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This report describes procedures for treating thermally induced structural
vibrations by finite element analyses techniques. It is intended for readers
familiar with finite element methods but unfamiliar with thermoelasticity theory
and procedure. The report demonstrates the applicability of finite element
methods to the thermal vibration problem and, as such, should serve as a guide
to users of various discrete element structural analysis programs when treating
problems of this type.
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ANALYSIS OF
THERMALLY INDUCED STRUCTURAL VIBRATIONS
BY

FINITE ELEMENT TECHNIQUES

By

James B. Mason
Goddard Space Flight Center

SUMMARY

A brief review of the classical continmum approach to thermoelasticity
problems is given. It is shown that an analogous technique can be used to re-
duce thc study of thermally incduced vibrations by finite element techniques to
that of a forced response analysis of the idealized structure excited by time
dependent equivalent mechanical loads.

Equivalent mechanical loads for beam and rectangular plate elements are
presented. These time dependent loads are evaluated and employed 1o treat two
sample problems for which exact solutions of the differential equations of mo-
tion exist. The samples considered are those of a simply supported beam and a
simply supported plate exposed to a uniform step heat input over one face. Re-
sults of the finite element analyses are compared to the exact solutions for
these two cases.
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ANALYSIS OF
THERMALLY INDUCED STRUCTURAL VIBRATIONS
BY
FINITE ELEMENT TECHNIQUES

INTRODUCTION

It is the purpose of this report to indicate the general procedures to be used
in treating thermally induced vibrations of complex structures by finite element
techniques. Consideration of this problem is taking on new importance in both
present and planned spacecraf. structures because of their lightweight thin
walled cons‘ruction, their associated slender structural components (typified by
iong antennas and booms) and ihe unusually demanding performance requirements
expected of many of these vehicles in their space environment.

The present investigation demonstrates that the thermal vibration problem
can be treated by a forced response analysis of the idealized structure excited
by time dependent equivalent mechanical loads. The problem is thus reduced to
the determination of the equivalent mechanical loads associated with the particular
finite elements used in the idealization of the real structure.

Time dependent mechanical loads are obtained in this report for a beam
element of uniform cross section and a thin rectangular plate bending element.
In order to demonstrate the analytical procedures, two sample problems for
which exact solutione exist are analyzed using the beam and plate elements.
The finite element computations were performed on the IBM 7024 computer using
the Mariin Company SB-038 computer program and he results of this analysis
compared to the exact solutions.

ASSUMPTIONS AND BACKGROUND

In the following development all of the usual assumptions of linear elasticity
for continuous, homogeneous, and isotropic materials are employed and Hooke's
law is assumed valid. In addition, the conversion of mechanical energy into heat
is neglected. With the latter assumption, the determination of the temperature
distribution in the structure is uncoupled from the elasticity problem and may
be obtained by the Fourier heat conduction equation.

A brief review of the method of restraint for treating thermoelasticity
problems by the techniques of classical elasticity is given here. This is done



to provide insight for the solution of these problems by the finite element
approach.

Static thermoelasticity problems may be considered as initial strain problems
and, in turn, the initial strains treated as additional mechanical loads acting on

the structure. The field equations describing the heated structure in rectangular
Cartesian coordinates may be expressed as:

Equilibrium Equation

o.. . +X. = 0 (1)

Stress-Strain

1+ 4 v

€.. = E % TE %8 5” + aTSij (2)

Strain-Displacement
1
€; ~ 2ty ) 3)

where the conventional summation convention is adapted, (i, j, 3 = 1, 2, 3)

9
and ( ),; indicates Bi.) , here

x. ~ coordinate component

u. ~ displacement component

X. ~ body force component

o.. ~ stress component

€.. ~ strain component

3. . ~ Kronecker delta

a ~ coefficient of thermal expansion

T ~ temperature rise from a given base temperature
v~ Poisson's ratio

E ~ modulus of elasticity



subject to th? boundary conditions:
Traction Boundary Conditions

S, = n, o, (4)

}1

Displacement Boundary Conditions

u, = fi (p ’ (5)
where
n
S, ~ surface traction component acting on the surface with outer
normal n
n,  ~ component of n

f. (p) ~ prescribed displacement function component at points p of the
boundary surface

Employing the method of rectraint, we consider a body free of surface trac-
tions to be subdivided into infinitely small cubical elements. Iritially these
small elements will fit together to form a continuum. If the temperature of the
body is altered in a nonuniform manner, however, the cubical elements will ex-
pand an amount

€.. = aT 85 (6)

1)

proportional to their own temperature change and no longer necessarily form a
continuum. This expansion can be entirely suppressed by applying a uniform
pressure

. aET 5
ij 1 - 2v %ij (7

to each of the individual elements. Under this stress system, referred to as
"state A," the lack of fit between elements in the heated structure is removed
and the body assumes its initial undeformed continuous configuration.

co



To this point we have determined the «‘ate A stress distribution, given by
Equation (7), necessary to restrain the he. :d structure in its undeformed con-
figuration. The requirement now is to obtain equivalent mech wnical loads which,
when applied to the heated structure, will produce this same restraining stress
state. This tecknique of determining equivalent external loads is used in order
that the well-known methods from classical elasticity for the analysis of struc-
tures under external loading can be utilized in the analysis of thermally deformed
structures.

