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ANALYSIS OF 

THERMALLY INDUCED STRUCTURAL VIBRATIONS 

FINITE ELEMENT TECHNIQUES 

James B. Mason 
Goddard Space Flight Center 

A brief review of the classical continwrn approach to thermoelasticity 
problems is given. It is shown that an analogous technique can be used to re- 
duce thc study of thermally intuced vibrations by finite element techniques to 
that of a forced response analysis of the idealized structure excited by time 
dependent equivalent mechanical loads. 

Equivalent mechanical loads for beam and rectangular plate elements a re  
presented, These time dependent loads are evaluated and employed 19 tre2.t two 
sample problems for which exact solutions of the differential equatio-is of mo- 
tion exist. The samples considered are those of a simply supported beam and a 
simply supported plate exposed to a unif o m  step heat input over one face. Re- 
sults of the finite element analyses are compared to the exact solutions for 
these two cases. 
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ANALYSIS OF 

THERMALLY INDUCED STRUCTURAL VIBRATIONS 

BY 

FINITE ELEMENT TECHNIQUES 

INTRODUCTION 

It i s  the purpose of this report to indicate the general procedures to be used 
in treating thermally induced vibrations of complex structures by finite element 
techniques. Consideration of this problem is  taking on new importance in both 
present and planned spacecraf', structures because of their lightweight thin 
walled conzziruction, their associated slender structural components (typified by 
iong antennas and booms) and the unusually demanding performance requirements 
expected of many of these vehicles in their space environment. 

The present investigation demonstrates that the thermal vibration problem 
can be treated by a forced response analysis of the idealized structure excited 
by time dependent equivalent mechanical loads. The problem is  thus reduced to 
the determination of the equivalent mechanical loads associated with the particular 
finite elements used in the idealization of the real structure. 

Time dependent mechanical loads are obtained in this report for a beam 
element of uniform cross section and a thin rectangular plate bending element. 
In order to demonstrate the analytical procedures, two sample problems for 
which exact solutions exist a re  analyzed using the beam and plate elements. 
The finite element computations were performed on the IBM 7094 computer using 
the Martin Company SB-038 computer program and ine results of this analysis 
compared to the exact solutions. 

ASSUMPTIONS AND BACKGROUND 

In the following development all of the usual assumptions of linear elasticity 
for continuous, homogeneous, and isotropic materials a re  employed and Hooke's 
law i s  assumed valid. In addition, the conversion of mechanical energy into heat 
is neglected. With the latter assumption, the determination of the temperature 
distribution in the structure is uncoupled from the elasticity problem and may 
be obtained by the Fourier heat conduction equation. 

A brief review of the method of restraint for treating thermoelasticity 
problems by the techniques of classical elasticity is given here. This is  done 



to provide insight for the solution of these problems by the finite elemect 
approach. 

Static thermoelasticity problems may be considered a s  initial strain problems 
and, in turn, the initial strains treated a s  additional mechanical loads acting on 
the structure. The field equations describing the heated structure in rectangular 
Cartesian coordinates may be e'xpressed as: 

Equilibrium Equation 

Stress-Strain 

Strain-Displacement 

where the conventional summation convention is adapted, (i, j , /3 = 1, 2, 3) 
a (  > and ( ) , i  indicates a xi , here 

xi - coordinate component 

u - displacement component 

Xi - body force component 

o-. . ,.- stress component 
X J  

e , - strain component 

8 i j - Kronecker delta 

a - coefficient of thermal expansion 

'I' -U temperature rise from a given base temperature 

v - Poisson's ratio 

E - modulus of elasticity 



subject to th2 boundary conditions: 

Traction Boundary Conditions 

Displacement Boundary Conditions 

where 
n 

S. - surface traction component acting on the surface with outer 
normal ?; 

"i % component of ?; 

f i  (p) * prescribed displacement function component a t  points p of the 
boundary surface 

Employing the method of reztraint, we consider a body free of surface trac- 
tions to be subdivided into infinitely small cubical elements. kitially these 
small elements will fit together to form a continuum. If the temperature of the 
body is altered in a nonuniform manner, however, the cubical elements will ex- 
pand an amount 

proportional to their own tempezature change and no longer uecessarily form a 
continuum. This expansion can be entirely suppressed by applying a uniform 
pressure 

to each of the individual elements. Under this stress system, referred to as 
"state A," the lsck of fit between elements in the heated structure is removed 
and the body assumes its initial undeformed continuous configuration. 



