31a)

can then be written

u=-R 
f 
w dx

Su-istitution of Equation (1.2a) into Equation (31b) yields the familiar

equation for axisymmetric cylindrical shell problems, namely

w'xxxx + 4S
4
w = 0

where the parameter

S = C
3(1 - 11 2 )^ 1/4

R2t2
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The solution for the radial displacement can easily be obtained from

Equations (1.1), (1.3) ( 27c), and ( 29c). A solution is given, for example

on pages 471-474 of Timoshenko and Woinowsky-Krieger [5 ] and can be written

in the current notation as

	

w = - 
8 AD5 

e- 
ax 

[cos ax + sin ax]	 (1.5)

With the substitution of Equation (1.4) into Equation (1.2b), perforr:.ance

of the indicated integration, and the use of the boundary condition that

the axial displacement at the origin of the axial coordinate vanishes, the

expression for axial displacement may be written as

u = 2-_ [1 - e-ax cos 6XI	 (1.6)

The axial displacement at any distance from the middle surface can be

found from Equations (23b), (1.4) and (1.6). When the dimensionless

quantities that have been used herein are introduced and use is made of

Equation (37), which expresses the equivElence of the inner and middle

surface radii of the cylinder, the axial displacement of the cylinder may

be written as

2Guy x 10
3 = (G x 1C 3 )(

1
) [P- e-  a [u cos S x + (2z) -^ sin R ] }	 (1.7)

q	 E	 t	 a	 t ( a )	 a

where,
t

	

S = Ba = [3(1-112 ) (t) 2 7
1/4	 (1.8)

The axial displacement ratio 2Gu z/q x 10 3 vs. the dimensionless axial

coordinate x/a is plotted in Figure 3 for values of 2z/t = -1 corresponding

to the interface (no core) and 2z/t = 0 for the middle surface (no core). It

is of interest to note that as x/a becomes infinitely large the axial dis-

placement ratio is given as
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2--	 x 10  = (E x 103) (t) U	 (1.9)
4

and is independent of 2z/t. The asymptotic value of 4.8 is reached for

the particular parameters considered herein as shown in Figure 3.

t
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APPENDIX 2 - PART A

LOVE FUNCTION APPROACH - METHOD OF SOLUTION

Equations (9) express the elasticity equilibrium equations in terms

of the displacement components, W and U. The Love function x = x(r,x) may

be introduced in the following manner [3,41

2

W = -19r	
(2A.1a)

2	 2	 z-1 3X
U	

2G [a( arr + r ar + ax e ) - aX2 ]	 ( 2A. lb )

Substitution of Equations (2A.1) into the stress-(-4 isplacement relations

of Equations (7) then relate the radial and shear stress to the Love Function

a,-

z	 2	 z

6r = ax [- a- r` + (1- 2 )(a	 + r a +ax2 )]
	 (2A.2a)

2 2 	 2

Trx Tr [ ax2 + 2 ( ar	 r ar + a ))	
(2A.2b)

Substitution of Equations (2A.1) into Equations (9) leads t the

following differential equation which governs the Love function

a" x. 2 PX _ 1 a 2x 1 ax 2 a 3x	 a4x	 a 4
ar 4 + r ar 3 r a + r 3 ar + r arax z + 2ar 2 ax 2 + aX,, = 0

	 (2.A.3)

The solution of this equation may be found by the use of a separation of

the variables technique twice. This is done in Foppl and F3ppl [12] . The

solution may be written

X = a 2 1 n 3 [A'Io ( a) + B'n a I 1 ( a)] sin (na) do	 (2A.4)

where A' and B' are functions of n analogous to the functions A and B

introduced into Equations (42) of the text; 1  and I 1 are modified Bessel

functions of the first kind of order zero and order one respectively.
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Substitution of Equation (2A.4) into Equations (2A.1) and (2A.2)

expresses the axial and radial displacements and the radial and shear

stress components in terms of A' and B' as

2GU = J {A' I o ( a) 	+ B' [20tI o ( a) + na I 1 ( a) ]}sin (na) do	 (2A.5a)
0

roo

2GW = -	 l 0 n [A'	 I 1 ( a) +	 a Io ( a)]B ' cos ( a) do	 (2A.5b)