To obtain the equivalent mechanical loads, we note that the state A stress
system ensures compatibility in that it is the stress system required to restrain
the heated structure in its undeformed configuration. Substituting Equation (7)
into the equilibrium Equation (1) results in the required body forces for restraint

x - —=E 8
i 1-20 i (8)

while substitution of Equation (7) int¢ Equation (4) results in the required re-
straining surface tractions

_ aET
T TT-2 ™ ©)

w3

Therefore, Equations (8) and (9) express the equivalent mechanical loads
which produce the state A str:ss distribution and restrain the heated structure
ir its undeformed configuration.

Since in actuality these loads dc not exist on the body,. the undeformed struc-
ture is now loaded with the negative of the calculated body forces

_ aE
X = _l—2vT'i (10)

and the negative of the calculated surface tractions

n  aET
S, < T-2m ay

in 2 manner which satisfies the bourdary conditions existing on the structure.
The solution of this problem is obtained by classical elasticity methods for a



structure under the action of external loads given by Equations (10) and (11) and
is referred to here as the "state B" solution.

The final displacements are obtained from the state B analysis, since the
state A displacements are zero, and the final stresses in the body are found by
summing the state A and state B stress distributions.

It is seen that the effects of initial thermal strains have been treated by the
introduction of equivalent external body and surface forces which were derived
by restraining the deformations of the heated structure. The thermoelasticity
problem can be treated by finite element methods in a manner completely analo-
gous to the continuum approach described above. Conceptically, this is achieved
by replacing the infinitesimal cubical elements and their associated restraining
stress systems by finite elements and the necessary equivalent mechanical loads
which must be applied at the element grid points to constrain the elements in
their unheated shapes.

DISCRETE ELEMENT FORMULATION

The matrix-displacement formulation of the thermally induced vibration
problem is used in the following development. The results, however, are appli-
cable to other finite element formulations.

In the finite element approach to structural analysis problems, the body to
be analyzed is idealized to a new structure composed of an assemblage of finite
structural elements which are joined at grid points. The individual discrete ele-
ments are defired by a number of grid point degrees of freedom which are suffi-
cient to adequately represent the stress and displacement behavior of the element.
One may write the force-displacement relations ior the therma ly strained ith
element by the stiffness equation

o, = K, (), + (), (12)

where

{x}, ~ forces acting at the grid points of element i
k], ~ stiffness matrix of element i
{u}, ~ grid point dispiacements of element i

{x;}, ~ thermally equivalent mechanical loads acting at the grid points
of element 1



The equivalent mechanical loads {X;}, are obtained as those required to remove
the initial thermal strains in the discrete element. As such, the analogy with
the restraining systems, given by Equations (8) and (9), is apparent.

Assembly of the element matrices, Equation (12), to form the idealized

structure results in the following set of equations describing the static behavior
of the structure

X} = (K {0} +{X;} (13)
where

{X} ~ external applied loads acting at the grid points of the assembled
structure

(Kl ~ stiffness matrix of the assembled structure

{U} ~ grid point displacements of the assembled structure

:X;} ~ thermally equivalent mechanical loads acting at the grid points
of the assembled structure

In Equation (13), the equivalent mechanical loads acting at a grid point of the
assembled structure are obtained as the vectorial sum, at the grid point, of the
loads {x;}, of all elements joined at that grid point.

In many practical problems the temperature variations in the structure
change rapidly with time and the effects of inertia can not be neglected. In these
cases, the study of thermally induced vibrations by finite element techniques
can be accomplished by modification of Equation (13) to include inertia effects.
Using the well-known principle of d'Alembert, the negatives of the inertia forces

- M W (14)
where

[(M] ~ mass matrix of the assembled structure

{U} ~ grid point accelerations of the assembled structure

are treated as additional applied loads acting on the structure. In addition, the
equivalent mechanical loads become time dependent f»ccing functions. Thus,

from Equations (13) and (14) for the case of no externally applied loading, we
can write



MU+ KU = - (X ()} (15)

Examination of Equation (15) shows that the problem of thermally induced
vibrations in finite element structures is reduced to that of obtaining the dynamic
response to a forced vibration in which the external forcing functions become the
negatives of the equivalent mechanical loads. Upon the determination of {X} as
a function of time t and imposition of boundary conditions, Equation (15) is solved
for the unknown grid point displacements ‘U {t)} of the idealized structure.

