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ABSTRACT

The established covariant formalism of relativistic fluid dynamics is used

as a framework on which to construct a formalism for relativistic thermo-

dynamics. A variational principle is first given for adiabatic flow of a single

ideal fluid. For this case the problems of relativistic heat exchange are absent.

In the variational approach, the scalar fluid rest-temperature is completely

displaced by the thermasy, which enters the formalism as the Lagrange multi-

plier corresponding to the entropy-conservation constraint, but which turns out

to have the property that its substantial time derivative equals the temperature.

The case of reversible heat exchange between two ideal fluids merely re-

quires adding to the sum of the two separate single-fluid Lagrangian densities

a constraint term that guarantees conservation of the total entropy of the two

fluids, but not of each separately. The Lagrange multiplier for this constraint

turns out to be the time-rate of entropy transfer per unit volume between the

two fluids. This same constraint term requires the equality of the thermasies

for the two interacting fluids. Thus the temperatures of both fluids are deter-

mined by a single thermasy. This is the mathematical statement of the intuitive

idea that two fluids in reversible thermal contact should have the same tempera-

ture. In actual fact, however, the two scalar temperatures are not exactly equal

if the two fluids have different velocities. The reason for this apparent dis-

crepancy is explained by describing the heat exchange in terms of a relativistic

Carnot cycle operating between two heat reservoirs having different velocities.
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The fact that the two interacting fluids can be described by a single

thermasy is given an intuitive explanation in terms of a heat reservoir which

interacts with each of the fluids and mediates the heat exchange between them.

The fact that the velocity and rest-temperature are described in terms of the

gradient of a single scalar function, the thermasy, implies certain restrictions

on their spatial variability. It is shown that these are exactly the restrictions

that must be irziposed if the concept of the relativistic Carnot cycle is to be

extended so as to admit the possibility of spatial variation in the temperatures

and velocities of the heat reservoirs.

All this indicates that relativistic thermodynamics finds its most natural

description in terms of a 4-vector temperature, although it could also be

described in terms of a scalar temperature (plus a velocity 4-vector) , or a

P	 temperature	 (	 especially well-adaptedreciprocal tem rature 4-vector which would be es 	 to the

needs of relativistic statistical mechanics) . The orthodox Planck formalism,

s	 although in principle a permissible alternative (if one ignores the universally

accepted requirement of covariance) , is in practice completely unworkable in

any but the simplest of problems because of its non-covariance. In an appendix

the early history of the subject is surveyed in order to make the point that the

Planck formalism was developed before four-dimensional tensor analysis and

the modern concept of covariance had evolved.
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EFFECTS OF HEAT EXCHANGE

ON RELATIVISTIC FLUID FLOW

I. INTRODUCTION

'	 I-1. Summary of Various Approaches to Relativistic Thermodynamics

If the adiabatic constraint is removed from the description of relativistic

fluid flow, an intimate involvement with the question of relativistic heat trans-

fer between matter in different states of motion becomes unavoidable. Corre-

spondingly, the formalism of relativistic fluid dynamics provides a convenient

and straight-forward means of developing a formalism for relativistic thermo-

dynamics. A beginning in this direction will be made in this paper.

Because such a fluid-dynamical approach to thermodynamics involves

working with energy-momentum densities, rather than with the integrated

quantities that characterize the more common box-of-gas approach, it is

possible to avoid the delicate question as to exactly how such integrated quan-

tities should be defined. It is well known l that if the total energy-momentum is

defined to exclude the contribution resulting from the stress in the walls of the

box, then the resulting total energy and momentum do not constitute a 4-vector,

which results in a non-covariant formalism. Such non-covariance can be

avoided in one of two ways: Either the total energy-momentum may be defined

so as to include the effects of wall stress, or the total energy-momentum

vector may be defined3 to be the rest-frame energy of the gas alone (a scalar)

multiplied by the 4-vector velocity of the box in the observer's reference frame.
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The first of these alternatives has the disadvantage of involving a non-

homogeneous system, part of which (the box) is incompletely specified. It has

the advantage, however, that because all quantities are referred to the observer's

frame, the description of the mutual interactions between the various parts of a

complex system, such as two boxes having different velocities, presents no

problem because all quantities have already been referred to a common refer-

ence frame.4 The second alternative effectively takes the point of view that

thermodynamic relations only have meaning in the rest-frame of the system,5

so that the basic thermodynamic quantities are all scalars. Corresponding

4-vectors can be defined by multiplying these scalars by the 4-velocity of the

system as seen by the observer. From this point of view, the 4-vector tem-

perature, for example, would simply represent a convenient way to include two

separate pieces of information—the scalar temperature in the rest-frame of the

system and the 4-velocity of this system—in a single 4-vector package. As far

as it goes, this point of view is unassailable. It avoids, however, the difficulties

	

3
	 ±Iiat must ultimately be faced in the problem of describing the interaction be-

tween two systems having sharply defined and very different velocities. It would

still be possible to insist that everything be referred to the rest-frame of the

total system. Aside from the computational difficulty that would often arise in

implementing this approach, there is the conceptual difficulty that arises in the

	

ZEE

	 case of two very weakly interacting systems that have very different velocities,

such as two boxes of gas having large relative velocity that are in weak thermal
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interaction through photon exchange. From the point of view of an observer in

the interior of one of the boxes, who could hardly be aware that any interaction

with the other box was taking place, referring the temperature of his box to the

common rest-frame of the two boxes would appear to be a very strange and

arbitrary procedure.

This brief review suffices to indicate that the history of the box-of-gas

approach has been characterized by arbitrarily imposed definitions and

postulates. 6 Moreover, the problem being considered (uniform gas in a rigid

cylinder (one end of which is closed by a wall that may be chose: to be either

fixed or movable) bears no resemblance to the physical situations in which there

can be a reasonable expectation that relativistic thermodynamics will play a

significant role. Such situations will involve either relativistic fluid dynamics,

or relativistic statistical mechanics (as applied to either material or photon

gases, i.e., blackbody radiation).

Thus it would appear that the best approach to the problem of developing a

formalism for relativistic thermodynamics would be to admit the possibility of

thermal energy exchange into the formalism of either relativistic fluid dynamics

or relativistic statistical mechanics. The latter approach has received some

attention in recent years. ? The fluid-dynamical approach to relativistic thermo-

dynamics has been sorely neglected, with the notable exception of van Dantzig's

excellent work$ which, however, until very recently, was completely overlooked.
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The two fields, fluid dynamics and statistical mechanics, have different con-

ceptual bases, and so correspondingly the thermodynamical formalisms that

would grow out of each could be expected to have somewhat different forms. If,

however, each of the two formalisms were covariant, it would be an easy matter

to relate one to the other. In this way one would arrive at a deeper physical

insight than could be afforded by either approach separately.

The present paper considers only the fluid-dynamical approach and can be

regarded as only a beginning to the problem of developing a complete relativistic

formalism for thermod,-namics. It does, however, establish a more com-lete

conceptual and formal basis for the recently introduced idea of a relativ,

heat reservoir.9

A prime objective of this paper is to demonstrate the need for a th ,	- y

covariant thermodynamical formalism. The reasons why the earliest work in

relativistic thermodynamics produced a non-covariant formalism become very

obvious from a historical perspective. Moreover, the reasons why present work

should no longer be fettered by this early work become equally obvious. For

these reasons, a historical sketch of the development of relativistic thermo-

dynamics, with special emphasis on the early work, is given in an appendix.

I-2. Outline of Approach Followed in This Paper

This analysis is carried out completely within the framework of Special

Relativity, rather than General Relativity. Gravitational and electromagnetic

effects are excluded, not because these are unimportant for these phenomena

4	 f
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in which relativ `ic effects are important—quite the contrary—but rather

because they can be taken into account very easily 10 without in any way

altering the considerations that bear on thermodynamics.

The formalism is first developed for the case of adiabatic flow of an ideal

(i.e., inviscid and thermally non-conducting) compressible fluid. The question

of heat transfer does not enter into this problem, so it is possible to arrive at

a variational formulation jr-wely by mathematical manipulation, without the need

for any physical postulates. The adiabatic condition on the flow enters into the

variational formalism as a constraint that conserves the entropy flux of the

fluid. It is then an easy matter to modify this constraint in such a way as to

describe the case of two coexisting ideal fluids in reversible thermal contact

with one another. The form of the Euler equation for each of the two fluids that

results from the variational formalism makes it evident that a 4-vector descrip-

tion of temperature is best suited to the needs of relativistic fluid dynamics.

The physical aspects of the heat transfer between the two fluids, especially

the reversibility condition, are explained in terms of a relativistic Carnot

cycle between each of the twe fluids and a heat reservoir whose 4-vector tem-

perature is specified as the 4-gradient of a scalar function, the temperature

integral or thermasy, to use van Dantzig's expression, which (in a non-

relativistic context) was first introduced by Helmholtz.11

1
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I-3. Notation

Everything will be referred to a Cartesian coordinate system in flat space-

time using the diagonal metric characterized by the signature

( goo, gll , 922 . 933)

The 4-gradient operator a i is

(d o , a l , a21 a3) _ (a°, -a l , -a 2 , -a 3)	 - (c at 	 (1.2)

where 0 is the 3-gradient operator. The 4-velocity v i is

Vi = ( V o l v l , v 2 , v 3)	 = r-( C, v)	 (1.3a)

where

n_	 1
1 = 

111---,82 
and 8 = v/c	 (1.3b)

As indicated in (1.2), laboratory time is represented by t. The proper time for

any fluid particle is -r.

d
dr =	 a ; = r (a +v • 0)	 (1.4)

The invariant particle density of the fluid (i.e., the density in the fluid rest-

frame) is n. The particle rest-mass is m. The fluid pressure and local rest-

frame temperature (both invariants) are P and T respectively. The specific

enthalpy (i.e., enthalpy per unit mass) is h, and the specific energy and entropy

are u and s respectively. Thus mh may be considered to be the enthalpy per

6



particle, and nmh is the enthalpy per unit volume. Further notation will be

'	 introduced as needed.

