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ABSTRACT

A suboptimal estimation scheme similar to the Kalman filter
is described which makes use of scalar weighting factors instead
of matrix factors. It is shown that the accuracy degradation of
the suboptimal estimator is not too great for most cases of
practical interest. Moreover, it readily lends itself to physi-
cal interpretation.



A SUBOPTIMAYL, APPROXIMATION
TO THE KALMAN FILTER

By Leon Bess
Electronics Research Center

SUMMARY

A suboptimal scheme similar to the Kalman filter is investi-
gated here. The basic idea underlying the new device is that
scalar weighting factors instead of matrix factors are used in
constructing the estimate. It is quantitatively shown that the
degradation in accuracy of the new estimator, in most cases, is
not too great (typically around a factor of two). Aside from
the possibility of simplifying the estimation procedure, the new
device has the advantage of readily lending itself to physical
interpretation. This, in turn, is shown to be useful in under-
standing the associated Kalman filter and allowing some signifi-
cant a priori testing on it.

The treatment here is confined to the case where the dimen-
sionality of the measurement vector is the same as that of the
state vector, but it is suggested how the treatment could be
extended to the general case.

I. - INTRODUCTION

The objective here is to investigate a certain type of esti-
mator which is similar to the Kalman filter but is suboptimal in
performance. The basic idea underlying the new device is that
scalar weighting factors are used instead of matrix factors in

construction of the estimate. It is shown that the degradation
in accuracy of the suboptimal filter is, in most cases, not too
great (typically being around a factor of two). An obvious

advantage of the new filter is that, at least in certain cases,
it can offer a significant simplification in the estimation
procedure.

Another advantage is that the new filter readily lends itself
to physical interpretation and this, in turn, may prove to be of
value in understanding the associated Kalman filter. In parti-
cular, it will be shown that by calculating a certain factor, it
should be possible to obtain a rough idea, a priori, of the abso-
lute effectiveness of the Kalman estimator. The effectiveness
criterion developed here is compared with the designation, "opti-
mum", which heretofore has been the prevalent concept in estimator
effectiveness. The a priori testing could be of practical value
in constructing a computer program that would make the most effec-
tive use of the available facilities.



IT. - PRELIMINARY MATHEMATICAI, FORMULATION

This section is to be devoted to deriving those mathematical
formulas which form the basis of the investigation to be described.
The treatment here is to be limited to the case of discrete sam-
pling intervals where the measurement data (in the form of the
measurement vectors, zp_;) are continuously supplied to the
estimator at the discrete times, Ep_ir with a finite time inter-

Val, Atk_i (= tk_i - tk__i_l) LY
The Kalman-Bucy equations for this case are well known
(refs. 1, 2, and 3). The canonical equations take the form:*

x(k + 1) = o(k + 1,k)x(k) + Fk+l’ku(k) (la)

z (k) = Hkx(k) + v (k) (1b)

The estimator equations are:

x(k + 1| k) = o(k + 1,k)x(k | k) (2a)

x(k| k) = (I - KHIxK]|k -1) + Kz (k) (2b)
where

Ky = [P(k[ k - 1)HE] [HkP(k | x - 1)H£ + Rk]'l (2¢c)

The equation for the variance matrix, P(k + 1| k) is:

_ T T
P(k+1]| k) = o(k+1] k)P(k| k)& (k+1,k) + T+l k% k+1,k  (3a)

P(k| k) = wpP(k|k=-1) (3b)

*In regard to notation, the symbols used here are standard (such
as employed in references 1 and 3) and are more or less self-
explanatory in equation sets (1) through (3). In general, an
upper case Greek or Latin letter will represent an (nxm) matrix.
A lower case Latin letter will represent a (lxn) vector. A
lower case Greek letter will represent a scalar.



where

W, = (I - Kka)

It is understood that the matrices Ry and Q, are defined by
the following relations:

covlv(k),v(i)] = RkSik (3c)
cov[u(k),u(i)] = 0y 8% (34)
cov[u(k),v(i)] = O (3e)

By making repeated use of the estimator equation set (22 for
the time instants tr-i (where i = 0,1,2,3,...,*), it is possible
to obtain an expression of the estimate which has the form:

1

Xk | k) = Q(k, k- 1) [I— Wk—i] [H]:_iz(k—i)] (4)
i=0

where

Q(k,k-1) = Wk®(k,k-l) d(k-1,k~-2)...

We-1

cer W g ;0(k+1-i,k- i)

for i > 1

Q(k,k) = I

It is, of course, apparent that the expression_for x given
in Eg. (4) is strictly valid only if the inverse H,— . exists.
This assumption will be made here for the treatment which follows.
Physically, this means that a complete zero bias estimate,
xo(kl k), can be constructed only from the contemporary data,
z(k) and the dimensions of z(k) must be the same as x(k).
Although in the interest of simplicity only the case just de-
scribed is to be considered explicitly, it seems possible at



this time that treatment developed here can be extended to the
general case.¥*

In extending the i summation of Eq. (4) to infinity, it has
been assumed that the estimator has reached a "steady state"
where the initial measurement values, z(o), no longer influence
the estimate, x.

