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ABSTRACT

It is suggested that the distribution function approach be used for

describing the turbulent chemical reaction in order to avoid violation of

an invariance property noted by O'Brien: for zero molecular diffusion in

homogeneous turbulence, single point statistical functions of the concen-

tration field are independent of the motion. This property and a similar

"white noise" invariance for two point statistical functions are shown to

apply to arbitrary isochoricr motions when the initial concentration field

is statistically homogeneous with respect to position. Finally, it is ob-

served that the use of a reciprocal concentration avoids the problem of

preserving the invariance in turbulence closure schemes.
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I. INTRODUCTION

O'Brien i '2 has recently noted an invariance property of the model second

order irreversible chemical reaction in turbulent flow a

n (x, t) f (x, t) = - C p2 (x, t)	 (1)

where n (x, t ) r- ( a / a t + U (x , t) • 0 - DV 2 ) , F is the mass concentration in

either mass or molar units (with appropriate dimensions of C) 9  U (x, t ) is the

incompressible mass-average velocity field, D is the constant molecular dif-

fusivity of the species P with respect to the mixture, and C is a constant reac-

tion rate constant. The restrictions that U be unaffected by h or by temperature

changes and that D and C be constant usually require low r and either small

heats of reaction or large heat capacities. That no reverse reaction or creation

term appears in (1) usually restricts one to the initial stages of reaction, unless

F is extremely dilute in the product of reaction. We adopt the outlook that r

is a passive contaminant.

The invariance property in homogeneous turbulence is that for D 0 all

statistical functions ^1'" (x , t )> n = 1 0 2, ... are independent of the function U.

Here the angular brackets denote ensemble average over all realizations of U.

In homogeneous turbulence we require (in this paper) that statistical functions of

U and P are independent of position x In the more general case, when U is

1
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an arbitrary isochoric motion with no flow across the boundaries, the invariance

requires that for D = 0 all volume averages of r "(x , t ) be independent of U.

We will not discuss the latter case here.

One can show the invariance directly from (1) by setting up an unclosed

hierarchy of statistical moment equations in homogeneous turbulence (or of

volume averages in the general case). This hierarchy is independent of U.

Alternatively, in Lagrangian coordinates the fluid motion enters (1) only through

the Lagrangian form of the diffusion term. For D = 0 the behavior of F on any

trajectory or particle path is independent of U, and the invariance follows from

the requirement that I' is initially statistically homogeneous, the identity of

Lagrangian and Eulerian volume averages in isochoric motion, and an ergodic

assumption on the identity of statistical and volume averages. Later, this last

assumption will be relaxed.

The purpose of this papar is to see how the invariance may be preserved

in closure theories. We will present arguments for the distribution function

approach and look at the one and two point probability density functions of F for

D = 0. Then we will show that a simple change of variables can remove the

problem.

II. PRESERVING THE INVARIANCE

There are two types of dynamic nonlinearity of (1) leading to closure diffi-

culty of the moment equations. First, the nonlinearity of the reaction term and

2
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statistical initial and boundary conditions produce coupling between moments of

all orders of I". This difficulty is formally the same as that of the turbulence

problem itself (closure of the Navier-Stokes equations), except that the coupling

in (1) is local in x -space. Second, randomness is induced by the turbulence,

analogous to the nonreactive passive scalar problem. Of course, the nonlineari-

	

;'`.'	 ties are not independent, as the coupling in the reaction term will be induced by

turbulence alone if the initial and boundary conditions of P are certain.
's

Many of the analytical methods in turbulence and turbulent convection theory

have been treated as procedures for forming mom :nt closures regardless of the

nature of the dynamic nonlinearity. The direct interaction (DI) approximation 

	

rte`	 and the Lagrangian history direct interaction (LHDI) approximation, s as they

have been applied to (1),2 , 6, 7 clearly fall in this category, as do the more clas-

sical approaches of iteration expansions and cumulant discards . ' , 8 The phe-

nomenological theories have not been considered for this problem, since the re-
}fi.

w^

action term is in no sense a transport term, but rather is purely dissipative.