II. ADIABATIC FLOW OF A SINGLE IDEAL GAS

II-1. Euler Equation

The well-known relativistic equation of motion (Euler equation) for adiabatic

flow of an ideal gas (no viscosity or thermal conduction) is

d µv i 	_ 1 i
d-r	 n d P	 (2.1)

where µ is an effective particle mass that includes the mass contribution (per

particle) mh/c 2 that results from the thermal energy of the fluid:

µ = m(1 + h/c 2^	 (2.2)

The formal justification for the use of h as the thermal potential of the fluid

(rather than the internal energy u as one might expect) is that the form of

s equation of motion given in (2.1) automatically guarantees fulfillment of the

adiabatic constraint placed on the fluid. This can be seen as follows: Con-

'	 tracting (2.1) with v i and using the fact that

	

dv i	l d (v ' vi )	 l dc2

	

V i dr	 2	 dT	 - 2 dr	 0	 (2.3)

i

we find

dh
`	 m dr - n dr	 2.4
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However, if we contract the thermodynamic identity

1
n d P = tnc3 h- mTc3 s	 (2.5)

with v we find

1 dP	 dh	 ds
n T - m dT - mT T-r-	 (2.6)

Taken together, (2.4),and (2.6) imply that

ds
dT = 0	 (2.7)

which is the adiabatic constraint.

An intuitive justification for the use of h, rather than u, as a measure of the

thermal energy per unit mass of the fluid results from imagining unit mass of

the fluid to be encased in a rigid, thermally insulated container. By means of

a suitable Carnot engine and an ideal heat reservoir at absolute zero we could

extract the energy u in the container, at the end of which process the gas inside

the container would have become a collection of motionless particles correspond-

ing to zero gas pressure. We could then arrange to allow the container to

collapse in such a way that the surrounding fluid would perform the work PV 1

where V, = 1/nm is the specific volume of the fluid, and hence the initial volume

of the container. (We have, of course, assumed the volume of the container to be

so small compared with that of the surrounding fluid that no significant decrease

in fluid pressure would be produced by collapsing the container). Thus the total
i
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energy to be associated with the region of space occupied by unit mass of the

fluid is

h = u + PV  = u + P/nm .	 (2.8)

It is evident that the energy PV, does not reside within the blob of fluid under

consideration, but rather within the surrounding fluid, which could be regarded

as a very thick-walled "container" for the blob under consideration (replacing

the imaginary container introduced at the beginning of the argument). Thus PVi

is the reactive stress energy, analogous to that of a coiled spring, that was

induced by the pressure of the gas within the "container." This is an example

of the statement made in the introduction, that the total energy-momentum of a

box of gas will be a 4-vector only if the stress contribution of the container is

included. In this case the 4-vector (h/c 2 ) v i represents the total thermal

energy-momentum 4-vector, including the container stress contribution, of unit

mass of fluid, and µv i is the corresponding vector (per particle) if the particle

rest energy mc 2 is taken into account.

The thermodynamic identity (2.5) can be used to eliminate the particle
A

density n from (2.1) yielding
3

•	
d(u°'j)

 ma	 _T	 =	 Jh — mTa^ s

= a ? µc 2) - mTa j s .	 (2.9)

9



Thus we see that the effective particle mass-energy serves a dual role: On the

left side of (2.9) it describes the inertial properties of the particle, whereas on

the right side it serves as a potential energy.

The second term on the right side of (2.9), which will be called the "entropy

force," can be given a simple intuitive explanation by combining a virtual dis-

placement argument with the Available Energy Theorem of thermodynamics

which states that, if the coldest reservoir available to a system has tempera-

Lure T, and if the system suffers an irreversible entropy increase Os, then an

amount of energy TAs becomes forever unavailable for conversion into mechanical

form. Since the Euler equation is sensitive only to changes in available energy,

if a virtual displacement carries a unit mass of gas into a new environment of

higher entropy so that, in taking on the thermodynamic properties of its new

environment (in the same way that the sample would assume the new value of

any potential energy acting on the fluid), the sample suffers a virtual entropy

increase Os, then because the only heat reservoir available to the sample is the

fluid itself, the virtual change in available energy (on a per-particle basis) is

as v a i lab l e - - mTds	 (2.10)

and the force acting in the direction of the displacement Ax is

[ (-aavailable)/^] - mT(As/ox)

Thus the total force is mTVs which is the space part of the entropy force in (2.9).

(Recall from (1.2) that the space pare of a j is -V, not +V.) Thus the intuitive

10



interpretation of (2.9) is that the total thermal energy of the fluid (per particle),

which is equal to mh, serves as a potential function for the fluid except that in

calculating force we must keep in mind that only available energy can produce

momentum changes, and so that part of the total force -m4h that corresponds to

gradients in unavailable energy must be subtracted from the total force.

II-2. Formal Integration of the Euler Equation

It is well known12 that a formal integration of Euler's equation for adiabatic

flow becomes possible if the fluid temperature T (a scalar because it refers to

the local rest-frame of the fluid) is eliminated in favor of a scalar function 13

defined by the relation

T 
= v' a ® = T	 (2.11)

or

T

®
 = J

Td-r	 (2.12)
TO

where the integration is carried out along a particle trajectory. Because of its

definition as given in (2.12), ® is often called the temperature integral.

Van Dantzig, however, called it the thermasy,14 and in recognition of his pioneering

(albeit totally neglected) work, this usage will be followed here.

11



Applying (2.11) to eliminate T from (2.9), and making use of (2.7) and (2.3),

we arrive at the following form of Euler's equation:

va'
 (UV k) -ak (µvi)1 - 

m ^/ai S)(ai ®) _ (a k S)(a; 
®)^	 = 0	 (2.13)l	 ^	 _

which in turn implies that

[aj(/,Vk) _ a k (µVj)]	 M[(a, 
S)(ak®) -(ak 

s)(aj®
), 

+ 2YWjk = 0	 (2.14)

where W i k is an antisymmetric tensor that is completely unspecified 15 except

for the requirement

Vi Wik = - Wki vi = 0 .	 (2.15)

For the case of constant h, s, and ®, (,)i k becomes

W ,k 	 Q'k 
= - 2 

(a' V k - akV,)	 (2.16)

where f) i k is the relativistic vorticity. Thus from (2.14) it is evident that W ' k

may be regarded as the contribution to the total fluid vorticity 0 i k that is not

produced by thermal effects. For this reason it is called the intrinsic vorticity,

and may be regarded as that part of the total vorticity that is a retained residue

of the initial boundary conditions of the fluid. 16

Because

(ai S) (ak©) - ( ak S ) (a ' © ) = a i (Sa k 0) - a k (sa i 0.) ,	 (2.17)

12



it is possible to write (2.14) in the form

2,Uo) k - - [a j (µv k - msa k 9) - .a k (µv^ -msa j 0)]	 (2.18)

which states that the tensor 2µw' k must be expressible as the curl of some

4-vector which, in fact, differs from (µv k -msa ° ®) at most by the 4-gradient

of a scalar function S. Thus there exists a 4-vector b i such that

2µw ' k = a' b k - a k b'	 (2.19)

where

-bj .= µv j - msa' ® + a' S	 (2.20)

The fact that 2µ.W' k , and hence b j , is actually a function of the initial boundary

conditions of the fluid finds its most natural expression in the fact that it can be

written in terms of two constants of the fluid motion, M and V

b I = Ma' 0	 (2.21)

where

dM	 dO
dT = dr = 0 (2.22)

Using (2.21) in (2.19) we have

2,uw,k - a,(Wk
p) - a k (W i 0)

(a' M) (ak
(D

)	 (ak M)(a' 
(D)

Because of (2.22), it is obvious that the requirement (2.15) is satisfied.

13
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It might at first seem surprising that the 4-vector b j can be expressed,

without loss of generality, in terms of only two scalar functions. Firstly, since

from (2.19), only the curl of b j is observable, theere is a gauge indeterminacy

(just as with the electromagnetic 4- vector potential) which means that b j has

only three significant degrees of freedom. secondly, we shall now show that

condition (2.15) removes one more degree of freedom, which brings us down to

two degrees of freedom, which means that writing b j in the form (2.21) does

not sacrifice any generality. The argument goes as follows: Condition (2.15)

implies that there exists a reference frame at each point in space-time (the

local fluid rest-frame in this case) in which the space-time components w° j of

W j k vanish. This fact means that

6 j k I n J k .1n = 0	 (2.24)

where E j k 1 n is the Levi-Civita object. This quantity is one of the two charac-

teristic invariants of the tensor (the other being W i k wj
 0, and if it vanishes in

one frame (which is obvious for the frame in which -w° j = 0) it vanishes in all

frames. This is a restrictive condition which sacrifices one degree of freedom.

(Incidentally, in the case the electromagnetic tensor, the invariant corresponding

to (2.24) is E • B. Since this invariant must vanish for any pure electric or pure

magnetic field, in the sense that there exists a frame at every point—not nec-

essarily the same frame for each point—for which either B or E vanishes, it

follows that the corresponding 4-vector potential can be expressed in the form

(2.21), but (2.22) will in general not hold.)