In a manner similar to that used in Eq. (4), the repeated

application of the equation set (3) can bring the variance matrix
to the form:

P(k] k) = X Q(k,k - i)[Dk_i]QT(k,k - i)
i=1

+ Y Q(k,k - i) [I - Wk—j][Ek—i]
i=0

. [1 - wi_i] 2T (k% - 1) | (5)

where

_ 11* I'*T
Dp—i = Tk-i%-ilk-i

—
1

o™l (k + 1 - i,k - DT, ¢ .
14

=
1

-1 1 _ [r _-1 -1
k-i - Pk-ifx-ifk-i = [Hk—iRk—in—i]

In studying Eq. (4) for the optimum estimate, x, it is
possible to regard the matrix factors, Wy_j, as weighting factors.
It becomes very suggestive to replace these matrix factors with
scalar factors, and construct a new kind of estimate, Xp .

It can be shown that a zero bias estimate can indeed be
constructed to have the form:

x, (k| k) = Eggyk’iQ(k,k— i)[%;}iz(k-iﬂ (6)

*For details on how this might be done see Appendix C.



However, it is necessary that the scalar factors, ¥y

s 7
satisfy the following relation: kol
=1 ' 7
i);)ovk,l (7)
Moreover, the covariance matrix,
P (k | x) (: cov 3[x(k) —§A(k| k) , x(k) - §<A(k ] k)]i)
corresponding to §A is given by:
—~ .2 T
Pk k) = % 8 L00k,k - 1) [Dk_i]CD (k,k - i)
i=1
XY ek, k- i)[Ek_i] o (k,k - i) (8a)
i=0 7’
where
B, = 2 Yk, (8b)
j=1i

The scalar factors Bk,i and Yx,i can be made to take a more
suggestive form if they are defined in terms of a new scalar
factor, oyx._j, such that:

O Op—1%k =27 rOp%qp1 -1

~
[}
|

for i > 1 (9a)

il
=

Thus, it can be shown that if:

Y, i = Br,i 7 Bk,i-1 T By, i (T7%-y) (9b)



both Egs. (7) and (8b), are satisfied. Moreover, Egs. (4) and
(6) for the estimates x and x, have a direct correspondence
since Eq. (6) results from Eq. (4) if Wy_; is replaced by op_j.
[This is also true for the variance Egs. (3a) and (5)].

At this point, a few speculative remarks about the scalar
weighting factor, Oy g 7 might be of interest.

Intuitively, it seemg reasonable to assume that when the
a's are adjusted to make xp an optimum (i.e., when tr[PA(kI k)]
is a minimum), that ap_j; will bear some close relationship to
Wx-i such as having a value* near 1/n tr(Wy_;), the mean charac-
teristic root of Wy_i. This assumption will later be shown to
be reasonably valid at least for the case of greatest practical
interest. It follows from this that oxp_j should always have a
value between zero and unity. This result is also a consequence
of the consideration that the infinite series expression for X
in Eg. (4) must converge so that a "steady state" is reached
(i.e., a condition is reached where the estimate is no longer
influenced by the initial z(k - i) data).

ITI. - QUANTITATIVE COMPARISON OF ESTIMATORS

In this section, the suboptimal filter being studied here
will be compared with its corresponding Kalman filter by evalua-
ting the two performance indices tr[P(k | k)] and tr[Pa(k | k)].
This will actually be done only for the two extreme cases of high
"predictability" and low "predictability". The general case is
very difficult to treat and moreover, the high "predictability"
case is usually the one of greatest practical interest.

Low Predictability Case

It can be shown** that for the case of low "predictability"
(or more explicitly where [|Dy_;||>>|Ex-i| for all i)*** that:

W -1 r-1] [*]-1 DR | -1
Wy = [Hk Ry Hy ] [Pk] { - [Pk(HkRk Hk)] } (10)

*Where tr(A) B Trace A and n is the dimensionality of the
square matrix.

**See Appendix A for details of the calculation.
x+xwhere ||a] = [tr(aTa)]1l/2,



where
= -1 T-1 T
Pp = [Hk Ry =+ Pk,k-le—lPk,k-l]

From Eg. (10), and its approximate relationship to Wy stated in
Section II, it would follow that for this case ox_j<«<1

If Eq. (10) is used in evaluating P(k | k) from Eg. (3b)
along with the approximation for P(k| k - 1) developed in
Eg. (5a) in Appendix A, the result is:

p(k| k) = [Ek] {1 - [1;11’}:] 'l} (11)

