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ABSTRACT

The object of this report is to determine an underlying or basic
theoretical statistical model for making probability inferences in regard
to thunderstorm activity at Cape Kennedy, Florida. The negative binomial
distribution with probability density function
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is presented to represent the variation in thunderstorm events per day
at Cape Kennedy, Statistical theory and methods are developed using the
latest and most comprehensive thunderstorm data available., The conclu-
sion is reached that the negative binomial distribution is the logical
choice for an underlying model to represent thunderstorm events at Cape
Kennedy, Florida.
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TECHNICAL MEMORANDUM X-53816

A PROBABILITY DISTRIBUTION FOR THE NUMBER OF
THUNDERSTORM EVENTS AT CAPE KENNEDY, FLORIDA

SUMMARY

This investigation was made to determine an underlying, or basic,
theoretical statistical model for making probability inferences in
regard to thunderstorm activity at Cape Kennedy, Florida. The negative
binomial distribution with probability density function

() = TS pha -y,

X'. I‘(k) p X = 0, ]. 2, e

k>0, 0=p=1

is presented to represent the variation in thunderstorm events per day

at Cape Kennedy. The statistical properties necessary for the applica-
tion of the negative binomial are presented, and it is shown that these
attributes are present in the distributions of thunderstorm events at

Cape Kennedy. The latest and most comprehensive thunderstorm data avail-
able are analyzed, and the conclusion is reached that the negative binomial
distribution is the logical choice for an underlying model to represent
thunderstorm events at Cape Kennedy, Florida.

I. INTRODUCTION

Statistical methods of analysis may be divided into two general
categories, descriptive and analytical, both of which depend on the
basic laws of probability. Descriptive methods reduce large amounts
of data to a few meaningful "statistics" such as means and standard
deviations. A theoretical statistical model (distribution function) is
assumed for the observations, and analytical methods are used to deter-
mine how well the empirical data fit this model; i.e., the analytical
procedures determine the "goodness of fit" between theory and observation.

The purpose of this report is to determine an underlying, or basic,
theoretical distribution for making probability inferences in regard to
thunderstorm activity at Cape Kennedy, Florida.



Thunderstorms are of primary concern in the design of launch vehicles,
in the planning of space missions, and in launch operations at Cape
Kennedy because of high winds, lightning hazard, and extreme turbulence
associated with this atmospheric phenomenon, The combinations of environ-
mental conditions, including unstable air with a relatively high moisture
content, and some type of lifting action present during the summer months
make Florida one of the major thunderstorm genesis areas over the entire
earth, The negative binomial distribution is presented to represent the
variation in thunderstorm events per day at Cape Kennedy.

The author wishes to acknowledge the assistance of David Riggenbach,
Terrestrial Environment Branch (R-AERO-YT), for compiling the frequency
distributions of thunderstorm events for Cape Kennedy from the National
Weather Records Center data.

II., STATISTICAL MODEL

In practical statistics, a discrete probability law is required to
describe events which seem to occur at random; for example, the arrivals
of customers at a service point or the number of accidents and bregk-
downs in a factory. It is common practice to assume that the frequencies
of such events fit a Poisson distribution. However, the Poisson series
requires the assumption that the probability of the event remains constant.
This assumption implies that the variance of the distribution equals its
mean, In reality, it is rarely true that the probability of the event
remains constant. Any variation in the probability of the event, in
particular, the tendency for one event to in¢rease the probability of
another, will increase the variance of the distribution in relation to
the mean -- which means a negative binomial distribution will better
describe the data. A report by the weather observer of a thunderstorm
is proof that the atmosphere is in a state of instability and concitions
are present for the formation of further thuynderstorm cells; i.e., the
probability of the event is increasing.

Let us consider the first application of the negative binomial
probability distribution by Yule in 1910 [1]. We will make an analogy
between this application and the distribution of thunderstorms at Cape
Kennedy. Suppose we have a population of people subjected to recurring
exposures to a disease aad that during an exposure each member of the
population has an equal probability p of contracting the disease. After
X exposures, the proportions who have contracted the disease 0, 1, 2, ...
times will be given by

X x-1 x(x -1 x-2
q, xpq , Tom—< pE T, ... M



where q = 1 - p. The terms given by (1) are terms of the binomial series
(q + p)*. 1If k unfavorable exposures to the disease are fatal to the
individual, the proportion surviving after x exposures will be given by
the first k terms of the binomial (q + p)*. The proportion dying during
the xth exposure will be those who contracted the disease (k - 1) times
in the first (x - 1) exposures and who contract it again during the xth
exposure; i.e., it will be

x - 1\ k-1 x-k _(x -1\ k =x-k
k-1/P q *P={g-1/)P 4 (2)

and since deaths do not begin until the kth exposure, the proportion of
deaths at the kth, (k + 1)th ... exposure will be

p¥ [1, kq, k(k + 1) %; , ...] (3)

which are successive terms in the expansion of pK(1l - q)'k, a binomial
with a negative index., Thus, the proportions of the original population
dying during successive exposures are given by successive terms of the
negative binomial distribution with the first deaths occurring at the
kth exposure.