14



From (2.20) and (2.21) we find

µ v' _ - a' S + msa j a - Ma' (D	 (2.25a)

which is the desired formal integration of Euler's equation (2.9). For complete-

'	 ness (2.25a) must be augmented by (2.22) and (2.7)

dM	 C*
T = TT = 0	 (2.25b)

ds
= 0	 (2.25c)

and the continuity and normalization conditions:

a 1 tnv i ) = 0	 (2.254)

V  v j = c 2	 (2.25e)

Equation (2.25a) has peen derived as a preliminary to exhibiting a variational

formulation of compressible adiabatic flow. First two important points should

be made concerning the constants of motion s, M, and 0:

(1) Assuming that the three functions are independent, i.e., that the 3 x 3

matrix constructed from the elements of VM, Gb, is, where the 3-gradients are

calculated in the local rest-frame, has a non-vanishing determinant, then these

three scalars serve as unambiguous markers for each particle of the fluid, and

may be regarded as the co-moving material coordinates of the fluid. Because

we are dealing with identifiable classical particles (rather than indistinguishable

15



fermions or bosons) any trial variation carried out within the framework of a

variational approach must not allow s, M, and (D to vary on the surface of the

action integral, and must guarantee the preservation of particle identity along

every trajectory. 17 In other words, the variational formulation must auto-

matically guarantee the fulfillment of (2.25b) and (2.25c).

(2) Inasmuch as s, M, and iv may be regarded as properties that are

attached to the particles, fluid turbulence can be expected to produce a diffusion

of these properties with a resulting tendency for s, M, and 0 to become constant

throughout the fluid, to the extent that boundary conditions and other require-

ments allow this to happen. 18 If s becomes constant, the entropy term in

(2.25a) becomes the gradient of a scalar and can be absorbed into the term -a 'S.

This is also true of the intrinsic vorticity term -W jo if either M or 0 becomes

constant (or even if one simply becomes a function of the other). When such a

state of affairs is achieved, we have the case of potential flow: 19

µv i = - a i S .	 (Potential Flow)	 (2.26)

Finally, it should be remarked that (2.25a) may be read as the definition of

a generalized canonical momentum ^ 3 :

- a i S = µv J - msa i 0+ Ma 1 0	 (2.27)

An interesting variation on this definition is 	 i

	

AW + MEW s + ke 0	 (2.28a)

16



where

ti
S	 S - ms8	 (2.28b)

Because of (2.25b) and (2.25c), the 4-vector m8d J s + NW 4^ is space-like,

which means that the negative of its norm

62 =	 (m8d' s + W i 4^) (m8a 
i 

s+ W 
i - ? 0	 (2.29)

is positive-definite. Thus

^j^j + 
E 2 = (µC) 2 .	 (2.30)

Using (2.28a), we arrive at an equation having the form of a generalization of

the Hamilton-Jacobi equation20 in particle dynamics:

Sd i S) + E 2 = ()UC) 2 	 (2.31)

M. VARIATIONAL FORMULATION

III-1. Adiabatic Flow of a Single Ideal Fluid

Our objective is to find a variational principle that will yield the system of

equations (2.25a). Such a principle for the non-relativistic case has long been

known.21 Various forms for the corresponding relativistic principle have been

proposed in recent years by several different authors. The form presented

here is closest to that given by Tam.22

The desired Lagrangian density f' can be obtained very easily simply by

adding the necessary constraint contributions to the basic Lagrangian density

17



PI o that would apply to the case of a fluid of free, non-interacting particles, each

of mass µ, where

M (l + u/c 2)	 (3.1)

includes the energy-mass (per particle) resulting from the internal energy u.

Note that now it is u rather than h = u + PV, that plays the role of the thermal

potential. The reason for this is that, as we saw in section II-1, t energy PVi

does not reside within the blob of gas whose trajectory we are following, but

rather in the surrounding fluid. We shall see that in the variational formulation

this outside energy is taken into account by means of the constraint on the

normalization of v Thus, as a first approximation (i.e., neglect of constraints)

f
	 we treat the blob as a free particle whose mass is determined only by the energy

contained within the blob itself. The corresponding variational principle is just

S r .C o dV4 = 0	 (3.2)
v4

where dV4 is the volume element in 4-space and

E 	 = - nµc (vi v j )1/2 . 	 (3.3)

A

To see the similarity of (3.2) to the formalism for particle dynamics, imagine

the integral in (3.2) to be carried out over a length of flux tube that contains the

trajectories of N neighboring particles. We take the 4-volume element dV 4 to

be cd-rdV3 where dV3 is the 3-space volume element in the local fluid rest-frame.

I

18



Dropping the factor of c in this volume element, (3.2) can be written as

	

ttT
	 t

G	 a	 LdT =	

f 
Ldt

11

	

o	 o

where, since dT =	 dt,

	

L = (1 - ,32)1/2 L	 = (1 -,8 2)1 / 2 f	 ^0 d0
V3

= _ N{ C2 ( 1 - ,82) 1%2

ti 2 (NU) v2 _ NµC2

(3.4)

(3.5)

Thus, as we would expect, in the non-relativistic limit L has the form of kinetic

energy minus potential energy if we regard NEC 2 as the potential energy of the

mass moving through the flux tube.

To extend the variational principle from what is essentially pa y ucle

dynamics to fluid dynamics, it is necessary to impose constraints that

guarantee maintenance of the normalization of v i , conservation of particles

and entropy, and constancy of M and (D along the trajectories:

0	 s 
J 

P[1 (vi v i) 1I Yc] dV4 ;	 (3.6a)
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0 = 8 
J Sa, (nv i) dV4 = 8 J a (Snv j ) dV4 - 8 r (nv' a j S)dV4

J

	

= - b f (nv' a i S)W. ;	 (3.6b)

0 = 8 
J 

[-W j (nv i ms)] dV4 = - 8 f a , (9nv j ms) dV4 + 8 finmsv i  a i 8) dV4

= 8 r 	 a i 8) dV4 ;	 (3.6c)

0 = 8 f 4a, (nMvj) dV4 = 8 f a, (OnWI dV4 - 8 f (nMv' a i ")dV4
8 f (nMv' a )dV4 	 (3.6d)

F 	 J

In (3.6b)-(3.6d) use has been made bf the well-known fact that the variation

of the integral of the divergence of a vector vanishes when the vector is bald

constant on the surface of integration (which the va-riational formalism requires).

The arbitrary scalar functions P, S, and (-®) are Lagrange multipliers. They

will subsequently be shown to be just the functions indicated by their symbols.

In (3.6d) it is evident that we may regard (D as the Lagrange multiplier corre-

sponding to the condition a , ( nMv	 0 (which is identical to dM/d-r = 0 if the

condition a i ( nv	 0 is maintained), or M m v be regarded as the multiplier

I

20



where

corresponding to the condition nv' a i 0 = 0. Thus the single constraint (3.6d)

suffices to guarantee the fulfillment of both dM/d-r = 0 and dcb/d r = 0.

The normalization condition (3.6a) is not necessary in the particle case,

because then the variables are the particle coordinates x' and (v i v i ) 1/ 2 in

(3.3) actually represents 
R 

dx' /d-r)(dx ; /d-r),1 / 2. Using x i as the variables in the

formalism automatically takes care of the normalization v i v i = C2. If, how-

ever, we take the Euler point of view in the fluid case, and so regard the com-

ponents of v i as the basic variables, then the fact that we have four variables

with only three degrees of freedom requires the imposition of the constraint

(3.6a).

In the usual way, we may add the constraint conditions (3.6) to the basic

F
	 variation (3.2) to arrive at the desired variational principle for the fluid:

S ` ZdV4 = 0

- nµ+ j vi) 1/2 + P 1 -(vj v i ) 1/2/c, - nv i a, S

(3.7a)

+ nmsv i a i ® - nMv .a (1)
	 (3.7b)

To simplify the analysis, we regard the surface of integration in (3.7a) as

fixed, i.e., the walls that bound the fluid are rigid. We could dispense with walls

entirely if we were to take the point of view that we are dealing with a gas that

g
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is contained by means of gravitational or electromagnetic forces- which have not

been included in P, simply because they do not influence the description of

thermodynamic effects, which is our primary conhern, and could in any case be

included without difficulty.

The Euler-Lagrange equation that results from variation of n, for example,

is

a^	 a^
(3.8)

n)]

which yields

8n: E.+ j v,) + nC2 \an! - v j a S + msv^ a ® - Mv i a 4D = 0	 (3.9)
s

We note that the internal energy u which enters into µ via (3.1) is to be regarded

as a known function

u = u(n, s)	 (3.10)

of the thermodynamic variables n and s. It is in this way that the equation of

state of the fluid enters into the formalism.

The Euler-Lagrange equations for all the scalar variables have the same

form as (3.8). Varying P, S, ®, M, (b, and s in turn, we find

	

SP: vj vj = c 2 	(3.11a)

	

8S: a i (nv i ) = 0	 (3.11b)
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fR

8®: dT = 0	 (3. 11c)

8M: d- = 0	 (3. 11d)

8O: ^ = 0	 (3.11e")

8s:_ Ia	
C2 

= \asln	
T	 (3.12)

where in (3.12) we have used (3.1) and the thermodynamic definition of tempera-

ture T = ( a u/as),,.

The equations (3.11) are just the constraints that we built into the formalism,

but (3.12) is a surprise. It says that ®, which entered the formalism in (3.6c)

as the Lagrange multiplier associated with conservation of entropy (i.e., the

adiabatic condition), is in fact just the thermasy that was defined in (2.11).

The Euler-Lagrange equation that results from variation of the components

of v i is

ak 
	 v^av 0 	 (3.13)
 k

which is simple to apply in this case because i; does not depend on derivatives

of v j . Thus variation of v' yields

av i : - a ; S = (µ +p/nc 2)v i - msa i 8 + Nk7 i 0	 (3.14)

where the equations (3.11) have been taken into account. Contracting (3.14)
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with v i and using (3.11) and (3.12), we find

dS
- vi a 

i 
S = - dT = µZ: 2 + P/n - msT	 (3.15)

Using (3.11), (3.12) and (3.15) in (3.9), we have

P	 mn2 (an) - - -^--	 = Pressure	 (3.16)
S

	 ( i^s

since

Vi = nm = specific volume 	 (3.17)

and - (au/aVi) s is the thermodynamic definition of pressure. Thus the La-

grange multiplier introduced in (3.6a) in connection with the normalization

constraint is just the pressure. Using this fact, (3.14) may now be written

- a ; S = /iv
i
 - msa j 6 + Ma i o	 (3.18)

since

µ + P/nc 2 = m + m(u +P/run)/c2 :-- m(1 + h/C 2 ) = U	 (3.19)

Thus the variational principle (3.7) yields the system of equations (2.25),

from which the Euler equation (2.1) follows.