In studying Eq. (11), it can be sean that the Kalman vari-
ance matrix, P(k |k), (which is also the system error matrix) is
determined almost entirely by the measurement error matrix, Ry,
corresponding to the contemporary measurement vector, z(k),
(since the second matrix in the bracket is small compared to I).
This result can be understood on purely physical grounds since
as Ry grows smaller (and ||[Ex|| becomes small compared to [[Dk|) .,
the optimum estimate for the present instant of time, ty, should
be based more on z(k) and less on any of the z(k - i) (i > 1).
The uncertainty in "updating" will start to produce errors large
compared to Ex and when this happens, the z(k - i)(i > 1) data
can have little value in determining the optimum estimate and
therefore must be excluded. Thus, for the case of low "predict-
ability", the system error should be nearly the same as the
measurement error and the Kalman filter provides little improve-
ment over an estimator using only the current measurement data,
z(k). Since, as seen above ojp_j << 1 for this case, it can readily
be shown that P, (k | k) = Ex and the same statement can be made
for the suboptimal filter. It is then apparent that the two
performance indices tr[P(k | k)] and tr[PA(kI k)] are nearly equal
for low "predictability" cases.

High-Predictability Case

The case of high "predictability" (i.e., where "Dk_iWK"Ek_i")
to be considered in this section is much more difficult to treat
generally. Some initial assumptions are now to be made which
should not seriously reduce the generality of the treatment but



will greatly simplify the calculations. The assumptions are
that for i = 0,1,2,...,~, the following relations are true:

. . _ _FAt | T . _
P(k-1i,k-i~1) = e P Wy = I-AW ooy =0

The matrices, D, E, F, and AW are constants. 2All of the fore-
going assumptions are reasonable if the estimator has reached
its "steady state", where the various parameters show little
variation in a time interval, N AL, [where N, is the "effective"
number of contributions to the estimate from the various z(k - i)].

Using the foregoing assumptions in Egs. (5) and (8a) for
the two variance matrices, the result will be:

o)

Pk | k) = iz=:1 [(I - AW)eFAt]i[D] [eFTAt(I_ AWT)]i

o i T i
+ ¥ [(I—AW)eFAt] [(AW)E(AWT):I [eF At(I—AWT)]

i=o
(12)
= 2i| iFAt. iFTAt
Py (k [ k) = 3 (a) e De

i=1
> 2i 2| iFAt. iFTAt

+ ()t -a‘le Ee (13)
i=0

The following relationship* will prove to be of value in the
developments of this section:

-1
(I-w_) = P(k ]k)Ek (14)

*This relationship can readily be derived from Eq. (VIII) of
ref. 3.



As will be seen later, as Dy»0; P(k | k)»0. Thus, it follows
that as [lIDli/|E]]>0; AW+0 and moreover (1 - o)-O0.

It can be shown that for the "high-predictability" case, the
infinite sums of Egs. (12) and (13) can be approximated by infi-
nite integrals with the resulting errors being only of the order
of ||AW|| and (1 - a). The actual integral for P(k | k) would be
of the form:

o T T
P(k | k) = f dy e(AF'Aw)Y[D+ (AW)E(AWT)] e (AFT-AW )y (15)
0
where
AF = FAt

To obtain Eg. (15) from Eq. (12), the D integration lower
limit was extended from 1 to 0, and the gquantity (I - AW) was
approximated by e~AW., Both of these operations would introduce
errors only of the order of lAwWll. Similarly, the integral form
for BA(k] k) can be shown to be:

o T
p k| = ay o (AF-bo)y[p 4 () 28 ]e (BF -2)y (16)
A 0
where
Ao = -log o = (1 - a)

Again, the D integration lower limit was extended from 1 to
0, and error here is of the order of Aoa. The evaluation of inte-
grals of the form given in Egs. (15) and (16) has been treated
extensively*, and the results can be expressed in the form of
the following sets of algebraic matrix equations:

(AW - AF)P + P(AW® = AFT) = D + (AW)E(AWY) (17)

*See, for example, "Introduction to Matrix Analysis" by R. Bellman,
page 231; McGraw-Hill Book Company, Inc., 1960.



(b =AF)P_ + P, (ba- AFT) = D + (Ao)°E (18)

As indicated by Egs. (l17) and (18), the operation of main
interest here is obtaining explicit forms of tr(P) and tr(Pp)
and comparing them. To do this, it is expedient to calculate
the quantity, AP(= Pp- P) from these equations. Thus, if Eqg. (17)
is subtracted from Eq. (18) and using the relation of Eg. (14)
[P = (AW)E], it is possible to obtain the following relation:

(Ao - AF)AP + AP(Aa- AFY) + 1/2(Ao - AW) (P - AQE)

+ 1/2(P - AaE) (ho - AWT) = 0O (19)
Since P = E(AWT), it follows from Eg. (19) that:

tr [(Aa - AF) AP] = 1/2tr [E(AWT - Aa) 2] (20)

Eg. (20) can be changed to a more suggestive form by again using
the relation of Eg. (1l4) so that it becomes:

tr [(I—B)AP] =(2_i6) [tr(PE_lP) - (2Aw) tr(P) + (Aa)ztr(E)]

(21)

where

- 1 T

The 1.h.s. of Eg. (21) results from the fact that AP is a sym-
metric matrix.