Now, the probability of exactly x events (density function) is
given by

P(x) = (" M 1> peq™. “)

Suppose in Yule's classic example we let the people exposed to the
disease be analogous to the days in some month, say, June, being exposed
to the synoptic condition favorable for the formation of thunderstorms at
Cape Kennedy. Now, the number of deaths that result from exposure to the
disease will be analogous to the number of thunderstorms that actually
develop in June. Now, we have all the days in June subjected to recur-
rent exposures of synoptic conditions favorable for the formation of
thunderstorms. We must assume that each day in June that is exposed to
the favorable synoptic conditions has an equal probability p of having
a thunderstorm develop. This is a reasonable assumption. Continuing
our analogy, the proportion of thunderstorms that develop at the kth,

(k + 1)th ... exposure will be given by (3), successive terms in the
expansion of pk(l - q)7%, a negative binomial whose density function is
given by (4).



Thus, statistical theory indicates the hegative binomial distribu-
tion as the appropriate model for the distribution of thunderstorm
activity at Cape Kennedy, Florida.

I1T. ESTIMATION

Numerous estimators for the parameters of the negative binomial
distribution have been proposed. We have chosen to use the first two-
moment method proposed by Cohen [2]. The negative binomial density
function given by (4) may be written in terms of the gamma function as

k
P(x) = £§§F%E§l p qX, x=0,1, 2, ...3 k>0, 0=ps=sl. (5)

The distribution function is given by

n
F(x) = 2@ TS o, ®)
X::

which gives the probability of obtaining a value of x less than or equal
to some particular value of x, say x,.

Now, after some algebraic manipulation of Cohen's estimators, we
have for the moment estimators of the parameters k and p

)

where X is the sample mean and s is the sample variance.

The mean M of the negative binomial distribution is given by

3

M=
p

and the variance V is



The efficiency of estimating p and k by the method of moments is
derived by Fisher [3]. 1In terms of the parameters used here, the
reciprocal of the efficiency is given by

1 Lo _2 1. 2.3
g=1+2 L3 1T+ 2y GroE+ry

: 2:3-4 N
k+ D&+ Hk+& "

IV. DATA SAMPLE

According to standard United States weather observing procedure, a
thunderstorm is reported whenever thunder is heard at the station. It
is reported along with other atmospheric phenomena on the standard
weather observer's form WBAN-10 when thunder is heard and ends 15 minutes
after thunder is last heard. Notice that the standard definition of a
thunderstorm may include multiple occurrences of thunderstorms. For
this reason, we have chosen to use the term "thunderstorm event" as a
more appropriate definition for our statistical analysis.

Since reliable representative data concerning the number of thunder-
storms actually passing over Cape Kennedy (or the launch site) is not
available, it should be pointed out that the statistics presented in this
paper are applicable only to an area surrounding Cape Kennedy defined by
the distance at which thunder can be heard by the weather observer. An
observer can hear thunder up to a radius of approximately 25 kilometers.
The statistics are not appropriate for making probability inferences in
regard to the number of thunderstorms that actually strike the launch
pad.

Also, the type of statistical analysis presented is useful primarily
for the planning of missions rather than for application to operations.
Statistics may be useful up to a few days before a mission. However, at
this time the weather forecaster's predictions should be more accurate,
and the transition is made from statistical inference to weather fore-
casting dependent upon the synoptic situation prevailing a few days
before the mission.