I1(rrr-)
Cr	 = a {A ' C-Io ( a) +	 ] + B'

ra
[(1-a) Io (a)r

0 n--a
-nr I 

1
(nr)]} cos (nX) do (2A.5c)

a a	 a

CO

Trx 
= a f	

{A' I^( a) + B'[ 
3 

Io ( a) + aI i ( a)]} sin ( a) do	 (2A.5d)
0

Substitution of Equations (32), (34a), (35), (37), (49), (51) and (2A.5)

each evaluated at the outer core radius, into Equations (31) leads to

two integral equations of the form given by Equations (53). In the pre-

sent case the X : s have revised definitions now. Denoted by primes,

7^'	 = I (n) - 9
Ii(n)	 (2A.6a)

ii	 o	 n

X1 2 = Oa-g) Io (n) + Cn 2 + a(u-g)] 
II""	

(2A.6b)

Al = -g I (n) + (1 + kn^' + g -u) 
11(n)	 (2A.6c)

21	 0	 n

A 22 = [1 + kn 4 + g - u -a(g+u)] I0 (n) - ng I0 (n)	 (2A.6d)

Expressions identical to Equations (57) through (60) and (63) hold for

the primed quantities A', B', P's and for D'X equal to the determinant

of the P quantities and where the terms Un , W 
n 9 (ar)n 

and (Trx)n now

ti
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denoted by primes have

U' = 1 {-
n n

W1n

the following definitions:

(nr) + a' [2aI (n—') + n—'I ( n7'-)1}	 (2A.7a)
12 O a	 11	 o a	 a 1 a

I1(nr)

Ail	
a	

-^' r I (nr)	 (2A.7b)n	 11 a o a

I (n r)
(Q )' _ ^' CI (nr) - 1 a ] + 

X11
' [(1-a) I (nr)- nr I (nr)J (2A.7c)r n	 12	 o a	 r	 o a	 a 1 an—

a

	

(Trx )n	 X12 I1(a) + X 1 1 [ a Io ( a) + a I 1 ( a)]	 (2A. 7d)

At this point, it is possible to compare the algebraic expressions

obtained from the Two Function approach and the Love Function approach.

This is done in Part B of this Appendix. That they are equivalent for

the axial displacement parameter is shown for middle surface matching

(i.e., it is shown that U n,"J^ = Un/DI ). This can be shown in a similar

fashion for the other nondimensional quantities. Rather than show this

for the other nondimensional quantities, the numerical results, which are

easily obtained for the different approaches have been used as a means of

verification. Since numerical results are obtainel at the core outer radius

Equations (2A.7) reduce to

Un = n {-X1 2 Io(n) + ^11 1 [2aIo (n) + n I 1 (n)]}	 (2A.8a)

Wn = X12I,(n) - al l Io (n)	 (2A.8b)
n

I (n)
((Y	

- 
a1 2 CIo(n) - 

n	
J + a1 1 [(1-a) Io(n) -nI 1 (n)]	 (2A.8c)

(TrX )n = 
-a 12 I 1 (n) + a3 3 [nIo(n) + aI 1 (n)] (2A. 8d)
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A similar numerical integration difficulty is encountered in dealing

with small and large values of n in the present Love function approach as

was considered in the Two Function approach. In this case the difficulty

can be overcome by dividing numerator and denominator of the equivalent

s quantity of Equation (70) by I
0 
2 (n). The denominator becomes

D'

Da	 I 2 (n)	 ^11	 ^ I	 ^12^z1	
(2A.9)

0

where the functions 
X 11' X12' a2 1 , aI,d X'	 are defined

a' =	 11	 =I	
(n)

1 - gg (2A.10a)
0

X 12 I1 (n)	 =
2a - g + [n 2 + a(u-g)] g (2A.10b)

0

X 21 = I2(n)
-g + (1 + kn 4 + g - u) g (2A.10c)

0

X1
^' =	 22	 = [1 + kn 4 + g - u - ot(g + u)] -n 2 gg (2A.10d)
22 1	 (n)

0

The final expressions evaluated at r = a for the numerator in the small

and large range of n are given by

+ X ; , + n 2g] } (2A.11a)
n^ n 12	 11

r=a

Wn	 X12 g - X11
(2A.11b)

l r=a=

(ar ) , X12 Cl-'] + ai l [1-a-n 2g] (2A.11c)

l r=a=

n[-^12 g + X 1 1 ( 1 + ag)) (2A.11d)
(Trx )

ni
	 =
r=a
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Equations (2A.6) and (2A.7) in the intermediate range of n and Equations

(2A.10) and (2A.11) in the small and large range of n providt, the necessary

quantities for the evaluation of the typical equivalent nondimensional

quantity S in Equations (69) for the Love Fucntion apprcach.
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APPENDIX 2 - PART B

Love Function Approach - Check of Equivalence

It is the purpose of the present section of Appendix 2 to show, by

examination of equations, the equivalence of the final expressions for

the core axial displacement parameters of the Two Function and the Love

Function approach. The middle surface matching solution is considered

for both approaches.