As can be seen from Eq. (21), tr(AP) is a function of the
scalar, Ao; and it will assume a minimum value for a certain
choice of Aa. In general, the variation of the matrix factor,

(I - B), will not greatly affect (Ao)p, the value of Ao for which
tr(AP) is a minimum; so for simplicity, (Aa)y is to be determined
by minimizing the r.h.s. of Eg. (21). This can be done as a

10



straightforward differentiation problem, but it is more suggestive
to do it by making the following substitution:

Ao = 60\/77 (22)

where
8, = [tr(PE_lP)/tr (E)]l/2

When Eg. (22) is substituted in Eq. (21) and both sides are
divided by tr(P), the result is:

er[(T=B)AP] _ [y/5(F + 1/vA) vE - 1] (23)
tr(P)

where

£ = tr(E) - tr(PE_lP)
tr? (P)

It is evident that the r.h.s. of Eg. (23) (which represents
a rough measure of the percentage deviation of P and P,) is a
minimum when the scalar parameter, n = 1, so that (Ao), = §p-
Moreover, the minimum is fairly broad since n can vary from 1/2
to 2 and the r.h.s. of Egq. (23) will stay within six percent of
its minimum value.

It is to be noted that both symmetric matrices AP and
(I -B) must be positive definite*. This is true for AP because
Pp must always exceed P, the possible minimum. It is true for
(I -B), since otherwise the integral in Eg. (16) will become

*Tt should be noted at this point that the tentative assumption
made in Section II about the magnitude of akx-i can now be veri-

fied. From Eq. (22) it follows that (1- a) = [Er(AWCEAW) /tr(E)]*
whereas at the beginning of Section III it was, in effect,
assumed that (1 -0) = (1/n)tr(AW). It can be shown that, in

general, the two values will roughly agree (to within a factor
of two).

11



infinite. It can therefore be shown that*:

Aﬁtr(AP) > tr[(I- B)AP] > xmtr(AP) (24a)

where

AM is the maximum characteristic root of the matrix (I - B)
and Ay is the minimum characteristic root. Hence by evaluating
Am and Ay, the range of variation of tr (AP)/trfP) can be deter-
mined from Egs. (23) and 24a). However, since in what follows
only a rough estimate of tr(AP)/t(P) is desired, Eqg. (24a) sug-
gests that the effects of the matrix factor, (I - B), can be
approximated with sufficient accuracy (at least in most cases)
by means of the following relation:

tr[(I -B)AP] = )\-B-tr(AP) (24Db)
where

n
Ag = (1/n)tr(I-B) = (1/n)iz=:lxi

The A; are the characteristic roots of (I -B).

It is apparent in studying Eg. (23) that the parameter, g,
is of central importance in determining the value of tr(AP). It
is first to be noted that £ 21, since otherwise tr(AP) might be
negative. Moreover, (assuming that n = 1 so the factor in front
of V% is unity), it is seen that the quantity [tr(AP)/tr(P)]
which is the measure of the accuracy degradation has a value
roughly equal to [(VE -1)/A]. The value of £ in any particular
case, of course, depends on the nature of the estimation problem
(i.e., on the exact form of the matrices D, E, and F); and it
can assume values ranging from those near unity to others much
greater than unity. It is felt that it might be of value to
estimate the parameter, £, for a couple of selected examples
which should illustrate the behavior of this parameter. This is
to be undertaken in what follows, but first it is to be noted
that in order to evaluate &, it is necessary to calculate P.

*See Appendix B for details of the derivation.

12



The operation can be accomplished by solving the system of alge-
braic equations derived from Egs. (14) and (17) and represented
in matrix form as: -

D + P(AFT) + (AF)P - pE lp = 0 (25)

In obtaining a unique form of P from Eg. (25), the supplementary
condition that as D»0, P+0 is to be used.

The matrix Eq. (25) is seen to closely resemble Eq. Set (3),
the Kalman variance equations [it becomes identical if 0 on the
r.h.s. is replaced by At (dP/dt)]. The main difference, of course,
is that it is a set of algebraic rather than differential equa-
tions. The details of obtaining a practical solution to Eq. (25)
is to be left for the following section. In this section, it is
simply assumed that P can be made available from Eq. (25).

Having pj4 (the components of P), the parameter £ can be
calculated and can be shown to take the explicit form:

(Fesd [Brisven]

s T [Zp P ] (260

ii j'_']

where i, 3 =1, 2, 3,...,n.

In obtaining Eq. (26), the simplifying assumption has been
made that the matrix E is diagonal. This assumption is actually
not too restrictive because it covers many, if n t most, cases
of practical interest. It is to be noted that p iiPyq-
where -1 —Clj <1 which follows from the deflnltlon of P}ﬂ| k) (= P).