III-2. Reversible Heat Transfer Between Two Ideal Fluids

If the individual Lagrangian densities for the two fluids are designated by Z

and L', each having the form given in (3.7b), it is easy to demonstrate that the

appropriate Lagrangian density for the total system including reversible heat

24



transfer is

f c o t e i -	 + 'C' + 0-(0 -0 1 	(3.20)

Only the puler-Lagrange equations that result from variation of 0, 0', and

will differ from the corresponding equations for isolated fluids. These three

variations yield

60: a,(nmsv j ) _	 (3.21a)
}

or

ds 
_ o	 = ^V 1 	(3.21b)

where V i is the specific volume;

W: a, (n' m' s' v	 _ - o	 (3.22a)
k

or

IF	 d = - o-/n' m' _ - o-V 1 '	 (3.22b)

and

SQ: 0 = ®'	 (3.23)

Adding (3.21a) and (3.22a) we have

a,(nmsv j + n' m' s' v j ') = 0	 (3.24)
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which states that the total entropy flux of the total system is conserved. It is

this fact that justifies the choice of Z  o t e 1 given in (3.20).

From (3.21b) and (3.22b) we see that a, (assuming it is positive) is the time

rate at which entropy is added, per unit volume, to the unprimed fluid and re-

moved from the primed fluid. From (3.20) it is evident that u is the Lagrange

multiplier corresponding to the constraint (3.23). In the same way that 8 was

introduced as the Lagrange multiplier associated with conservation of entropy,

but was subsequently found to play the role of a temperature potential, so also

has Q been introduced in connection with the constraint (3.23) that the two

thermasies he equal, and then subsequently found to describe the entropy ex-

change between the two fluids.

Because the relation (3.12) connecting thermasy end rest-temperature

resulted from the variation of s, which is unaffected by the addition of the term

c-(8 -8') in (3.20), this relation is unaltered:

dO
= v j a j 8 = T= \ a s,	 (3.25a)

n

CIO I

= v j ' a 8' = T' = \
a 

I , •	 (3.25b)
n

From (3.23), (3.25), and the fact that in general v	 v' ', it follows that in	 -

general

T 7 T'
	

(3.26)
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The fact that reversible heat transfer, as evidenced by the entropy conservation

condition (3.24), can occur between tH o fluids having unequal proper tempera-

tures, is one of the most strlldng apparent paradoxes of relativistic thermo-

dynamics. It has, in fact, a very simple and reasonable explanation that is most

easily visualized by imagining that the local heat transfer between We two fluids

is carried out by means of a relativistic Carnoz cycle. This will be discussed

in Section V.

It is an easy matter to verify that the Eulei .rations for each of the two

fluids that result from the variational formalism have the following for...s:

d µvi

d	 ' j ')
n 

o	 d^r'^	 - a' P' - aa' ®	 (3.27b)

where P and P' are the partial pressures of each of the two fluids. Contraction

of these equations with v i and v ^' respectively yields (using (3.21b) and (3.22b))

ds	 dh	 dP

	

T -r = Ur-- V, -3	 (3.28)

and exactly the same equation for the printed quantities. This is just a statement

of the combined First and Second Laws of Thermodynamics in the case of re-

versible heat transfer.

Note that so far the only thermodynamics that has entered into the formalism

has been relations that refer to the fluid rest frame. No assumption whatever
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has been made about the transformation properties of the various thermo-

dynamic quantities. Even without any such assumptions we find the role of

temperature most naturally taken over by a 4-vector d i e. This fact would

appear to make a 4-vector description of temperature in fluid dynamics in-

evitable. An alternative would be to drop temperature as a fundamental

quantity, and let this role be taken over by the scalar 8. After all, from (3.23)

and (3.26) we note that what had been perhaps the most fundamental property of

non-relativistic thermodynamics—its equality for two systems in reversible

thermal contact—has been taken over by the thermasy in the relativistic case.

IV. RELATIVISTIC DESCRIPTION OF HEAT TRANSFER

IV-1. Transformation Properties of Heat and Temperature

In recent years there has occurred a rather lively controversy over the

question of the correct transformation laws for heat and temperature, the lead-

ing contenders being the non-covariant formalism set forth by Planck in 1907

and the covariant formalism, first advocated by Ott in 1963 and independently by

Arzelies in 1965, that is characterized by 4-- ►ector representations of heat and

temperature. Fundamentally the question is one of definition rather than sub-

stance, a point that was made by von Laue23 in his 1911 textbook on relativity

(but subsequently ignored), and re-emphasized by Ott. Ironically, in all proba-

bility this dispute never would have occurred if the 1939 work of van Dantzig

had not been so completely ignored. Without in any way attacking the Planck
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formalism, he demonstrated the. existence of a covariant alternative. He ap-

pears to have taken the position that Planck's non-covariant temperature,

although not a convenient quantity on which to build a theory, nevertheless

corresponded to the operational temperature that one would actually observe.

He attempted to elucidate the rather exotic-seeming Planck transformation law

for temperature, which has temperature transforming like volume, by identify-

ing physical temperature with the reading (a volume) of a moving constant-

pressure gas thermometer. 24 The fact that we now know that such volume

contractions are not actually observable by optical means25 illustrates the

hazards of letting what might appear to be hard-headed operational considera-

tions out-weigh profound theoretical necessities in determining the structure of

a theory (a mistake that van Dantzig did not make!).

A brief historical sketch of the development of relativistic thermodynamics,

given in an appendix, affords a very natural explanation why the first attempts,

which were carried out before 4-space tensor analysis and the modern statement

of the Relativity Principle in terms of covariance requirements had been devel-

oped, should have fallen into what we now recognize as a non-covariant mold.

The physical differences between the Planck and the Ott formalisms were

clearly set forth by Ott, and are illustrated in Figure 1 for the simple case of

heat absorption by a homogeneous body, such as a block of metal, that is rigid

enough so that the work of expansion against the surrounding atmosphere is

negligible. In the common rest-frame of the reservoir and the absorbing body,

g	
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the description is the same in both formalisms: The body increases its total
a

rest-energy E by the amount

O	 O
(both)	 ©E = AQ	 (4.1)

O
which corresponds to an increase in the body rest-mass M of amount

(both)	 AM = ZE!c 2 = ©Q, c 2	 (4.2)

In both formalisms the energy of the body is regarded as the time-like com-

ponent of a 4-vector with the result that, in the laboratory frame in which the

body has velocity v, the change in energy is

O	 O
(both)	 DE = FAE = I'dQ	 (4.3)

The difference between the two approaches centers on whether or not heat

is considered to carry momentum. In the Ott approach, the heat coming from a

moving reservoir carries momentum with it of amount (I'AQIc 2 ) v. Thus, if the

reservoir and body have the same velocity, the heat will have just the right

momentum so that when it is absorbed by the body, there will be no tendency

for the body to speed up or slow down, hence no need for an applied force to

maintain the constancy of velocity in the face of the increase of momentum

caused by the increase of mass of the body. In such a case, the laboratory

o' •ver would write the First Law in the form

(Ott)	 OQ = AE	 (4.4)

since the work (-AW) done on the body is zero. From (4.3) and (4.4) it follows
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that

0
(Ott)
	

(4.5)

In the Planck picture, heat is a pure energy, and it makes no sense to talk

about the velocity of pure heat (although one may talk about the velocity of hot

bodies). Thus, in the laboratory frame, as well as in the common rest-frame of

the body and reservoir, the reservoir and the transferred heat have no momen-

tum, and so must be regarded as effectively still at rest. We are then con-

fronted with an apparent paradox: On the one hand the velocity of the body must

remain constant when it absorbs heat, because it is constant in its own rest-

frame, and both frames are inertial frames related by a constant velocity dif-

ference. On the other hand, the laboratory observer sees the absorbed heat as

increasing the body mass, but not its momentum, which would seem to imply a

slow-down. The paradox is resolved by invoking an ad-hoc force fQ , the so-

called "translation force" (FWwungskraft), that is defined as

(Planck)
	 fQ 	 v 

ddM .	 (4.6)

Because the relation M = E/c 2 is regarded as having universal validity in the

Planck as well as the Ott approach, we have from (4.3) and (4.6)

0

(Planck)	 f  = v \dt C2 = (VI,/C
2 ) d '	 (4.7)

The force fQ , once having been introduced, must be regarded as capable of

producing work. Thus the work (-OW) performed on the body in the interval At

32



is

(Planck)	 - AW = v	 fQ At = '8 2 I'©Q ,	 (4.8)

and the First Law in the Planck formalism is

(Planck)	 OQ = AE + AW

FAQ - Q2 FAQ = r(l - '8 2 ) 64

o
nQlr	 (4.9)

which may be written

(Planck)	 QQ = ^ 1 - v2/c 2 ) F ' 2©Q	 (4.10)

This implies that the heat energy of a body decreases with increasing velocity

and vanishes entirely as we approach the speed of light. This is perhaps not

the total offense to intuition it might at first seem if one takes the position that

heat is a measure of the randomness in molecular velocities. The Einstein

Addition Law for velocities has the effect of suppressing such randomness at

high speeds, and this, one might suggest, is the physical meaning of (4.10).

Ott showed26 that in formal terms the difference between the two approaches

is that in the Ott formalism heat transfer is described by a 4-force which, being

a 4-vector, must have space-like components. In fluid dynamics this is just the

4-vector as ® that appears in (3.27). This heat-transfer 4-vector is

}
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completely distinct from any other 4-force acting on the body (e.g., the pressure

force a' P in (3.27)).