To this point we have determined the *'ate A stress distribution, given by 
Equation ('I), necessary to restrain the he. ,d structure in its undeformed con- 
figuration. The requirement now is to obtain equivalent mech ~lical loads which, 
when applied to the heated strccture, will produce this same restraining stress 
state. This technique c~f determining equivalent external loads is used in order 
that the well-known methuds from classical elasticity for the analysis of struc- 
tures under external loading can be utilized in the analysis of thermally deformed 
structures. 

To obtain the equivalent mechanical loads, a-e note that the state A stress 
system ensures compatibility in that it is the stress system required to restrain 
the heated stmdwe in its undeformed configuratian. Substituting Equation (7) 
into the equilibrium Equation (1) results iri the required body forces for restraint 

m-hile sutstitution of Equation (7) intG Equation (4) results in the required re- 
straining surface tractiolls 

Tberefoie, Equations (8) and (9) express the equivalent mechanical loads 
which p d u c e  the state X str-ss distribution and restrain tbe heated structure 
k i ts  tmdeformed configuration. 

Sin- in actuality these loads do not exist on tbe body,. the undeformed struc- 
ture is now loaded with the negative of the calculated bady forces 

and the negative of the calculated surface tractions 

in a manner which satisfies the bouFdary c.dnditions existing on the structure. 
TtLe solution of this prablem is obtained by classical elasticity methads for a 



structure under the action of external loads given by Equations (10) and (11) and 
is referred to here as the "state B" solution. 

Tbe final displacements are obtained from the state B analysis, since the 
state A displacements are zero, and the final stresses in the body are found by 
summing the state A and state B stress distributions. 

It is seen that the effects of initial thermal strains have been treated by the 
introduction af equivalent external body and surface forces which were derived 
by restraining the deformations of the heated structure, The thennoelasticity 
problem can be treated by finite element methods in a manner completely analo- 
gous to the continuum approach described above. Conceptically, this is achieved 
by replacing the infinitesimal cubical elements and their associated restraining 
stress systems by finite elements and the necessary equivalent mechanical loads 
which must be applied at the element grid points to constrain the elements in 
their unheated shapes. 

DISCRETE ELEMENT FORMULATION 

The matrix-displacement farmulation of the thermally induced vibratiou 
problem is used in the following development. The results, however, are appli- 
cable to other finite element formulations. 

In the finite element approach to structural analysis problems, tht? body to 
be analyzed is idealized to a new stmcture composed of an assemblage of finite 
structural elements which are joined . ~ t  grid points. The individual discrete ele- 
ments are d e f k d  by a number of grid point degrees of freedom which are suffi- 
cient to adequately represent the stress and displacement behavior of the element. 
One may write the force-displacement relations ior the thermcly strained i th  

element by the stiffness equation 

where 

x - forces acting at the grid points of element i 

[kl - stiffness matrix of element i 

{uli - grid point displacements of element i 

1 - thermally equivalent mechanical loads acting at the grid points 
of element i 



The equivalent mechanical loads {%Ii are obtained as those required to remove 
the initial thermal strains in the discrete element. A s  such, the analogy with 
the restraining systems, given by Equations (8) and (9), is apparent. 

Assembly of the element matrices, Equation (12), to form the idealized 
structure results in the following set of equations describing the static behavior 
of the structure 

where 

{XI * external applied loads acting at the grid points of the assembled 
structure 

[a - stiffness matrix of the assembled structure 

{U) -.. grid point displacements of the assembled structure - thermally equivalent mechanical loads acting at the grid points - 
of the assembled structure 

In Equation (13), the equivalent mechanical loads acting at a grid point of the 
assembled structure a re  obtained as the vectorial sum, at the grid point, of the 
loads {xTIi of all elements joined at that grid point. 