The data sample used was produced by ESSA, National Weather Records
Center, Asheville, North Carolina, under government order number H-76789
for the Terrestrial Environment Branch, Aerospace Environment Division,



and is the latest and most comprehensive thunderstorm data available for
Cape Kennedy, Florida. The period of record is January 1957 through
December 1967,

V. ANALYSIS

The negative binomial and Poisson distributions were tried as
prospective models for thunderstorm events at Cape Kennedy. Table 1
summarizes observed frequencies of days that experienced x thunderstorm
events for all months, and for the spring, summer, and fall seasons at
Cape Kennedy. Table la gives the relative frequency of occurrence of
days that experienced at least one thunderstorm event at Cape Kennedy
for the same reference periods,

Theoretical summaries of the months and seasons that experience
significant thunderstorm activity at Cape Kennedy are given in tables 2
through 12, 1In all cases, the sample variance was significantly greater
than the sample mean, indicating the negative binomial distribution as
the appropriate model., The Kolmogorov-Smirnov statistic was used for
a "goodness of fit" test,

Notations used in tables 1 through 12 are as follows:

X = the number of thunderstorm events per day

fO = the observed number of days during the ll-year period
of record that experienced x thunderstorm events

r.f. = the relative frequency of occurrence of x thunder-
storm events

FO = the observed distribution function

£, = the expected frequencies using the negative binomial
distribution

F(x) = the negative binomial distribution function

X = the sample mean

s? = the sample variance

k*, p* = parameter estimators of the negative binomial
distribution

n = gample size



Da = the tabulated Kolmogorov-Smirnov statistic for
sample size n and rejection level ¢ = 0.05
]Fo - F(x)| = the maximum absolute difference between the

observed distribution function and the negative
binomial distribution function.

Conditional probabilities are also included in the tables.

Consider the month of June (table 5) as an example. There were
40 days out of 330 days (11 years of Junes) that had exactly two thunder-
storm events, This gives a relative frequency (probability) of occur=~
rence of 0,121 of having exactly two thunderstorm events during any day
in June. The observed distribution function (F,) gives a probability of
0.921 of having two or less thunderstorm events during any day in June, or -~
a probability of (1 - 0,921 = 0.079) of having more than two thunder-
storm events during any day in June. The negative binomial distribution
predicts 36,9 days in June that will experience exactly two thunderstorm
events and the probability (F(x)) is 0.928 of having two or less thunder-
storm events during any day in June, or a probability of (1 - 0.928 =
0.072) of having more than two thunderstorm events during any day in
June. The agreement between theory and observation is very good. Com-~-
paring F, with F(x) shows a maximum absolute difference in the distribu-
tion functions of 0,017 occurring at x = 0. Since the Kolmogorov-Smirnov
statistic

p" = p38°

a 0.05

is equal to 0.075, the value of 0,017 is not sufficiently large to
reject the hypothesis at the 5 percent rejection level that this sample
can be fitted by a negative binomial distribhution.

Tre conditional probabilities are computed from the theoretical
frequeucies (fg) by using a double summation technique due to 0. E.
Smith.*

The tabulation on page 8 is an example of this technique using
the month of June (see table 5). Each element in the second summation

ﬁChief, Terrestrial Enviromment Branch, Aerospace Environment Division,
Aero-Astrodynamics Laboratory, Marshall Space Flight Center, Alabama,
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(3%) is divided by the appropriate top element in each column as indicated
in order to obtain the conditional probabilities; i.e., in each column
under conditional probabilities, given i thunderstorm events (i = 1, 2, 3,
...), the probability of having k additional thunderstorm events (k = O,
1, 2, ...) is given by

(i + k)th element
(i)th element

P(A+k | 1) = (8)

For example, for i = 2; given two thunderstorm events on any day in June,
what is the probability of having two additional thunderstorm events
(k = 2) on that day in June? From equation (8),

_ 4th element _ 12.5 _
P(4 I 2) = 2nd element  96.2 0.130.

Also, given four thunderstorm events on any day in June (i = 4), the
probability of having one additional thunderstorm event (k 1) on that
same day in June is 0.304,

it

VI. CONCLUSIONS

There are many advantages in the use of a theoretical statistical
model for predicting a variable such as thunderstorm events at Cape
Kennedy. Once sufficient representative samples have been collected and
analyzed and the validity of the theory is established by an appropriate
statistical test, the theoretical model becomes "deterministic" and may
be applied universally to the variable under consideration. Another
advantage of theory over empirical statistics is the use of the accept-
able thcoretical function for making probability inferences concerning
values of the variable outside of the range of observation., It is often
desired to make predictions relating to these '"never observed" values,
and the theoretical approach permits one to do so. It should be pointed
out that no theoretical function can explain all observations for which
it is the proposed model. Some areas of non-agreement must occur between
theory and observation, These areas should be considered as expected
deviations of the observations from the "fitied" theoretical curve.