In the Planck formalism, on the other hand, heat transfer is not described

by an independent 4-vector. Rather, it is described by a contribution to the

time-like component—and only this component—of the total 4-force acting on the

body. Moreover, this is the case in every frame of reference. (Ordinarily, a

contribution to the time-like component in one frame of reference will give rise

to contributions to the space-like components in other frames.) Thus Q in the

Planck formalism is neither scalar nor vecto :•. It falls completely outside the

framework of tensor algebra. But tensors (in the general sense, including

scalars and vectors and spinors) are the irreducible representations of the

Lorentz group, and as such are intimately related to the most fundamental

symmetries, and associated conservation laws, that are encountered in physics.

Thus plane waves and spherical harmonics induce irreducible representations

of the group of translations and rotations respectively and for this reason are

characteristic of states of definite linear or angular momentum. This is the

explanation behind the calculational convenience that makes them of such

universal importance in physics. One could, of course, solve problems without

ever using sinusoids or spherical harmonics, working instead with some set of

intricately defined linear combinations of the members of one of these sets.

In the same way, it would be quite possible to solve difficult problems in

relativistic thermodynamics using a non-covariant formalism. Such an
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(non-covariant) Ro 1
KT (4.13)

3	 undertaking should, however, be considered a private penance, not to be

inflicted on others.

Once the transformation properties of heat are decided, those of tempera-

ture are automatically determined by the fact that entropy27 S is a scalar,

which follows either from its probabilistic significance or from the fact that

it is possible to change the velocity of a system by a reversible, adiabatic

acceleration that produces no change in the entropy. (This was Planck's

argument.)28 Thus in the Ott formalism

(Ott)
	

4Qj = T' 0 S	 (4.11)

and so temperature is necessarily a 4-vector.

Although in relativistic fluid dynamics it is most convenient to work with Ti,

in statistical mechanics a formalism built on the reciprocal-temperature

4-vector R' is more convenient. 0 and T' are related as follows:

K ^3' = T '/(T° Tn /
	

(4.12)

where K is the Boltzmann constant. This, in fact, was the vector on which van

Dantzig based both his statistical mechanics and his fluid dynamics. (He called

it the "temperature vector" which he designated as ® j .) Note that if one defines

T in the laboratory frame as
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and T in the frame for which a 1 = R2 = /33 = 0 as

^° - 0	 (4.14)

then from the fact that

'80 
_ 00	 (4.15)

it follows that

(Planck)	 T = T/r 	 (4.16)

which is the Planck transformation law for temperature. This is what Mosengeil

(1907) implicitly did when, by a direct application of electromagnetic theory, he

worked out the form of the Planck Radiation Law for a moving radiation cavity.

The definition (4.13) is non-covariant because it defines T in terms of only

8 0 (and none of the space-like components) in every frame of reference. Any

definition that treats the time-like component of a 4-vector on a different basis

from the space-like ones is non-covariant. Van Dantzig defined temperature by

means of (4.13), but had the good sense not to make any further use of it, letting

the 4-vector 8' completely displace T. His use of 8' in place of T j did, how-

ever, make the fluid-dynamical part of his work more intricate than would have

been the case if he had used T i .

Even if one wishes to treat the 4-vector Rj as the fundamental quantity,

the non-covariant definition of temperature given in (4.13) is by no means

necessary. One could either invert (4.12) to arrive at a 4-vector definition of
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temperature

Tj _ 8jlK(,8^ R,,) ,	 (4.13)

or one could define a scalar temperature as

T = 11K (83 ,C3. =^^
	

(4.14)

This latter definition is the one used in Israel's (1963) paper, 29 which inci-

dentally provides an excellent demonstration of the need for a completely co-

variant formalism if one is to carry through meaningful calculations in

relativistic statistical mechanics.

IV-2. Relativistic Carnot Cycle

The relativistic Carnot cycle can be described in either the Planck or the

Ott formalisms. The analysis in terms of the Planck formalism was given

already by von Laue in his 1911 relativity textbook. 30 As might be expected,

the need to take the translation force into account not only complicates the

analysis, but also obscures the basic physical simplicity of the process. The

Ott formalism, on the other hand, presents the relativistic cycle as the direct

and obvious extension of the non-relativistic one. The details of this analysis

•	 have been given elsewhere,31 and only the results will be summarized here.

The relativistic Carnot cycle is illustrated in Figure 2. It consists of the

.	 same basic four parts as the non-relativistic cycle: isothermal, reversible

heat exchanges with bot and cold reservoirs separated by adiabatic transitions
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during which the engine delivers or receives mechanical work energy. The dif-

ference is that now momentum must be treated on an equal footing with energy.

Thus, during the adiabatic transitions, the engine exchanges not only work

energy, but also momentum. These transitions may be regarded as consisting

of two stages: First the engine (which may be thought of as a gas-containing

cylinder with a movable piston) either delivers or receives momentum. This

involves an adiabatic acceleration which in general not only changes the mo-

mentum of the gas, but also its temperature. At the end of this process the

engine has the velocity of the reservoir with which it will next interact, but in

general its temperature v- Il not match that of the reservoir. This temperature

match is then accomplished by means of an appropriate adiabatic compression

or expansion.

During the interactions v ,-Wh either reservoir, the Carnot engine must ..ot

have any relative velocity with respect to the reservoir. This is a matter of

definition of what constitutes a reversible heat exchange. There is, however,

physical necessity behind this definition. If, for example, we imagine a lake to

be the reservoir, then if the Carnot engine, which must have finite dimensions,

has a relative velocity with respect to the lake water, turbulence, and hence

entropy, will be generated. It is to avoid such entropy generation that the two

velocities, as well as the two temperatures must be equal. In the Ott formalism

these two requirements are combined in the single statement that the two tem-

perature 4-vectors must be equal. By definition, a temperature 4-vector of a
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body is

T j = Tv j c	 (4.14)

where T is the scalar rest-temperature of the body and v i is its 4-velocity.

If v and TO = P T are the 3-velocity and temperature respectively as seen in

the laboratory frame, then (4.14) may be written

T j = TO ( 1, v/c) .	 (4.15)

Note that besides the physical need to have the 4-vector temperatures of engine

and reservoir equal during heat exchange, the requirement of covariance makes

the same demand. if the two laboratory temperatures were equal, but not the

velocities, then in a different frame even the two temperatures would not be

equal.

The analysis shows,31 that if W j is the energy-momentum delivered to the

energy-momentum reservoir, then (referring to Figure 2 for the natation)

AW j _ (DE, CM) = (TH - Tc') 4S	 (4.16)

whe°e AS is the entropy transfer that characterizes the cycle, 4E is the delivered

work energy, and OP the delivered 3-momentum. From (4.15) and (4.16), it follows

that



LAP	 (TH AS/ CZ ) v H 	 (TC AS/C 2 ) VC
	 (4.17b)

IV-3. Reversibility Condition

So long as no restrictions are placed on the energy LSE that is delivered to

the energy-momentum reservoir, the Carnot cycle is completely reversible.

Such a restriction does result, however, if we take the point of view that no

such separate energy-momentum reservoir exists, but that a real fluid combines

the functions of energy-momentum reservoir and either h A or cold heat reser-

voir. (For definiteness we shall identify the fluid with the cold reservoir, but

this is not necessary.) Henceforth the C subscript will be dropped, the corre-

sponding quantities be.ng identified with the fluid, and the H subscript will be

replaced by R (for "reservoir") to indicate that these quantities may correspond

to either a hot or a cold reservoir, the important thing bei zg that the reservoir

designated by subscript R only supplies (or absorbs) heat, but is not called upon

to absorb the ordered energy AE and momentum AP.

The delivery of the momentum dP to the fluid, as observed in the laboratory

frame, entails simultaneous delivery of an amount of work energy given by

v • dP --
tdr)	 (
 1dt/ dP = dr • d—dt ! (4.13)

where dP/dt is the force exerted on the fluid and dr is the displacement of the

fluid during the time interval dt during which the momentum transfer takes

place.
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If this momentum transfer is viewed in the rest-frame of the fluid, however,

no corresponding energy transfer takes place. The reason for this is that before

the transfer v = 0 in this frame, and even after the impulse 6P is delivered,

the kinetic energy acquired by the fluid is of order (QP) 2 and so vanishes in

first order. Thus in the fluid rest-frame the total delivered mechanical energy

is

DE _ (OW j ) v j
 /c	 (4.19)

The fluid, lacking a mechanism for absorbing this energy in ordered form with-

out creating net momentum, has no alternative but to degrade it into heat, which

constitutes an irreversible process. Thus the reversibility condition is simply

(Reversibility Condition: 0 = a = AW j v j /c

LS (T R j - T j ) v 
7
. /c	 (4.20)

where use has been made of (4.16). From (4.14) we see that

T j v j/c = T .	 (4.21)

Thus the reversibility condition may be writtei_ in either of two ways:

(Reversibility Condition)	 (TR - T j ) v j = 0	 (4.22a)

or

(Reversibility Condition)	 T = TR v,/,C .	 (4.22b)

42



The first of these statements in words is: Reversibility of the local heat trans-

fer occurring between two fluids 1.,._uires the vanishing of the projection of the

difference of the two temperature 4-vectors of the fluids upon the velocity

4-vector of the fluid that absorbs the ordered energy-momentum that would be

delivered by the equivalent Carnot cycle for the heat transfer.