The remainde: of this report has been written to demonstrate and evaluate
the above analysis procedures. Two sample problems, for which solutions of the
differential equations of motion exist, have been chosen for finite element analy-
sis. The determination of equivalent mechanical loads for the finite elements
employed in these samples, i.e., uniforu beams and rectangular plates, pose no
particular difficulty. In general, however, the evaluation of mechanical loads for
various finite elements is more involved since these loads are, in reality, func-
tions of the assumed displacement or stress pattern for the element and are
obtained by energy minimization procedures.

THERMALLY INDUCED BEAM VIBRATIONS

The problem to be considered in this section is that of a uniform simply
supported rectangular beam of length L and thickness h exposed to a step heat

. . h h
input Q (constant in x) along edge y = +3while edge y = - 2 is insulated, see

Figure 1. For this case the time varying temperature distribution in the beam,
provided T (y,o0) =0, is(1)

hQ 1/y 1\2 1 2 ZQ -1)i emi2m2r
T(y,'r) = T{T +3(—h-+—2‘) -*6—-—;‘ ), 2 cos ]"(%1»%) (16)
K n? e j

where

Kkt
T = (T‘?) ~ nondimensional time parameter

x ¢

~ thermal conductivity

K ~ thermal diffusivity
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Figure 1. Simply Supported Beam Exposed to Step Heat Input

Elasticity Formulation(1)

The governing equation for the displacement of a uniform Bernoulli-Euler
beam subjected to heating can be written as

a2 a2y v o?My
EI + oA = (17)
9x? cx2 a2 3x?
where the forcing moment is
M (7) = [[EaT(y,7)ydA (18)
A

and
x ~ longitudinal coordinate
y ~ transverse coordinate
v ~ transverse displacement
I ~ area moment of inertia

A ~ cross sectional area

£ ~ mass density



Substituting Equation (16) into Equation (18) and integrating yield the time
dependent moment in terms of the basic iaput parameters as

48EIQa | 7* = iy
N = — T ) (19)
mtk i
J=1.3.,5

Defining the following dimensionless quantities

X

£ = 1
ﬂ“l\('..r
mr(7) = 192EIQa
(20)
kv
V1) = —~
€ 192Qa L2

g - b EI\*
LV<\ PA

and using Equation (19), noting that M, does not depend on x, the governing equa-
tion becomes

'V v
Bt — + = 0 (21)
£t o2

The boundary and initial conditions for the simply supported beam are

AV
VO,7) = V(L,7) = V(,0) = 57(50) = 0

(22)

?a2v(o,7) _ 23 _
352 = ¢ (L,7) = -'“1'(7')




Solution of the system given by Equations (21) and (22) yields the displacement

@« . 2
A ':;' [fz = f] = Z sinnmg | 7 sin n?7?B27

33 2.2
asEs n 8B4n

) i \2
o e-ilmir (_LB\ sin n272B21 - cos n272B2r
- E nb) (23)
i=1.3,5 j* + n*B*

Results are given for V versus 7 for the case B = 1 and & = % in Figure 2.
The results were obtained by a single precision program which summed to
n = j = 21 in Equation {23).

Finite Element Formulation

It has been shown, see Equation 12, that the stiffness equation

00, = K, {u}, + O, 24)

1

represents the force-displacement relations for a thermally strained finite ele-
ment. The stiffness and mass matrices for beams are well -known, and the
problem of thermally induced vibrations in finite element beam problems reduces
to the determination of equivalent mechanical loads.

A typical beam element of uniform rectangular cross section is shown in
Figure 3. Only temperature distributions T (y, t), constant along the axis of the
element, need be considered if care is taken to model the structure such that
stepwise variations in temperature closely approximate the axial temperature
variation in the actual structure. Equivalent mechanical loads necessary to re-
strain the beam element from bending when subjected to a temperature variation
through the depth of the beam element are required.