The physical properties necessary for the application of the nega-
tive binomial distribution have been shown to be present in our experi-
ment concerning the number of thunderstorm events at Cape Kennedy. 1In



all the samples considered, the sample variance exceeded the sample mean,
indicating the negative binomial as the appropriate model. OQur comparison
with Yule's classic application of the negative binomial substantiates its
validity to represent the number of thunderstorm events at Cape Kennedy,

In all 11 samples considered, the conclusion was reached that the
negative binomial distribution could not be rejected at the 5 percent
rejection level as being an acceptable model for the number of thunder-
storm events per day at Cape Kennedy, Furthermore, the negative binomial
gave a '"better" fit in all cases than the Poisson distribution.

Using statistical theory and methods, we have demonstrated that the

negative binomial distribution is the logical choice for an underlying
model to represent thunderstorm events at Cape Kennedy, Florida.
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TABLE 2.

March-Negative Binomial Distribution for Thunderstorm

Events at Cape Kennedy, Florida

X f0 r.f. F, fe F(x) Conditional Probability
i

0 308 .902 .902 305.4 .8961 1 3 4

1 20 .059  .961 25.5 9701 1

2 .026  ,987 6.7 .990 | .277

3 .009  .996 2.2 .996| .078 .281 1

4 1 .003 1.000 .8 .999 | .016 ,059 .211 1

x = 0,150 s2=10,268 k¥ =0.18 p* = 0.558 n = 341

Goodness of fit:

ot = 0.074
[0/

lFo - F(x)| = 0.009

TABLE 3. April-Negative Binomial Distribution for Thunderstorm
Events at Cape Kennedy, Florida

X fo r.f, Fo fe F(x) Conditional Probability

i

0 299 .906 .906  295.9 .897 1 2 3

1 18 .055 .961 25.3 L9731 1

2 10 .030 .991 6.1 .992 .226 1

3 3 .009 1.000 1.8 .997 .042 186 1

x = 0.142 s2 =0.237 k¥ =0,214 p* =0.600 n = 330

Goodness of fit: Dg = 0,075

|F, - F(x)| = 0.013.




TABLE 4:

May-Negative Binomial Distribution for Thunderstorm

Events at Cape Kennedy, Florida

X fo r.f. FO fe F(x) Conditional Probability
i
0 266 .779 .780 262.6 .770 1 2 3 4 5
1 43 .126 .906 52.4 .924 1
2 25 .073 .979 16.6 .972 .339 1
3 3 . 009 .988 5.9 .989 .120 .354 1
4 3 .009 .997 2.2 .996 041 .122 . 345 1
5 0 .000 .997 9 .998 ,013 .037 .106 .306 1
6 1 .003 1.000 3 .999 .003 .007 .021 .061 . 200
X = 0.352 s2=0.621 k¥ = 0.460 p* =0.567 n = 341
Goodness of fit: Dg¢= 0.074
| F, - F(x)| = 0.017
TABLE 5: June-Negative Binomial Distribution for Thunderstorm
Events at Cape Kennedy, Florida
x £ . £, F £ F(x) Conditiona{ Probability
0 o) e i
0 187 .567 .567 181,5 .550 1 2 3 4 5
1 77 .233 .800 87.7 .816 1
2 40 121 .921 36,9 .928 .39 1
3 17 .052 .973 14.7 .972 . 147 .373 1
4 6 .018 .991 5.7 .989 .051 .130 .348 1
5 2 . 006 .997 .2 .996 .016 . 040 .106 .304 1
6 1 .003 1.000 .8 .999 .003 .008 .022 .064 .211
x = 0,752 s2=1,169 k¥ =1.354 p* =0.643 n =330
Goodness of fit: Dg = 0,075

|F, - F(x)| = 0.017.

13




TABLE 6:

July-Negative Binomial Distribution for Thunderstorm

Events at Cape Kennedy, Florida

< fo r.f. 'Fo fe F(x) Conditional.Probability

0 177 .519 .519 166.2 .487 1 2 3 4 5

1 80 .234 .753 99.4 .779 1

2 47 .138 .891 45,4 .912 .399 1

3 26 .076 .967 18.6 .967 .143 . 357 1

4 .026 .993 7.2 .988 .044 .110 .307 1

5 2 . 006 1.000 2.7 .996 . 009 .023 .066 .214 1
x = 0.874 s2=1,277 k¥ =1.893 p* = 0,684 n = 341