The total energy-momentum per cycle absorbed by the fluid is equal to that

given up by the reservoir:

dQR = TR AS = T' ©S + OWJ

[(T° AS + a), c(T O AS/c 2 ) v +CAP,	 (4.23)

where use has been made of (4.15) and (4.16). If (4.23) is divided by cA-r, where

AT is the duration of the cycle as measured in the rest-frame of the fluid, we

arrive at the 4-force

Tx' dSr d5 dWil
F ' - c dT - T' dr + dr /c	 (4.24)

of the heat transfer on the fluid. We can put this into a form more applicable to

fluid dynamics if we im agine that a separate Carnot cycle is carried out in each

unit volume (as measured in the fluid rest-frame). dS/d-r would then be the

entropy increase per unit rest-volume of the fluid:

dS	 ds
d-r = nm d-r -	 (4.25)

^a
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where we have made use of (3.21b). Let f i be the 4-force of heat transfer per

unit rest-volume32 (i.e., a force density), and dw i /d-r be the 4-force per unit

rest-volume caused by delivery of the ordered energy-momentum to the fluid.

Then (4.24) becomes

Q
f i _ — TiC R

which may also be read as a definiti(

dwI
dT = a T R i - Tj

Using (4.22a) we see that

dwJ
C T ' + cdr	 (4.26)

)n of the 4-force dw i /dT

= d7 (TR - T'Vnm	 (4.27)

dwi
V  dT - u	 (4.28)

Thus the force density dw'/dT produces no change in the fluid rest-mass per

unit volume, which is just another statement of the reversibility condition.

Equation (4.22a) tells us that the time-like components of TR and V, as

viewed in the fluid rest-frame, must be equal, but not necessarily the space-

like components. Equation (4.27) gives a physical explanation of this difference

in space-like components in terms of the delivered energy-momentum of a

Cannot cycle. Further discussion of the intuitive significance of dw i/dT has

been given elsewhere:33

t

44



V. THERMASY AND THE FLUID HEAT RESERVOIR CONCEPT

V-1. Thermasy as Temperature Potential

In (4.26) the heat-exchange 4-force density f i was found to be cTR'/c . In

(3.27a) it was found to be ad' ®. From this we make the important identification

	

TR = W e 	(5.1)

which shows the thermasy to be the potential function for the reservoir tempera-

ture 4-vector. The physical significance of the thermasy gradient becomes

clearer if we use (4.15) to write (5.1) in the form

a' ® = TR/c = ITWc, (T

	

/"' 	 V R ,	 (5.2)

If we interpret TR as the average thermal energy per particle of the reservoir

as seen in the laboratory frame, then (TR/c 2 ) is the corresponding mass and

so (TR/c 2 )vR would be the thermal momentum per particle of the reservoir.

Thus a i A has the standard form, [E/c , P] , of a momentum 4-vector.

The Euler equations for two reversibly interacting ideal fluids were given

in (3.27), and can now be. written in the form

n d µT	
= d ip + f	 (5.3a)

n' d( d7vj ,^ = a P' - `'	 (5.3b)
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where

f '	 0-a' ®	 07C	 (nm) dT TR'	 (2cm—)^R-s  T (1, vR/c)

= C(nmr') dt TR I ( 1/c, v R/c 2 ^	 (5.4)

Because of (3.22b), the expression for - f' that appears in (5.3b) would have

exactly the same form as (5.4) with primes appended to all fluid quantities.

The interpretation to be given to (5.4) is similar to that for (5.2) except that

now the mass in question is that associated with heat injected per unit time per

unit volume.

It is interesting to note that the heat reservoir concept can be used to give

intuitive meaning to the entropy term in the expression for canonical particle

momentum that was defined in (2.27). First we note that from (5.1) and (4.14)

a ® may be written in the following form:

a' Q = TR c = TR v i C2	 (5.5)

Using thi.3 in (2.27) we may write the canonical particle momentum	 as

follows:

a i S = MV  + Ma' (D + r(mh/c 2 ) v^- ^msTR/c 2 ) vR^	 (5.6)

It is the expression in brackets that is of interest. Since (mh /c 2 ) is the mass

(per particle) of the total thermal energy h, the term (rr^h,/ c 2) Vi is just the

corresponding energy-momentum 4-vector. But not all of this
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energy-momentum is available for conversion into mechanical form.

(msTR/c 2 ) VR represents the energy-momentum that, on the basis of the

Unavailable Energy Theorem, has become unavailable for conversion into

mechanical form, and so should be regarded as residing in the reservoir rather

than in the fluid. In other words, (h/c 2 ) V i is the total thermal energy-

momentum that resides in the region of space occupied by unit mass of the fluid.

But the reservoir also occupies this same region of space, and a part of this

total energy-momentum, namely (sT R/c 2 ) VR , should be assigned to the reser-

voir rather than to the fluid. It is only the difference, that energy-momentum

which may properly be associated with the fluid rather than with the reservoir,

that appears in the definition (5.6) of the canonical momentum.

V-2. Equation of Motion of Heat Reservoir

The physical interpretation of equation (5.3) is that the two fluids are best

regarded as interacting, not directly with each other, but rather through the

mediation of a heat reservoir described by a i ® = TR/ c , which may be regarded

as a third "fluid" having a 4-velocity vR different from that c: the other two

fluids. In fact, it is an easy matter to find the velocity and the "equation of

motion" of this third "fluid." First we note that, from (4.14) and (5.2), the

4-velocity vR of the reservoir is given by

VR7 = cTR,TR = cTRi
/( TRi TRj) 1/2

_ Ca	 [(a, ®) ^ 9 i ®)] 1/2	
(5.7)

47



Because, from (5.2), TRj is the 4-gradient of a scalar, its 4-curl vanishes:

	

a j TRk - a k TR = 0	 (5.8)

Contracting this with v  
j , 

and using the fact that

V R . ak TR 	 VRj a  ( TR VR/C)

CakTR+ 2 ( TR/
C ) ak (V R j VR)

C a k T 	 (5,9)

and the definition

d
vR; a i	 (5.10)

R

we arrive at the desired equation of - r .-' )n of the fluid:

d(TRk/C)

d-7 	 k TR	(5.11)
R

This is the analog of the Euler equation in the form (2.9) for the case of isen-

tropic flow. It is as close as we could expect the equation of motion of a heat

reservoir to come to the equation of motion of a material fluid because, whereas

the 'latter must involve properties, other Chan ten nerature, that are specific to

that particular fluid (e.g., particle mass anti enthalpy, which is a function of the

equation of state), a heat reservoir—by definition—must be characterized by

nothing except its temperature 4-vector. Even a photon gas (i.e., blackbody
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radiation), which might at first glance seem V) depend on nothing but the tem-

perature 4-vector (or its reciprocal), actually depends very critically on its

statistics (bosons). Thus, despite the great temptation, it would not be strictly

valid to identify the heat reservoir with a photon gas that coexists with and

exchanges heat energy with the two material fluids that we have been

considering.

The important thing about (5.11), aside from its appealing resemblance to

the Euler equation for isentropic flow, is that it demonstrates that the behavior

of the reservoir depends only on its own properties. There are no terms in this

equation that involve the rroperties or the behavior of the fluids with which it

interacts. There is, of course, the reversibility condition on the temperature,

but this could be interpreted as a condition on the fluids rather than on the

reservoir. Thus the reservoir motion Influences the fluid motion (witness

the appearance of f' = (,a' 0 in (5.3)), but not vice versa.

V-3. Physical Restrictions on an Ideal Heat Reservoir

Classically, a heat reservoir is regarded as completely uniform in its

properties throughout its entire extent. In fluid dynamics (even non-

relativistic Iuid dynamics), however, we are forced to face the fact that this is

an unrealistic idealisation. We must now confront the Following problem:

Granting the need to relax the definition of a heat reservoir so as to admit the

possibility of its having different temperatures and velocities at different points

in space-time, what restrictions must be placer,. ca such variation in its

properties so that the heat reservoir concept will still be preserved?
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We shall answer this question by taking the position that the concept of heat

reservoir is defined in terms of the Carnot cycle, and has meaning only if such

a cycle (granting the usual idealisations) is a possibility, at least in the sense of

some limit. In particular, we shall concentrate on the fact that any real Carnot

engine must have finite dimensions. We admit the limiting process of using

ever smaller engines, but to be realistic about such a process, we must con-

cede that the capacity of the engine will decrease in proportion to its size, so

that in order to effect a given entropy transfer between two given reservoirs, the

number N of necessary cycles will increase in inverse proportion to the size

of the engine. Thus if, with given reservoirs, an engine of given size unavoidably

produces irreversible entropy generation, if this entropy generation decreases

only in proportion to the engine size, the total entropy generated after the N

cycles will be independent of the engine size. If, however, the entropy generated

decreases more rapidly than the engine size, then the total entropy generated

after the necessary number of cycles N will approach ?ero as we approach the

limit of zero engine size.

The result of all this is to put the followi. g restriction on the heat reser-

voir: In the co-moving frame of reference, in which at the point in question

both the local velocity and acceleration vanish, the spatial gradient of the proper

temperature must vanish (but not necessarily the second derivatives). The

reason for this is that if this condition is not satisfied, a co-moving Carnot

engine of finite size having a constant temperature throughout its extent (which
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is necessary to avoid internal entropy generation) cannot match the reservoir

temperature at every point of its interface with the reservoir. The temperature

cn-ferences and resulting entropy generation would be proportional to the size of

the engine, and so, as remarked above, going over to the limit of an engine of

vanishing size would not help. If, however, the temperature gradient in the

co-moving frame does vanish, then in the limit it will be possible to carry out

the assigned entropy transfer without entropy generation.

The eacond essential feature of the classical Carnot cycle that must be

pre,:erved is the .,omplete lack of dependence of the cycle on the physicalical

properties of the engine. T •om this we conclude that the rotation of the reser-

voir (i.e., the 3-curl of the rese rvoir velocity) must vanish in the co-moving

frame. The reason for this is that, if this condition were not satisfied, the

cycle r. ould depend on the radius of gyration of the engine, contrary to our

insiF.ence that it be independent of the properties of the engine. This dependence

would follow from the fact that, to avoid vel peity differences at the interface of

engine and reservoir, it would be necessary that the engine co-rotate with the

reservoir during the heat exchange. Thus, as viewed from the fixed laboratory

frame, there would be a correspondia -ig exchange of angular momentum. In

making the transition between reservoirs the engine would have to exchange

angular momentum with the energy-momentum reservoir, anJ on completioi , of

the cycle, a net angular momentum would have been transferred that was de-

pendent not only on the properties of the two reservoirs and the amount of entropy
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transferred, but also on the radius of gyration of the engine. The same type of

argument used above suffices to show that this difficulty cannot be avoided by

going over to the limit of vanishingly small engine. It is necessary instead to

require that the rotation of the reservoir vanish in its co-moving frame.