The illustrative case to be considered now is where c;s = 1
and all the components of E, ej;, are nearly equal. It is feadily
seen from Eg. (26) that £ = n here, and the degradation factor
is [(vn - 1)/XB] Thus, unless the matrix dimensionality is
very large, it is seen that the accuracy degradation for the sub-
optimal estimator need not be too great for this case.

The next case to be considered is where one particular com-
ponent of E, (say ejj), is much larger (at least a factor of 2n)
than the others and, moreover, this will cause its corresponding
P component, Pyyr to be much larger (by at least a factor of

13



2n[ell/eii]l/2) than the others. For these conditions, it can
be seen that £ = 1 and the accuracy degradation factor is much
smaller than unity. For this case, the suboptimal estimator is
very nearly as good as the Kalman filter.

The two examples treated above were chosen because the
first case represents an easily realizable situation where the
suboptimal estimator would be performing at nearly its worst
compared to a Kalman filter, and the second case represents a
situation where the suboptimal estimator is performing nearly
the best that is possible. In general, the situation might be
roughly summarized by saying that the accuracy degradation factor
will have a value of around 2. This is to say that the agreement
between PA(kI k) and P(k | k) is usually fairly close.

IV. - ESTIMATOR EFFECTIVENESS

One of the benefits to be derived from the viewpoint devel-
oped in the previous section is that it allows an absolute cri-
terion in judging the effectiveness of an estimator. Heretofore,
the designation, "optimum", has been prevalent in the question
of estimator effectiveness. As will be seen, this is actually
a vague criterion which is much more meaningful to a mathematician
than to a physicist or engineer. It is proposed here that the
standard against which any estimator should be compared should
be the estimator which uses only contemporary data [where the
estimate is HElz(K)]. In this light, the practical limitations
of the designation, "optimum"”, become apparent when it is noticed
that it is perfectly possible that one estimator be only about
1.1 times as accurate as its corresponding contemporary data
estimator, while another estimator be 100 times as accurate and
both could be optimum estimators.

It is also proposed here that the parameter which is the
measure of estimator effectiveness be N,; the "effective" number
of contributions to the optimum estimate. From the central limit
theorem of probability, it would follow that the error in the
optimum estimate is roughly equal to the error in any one contri-
bution divided by N,. This would seem to fit in with the proposal
to use the contemporary data estimator as a standard, since Ng
can therefore be defined by the relation trx[P(k | k)] = 1/Ngtr (Ey) .

It would then follow from Egs. (22) and (23) that

N = EX(E) _ (\/'E'/éo) (27)

14



Thus, it is seen that Ny can indeed be the measure of the
effectiveness of an estlmator, since tr(Ey)is the measure of the
overall error of a contemporary data estimator just as tr(P) is
the overall measure of its corresponding Kalman filter. The
case of the Kalman filter is given by Eq. (27); and from this it
would follow that the error reduction can be very large, since
(as will be seen), 63 can be made quite small. The actual cal-
culation of N, requires the knowledge of the covariance matrix,

P[= P(k | k)]. The evaluation of P is to be the main concern of
the following section, and as will be seen, involves an iteration
solution to the matrix algebraic equation, Eg. (25). Although
there would be only one evaluation, the actual performance could
be quite involved and generally requires the services of a digi-
tal computer. If only a rough a-priori evaluation of N, be
sufficient, the calculation could become quite simple. Drawing
from the results of the following section, one approach is to
approximate P by P of Eg. (34) (in Section V) and use this in

the definition of N given in Eq. (27). Ng then becomes the
guantity (l/oo) [defined in Eq. (34)] whlch can easily be calcu-
lated. It is of interest to note that in certain cases |i.e.,

where [At tr(FE)]2 > tr(E) - tr(D)](l/oO) will simplify to
[tr (D) /tr(E)]1/2

Using this rough estimate of Ng, it is apparent that as the
"predictability" increases (i.e., as [DI/IElN-+0), N, also increases
and eventually approaches infinity.

V. - SUBOPTIMAL ESTIMATOR

As will be shown in the following development, obtaining
the optimum value of the scalar weighting factor, o, in the sub-
optimal scheme proposed here requires only the knowledge of the
scalar factor tx(FP) not the whole covariance matrix, P, as in
the Kalmanzfilter. Thus, only one scalar quantity is needed in-
stead of n“ guantities. Moreover, as can be seen from Eq. (23),
the tr(FP) need not, in most cases, be evaluated too accurately
(since it was shown that the parameter, n, could vary a factor
of 2 without greatly affecting the results). All of this would
suggest that it should be possible to effect a significant simpli-
fication in the calculational procedure (especially for an x of
a large number of dimensions) in instituting the suboptimal
scheme rather than the Kalman filter. In what follows, one pro-
posal will be suggested as to how this simplification can be
realized. There probably exist other approaches which could
perhaps even be more advantageous.