Since the temperature does not vary along the length of the element and

equilibrium is considered in the axial direction only, no body forces are required
for restraint and only the boundary stresses

10
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Figure 2. Thermally Induced Beam Vibrations (Theoretical and Finite Element Midpoint Displacement
Response Predictions for Beam Forcing Function mbT)
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Figure 3. Grid Point Forces, Displacements and Thermal Loads {or Finite Beam Element

o = - EaT(y,t) (25)

o =
xx] x=o xx

need be applied. This boundary stress distribution can be replaced by the re-
sultant equivalent mechanical moments

h/2
Mbr (1) =J baET(y,7)y dy (26)
~h/2

acting at the grid points of the element, see Figure 3.

Referring to Figure 3 and Equation (26), we see that the stiffness equation
for a typical heated beam element can be written as:

C ) — 7 rY) ( 3
P1 vy 0
M, 0, Mle
& | K| 4 g} @n
P2 v, 0
M 6 -
. 2J - — - 2 J L Mb”/

Having found the equivalent mechanical loads for the beam element, we can
determine the required forcing functions for the complete model. The assembled
finite element model of the simply supported beam of Figure 1 consisted of 11
grid points connected by 10 beam elements of length L /10, see Figure 4. For

12



(7)

by

Figure 4. Finite Element Model of Simply Supported Beam

the temperature distribution given by Equation (16), the equivalent mechanical
moments acting on each beam element are obtained from Equation (26), assuming
E and a constant, as

48EIQa | 74 = emi?miT
M, (7)) = ~ |6 Z — (28)

4 4
7k i=1.3,5 )

Since the tempera.wre distribution does not vary along the length in this sample
problem, the vectorial sum of the thermal moments at the internal grid points
(2 through 10) of the beam are zero, and the problem reduces, according to
Equation (15), to that shown in Figure 4.

Solution of the finite element model subjected to the time varying end
moments given by Equation (28) and shown in Figure 4 was obtained on the
IBM 7094 computer using the Martin Company SB-038 force method program.(2)
Lumped mass and modal displacement techniques were utilized for this analysis.

Results are given for V versus 7 for the case B = 1and ¢ =% in Figure 2. A
plot of nondimensional forcing function for this case

"or () = T92E1Qa Mor (M) (29)
is also shown in this figure.

THERMALLY INDUCED PLATE VIBRATIONS

The problem considered in this section is that of a simply supported
square plate subjected to a step heat input Q (constant in x and y) on face

13



h h
z=+3 while face z = -5 is insulated, see Figure 5. The temperature distri-

bution is identical tc that of Equation (16) with y replaced by z.

z, w a

MTHERMALLY INSULATED

Figure 5. Simply Supported Square Plate Exposed to Step Heat Input

Elasticity Formulation

The governing differential equation for the square plate is:

Nw 1
DV4w + ph 3oz Dl ey V2MT (30)
where the time dependent forcing moment is
h/2
M (t) = J- aET (z,t) zdz (31)
~h/2

and

14



x,y ~ middle surface coordinates
z ~ transverse coordinate
h  ~ thickness of plate

w ~ transverse displacement

Ehd
12(1 - »?)

. h 1 -1)i eTi?m?T 1
T(zr) = _g{T ; 2(; 2) ﬂ22:< ) cos ,ﬂ(h 2)}

Solution of Equation (30) for the simply supported plate yields

. - 16 M, /mwx) . (ﬂ)
(l-:z)Dr“ - sm\ 3 sin 5
- mn ——— + ——
1,3,5 n=1,3,5 3)_]
= — . m7Tx\ nny
_ 768Qaa? (1 +v) Y/ sm( a )sm( a )

~

kn® / mn (m? + n?)
3 - |

ﬂl=1.3.5 n=

1,3,5 (32)

2 2 2 2
i Sln[:B277- (m2+n2)'r _ Z l’ TET - CO"‘[B2 2(m2+n2)7.]
L

8 B}(m2+n?) j*+B} (m2+n?)?2

N
[
j? sin [B127T2 (m? + n2) 7] .l 1

[j4 + Bl4 (m? + n2)2] [312 (m? + nz)U J)

+

15



where

a ~ square plate dimension

Results for the following hypothetical problem

we

1.44 x 10° 1o
fe3

1/3

1b-sec?

{2

5.34

BTU
118 fmsec—F

ft
ft-°F

12.0 x 1076

BTU- ft
1b- F-sec?

6.90

8.0 ft

0.1 ft

BTU

1440 ——
ft2-sec

16

(33)



were obtained from a single precision computer program which summed to

m =n = j = 25 in Equation (32). Results of this calculatiorn for midpoint dis-
placement w versus time t are shown in Figure 6. It should be mentioned here
that the numerical values were chosen to take advantage of an existing finite
element plate model, see discussion of this below, and are not intended to be
realistic.