In many practical problems the temperature variations in the structure 
change rapidly with time and the effects of inertia can not be neglected. In these 
cases, the study of thermally induced vibrations by finite element techniques 
can be accomplished by modification of Equation (13) to aclude inertia effects. 
Using the well-known principle of dlAlembert, the negatives of the inertia forces 

where 

[HI - mass matrix of the assembled structure 

{u} * grid point accelerations of the assembled structure 

are treated as additional ajplied loads acting on the structure. In addition, the 
equivalent mechanical loads become time dependent fnrcing functions. Thus, 
from Equations (13) and (14) for the case of no externally applied loading, we 
can write 



Examination of Equation (15) shows that the problem of thermally induced 
vibrations in finite element structures is reduced to that of obtaining the dynamic 
response to a forced vibration in uhich the external forcing functions become the 
negatives of the equivalent mechanical loads. Upon the determination of is} - as 
a function of time t and imposition of bourxlary conditions, Equation (1 5) is solved 
for the unknown grid point displacements 'L' ( t) 1 of the idealized structure. 

The remaidel  3f this report has been written to demonstrate and evaluate 
the above analysis procedures. Two sample prchlems, for which solutions of the 
differential equations of motion exist, have been chosen for finite element analy- 
sis. The determination of equivalent mechanical loads for the finite elements 
employed in these samples, i.e., unifol ru  Seams and rectangular plates, pose no 
particular difficulty. In general, however, the evaluation of mechanical loads for 
various fmite elements is more involved since these loads are, in reality, fuhc- 
tions of the assumed displacement o r  stress pattern for the element and are 
obtained by energy minimization procedures. 

THERMALLY INDUCED BEAM VIBRATIONS 

The p d l e m  to be considered in this section is that of a uniform simply 
supported rectangular beam of length L and thickness h exposed to a step heat 

h h 
inplit Q (co-t in x) along edge y = + - while edge y = - - is insulated, see 

2 2 
Figure 1. For this case the time varying temperature distribution in the beam, 
provided T(y,o) = 0, is(') 

T = ( )  * nodimensional time parameter 

'b 

k - thermal conductivity 

K 'b thermal diffusivity 



.. * X  

THERMALLY INSULATED 2 

Figure 1. Simply Supported Beam Exposed to Step Heat Input 

Elasticity  orm mu la ti on( ) 

The governing equation for the displacement of a uniform Bernoulli-Euler 
beam subjected to heating can be written as 

where tb forcing moment is 

and 

x * longitudinal coordinate 

y - transverse coordinate 

v - transverse displacement 

I * area moment of inertia 

A * cross sectional area 

p * mass density 



Substituting Equation (16) into Equatioa (18) and integrating yield the time 
&pendent mment in terms of the basic bput paramebers as 

Defining the following dimensionless quantities 

and ueing EqPation (19), noting tbat H, does mt depend on x, the governing equa- 
ti- become23 

The bouadary and initial conditions for the simply supported beam are 



Sol\tticm of the system given by Equations (21) and (22) yields the displacement 
function 

sin n2n2B27 

- 2 sin n 2 n 2 ~ 2 r  - cos n 2 n 2 ~ 2 r  

i=l.s.s j4  + n4BI 

Results are @ven for V versus 7 for the case B = 1 and = H in Figure 2. 
Tb resalts we= o b M  by a s-e precision program which summed to 
n = j = 21 in Equatim f23). 

Finite Element Formulation 

1% has been shobn, m Equalion 12, tbat the stifbss equation 

represents the forcedisplacement relations for a thermally strained finite ele- 
me&. The s t i fkew and m~lnn matrices for beams are well-, and the 
problem of thermally indued vibrations in fiite element beam problems reduces 
to the d e t i e ~ 0 1 ~  of equivalent mechanical loads. 

A typical beam element of miform rectangular cross section is shown in 
Figure 3. Only temperature distributions T (y, t ), mnstant along the axis of the 
element, need be ansidered if care is taken to model the structure such tbat 
8kpwbe variations in temperatarr? closely approximate the axial temperature 
variaticm in the actual stmwtme, Equivalent mechanical loada necessary to re- 
strain the beam element from beading when subjected to a temperature pariation 
though tb &psb of the beam element are required, 

Sine tbe temperature does not vary along the length of the element and 
equilibrium is amaidellled in tbe axial direction only, no body forces are required 
for restmht and only the boundary stresses 





Figure 3. Grid Point Forces, Displacements and Thermal Loads :or Finite Beam Element 

need be applied. This boundary stress distribution can be replaced by the .- re- 
sultant equivalent mechanical moments 

acting at the grid points of the element, see Figure 3. 