The implementation of the suboptimal estimator being proposed

here is more or less the same as that of the Kalman filter, except
that instead of Eq. (26), the corresponding estimator equation

15



is:

Fa

% (k| Xx) = [ak_z];:A(k | k-1) + [1 - &k—!?,] [lelz(k)] (28)

where

A

O in Eqg. (28) is the optimum value of the weighting factor, o.
It 1s to be calculated at the instant t,_,. 0p_g is determined by
Eg. (22) which in turn requires the knowlédge of tr(PE-1p). From
Eg. (25) it follows that:

N tr (D _y) + (2At)tr[Fk_2P(k -2 | k- z)] 1/2
o _, =1 - (29)
£ (B _y)

Since it has been assumed in the previous development that
the basic estimator matrices D, E, and F are only slowly varying,
staying practically constant in a time interval, NgAt, the weight-
ing factor, op_y need not be calculated more frequently than at
intervals of NgAtapart. Hence, it follows that the same ax.y be
used over the whole time interval ty_g to ty (where & = NeAt).

As indicated before, the main advantage of the suboptimal
scheme resides in the simplification in the required evaluation
of the covariance matrix, P. The proposed evaluation procedure
is now to be presented in detail and its advantages pointed out.

The evaluation is accomplished by the approximate solution
of the set of algebraic equations, Eg. (25), and it is to be
noted that this equation set is valid for any given instant of
time. Thus, if the matrices, D, E, and F, all correspond to the
instant, tg-g; then P = P(k -2 | k - 2).

The method to be used in solvin%hfor P in Eg. (25) is an

iteration procedure where the (i-1) iteration of P is obtained
from (i)th iteration by the relation:

(i+1) (1)
P = P + AP, (30)

16



.

By substituting Eg. (30) into Eq. (25), it can be shown that
AP, is in turn determined by the relation:

(1)
AP. [E_l(P + L AP.)— AFT]
i 2 i

(1) 4 1 (i)
+ P + 5 AP. JE - AF}JAP, = AV (31)
i i
where
(1) (i) (i) T (i) _l(i)
AV =ZD+ AFP + P AF - P E P

If APi is defined so as to satisfy the relation:

(i) (i)
[(P + AP.>E—1 —AF] BB =LA v (32a)
2 1 i 2

and thus

(1) (1)
= - 1 -1 -1|1
AP, [<p + 5 APi_l)E - AF] [5 A v] (32b)

It can be seen that AP; is actually a solution to Eg. (31), but
it is not symmetric (the matrix AVj however is symmetric). It is
to be expected that an approximate symmetric solution to Eg. (31)
is of the form:

'—l

AP, = (AP. + AP.T> (33)

Egs. (30), (32b), and (33) form the working relations for the
iteration cycle. There is now left only the task of finding the
initial trial function, Py,. This is to be determined from the
set of relations:

(o)

P = GOE (34)
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and

1t
o

AP

where
(at) | tx (FE) || JItx(E) tr(D) 172
0y = 5> + 1 -1
tr(E) (At) “tr® (FE)
The scalar factor, o0y, has been chosen so that tr(AV,) = 0,

assuming that tr(FE) < 0.

It is of interest to note here that Eg. (25) can be solved
by exactly the same procedure used to solve the Riccati differ-
ence equation of the Kalman filter. This would be an iteration
procedure similar to the one described above except that instead
of using the relations of Egs. (32b) and (33), the relation
AP; = AV; would be used. Pp would have some arbitrary value
which would usually be far removed from the final assymtotic one.
As a rough estimate, it can be shown that the number of intera-
tions that would be necessary for a reasonably accurate estimate
of P would be of the order of (1/8p). For a high-"predictability'
type of estimator, the quantity (1/6p) could very easily have
values in the range from 10 to 100, and this would also be the
number of iterations necessary when using standard Kalman pro-
cedure in solving for P.

For the proposed suboptimal iteration procedures [repre-
sented by Egs. (30) to (33)], it is expected that not more than
3 or 4 iterations will be required (since, usually, it should
be sufficient to calculated tr(FP) to within a factor of 2 of
its true value). The decrease in the number of required itera-
tions appears for the following reasons. The first is that Py of
Eg. (34) is much closer to the correct P [at least when it is
used in tr(FP)] than the usual P, used in the standard Kalman
procedure. The second reason is that Eg. (32b) is used to calcu-
late AP; instead of the relation Ap; = AV. Thus, in each itera-
tion AP; advances toward its assymtatic value by a_bigger step
(a factor of the order of |{(P; + % APi_l)E'l-AF]'lH larger) that
it would have in the standard Kalman procedure.