The axial displacement parameter	
i

q is given for the Two Function

approach by Equation (60a). For the Love Function approach it may be

written as

2GU	 o D
U

n 
T sin ( a) do 	(2B.1)

q

where Un is given by Equation (2A.7a) and

D^	
i ii X 22	 X12 V	

(2B.2)

where the V's  are given by Equations (2A.6).

To show the equivalence of the two approaches it is sufficient to

show that
U	 U'
n _ n

DX D-
(2B.3)

where U  and DX are given by Equations (61a) and (59) respectively. To

do this, each side of this equations numerator and denominator separately,

will be put into slightly different form and it will be shown that

Un = n	 D' = n3	
(2B.4b)

and therefore Equation (2B.3) is satisfied.

For convenience, let the following definitions for the quantitis hl

and h 2 be made
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h l = n 2 + a(U + g) ; h2 = 1 t kn 4 + g-^!	 (2B.5a,2B.5b)

Then Ea--' ons (56) may be written

- n2 I 0 (n) + ng I 1 (n)	 (2B. 6a)

ng I 0 (n) - h 1 I 1 (n)	 (2B. 6b)

n 2 g I o (n) - h 2 n I 1 (n)	 (2B.6c)

x 22 = -[h 2 -a(11-g)Jn I0 (n) + [n 2 g + 2ah 2 1 I 1 (n)	 (2B.6d)

Substitution of Equations (2B.6) into Equation (59), followed by rearranging

and reducing terms lead to

Dx = [h2 -a(u-g) -g 2 7 n 3 Io(n) + [n 2 g 2 + 2ah 2g-h 1 h 2 I nI12(n)

+ 2an 2 [Ug - h 2 1 I0 (n) I 1 (n)	 (2B.7)

Substitution of Equations (2B.5) into Equations (2A.6) yields

x1 1	 = (n)Io (n) - J& I (2B. 8a)1

I	 (n)

x12 
= (2a-g) Io (n) + [ n2 +

1 n
a(u-g)a (2B. 8b)

h -
x2 1	= -gIo (n) +	 I 1 (n)

n2
(2B.8c)

x2 2 = [h -a(g + u) I0 (n) - ng	 I,(n) (2B.8d)

Substitution of intothese equations Equation (2B.2) verifies that

Equation (2B.4 b) is true.	 Equation (2A.7a) may be rewritten

x i2 + 2a x'
^'	 _	 (-	

11 )	 I	 (rrr-) i• x'	
r 

I	 (nr) (2B.9)
n	 n o	 a	 11	 a	 1	 a

From Equations (2B.6a), (2B.6b) and (2B.8a), (2B.8b) is is easily shown

that

x11

x
12

21
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-%,+  2aX'	 A	 naiz 
n	 11 = -n = ; i ii -	 nj	

(2B.10a,2B.VD)

Therefore, from Equations (61a), (2B.9) and (2B.10) it follows that

Equation (2B.4a) is true. Thus, the algebraic equivalence for the two

different approaches for the axial displacement parameter is verified.
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APPENDIX 3

Cylinder - Core Assembly for which Axial Displacement Vanishes

Let us analyze a core and cylinder assembly subject to a uniform pressure

over Sts entire length 26 as shown in sketch (a) below. The problem is

^a

ore	
^

 26

cylinder

(a)	 (b) ( c )

to be analyzed with the use of the plane strain assumption that the axial

displacement vanishes. Hence for brevity the solution will be referred to

as a plane strain solution, even though the axial dimension 26 need not

necessarily be large compared to the diametral dimension 2a. The assembly

is separated into the ttio free bodies shown in Sketch (b) and Sketch (c).

The interface pressure between both bodies designated pI is initially unknown.

It will be determined from the compatibility requirement between the radial

displacement of the core and that of the cylinder.

T'e solutions to the problems depicted in Sketches (b) and (c) can be

taken directly from any well known text on elasticity. In terms of the

notations used in the 1 resent paper, the stresses and radial displacement

of the core is given as

Qr = -pI ; a  = -pi ; ox = -2vp l	(3.la-3.1c)

rW=-pI E ((1-2v)(ltv)]	 (3.1d)
c

The solution for the cylinder was found by Lame and may be found on page 144
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of Love[22] . The stresses and radial displacements are found to be

a2 b ` (p a 2 -pb 2
=

_	 _ _^_ 1	 I

azz	 172 --ar
2+ 

b2-a2	
(3.2a)

	

a 2 b ` (p-p I ) 1	 pIa2-pb2

ayy	 (b2 - a2)	 r2 + b2 - a2	
(3.2b)

PIa2-Pb2

axx	 2u	 b 2 -a ;	(3.2c)

r	 l+u (P I-P)a2b2	 PIa2-pb2
w = E [ r2 

(̂  + 72-a2 ( 1-2u)(l+u)]	 (3.2d)

where b, is the outer radius of the cylinder.