Referring to Figure 3 and Equation (26), we see that the stiffness equation 
for a typical heated beam element can be written as: 

Having found the equivalent mechanical loads for the beam element, we can 
determine the required forcing functions for the complete model. The assembled 
finite element model of the simply supported beam of Figure 1 consisted of 11 
grid points connected by 10 beam elements of length ~/10, see Figure 4. For 



Figure 4. Finite Element Model of Simply Supported &am 

the temperature distribution given by Equation (16), the equivalent mechanical 
moments acting on each beam element are  obtained from Equation (26), assuming 
E and a constant, a s  

Since the temperaare distribution does not vary along the length in this sample 
problem, the vectorial sum of the thermal moments at the internal grid points 
(2 through 10) of the beam are zero, and the problem reduces, according to 
Equation (15), to that shown in Figure 4. 

Solution of the finite element model subjected to the time varying end 
moments given by Equation (28) and shown in Figure 4 was obtained on the 
IBM 7094 computer using the Martin Company SB-038 force method program. ( 2,  

Lumped mass and modal displacement techniques were utilized for this analysis. 
Results a re  given for V versus T for the case B = 1 and 5' = 'A in Figure 2. A 
plot of nondi.mensional forcing function for this case 

is also shown in this figure. 

THERMALLY INDUCED PLATE VIBRATIONS 

The problem considered in this section is that of a simply supported 
square plate subjected to a step heat input Q (constant in x and y) on face 



h h 
z = + 7 while face z = -- i s  insulated, see Figure 5. The temperature distri- 2 
bution is identical tc that of Equation (16) with y replaced by z .  

r y  

THERMALLY INSULATE2 

h f r y  

a 

THERMALLY INSULATE2 
x 

Figure 5. Simply Supported Square Plate Exposed to Step Heat Input 

Elasticity Formulation 

The governing differential equation for the square plate is: 

where the time dependent forcing moment i s  

h/2 
- 

' T ' ~ )  - J-l-,/2 
aET (z, t )  zdz 



x, y * middle surface coordinates 

z - transverse coordinate 

h * thickness of plate 

w - transverse displacement 

Solution of Equation (30) for the simply supported plate yields 

v2 B: rr2 (m2 + n2) r 1 - 2 r - j 2 r 2 ~ -  cos [B: r 2 ( m 2 + n 2 ) ~ ]  
8 B:(m2+n2) a 

jZ1 ,3 ,S  j 4 + ~ :  (m2+n2)2 



a * sgrare plate dimensim 

Results for the following hypotktical problem 

BTU 2 = 1-18 f t - - - ~  

BTU- f t  
=P 

= 6.90 
lb- "F- sec2 

Q = 144 
BTU 

ft2-sec 



were obtained from a single precision computer program which summed to 
m = n = j = 25 in Equation (32). Results of this calculation for midpoint dis- 
placement w versus time t are  shown in Figure 6. It should be mentioned here 
that the numerical values were chosen to take advantage of an existing finite 
element plate model, see discussion of this below, and are not intended to be 
realistic. 

Finite Element Formulation 

An existing quarter symmetry m&l of an 8.0 ft x 8.0 ft x 0.1 ft simply 
supported plate was used in this ~ tudy  . The model consisted of a four by four 
network of 1.0 ft x 1.0 f t  x 0.1 f t  plate elements, see Figure 7. t-nlike the beam, 
however, various stiffness matrices have been suggested to describe the be- 
havior of plate elements. Hrennikoff plate elements, ( 3 ,  obtained a s  an equ-:dent 
network of beams connected at the four corner points of the square element, 
were used. Each grid point of the model has three-degrees-of-freedom, one 
translation (r) and two rotations (8 ,  $). The equivalent mechanical loads acting 
at the grid points of the element were obtained by prcrating the distributed 
thermal restraining loads of a continuous square plate to the grid points of 'he 
finite element, 