A reservoir satisfying these two requirements will be called an ideal heat

reservoir. it is easy to show that these requirements together guarantee that

the 4 -curl of the temperature 4-vector (which we write without the subscript,

because everything refers to the reservoir) must vanish in the co-moving frame.

Since T  = Tv k/c, we have (using a bar over a subscript to indicate the range

1, 2, 3 but not 0).

C) 0 cTk - a"cT° _ ( a 0 T^v k + T ao vk - ( a k T) v o - T ai vo

- ( a k T) c	 (5.12x)

a  CT  - a k CT' = (a; T)v k + Ta'v k - (akT)vl - Takvi

vk - aT(a'	 k V 	 (5.12b)

where we have used the fact that by definition of the co-moving frame vk = 0,

a( V  = 0, v = c, and a k v O = 0. The condition that the spatial gradient vanish

makes (5.12a) vanish, and the condition that the rotation vanish makes (5.12b)

vanish. Thus in the co-moving frame

a' T  - a k T' = 0	 (5.13)
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It is well known that the 4-curl of a 4-vector in general curvilinear coordinates

transforms like a second-order tensor34 (i.e., there is no need to include terms

involving the Christoffel symbol when making the transition from one reference

to another). Thus (5.13) is valid in the laboratory frame as well as in the co-

moving frame. But this means that TR must be the gradient of a scalar, which

of course is just the way it is defined in (5.1). Thus a reservoir temperature

4-vector of the form TR = ca  9 describes the most general ideal heat reser-

voir, so, assuming the necessity of the two requirements that went into the

definition of an ideal reservoir, no generality is lost by using the thermasy to

specify the reservoir.
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APPENDIX

HISTORICAL SKETCH OF THE DEVELOPMENT

OF RELATIVISTIC THERMODYNAMICS

A-1. Development of the Covariance Concept

The history of relativistic thermodynamics can be understood only in terms

of its relative timing with respect to the development of the covariant tensor.

formalism, and the resultant evolution in the covariance concept.

Maxwell's electrodynamic theory was implicitly harmonious with Special

Relativity, so no modifications or extensions were necessary. This was not true,

however, of both mechanics and three-dimensional vector and tensor analysis,

and a conscious effort was needed to make them consistent with Relativity

Theory. In the case of vector and tensor analysis, the first steps were made by

Minkowski35 in 1908. This work was taken up and continued by others after

Minkowski's death in 1909 and culminated in the 1910 papers of Sommerfeld

which summarized the tensor formalism as it is used in Special Relativity.

These papers may be regarded as marking the advent of the four-dimensional

tensor formalism. The full implications of this formalism began really to be

understood oily after Einstein's 1916 paper that introduced General Relativity,

and Emmy Noether's 1918 paper that proved the intimate relation between the

fundamental conservation laws of physics and tensor analysis. Group theory

and the immensely important concept of irreducibility—familiar matters to

many mathematicians—became widely known among physicists only after the
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advent of quantum mechanics. The fact that tensors (in the general sense in-

eluding scalars, vectors, and spinors) induce the irreducible representations of

the Lorentz group, threw tensor analysis into a new and deeper perspective.

The outcome of this long development is the modern formulation of the

Relativity Principle which requires that every fundamental equation of physics

must belong to an irreducible representation of the Lorentz group, which in

turn _ --quires that all operators and variables entering into the equation must be

combined in such a way that each term of the equation belongs to the same

irreducible representation of the Lorentz group. (More general groups that

include the Lorentz group as a subgroup are often considered, but the same kind

of irreducibility requirement is always imposed on the equations.) Such an

equation is covariant in the sense that it satisfies the same irreducibility

requirement in every frame of reference. Note that this irreducibility or co-

variance requirement would eliminate any equation involving a quantity, such

as heat in the Planck formulation of relativistic thermodynamics, that appeared

only in tae time-like component of a 4-vector (the force 4-vector) in every

frame of reference.

Before the Relativity Principle had evolved into its present form, a much
3

vaguer statement of it was used which simply required that the form of a physical

equation remain the same under a Lorentz transformation of the coordinates.

The development of relativistic mechanics clearly shows the evolution

toward a more exact statement of the Relativity Principle. (Incidentally, this
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historical evolution is still mirrored in the presentation of mechanics given in

most modern relativity textbooks.) At the end of his 1905 paper, Einstein con-

sidered the relativistic dynamics of a ;- t •ticle, arguing directly from Newton's

Second Law. In 1906 Planck gave a more elegant and general treatment of the

subject based on the variational principle

F
t2

s S	 f	 Ldt	 =	 0	 (A. 1a)

t^

where for a free particle

( dxl	 (dXlits
L	 =	 - me	

l-	 '	 )/c ^]	 (A.1b)\cTt / 	 CTt

This formulation is not covariant because it is built on a Lagrangian L that is

7

not invariant. Because Ldt must be invariant, the transformation law for L is

the inverse of that for time. Thus L is very similar to Planck's Q and T in

f that it has the same transformation law that they do, and like them is neither a

scalar nor a 4-vector component. The covariant formulation of the same

problem results, of course, by starting with

S	

T 2 LdT

	 =	 0	 (A.2a)

^T
1

where for a free particle

dx
 

,^ 1/2
(dx

L	 =	 - me dT	 dr	 (A.2b)
E

L
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This covariant formulation had not yet been developed in the pre-1910 period

and, as we shall see, this fact played a critical role in the history of relativistic

thermodynamics.

A-2. Early Development of Relativistic Thermodynamics

The papers of Mosengeil (1907), Einstein (1907), and Planck36 (1907 and 1908)

are often cited in such a way as to indicate that these represented three inde-

pendent approaches that all arrived at the same result, thereby suggesting the

inevitability, if not the uniqueness of the Planck formulation of relativistic

thermodynamics. This is misleading. Kurd von Mosengeil was Planck's student,

and his paper was based on his dissertation. (He died shortly after finishing

this dissertation, and it was Planck who edited the work for publication.) Ein-

stein's 1907 paper was very wide-ranging, and only a small part 37 of it dealt

specifically with thermodynamics. He was aware of Planck's work, and cited

his 1907 paper. His work on thermodynamics should more properly be regarded

as a presentation of Planck's approach from a different point of view. brccif-

ically, he merely wrote down, without discussion, the form of the First Law

that includes the work contributed by the translation force and, as pointed out in

Section V-1, this already decides the issue in favor of the Planck formulation.

Einstein's principal contribution to the thermodynamical problem was to empha-

size38 that whether or not the total energy and momentum of a system are the

components of a 4-vector depends on whether or not the stress energy of the

container is included. From this it is evident that the papers of Mosengeil and

62



of Einstein did not represent independent approaches to relativistic thermo-

dynamics, flat rather were contributory to the main work, which was Planck's.

Mosengeil's work was undert^ken in response to a calculation by Hasenohrl

(1904 and 1905) that indicated that a specific new postulate was necessary in

order to accommodate the Planck Radiation Law for blackbody radiation to

Relativity Theory. It was Mosengeil's purpose, in which he succeeded, to slow

that the Maxwell electromagnetic theory alone, without the need for new postu-

lates, sufficed to arrive at the Planck Radiation Law for moving blackbody

cavities. Mosengeil was not directly concerned with thermodynamics, but of

necessity he was obliged to include temperature. He implicitly defined it in the

fashion of equation (4.13) , and so he naturally arrived at the Planck transfoi 1-

na-tion law for temperature given in (4.16). (In fact, he derived several different

transformation laws, depending on the conditions that he imposed on the volume

of the cavity container during the acceleration from one velocity to another,

including the rather exotic-seaming condition that the moving volume (not the

rest-volume) of the container be kept constant during the acceleration).

Planck began his 1907 paper (or the 1908 one—as noted in footnote 36, these

are identical) by summarizing Mosengeil's results and their implications for

relativistic thermodynamics. His purpose was to incorporate these results into

a more general formalism that would combine both mechanics and thermo-

dynamics. The approach that he chose was both natural and elegant, namely a

relativistic generalization of Helmholtz's (1886) variational principle that
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combined mechanics and thermodynamics. This approach was an especially

natural one for Planck because the year before (1906) he had published a vari-

ational principle for relativistic mechanics. It was only necessary then to

generalize this along the lines indicated by Helmholtz's work, in order to include

thermodynamics.

Helmholtz's variational principle was

S t
t Z

	

Ldt = 0	 (A.3a)
c1

where (for one—dimensional motion)

1 (dx 2
	L = 2 MMV - F	 (A.3b)

and

	F = U - TS = F(V, T) .	 (A.3c)

F to what we now call the free-energy of the body or its Helmholtz function. The

Euler-Lagrange equation for the variable x . is

ctŷ	d aL	 dL	 (A.4a)dt - dt dx 11 -
 

ax
a(atJ

or



which is in accord with the well-known fact 39 that, for a body which absorbs or

rejects heat reversibly and isothermally, F is a potential function for the work

done on the body. Helmholtz developed a canonical formalism treating V and T,

as well as x, as variables. Naturally the derivatives

(aT^X v - - OT)

	

= S	 (A.5a)

and

\aV) 

x  

T	 - POT = P	 (A.Sb)

played an important role in this formalism.