Goodness of fit: Dg = 0,074

|F, - F(x)| = 0.032
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|F, - F(x)| = 0.026

TABLE 7: August-Negative Binomial Distribution for Thunderstorm
Events at Cape Kennedy, Florida
% £ r.f. ¥ £ F(x) Condltlonal ?robablllty
o o e i
0 185 .542 .542 180.2 .528 | 1 2 3 4 5
1 89 .261 .803 92.2 L799 | 1
2 30 .088 .891 40.5 .918 .399 1
3 24,070 .961 16.9 .967 146 .366. 1
4 10 .029 .990 6.8 .987 .046 .116 316 1
' 5 3 .009 1,000 2.7 .995 010 .026 070 221 1
X =0.809 s2=1,280 k% =1.391 p*=0.632 n =341
Goodness of fit; Dg = 0.074




TABLE 8: September-Negative Binomial Distribution for Thunderstorm
Events at Cape Kennedy, Florida

< fo r.f. Fo fe Féx) ConditionaliProbability
0 228 .691 .691 219.2 .664 | 1 2 3 4
1 54 .164 .855 73.1 .886 | 1

2 33 .100 .955 24,8 .961 316 1

3 12 .036 .991 8.5 .987 .089 .283 1

4 3 .009 1.000 2.9 .995 .018 .057 .203 1

= 0.509 s2=0.777 k¥ =0.967 p* = 0.655 n = 330

o]

Goodness of fit: Dg = 0,075

IFO - F(x)| = 0.031

TABLE 9: October-Negative Binomial Distribution for Thunderstorm
Events at Cape Kennedy, Florida

x fo r. L. Fo fe F(x) Conditionil Probability
o 311 .911 ,911 307.7 .902| 1 2 3

1 17 .050 .96l  24.2 973 1

2 .026  .987 6.1 .991| .235 1

3 .012 1,000 1.9 .997| .045 .192 1

% =0.138 s2=0.242 k" =0,182 p* =0.570 n = 341

Goodness of fit: Dg = 0,074

|F, - F(x)| = 0.011

15



TABLE 10:

/

Spring (March, April, May)-Negative Binomial

Distribution for Thunderstorm Events at Cape Kennedy, Florida

x £, r.f. F_ fe 7 (x) Conditional irobability

0 873 .863 ,863 863.6 .853 2 3 4 5 6

1 81 .080 ,943 103.7 .956

2 44,043  ,986 29.2 .985(.312 1

3 9 .009 .995 9.8 .994{.106 .339 1

4 4,004  .999 3.5  .998}.035 .113 .335 1

5 0 .000 .999 1.3 .999{.011 .034 .,101 .303 1

6 1 .001 1.000 .5 1.000].002 .007 .022 .066 .217 1
X =0.215 s2=0.38 k¥ =0.271 p* =0.557 n = 1012

Goodness of fit: Dg = 0.043

TABLE 11:

|F, - F(x)| = 0.013

Summer (June, July, August)~-Negative Binomial

Distribution for Thunderstorm Events at Cape Kennedy, Florida

16

|F, - F(x)| = 0.021

< £ £, F £ F(x) Conditional'Probability

‘ o] ] e 1

0 549 .542 .542 527.8 ,522i1 2 3 4 5 6

1 246 .243 .,785 279.6 .798

2 117 .116 .901 122.7 .919}.404 1

3 67 .066  .967 50.1 .,969}.153 .379 1

4 25  ,025 .992 19.7 .988{.054 .133 .,352 1

5 7 .007  .999 7.6 .995/.017 .041 .108 ,307 1

6 1 .00l 1,000 2.9 .998|.004 .009 .023 ,067 .216 1
%=0.812 s2=1.,245 k¥ =1.,523 p* =0.652 n = 1012

Goodness of fit: D; = 0.043




TABLE 12: Fall (September, October, November)-Negative Binomial
Distribution For Thunderstorm Events at Cape Kennedy, Florida

x fo £ P, fe F(x) Conditional frobability
0 860 .859 .859  845.2  ,844 | 1 2 3 4
1 77 .077 .936  109.5  .954 | 1 '

2 45 045 .981  30.6 .984 | .286 1

3 16 .016  ,997  10.1  .994 | .080 .281 1

4 3 .003 1,000 3.6 .998 | ,017 .058 ,208 1

x = 0.227 s2=0,397 k¥ =0.302 p* =0.571 n = 1001
Goodness of fit: D; = 0,043

|FO - F(x)| = 0.018
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