Although the significant simplification in solving for P in
the suboptimal scheme would seem to be established theoretically,
it would be of great value to verify it experimentally. This
would mean initiating a computer program solving various types of
simulated estimator problems. The implementation of this program,
however, must be left for a future investigation due to the large
effort required.
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VI. - CONCLUDING REMARKS

In summarizing the foregoing developments, it can be seen
that probably the most important result derived is proof that
the suboptimal estimator using scalar weighting factors can
produce an estimate which, in most cases of interest, is nearly
as good as the optimal Kalman estimate. In view of this result,
the suboptimal scheme, being easier to understand physically,
can become useful not only as a simplified estimator but also as
a means of gaining additional insight into the associated Kalman
filter. One of the results of this new insight is the possibil-
ity of an a priori evaluation of the effectiveness of a Kalman
filter, which was shown to be more meaningful in practice than
the designation "optimum”.

Another by-product of the new insight is one that might
appeal to the more practical physicists and engineers. This is
the ability of being able to provide a rough qualitative descrip-
tion in physical terms of how a Kalman filter operates. The
description is now to be presented in what follows, but first it
is necessary to give a physical interpretation of the suboptimal
estimation scheme. This is best done by, studying Eg. (6) which,
in essence, describes how the estimate, xA(k| k), is constructed.

It has already been established in Section III that vy j is
a scalar weighting factor whose value is given by Eq. (9b). The
second factor, [®(k,k - i)HE}lz(k-—i)], on the r.h.s. of Eg. (6)
can be interpreted as the measurement taken at the time, tyx-ji,
converted to an estimate (by Hy=j) and "updated"” to the time, t,,
[by ¢(k,k -i)]. It now becomes possible to give a qualitative
explanation of how the estimator functions. It has already been
shown in Section III that when the "predictability" is low (i.e.,
ID, _lI> lIEy _;11) op_i becomes very small. Thus, the series in
Eqg. %6) converges rapidly with the "effective" number, N, of
terms being small. This means that only a few of the contribu-
tions of the earlier measurements, z(k- i) (where i>1), are used
in the estimate. Most of the contributions are being rejected
because of the unreliability in the "updating" caused by the
random forcing function u(k - i) in the interval, (tyx-tj). On
the other hand, if the "predictability" is high (i.e., if
Dk _ill >> lEx_; 1), ox-i can be shown to approach unity. The series
in Eq. (6) now is slowly converging and the "effective" number
of terms, Ny, is large. This, of course, implies that contribu-
tions from many of the earlier measurements are being used in
the estimate.

Since (as has been ghown in Sectjon III) there is a fairly
close agreement between xp(k | k) and x(k | k) [or actually between
tr(P,) and tr(P)], it can be inferred that the main processes
taking place in the XA(k| k) estimate should take place in the
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§(k| k) estimate. Thus, as a result of studying the suboptimal
filter, it does become possible to give the rough qualitative
physical description mentioned above. One of the main functions
of a Kalman filter is to essentially "update" the measurement
data of the previous instants of time to a set of values corres-
ponding to the present instant. These "updated" measurements

are used along with the current measurements to form an optimum
estimate of the state vector. It is to be noted that because of
the random disturbance term, u(k-1i), in the "Canonical" equa-
tions, there is an uncertainty in "updating" the measurements of
the previous instants. In fact, the earlier the instant, the
greater will be the uncertainty. The Kalman filter scheme takes
account of this fact by essentially assigning weighting factors
to the contributions of the previous instants so that the weight-
ing factor becomes smaller as the corresponding instant goes back
in time. The fact that the Kalman filter uses matrix weighting
factors so that each component in the state vector can be weighted
individually probably accounts in part for its superiority in
performance to the suboptimal scheme proposed here (using only
scalar weighting factors).

As seen in Section IV, the more precise the knowledge of the
underlying natural processes (i.e., the greater the "predictabil-
ity"”) the greater will be the "effective” number, N,, of the
measurement vectors used to construct the optimum estimate and
also the more accurate will be that estimate. Thus, it follows
that the Kalman filter is a better estimator than one using only
contemporary measurement data only because it has available extra
information in the form of partial knowledge of the natural pro-
cesses generating the measurement data (i.e., it has the "Canon-
ical" equations), and it uses this information to supply itself
with extra data derived from the measurements of the previous
instants.

National Aeronautics and Space Administration
Electronics Research Center
Cambridge, Massachusetts, October 1968
127-49-10-08-25
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APPENDIX A

If M and S are square matrices, such that “SM-l" < 1, then
it is possible to verify that:

1.,,-1

-1 SM "SM "+ ... (13)

M+s]tzmt_ynl

1 1

SM™ "+ M

Thus, in evaluating the matrix Wy of the test, it is to be
noted that

N T -1
Wy = [k Rk] [HkPka+ Rk] [Hk]

where

P, = P(k|k-1) (2R)

If “Rk(HkPkHE)_l“< 1 using the approximation developed in
Eq. (1A), Wy becomes

- [u-1 -1l T -1
W = [Hk Rk] [HKPKHK] [I R _(H P H) ]Hk (32)

where only the first two terms in Eg. (1A) have been included.
With the use of matrix algebra, Eg. (3A) can be brought to
the form:

~ [-1, .m-17.-1[,  /.-1_ .T-1y_-1
W, = [Hk R, Hy ]Pk [I (Hk R, Hy )Pk] (4n)

Using the first term of the approximation of Eg. (4A) in Egs.
(3a) and (3b) of the text, the result can be:

_ -1 T-11.T
P = &(k+ 1,k) [Hk Rka ]@ (k+ 1,k)+ 7T

T
k+1 k+1,k% T k+1,k

(5A)

21



In view of the initial assumption, the first term in the
r.h.s. of Eg. (5A) is small compared to the second. Thus, Py
can be approximately given by PE which is defined as:

-1 T-1 T
x =
PE = H R H AT e 1% 1Tk k-1 (62)

Upon substituting P% from Eq. (6A) in Eqg. (4A), the result will
be Eg. (10) of the text.
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APPENDIX B

Assuming that M and S are positive definite symmetric square
matrices, it follows from matrix theory that*:

_ T
M= UAmU

and

S = TAST (1B)

where U and T are unitary matrices and Ay and Ag are diagonal

matrices. It also follows from matrix theory that*:

tr(MS) = tr(M*AS) (2B)
where

mr = T'MT = (TTm)A_(UTT)

It is to be noted that the product (TTU) is also a unitary matrix*
and, thus, M* is also a positive definite symmetric matrix.
Eg. (2B) can be rewritten as:

tr(Ms) = 3m .0, (3B)
i

where mj; are the diagonal elements of M* and oj are the diagonal
elements of Ag. Since 0420, it follows that:

(m)MZi)oi >ty (MS) 2 (m)mzijoi (4B)

*See "Introduction to Matrix Analysis" by R. Bellman, pp. 38 and
95, McGraw-Hill Book Co., Inc., 1960.
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where (m)y is the maximum of the mj; elements and (m), is the
minimum. Moreover, it follows from Eg. (1B) that*:

_ 2
m, = zgaijuj (5B)
where
z:ai] = 1
3

The ajs+ are the elements of (TTU) and uy are the diagonal elements
of Ap.” Hence, it is readily seen that:

(u)M 2 m, . P (u)m

where (u)M is the maximum of the M4 elements and (u)m is the
minimum.

Using Egs. (4B) and (6B) and identifying M with (I - B) and
S with AP, it can easily be seen that Eqg. (24) of the text will
result.

*See "Introduction to Matrix Analysis" by R. Bellman, pp. 38 and
95, McGraw-Hill Book Co., Inc., 1960.
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APPENDIX C

It is to be assumed here that systems to be considered are
only those whose associated Kalman filters are completely con-
trollable and completely observable. If this is true, it becomes
apparent by considering the definition of observability* (at
least in the case where the matrices of the Canonical equations
are slowly varying) that the relations developed in the following
section can be wvalid.

First, a new measurement vector z*(k) must be defined so
that it has a dimensionality of n instead of the m dimensionality
of z(k) (where m<n).

Thus:

z (k)

?(k,k-1)z(k—-1)
z* (k) = (1C)

|d(k,k-s+1)z(k~s +1)]

_ The integer, s, is chosen in Eq. (1C) so that n/m<s<n/m+ 1l
z(k -s+ 1) is a vector using only the first p components of

z(k -s+1) where p = n - (s -1)m. It would follow that it is
possible to construct a new nxXm matrix Hﬁ which has an inverse
and is defined by:

z* (k) Hﬁx(k)-kv*(k) (2C)

where
v (k) ]

d(k,k -1)vi(k -1)
v* (k)

[ (k,k -s+ 1)V(k -5 + 1)]

*See "Optimal Estimation Identification and Control" by Robert
C.K. Lee, pp. 82-83, M.I.T. Press, Cambridge, Mass., 1964.
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In terms of the nxm, matrix Hx, the new matrix Hi would
have the explicit form:

po -

Hye

®(k, k= L)H__;
= (3C)

~*

?(k,k-—s +1)Hk—s+1h

where Hp_g+1 is the reduced pxn matrix formed by using the first
p rows of Hy_q4q-

By using z*(k-1i), Hf_; and Rﬁ_i instead of z(k-1i, Hy_j4
and Ry_j) in the estimator systems, 1t is seen that the tréatment
developed in the text can be extended to the general case. How-
ever, it is apparent that by using this scheme estimates cannot

be made at the end of every time ty_; (where i = 0,1,2,...), but
the intervals between estimates would be sAt apart (i.e., esti-
mates would occur at the times ty_; where i = 0,s,2s,3s,...).

Moreover, since some of the z(k-1i) data is thrown away [to form
z(k-s+1)] the accuracy of the estimate would be reduced.

2 6 NASA-Langley, 1969 —— 19 C—SS