A rectangular plate element with an assumed temperature distribution 
T (2, t) constant over the planform of the plate is cansidered. A s  with the beam, 
this element will be satisfactory if  care is taken to model the structure s o  that 
stepwise variations in temperature closely approximate the actual planfcrm 
temperature, Since the temperature does not vary over the middle surface of 
the plate, body forces are not required for constraint. We may regard the plate 
as f r e e  to expand in the direction normal to the middle surface and constmn 
the x , y expansion by providing the boundary stress system 

Thus, the plate bending may be constrained by replacing tle boundary stress 
system of Equation (34) by the resultant thermal moments 

aE 
<,(t) = ' I-, T (z , t )  zdz 

distributed alang the edges of the element. 
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- 0 FINITE ELEMENT PREDICTIONS - THEORETICAL PREDICTIONS 

= - FORCING FUNCTION TIME HISTORY 
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Figure 6. Thermally Induced Plato Vibrations (Theoretical And Finite Element Midpoint 
Di splacament Response Predictions For Plate Forcing Function Mp ) 

T 



Fiwrc 7. Q u m r  Symmetry Modti of Simply Supported Square Plate 

Prorating the distributed moments, Equation (35). to the grid points of the 
finite plate element results in a system of equivalent mechanical moments re- 
quired for restraint. For the s q w e  plate element of the sample problem these 
thermal moments become 

ii (t) 5 
- PT 

Y p , ( t )  - 2 

where S is the planform dimension of the square plate element, see Figure 8. 

The stiffness equation for a typical square plate element, referring to 
Figure 8, can be written as 



+ 
RIGHT HAND RULE 

Fiwre 8. G i d  Point Forcss, Displacanentr and Thermal Loads for Finite Plate Element 



The equivalent mechanical loads for the 1 £t x; 1 £t x 0.1 £t plate element 
with temperature distribution Equation (16) are found using Equations (35!, and 
(36) to be 



when E and a are taken as constants. Since the temperature distribution does 
not vary over the planform of the plate in the sample problem, the vectorial sum 
of the thermal moments at the internal grid points of the assembled plate model 
are zero and the problem, according to Equation (15), reduces to the quarter 
symmetry model loaded as  shown in Figure 9. 

SIMPLY SUPPORTED 

Y / 4 CONSTRAINED TO ZERO 

Figure 9. Quarter Symmetry Hrennikoff Model of Simply Supported Square Plate 



Solution of the finite element model shown in Figure 9 was obtained by the 
Martin Company's SB-038 program. Lumped mass and modal acceleration tech- 
niques w e r e  utilized and the results are  given for midpoint displacement w 
versus time t in Figure 6. A plot of forcing functions Mpt versus time is also 
shown. 

CONCLUSIONS 

It has been shown that structural vibrations induced by uncoupled transient 
temperature distributions may be treated by a forced response analysis of the 
idealized structure excited by time dependent mechanical loads applied at the 
grid points of the model. Time dependent mechanical loads for a uniform rec- 
tangular beam element and a thin rectangular plate bending element have been 
presented. 

Two thermal vibration problems have been solved by the finite element 
method: 

1. Simply supported beam subjected to a step heat input over one face: 
The finite element results compare favorably with those of the elasticity 
solution. Differences between the finite element results and the elas- 
ticity solution can be accounted for by the coarseness of partition in the 
beam model and numerical inaccuracies inherent in obtaining both 
solutions. 

2. Simply supported plate subjected to a step heat input over one face: 
The results obtained irom the finite element analysis compare well with 
those from the elasticity solution. Differences can be attributed to the 
coarseness of partition in the plate model, inadequacies inherent in the 
Hrennikoff plate bending element and inaccuracies in numerical evalua- 
tion of both solutions. 

At the option of the analyst, improvements in the finite element results for both 
of the sample problems could be obtained by use of a finer element partition. 

The results of this study demonstrate that the finite element method offers 
5 

a powerful tool for use in the analysis of thermally induced vibrations. Future 
work in this area will concentrate on the automatic calculation of equivalent 
mechanical loads for the various finite elements incorporated in the NASTRAN 
computer program. 
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