Equdting radial displacements at the interface

Wl
= W	 = w;	 = w	 (3.3)

r=a	 aIr=a	 a

the interface presFure p I is found to be given by the expression

PI =	 2K2 ( 1-)12)	 (3.4)
P	 (1+11)K2+(1-2p)(l+u) + (

1-2v )(K -1)

2(E)

t 
+ 1

b
whern, K = b _

a	 aIt

In or,aar to compare the present solution with that presented in the

:.spin section of this report, let us introduce the resultant force per

unti circumferential q. The term q = 26p, as given by Equation (65).

Hence . the strew components of Equations (3.1) may be written

P I 	PI
aQr -

4	

aae - - (—) s Q - '^(4)	 (3.5a-3.5c)

( a)	
t	

(a)
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The radial deflection at the cylinder middle surface, is then given from

Equation (3.2d) as

P	 P

2GW	
(E)	 4(1+u)( I - 1)K2 +(— -K2	 )2

---r

_ —r [	 P	 p	 (3.6)
q r
	

R = a+b (2 a)	 (K+1)2 (K-1)
2

The difference between this radial deflection and that at the interface

is very small. Equations (3.5) and (3.6) were used to :.'`1in the dashed

curves shown in Figures 17 through 20.

In a similar fashion the nondimensional axial and circumferential

stress ratios can be expressed in terms of nondimensional quantities

introduced herein. From Equations (3.2b) and (3.2c) one may write

	

as	 PI - K2
X - u [ P

	

q	 A	 K;,	 (3.7a)

a

- K2 [1 _ r.

	

{	 ^^	 + PI - K2 }

(1 + =Z )	 p
[l +	 t	 ]2

aQ	 2(t)
— y _	 (3.7b)

q	 (2—) (K2-1)
a

These equations were used to find the dashed curves she«n in Figures 22

and 23.

i
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TABLE 1

COMPUTER PROGRAM TO CALCULATE AXIAL VARIATION OF CORE DEFLECTION AND

STRESS PARAMETERS FOR DIFFERENT BAND LOAD WIDTHS

The program is given on the following pages. The algebraic and

computer nomenclature for the significant variables in the problem

considered are:

Algebraic Computer

IT PI

G/E GE

V VF

u v

a/t AT

26/a DL2

a/a DL

a AL

g G

k PK

x/a XX

n X

I (n) XIO
0

I 1 (n)/n XI1N

I (n) XI1
1

So(n) XXO

S 1 (n) XX1

g GS

^' l l
Fl

Al2 F2

A21
F3

A F4
22

s

E



TABLE 1 (continued)	 48.

DISK OPERATING SYSTEM/360 FORTRAN	 360'4-FO-451 21

C REQUEST FOR STORAGE
DIMIElSION U(6),M(6),FF1(44)tFF2(44),FF3(44)tFF4(44)tFF5(44)t

1	 FF6(44),SP(6),XL(6),XD(6),S(4,6i,A(496)t8(4t6)
C CONSTANTS

PI=3.141592654[0
C INPUT MATERIAL r.,JU SIZE PARAMETERS

10 READ (1920) GEtV,VFtAT9DL2
20 FORKAT (5F10.0)

C CALCULATIONS OF OTHER MATERIAL AND SIZE PARAMETERS
AL=2. t Q-VF )
G=V-2.#(1.-V*V)avE*AT
PK=1./(12.#AT*,2.)
DL = DL2/2.

C RUN NUMP'-7R

N = 1
C HEADING

WRITE (3,30)'4,DL2,GE,AT,VF,V
30 FORu.9T (1HI,57X,'TAHLF_ 2'//37Xt'ELASTIC ANALYSIF DF C YLINbER WITi,

1CORE — RU's ('I19')'//41x,'UNIFORP,. BAND LOAD OF : .DTH 2D/A='F5.2/I
1CX,'G/E ='F12.8,3X 9 8 A/T = 'F7.293X,'POISSOU RATIO — CORE ='F6.3/77f
1 9 'CYLINDER ='F6.3/.'18X,'X/A'2X9'2GU/C 4= 10 312X•'M'5X,'2GW/C'3X,'Y14
1X,'TRXA/0'3X,'N'5X,'SRA/0'3X,'i^'5Xt'SXA/C'3X,'M'5X,'STA/0'3X,'1'/)

C OUTPUT LOCATIONS AS DEPENDENT UPON D/.A
IF (f1Ll 40,50,40

40 I T = 19
GO TO 60

5G IT = 21
60 DO 1280 I = 1,IT

IF (I-1) 70,70,80
70 KS = 0
90 XI = I

IF (DL) 100,90,100
90 XX =

60 TO 160
100 IF (1-1) 137,130,110
110 IF (I-5) 140,140,120
120 IF (1-15) 15G,150,140
130 XX = 0

GO TO 160
140 XX = XX+DL/5.