Planck generalized Helmholtz's work by replacing (A.3b) with

r  /22	 1

L = - (Mc + F)I 1 _(te) c2

2
2 (M +F/c2) fit) - (MC2 ' F),	 (A.6)

0
where F is the rest-frame Helmholtz function. One can arrive at a transforma-

0
tion law for temperature very simply: If T is the rest -frame temperature and T

the laboratory temperature, then let

0
T = aT	 (A.7)
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where a is an as yet undetermined function of dx/dt. Then

dL	 _	 its dF	 1 _R2^i/s a F	 1 -,82)i/2
0  -	 ^1 -R)	 aT	 a	 dT	 a	 S	 (A.8)

In the rest-frame this equation has the form

. o
dL

= S .
dT

(As noted in Section IV, Planck had given a general argument for the invariance

of S.) One now invokes the Relativity Principle in its early form to insist that

the form of the equation dL/dT = S be Lorentz invariant. From (A.8) it is

evident that this requires that a = ( I _R s ) 1 i 2 with the result that

1/s oT = ( 1 -^3s	T	 (A.10)

which is the Planck transformation law for temperature. In a similar way, from

(A.Sb) and the known fact that pressure is invariant, one recovers the familiar

transformation law for volume, which has the same form as (A.10).

A is obvious that the lack of covariance in Planck's formalism followed

from his use of the variational principle in the form (A. 1a), rather than in the

form (A.2a). Note also that this non-covariance was in no way inconsistent with

the Relativity Principle in its early, vague form.

With Planck's work, the die was cast. In 1911 Aittner, working directly

under Planck ' s influence (which he acknowledges with thanks at the beginning of

his first paper), adapted the Planck formalism to the kinetic theory of gases.

(A.9)
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Tolman (1914) extended Juttner's work to systems containing molecules of dif-

ferent masses in order to derive a relativistic equipartition law. Both these

men did subsequent work in relativistic thermodynamics [Xittner (1928), Tol-

man (1934)] well after the Relativity Principle in its present form demanding

covariance had become well established, but it is not surprising that their work

remained in its original mold. In a footnote 40 in his 1911 textbook von Laue

made the point that the Planck formulation was not unique. His motive in this

footnote was to m acede the formal possibility of a relativistic thermodynamics

built on a scalar temperature, and then to dismiss such a possibility as intui-

tively unacceptable. (He defended the Planck formalism.) In an earlier footnote4l

he was even more explicit in pointing ou3, ;hat an infinity of formulations was

conceivable, i.e., that it was fundamentally a question of definition. These two

footnotes were completely ignored until Ott (1963) made their implications very

explicit.

A-3. Later Development of Relativistic Thermodynamics

Mechanics, unlike relativistic thermodynamics, did not long remain in its

early non-covariant mold. It lay at the center of research in first general

relativity and then later relativistic quantum mechanics. The non-covariant

formalism, adequate enough for simple problems, would have been utterly

unworkable for the complicated problems encountered in these two fields.

The contrast with the case of relativistic thermodynamics is striking.

There was certainly no experimental interest in it, and almost no theoretical
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interest. The research in relativistic fluid dynamics concentrated exclusively on

those special types of flow for which it is possible to avoid any real thermo-

dynamical considerations, namely adiabatic flow, or the even more special case

of barotropic flow. Relativistic thermodynamics was of peripheral interest in

cosmology. Tolman was already committed to the Planck formalism. Edding-

ton42 effectively opted for a scalar thermodynamics with the reasonable remark

that constitutive equations had physical significance only in the local rest-frame

of the fluid.

It is significant that the first person, van Dantzig (1939-1940), who attempted

to do anything with relativistic fluid dynamics going beyond the adiabatic restric-

tion, immediately replaced the Planck formulation with a covariant alternative.

(He actually could not have done otherwise, since any non-covariant formalism

is unworkable.) Unfortunately, however, van Dantzig's work was completely

ignored until very recently (cf. footnote 8).

Whereas van Dantzig in no way attacked the Planck formulation, but rather

contented himself with demonstrating the existence of a covariant alternative,

Ott, Arzelies, and most of the other recent proponents of a covariant formalism

did attack the Planck formulation, characterizing it as being simply wrong

i
(rather than just unworkable). In view of the counter-attack these papers sub-

sequently provoked (itself an interesting phenomenon!), it appears van Dantzig's	 3

approach would have been the more effective tactic. One can only regret the 	 !

absence of van Dantzig's contribution in the debate, and hope that this strange

episode in the history of physics has run its course.

68



FOOTNOTES

1. First emphasized by Einstein (1907), Sec. 12.

2. Einstein (1907), Sec. 14. For references to recent advocates of this and

other points of view see Landsberg and Johns (1967).

3. Gamba (1966), Rohrlich (1966).

4. Kibble (1966).

5. Eddington (1923), cf. p. 34 of 2nd edition; Gamba (1966).

6. See survey of recent literature given by Landsberg and Johns (1967), esp.

chart on p. 42.

7. Israel (1963).

8. van Dantzig (1939-1940). I learned of van Dantzig's work only very recently

from Prof. Peter Bergmann who told me that one of his students, Mr. Victor

Hamity, discovered these papers in the course of preparing a literature

survey for his dissertation.

9. Schmid (1967a).

10. Schmid (1967 b, c).

11. von Laue (1911), p. 181 of 7th edition (1961), credits Helmholtz with having

first introduced the temperature integral (in connection with bodies rather

than fluids) and cites Helmholtz's 1886 paper. This is a long paper, of

which only pp. 225-227 and pp. 234-235 (of Helmholtz's Wissenschaftliche

Abhandlungen) deal directly with thermodynamics. If Helmholtz dice indeed

(
	 introduce the temperature integral in this paper, it is so indirect as to be
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virtually invisible. It seems most probable that Helmholtz introduced it in

another paper, and von Laue erroneously cited this one (which is one of

Helmholtz's most famous papers) from memory.

12. See Schmid (1967c), p. 326 for references and further details.

13. ® is the same function that was designated by 3 in Schmid (1967c), and is

not to be confused with the entropy force tensor ®j k of Schmid (1967a).

is the designation used by van Dantzig. In recognition of his pioneering

(albeit neglected) work, his designation and nomenclature ("Thermasy")

will be adopted in this paper.

14. Presumably from the Greek ® e p u a v u t s (heat generator) with elusion of

the v and final s in anglicization, the latter of which is omitted in modern

Greek, in any case. My thanks to my colleague E. G. Stassinopoulos for this

suggestion as to the etymological origin of the term "thermasy," which

was in no way indicated by van Dantzig. Indeed, he gave no specific indica-

tion that the term originated with him, but I have never seen it used

elsewhere.

15. The factor Zu has been inserted in front of wj k in (2.14) in order that w' k

will satisfy (2.16) for the case of a cold fluid, and hence correspond to a

vorticity.

16. For further details, see Schmid (1967 b and c). 	 t

17. Serrin (1959), p. 148, footnote 2, credits C. C. Lin (unpublished) with having

first made this point explicit, although the correct variational principle for
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(non-relativistic) barotropic flow (which includes M and ib, but not s and ®)

has long been known. (See Bateman (1932), p. 164-165).

18. Schmid (1966). See pp. 106-107.

19. For a more detailed discussion of potential flow (in the presence of gravi-

tational and electromagnetic fields) see Schmid (1967 b and c).

20. For more details see Schmid (1966 and 19670.

21. For a brief review see Serrin (1959), pp. 144-150.

22. Tam (1966).

23. von Laue (1911), see the footnote on p. 138 and the footnote running from

p. 177 to p. 178 of the 7th edition (1961). See also discussion at the end of

Section A.2 of the appendix of this paper.

24. van Dantzig (1939a), footnote on p. 700.

25. Terrell (1959).

26. Ott (1963). See also Schmid (1967a).

27. Only in this section and in the appendix is entropy designated by capital S.

Elsewhere we always deal with the specific entropy s. Thus there is no

danger of confusing entropy with the scalar S introduced in (2.20), which in

Section III was shown to be the Lagrange multiplier associated with the

conservation of particles.

28. Planck (1907) p. 552, or (1908) p. 13.

29. Israel (1963). See his Equations (6.2) and (6.18).

30. von Laue (1911). Sec. 23c, pp. 175-178 of the 7th edition (1961).

31. Schmid (1967a) Sec. 4.
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32. In Schmid (1967a), this force was expressed on a per-particle basis and

denoted by 7r j , i.e., 7r j = f i /n. (Particle density was designated by p

rather than n).

33. Schmid (1967a) pp. 17-19. In this reference the 4-vector dw i /dr was ex-

pressed on a per-particle (rather than per unit volume) basis, and

designated as 0 j , i.e., O' = ( dwj /d-r)/n.

34. See, for example, Sedov (1966) p. 56, Equation (8.9). The treatment in this

reference is for three-dimensional curvilinear coordinates, but the forma-

lism is the same as for the four-dimensional case.

35. Minkowski gave lectures on the subject "Space and Time" before several

audiences. For a listing of the various places where these talks were

published see p. 74 of Part II of Felix Klein, "Vorlesungen fiber die

Entwicklung der Mathematik im 19. Jahrhundert," (Chelsea Publ. Co., New

York 1967) (originally published Berlin 1926-27). The most accessible

reprinting of Minkowski's lecture "Raum and Zeit," (besides his collected

works cited with the references) is to be found (in English) in "The Principle

of Relativity" (Dover Publications, New York), pp. 75-91 followed by notes

by A. Sommerfeld, pp. 92-96.

36. The 1908 paper is a verbatim reprint of the 1907 paper.

37. Einstein (1907), sec. 15, pp. 451-453.

38. Einstein (1907), sections 12 and 14.

39. See, for example, Sommerfeld (1956), p. 53.
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40. von Laue (1911). See footnote running from p. 177 to p. 178 of 7th edition

(1961).

41. von Laua (1911). See footnote on p. 138 of 7th edition (1961).

42. Eddington (1923). See p. 34 of 2nd edition (1924).
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