Finite Element Formulation

An existing quarter symmetry model of an 8.0 ft x 8.0 ft x 0.1 ft simply
supported plate was used in this study. The mo-el consisted of a four by four
network of 1.0 ft x 1.0 ft x 0.1 ft plate ele:nents, see Figure 7. Unlike the beam,
however, various stiffness matrices have been sugpested to describe the be-
havior of plate elements. Hrennikoff plate elements, (3) obtained as an equi-alent
network of beams connected at the four corner points of the square element,
were used. Each grid point of the model has three-degrees-of-freedom, one
translation (w) and two rotations (6, ). The equivalent mechanical loads acting
at the grid points of the element were obtained by prcrating the distributed
thermal restraining loads of a continuous square plate to the grid noiuts of ‘the
finite element.

A rectangular plate element with an assumed temperature distribution
T (z, t) constant over the planform of the plate is considered. As with the beam,
this element will be satisfactory if care is taken to model the structure so that
stepwise variations in temperature closely approximate the actual planfrrm
temperature. Since the temperature does not vary over the middle surface of
the plate, body forces are not required for constraint. We may 1egard the plate
as free to expand in the direction normal to the middle surface and constrain
the x,y expansion by providing the boundary stress system

aET ]

xx Yy - T 1 - oxy

= 0 (34)

Thus, the plate bending may be constrained by replacing the boundary stress
system of Equation (34) by the resultant thermal moments

_ h/2 o
Np_r(t) =I T T(z,t) zdz (395)

1-v
~h/2

distributed along the edges of the element.

17
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Figure 7. Quarter Symmetry Model of Simply Supported Square Plate

Prorating the distributed moments, Equation (35), to the grid points of the
finite plate element results in a system of equivalent mechanical moments re-
quired for restraint. For the square plate element of the sample problem these
thermal moments become

iP'r (t)s
M,_(t) =— (36)

where S is the planform dimension of the square plate element, see Figure 8.

The stiffness equation for a typical square plate element, referring to
Figure 8, car be written as



’_}a»

RIGHT HAND RULE

Figure 8. Grid Point Forces, Displacements and Thermal Loads for Finite Plate Element
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KPlate

L o

PT

(37)

The equivalent mechanical loads for the 1 ft x 1 ft x 0.1 ft plate element
with temperature distribution Equation (16) are found using Equations (35), and

(36) to be

21



(38)

e—

M (t) 2 a QER® [#* = e iim2r
t) = I A E
PT (1 - v)'n‘k 96 jq

j=l'3ls

when E and o are taken as constants. Since the temperature distribution does
not vary over the planform of the plate in the sample problem, the vectorial sum
of the thermal moments at the internal grid points of the assembled plate model
are zero and the problem, according to Equation (15), reduces to the quarter
symmetry model loaded as shown in Figure 9.

SIMPLY SUPPORTED
A

MPT 2 MPT 2 Mp

2M
T PT
- Y

[ 1]

_J

/ —
’ ¢ CONSTRAINED TO ZERO
X

Figure 9. Quarter Symmetry Hrennikoff Model of Simply Supported Square Plate
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Solution of the finite element model shown in Figure 9 was obtained by the
Martin Company's SB-038 program. Lumped mass and modal acceleration tech-
niques were utilized and the results are given for midpoint displacement w
versus time t in Figure 6. A plot of forcing functions MpT versus time is also
shown.

CONCLUSIONS

It has been shown that structural vibrations induced by uncoupled transient
temperature distributions may be treated by a forced response analysis of the
idealized structure excited by time dependent mechanical loads applied at the
grid points of the model. Time dependent mechanical loads for a uniform rec-
tangular beam element and a thin rectangular plate bending element have been
presented.

Two thermal vibration problems have been solved by the finite element
method:

1. Simply supported beam subjected to a step heat input over one face:
The finite element results compare favorably with those of the elasticity
solution. Differences between the finite element results and the elas-
ticity solution can be accounted for by the coarseness of partition in the
beam model and numerical inaccuracies inherent in obtaining both
solutions.

2. Simply supported plate subjected to a step heat input over one face:
The results obtained irom the finite element analysis compare well with
those from the elasticity solution. Differences can be attributed to the
coarseness of partition in the plate model, inadequacies inherent in the
Hrennikoff plate bending element and inaccuracies in numerical evalua-
tion of both solutions.

At the option of the analyst, improvements in the finite element results for both
of the sample problems could be obtained by use of a finer element partition.

The results of this stxlldy demonstrate that the finite element method offers
a powerful tool for use in the analysis of thermally induced vibrations. Future
work in this area will concentrate on the automatic calculation of equivalent
mechanical loads for the various finite elements incorporated in the NASTRAN
computer program.
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