GO TO 160
150 XX = XX+UL/25.

C SIX VALUES F01 DEFLECTIONS AND STRESSES CETERM.INED
160 DO 1260 1.S = 1,6

IF (LS-2) 2009110t180
170 L = 3

GO TO 210
180 IF (LS-4) 190,20C,200
190 L = 2

Gil TO 2110
200 L = LS
210 u(L)=0

}
t



TABLE 1 (continued)	 49.
10/0 q /67	 FORTMAIN	 -	 -

IF (KS1230,22C9230
220 SP(L)=^
230 KK =C

A(19L)=C,
KI =2
JI=1

C SELECTION (IF NUMERICAL INTEGRATION LIMITS
240 00 250 J 1 = J194
250 S(JI,L)=C	 -	 -

IF (XX) 450,2609450
260 IF (L-1)270,1260,270
270 IF (L-3)280,1260080
280 IF (OL)370,290,370

C NO PERIODICITY -OL=O,XX=O
290 IF (KK)310,300#310
300 P(19L)=50.
310 bO 360 K1=KI,4

IF (KK)3209340#320	 -
320 IF (K1-KI)340,3309340
330 KT=4

GO TO 350
340 KT=KI-1
350 A(K1,L)=B(KT,L)
360 P(K1,L)=1(K19L)+SC.	 -

RO=1
GO TO 1310-
	 --

C ZEROES OF SIN (X*OLI - XX =O
370 IF (KK)3909380,390
38C R(1,L)=NI /GL
390 DO 440 K3=KI,4

IF (KK)40094209400
400 IF (K3-K11420,410942C,
41C KT=4

C,0 TO 430
420 KT=K3-1
430 4(K:49(.)=8(KT,L)	 =.
440 P(K3,L)=A(K3,L)+PI/0L	 --	 -	 -

KO=1
GO TO 810

C ZEROES OF COS ( X *XX) OR SIN (X*XX) . - DL=C
450 IF (OL1600,4609600
460 IF (KK)510#470,510
470 IF (L- 1)480#4909480
480 IF (L- 4)500,4909SG0
490 6(1,L)=P[/XX

GO TO 510
500 R(1,L)=P[/(2.*XX)-
510 00 560 K2=KI94

IF (KK.)520#5409520	 -

-	 520 IF (K2-KI)54095309540	 - -
530 KT=4

GO TO 550
_-.	 540 KT=K2-1



TAP' " (continued)	 50.
10/09/67	 FORTMAIN
550 A(K2,L)=B(KT,L.)
560 B(K2,L)=A(K2,L)+PI/XX

IF (L-1)570,5809570
570 .F (L- 3) 590,580,590
580 KO=2

GO TO 810
590 K.0 =1

GO TU SIC
C ZERO-'-: s OF BOTH COS (X*XX) OR SIN (X*XX) AND SIN (X*DL)

60„ IF (KK)700,6109700
610 XL(i_)=QI/XX

XD(L)=PI/DL
IF (L-1)670,640,620

620 IF_ (L-3)63096409630
630 XL(L)=XL(L)/2.
640 IF (XL(L)-XU(L))65C,670,6d0
650 IF (ASS(XL(L)-XD(L))-.C1) 670,670,660
660 P(1,L)=XL(L)

XL(L)=XL(L)+PI/XX
GO TO 700

670 XD(L)=2.*XD(L)
GO TO 660

680 IF (ARS(XL(L)-XD(L))-.01) 670,670,b90
690 F(l,t-)=XU(L)

XD(L)=2.*XD(L)
7'-)v DO b0- K4=KI,4

IF (KK)7109730971(	 -
710 IF (K4-KI)730,720,730
720 KT=4

GO TO 740	
-	 -	 -	 -

730 KT=K4-1
740 ,A(K49L)=B(KT,L)

IF (XL(L)-XD(L))750,770,780
750 IF (A cM XL(L)-XD(L))-.C1) 770,770,76r,
760 R(K4,L)=	 XL(L)

XL(L)=XL(L)+PI/XX
GO TO 900

770 X!)(L)=XO(L)+PI/DL
GO TO 760	 -

780 IF MS (XL(L)-XD(L))-.C1) 770977C,790
790 R (K4,L) =	XD(L)

XD(L)=YD(L)+PI/DL
600 CUNTI^SUE

KO=2
810 M1=0

C FORMATION OF FOUR „^OUPS FOR CONVLRGENCE TEST
DO 1170 J4 = JI,4
M(L)=M(L)+1
IF (M(L)-98) 820,82091260

82v no 1170 J = 1,11
M1=)x'1+1
IGN =( -1) **J
IF (J-1) 83098309840

t	
Mm 14

f



TABLE 1 (continued)
10/09/67	 FORTMAI N

550 A(K2,L)=B(KT,L)
560 t;(K2,L)=A(K2,L)+PI/XX

IF	 (L-1)570,580,570
570 IF	 (L-3)590080,590
580 KO=2

GO	 TO 910
590 K.D=1

GO	 To 81C
C	 LEROcS OF	 BOTH COS	 (X*XX)	 OR	 SIN	 (X*XX)	 AND	 SIN	 (/(=DL)

600 IF	 (KK)70016109700
'	 610 XL(i-)=p1/XX

XD(L)=PI/DL
IF	 (L-1)620,6409620

620 - IF	 (L-3)630,6409630
630 XL(t.)=XL(L)/2.
640 IF	 (:l'L(L)-XU(L))650,670,680
650 IF	 (ABS(XLW -XD(L))-.C1)	 6709670,660
660 R(1,L)=XL(L)

XL(L)=XL(L)+PI/XX
GO TO 700	 -

670 XDfL)=2.*XD(L)
GO TO 660

680 IF	 (A9S(XL(L)-XD(L))-.01)	 674,6709690
690 F.(I,L)=XU(L)

XD(L)=?.*XD(L)
_J -̂ 0 DO 800 K4=K I 9 4 -

IF	 (KK)71097309710
710 IF	 (K4-KI)7309720,730

- -	 720 KT=4
Gil TO 740

730 KT=K4-1
740 A(K4sL)=B(KT,L)

IF	 (XL(L)-XD(L))750,770,780
750 IF	 (A9S(XL(L)-XD(L))-.C1) 	 770,770,71,0
760 R(K4,L)=	 XL(L)

XL(L)=XL(L)+PI/XX
GO T(1 9CO

_	 770 XU(L)=XD(L.)+PI/0L
GO TO 760

78C IF	 (ABS	 (XL(L)-XD(L))-.011	 770,770,790
790 P(K4,L)=	 XO M

XO(L) = XU(L)+PI/DL	 -
600 COOT I NUE
- K0=2
810 t"1=0

C FORMATION OF FOUR GROUPS FOR CONVERGENCE TEST
-	 - DO	 1170 J4 =	 JI ,4

IF	 ('d(L)-98)	 820,820,1260
820 nO.100	 J	 1,11	 -	 - -	 -

M1=tlllt1
IGN =(-I.)#*J
IF	 (J-1).830,830,847



TABLE 1 (continued)	 52.
10/09/67	 FORTMAIN

830 X=At•)4rL)
GG=1.
GO TO 890

840 IF (J-11) 860,850,850
850 X=B(J4,L)

GG=1.
GO TO 890

860 X=X+(,0p(J4,L)-A(J49L11/10.
IF (IGV) 870x870,880

870 GG = 2.
GO TO 890

BBC GG = 4.
C SETUP FOR STORAGE

890 IF (KK) 930000,930
900 IF (KU- 1) 920,910,920
910 IF (L-2) 930993091130
920 IF (L-if 930,930,1130-	 .	 - -	 -C LOAD
930 IF (DL) 440,940,950
940 F5=(G-V) /PI

GO TO 9 70	
-

950 IF M 960,940,960
960 F5 =(C,-V)/PI$_SIN(X*DL)/(X*DL)

G MODIFIED ?[* SSEL FUNCTIONS
970 T = X/3.75

IF (T) 990,980090- 
980 Q0	 10

XI 1N = .5
XI1 = 0

-	 GO TU 1040
99.0 IF (T-1.) 1000,1000,1Q1G
1000 XIO=1.+3.5156229EO*T*T+3.0899424cC*T'=*4+1.2C67412EO*T**6+.2659732°

1T**8+.0360768*T**1C+.00 4 5813*T*9 = 12	 =_
XI 1oN1 = (1./2.+.87o'4C594EC4-T+T+.51498869+	 Tg:*4 +.15G34934EC*T'46+

1.02656733EO*T**3+.00301532''OYT**10+.CD,_,2411E0*T*4:12)
XI1=XIIN*X
GO TO 1030

1010 XXG = (.39894228EO+.01328592EG*T**(-1)+.00225319EG*T**(-2)-
1.OCi57565EO*T**(-3)+.00916261EO*T*`(-4)-.02057706EO*T**(-5)+
1.02635537E0*T*mo(-6)-.01647633EO*T; *( - 7)+.0034237710*T**( - E))
XX1=t.39894228EG-.03988024EO*T**(-1)-.00362018E0*T**(-2)+
1.001638C1EO*T**(-3)-.O1C31555E0*T*=(- -Ir) +.C2282967tO*T* t (-5)-
1.02895312EO*T*4•-6)+.U1787654EC*T**(-7)-.0042CC59tO*T*4(-8))
IF (X-50.) _1020, 1020, 1050

1020 X[O=XXO*EXP(X)/SCRT(X)
XI1= XX1*EXP(X)/SCgT(X)
XIIN=XI1/X	 4_

1030 IF (X- 001) 1040,1040, 1090
C SMALL A`JO LARGE VALES OF X

1040 GS=XI VI/X(0
GO TO 1060

1050 GR = XXl/(X*XXO)
1,060 Fl = -1.+(G+X*X/(2.*4T))*^S



TABLE 1 (continued)	 53.
10/09/67	 FORTMAIN

F2=G+X*X/(2.*AT)-(X;^X*(1.+AL/ AT) +4Lx(V+(,))*CS
F3 = G- ( 1.+V*X*X/(2.*AT)+PK*X4t*4+G-V)x'17,S
F4 = -,(1.+V*X*X/(2.x,AT)+PK#-Xx,*4- (1.+AL)xAV-G))+((X*X+2.*tL)*C• +7.
t4L*(1.-V+PK*X**4)+V*X*X*AL/AT)*GS

D=F!*F4-F2*F3
S1=(-F2*(GS-1.)-F1*((X*X+2.*AL)*GS-(1.+AL)))*F5/D

Wl=(F2 GS+F1*(2.*AL9:GS-1.))*F5/D
SX1=(-F2+F1*(2.-AL+X*X*GS	 ))*F5/D

ST1=(F2*GS+F1*(1.-AL+2.*AL*GS))*F5 /U
IF (X-25.) 1070,1G80910A0

1076 U1 = (-;:,:+F1*X*X*GS)*F5/0
T1 = X *X *(-F2*GS-F1*(AL*GS-1.))*F5/D
Gf' , TO 1100

1. 080 U1 = (-F2+F1 *X*X *GS)*F5/(X*D)
T1 =	 X*(-F2*GS-F1*(AL*GS-1.))*F5/U

GO TO 1100
C INTERMEDIATE VALUES CF X

1090 F1=-X*X*XIO+(X*G+X**3/(2.*AT))*XI1
F2=(X*r,+X**3/(2.*AT))*XIO -lX*X*(1.+AL/AT)+ALx(V+G))*XI1
F3 = X*X*G*XIO-X*(1.+V*X*X/(2.*AT)+PK*X**4+G-V)*XI1
F4 = -X*(1.+V*X*X/(2.4=AT)+PK*X**4 - (1.+AL)xr(V-G))*XIC+((Xg:X+2.*AL)
1*G+2.*AL*(1. - V+PK*X**4)+V*X*X*AL/AT)*XI1
D=F1*F4-F2*F3
S1=( -F2* ( X*XI1-X*X*XIC) - F1*((X*X+2. * AL) *XIl - (1.+AL)*X*XIO))*F5/C
U1=X*( -F2*XIO+F1*XI1)*F5/U
W1=(F2*X*XI1+F1*(2.*AL*XI1-X*XIO))*F5/D
T1=(-F2*X*X*XI1-F1*(AL*X*XI1-X*X*XlG))*F5/D
SX1=(-F2*X *X*XIO + F1*((2.-AL) *X *XIO+Xx-,X*XII))*F5/0
ST1=(F2*XI1*X+F1*(tl.-AL)*X*XIO+2.*AL*XI1)l*F5/U

C STORAGE
1100 IF (KK) 1110,1110,1120
1110 FF1(Ml)=U1

FF2(M1)='Nl
FF3(M1)=T1
FF4(Ml)=S1

FF5 ('.I 1) =SX1
FF6(Ml )=ST1

1120 IF (X-.CO1) ll40 p ll4Otll5'j
1130 U1=FF1(Nt)

W1=FF2(M1)
T1=FF3(Yl)
S1=FFW1 1 )
SX1=FF5(M1)
STl=Fr-6(M1)_
IF (X-.CO1) 1140014091150

1140 U'4=U1*XX
Wry=wl
TV=TI*XX
Sy=S1
SXN=Sx1
STN=ST1
GO TO 1160

1150 U+4=U1*SIN(X*XX)



TABLE 1 (continued)	 54.
10/09/61	 FORTMAIN

W,4=W1*COS(X*XX)
T'4=Tl*SIN(X4:XX)
SN=S1#COS(X *XX)
SXN =S`(1*COS(X *XX)
STN =STI*COS(X*XX)

1160 U(1)=U'V$1000.
U(2f=4N
U( 3)=T4

i	 U( 4)=SIN
U(5)=SXN
U(6)=STN

_ 1 147C S(J49L)=S(J49L)+GG*U(L)*(F(J4,L)-A(J4,L))/30.
C C0 1M: RGr--0CF TEST

DO 1180 It	 1,4
IF IABS(S(II,L))-.OIO*ABS(SP(L)))1180,118011190

1180 CONTINUE
S(19L)=S(19L)+S%2rL)+S(3,L)+S(49L)
GO TO 1260

1190 DO 1210 ll = 193
XL1=11
IF (ABS(S(LI+1,L)) -5.04- 01* XL1)*ABS(S(ItL)))l2OO,l2OOtl220

1200 S(l,l) = S( l,L)+S(LI+I,L)
1210 CONTINUE

GO TO 1260
1220 S(11L)=S(l1L)+S(L1+111)

KK=1

IF (L1-2)1230,124091250
1230 S(21L)=S(3,L)

S(3,L)=S(4,L)
KI=4	

_.

JI=4	 -

_	 GO TO 240
1240 S(2,L)=S(4,L)"	

-

KI=3
J1=3
GO TO 240

1250 KI=2
JI=2
GO TO 240

C END CONVERGENCE TEST
1260 COt;T I'J(!E

nr; 1210 IK=',6
1270 SP(IK)=.AMAX1(AES(S(1,IK)),SP(IK))

KS-1
C PRINTOUT OF RESULTS
128U WRITE (3.1290)XX,((S(1,N1),M(.Nl)),NII=116)
1290 FORMAT (15X9F7.396(E11.31I3_))

GO TO 10	 _	 -_	
END
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TANLL 3

ELASTIC ANALYSIS OF CYLINDER WITH CORE - RUN (1)

UNIFORF' BA`dU LOAD OF 'WIDTH 2D/4= 0.50

G/ = .0 06004000	 VT = 400.0:	 POISSOM RATi - CORE = 0.300
CYLINDER = 0.300

CYLINUEZ S(RcSSES AT 1. 8AR = 1.00

AXIAL	 CIRCUMFERcNTIAL
X/11	 SXK #9/u	 m	 SYY*A/C:.

0.0	 -C.338E 01 51 -0.745E 03	 7
0.050	 -0.303E 01 40 -0.740E 03	 8
C.100	 -C.2`49E 01	 51 -0.733E C3 10
C. 15C	 -C.241E 02 36 -0.729E 03 	 9
0.20(	 -C.1?9E 03 22 -0.7CAE C3 10

-	 0.250	 C.129E 01 22 -0.378E 03 13
0.300	 0.129E 03 22 -0.560E C2 22
0.350	 C.254E 02 46 -0.214E 02 34

_	 0.400	 0.458E 01 51 -0.169E C2 39
0.450	 j:3-63E n1 51 0.108E C2 50

-	 0.90C	 0.359E 01 51 -0.817E Ot 17
-	 0.55C	 C.312E 01 51 -C. 112E C1	 lE

0.600	 0.264E 01 51 0.736E ^^ 16
0.650	 C. 314E 01 51 0.435E 01	 16
0.700_	 C.2g8E 0: 51 -0.367E Cl 17
0.750	 C.2?3E 01	 51 0.482E Cl	 !i3
0.900	 C.27yE 01 51 0.421E CI 	 16
0.850	 01	 51 -0.121E CI	 19
0.90v^	 C.259C 01 51 0.467E Cl 20
0.950	 C.277E 01	 40 0.704E Cl	 16
1.000	 C'.2n6i: 01	 46 0 . 4 Q 7 E C C.	 21
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Figure 2. STRESS, LOAD AND BODY FORCE
RESULTANTS ACTING ON MIDDLE
SURFACE ELEMENT AND THEIR
VARIATION
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