If the moment closure does not explicitly involve the velocity field in the

reaction term, such as an ad hoc cumulant discard hypothesis applied to moments

of F, the zero diffusion invariance will not be violated, although the decay rates

of the moments of h and the influence of the velocity field for D / 0 may be

given incorrectly. The DI approximation applied to (1) 6 does involve the

velocity field in the reaction term but fails to preserve the invariance. 2 The

3
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reaction is not treated exactly, as the model for which the DI approximation is

the exact solution in the reaction problem involves artificial dynamical coupling

In both the convection and reaction terms. However, the LHDI approximation

(and the abridged ver3ion) does preserve the invariance. Its success can be

traced to the fact that the averaged response function G for infinitessimal con-

centration perturbations retains two important properties of the Lagrangian form

of (1) for D ^ 0: first, 9,11 fluid particle trajectories are independent (G is non-

zero only for perturbation and response on the same trajectory), and second, all

trajectories behave identically (G is independent of labelling time) so that G is

independent of the velocity field. Despite this success, there is no guarantee of

the accuracy of the LHDI's treatment of the reaction term. Furthermore, because

of the presence of Lagrangian velocity correlations, we regard the LHDI to be

too difficult in practice.

If one takes the point of view 9 that the turbulence, acting through the random

coefficient U, should provide the only stochastic indeterminacy in (1), and that

the effect of the reaction should be treated exactly, as the diffusion term is

customarily done, then any such closure method should retain the zero diffusivity
f

invariance. Actually, the reaction need be treated exactly only in the limit D = 0.

It is clear that if the reaction term is to be treated exactly, the moment

closure approach is not appropriate to the study of (1). For example, any

torati F̂ n procedure based upon treating the turbulent velocity as a perturbation

4
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is very difficult in that it requires solution of a nonlinear and nonhomogeneous

partial differential equation at each level of iteration. Even for D -- 4 one is

confronted with a sequence of Riccati equations for r.

On the other hand, the distribution function approach seems appropriate

because the reaction term causes no extra conceptual difficulty above that of

the nonreactive passive scalar problem. The closure problem here is not due

to the nonlinearity of the dynamical equation, but to nonlocalness of the dynamical

variables. The reaction term is completely local in x -space, whereas the dif-
1

fusion and convection terms are not.

In the next sections we briefly outline the distribution function approach and

examine the zero diffusion invariance in greater detail.

III. THE DISTRIBUTION FUNCTION APPROACH

Wo now sketch out the distribution function approach to justify our preceding

remarks and to focus on its closure difficulty. The overall objective is to obtain

at time t the one and two point probability density functions (pdf's) of F defined

by

pz (0) d o	 { ` ' CX , t ) < 0 + d qG }
	

(2)

PX1 , x 2 (^1 42 ) d' l d^2 ° P{01 < P (xl, t) <^l + d^l , 02 _< "(X21 t ) < 02 + dO }

t

5
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where P denotes probability. These pdf ls will allow us to calculate mean decay

rates and two point correlations of r and may be,obtained by reduction from the

full distribution functions. Let P t CO (x ) I u (y) ] , or P t [ W I u) , denote the con-

ditional probability functional at time t for the concentration field r, given the

velocity field U, i.e.

Pt 10 (x) I U (y) ] S ^ (x) a P (0 (x) < P (x, t ) < 0 (x) + do (X), d x

u (y) < U (yo t) < u ( y) + du (y) , v y)

where the conditional events are to the right of she vertical bar, and S yr is ele.

mental volume in yr-space. Strictly speaking, the probability density functional

does not exist in infinite dimensional phase space where Syr cannot be defined,

and must be interpreted as the joint pdf of P at an arbitrarily large number of

points x i . A Liouville or continuity equation for P t Cy J u l maybe derived from

(1) with the method used by Edwards 10 ;  we get

^at Pt	 d3X 
S^GCx) 

[ C O' (x) + u(x) - VO (x) - D02 0 (x)] Pt [ yr l u] (3)

where S / S denotes functional differentiation.

f

To obtain an equation for Pt [yr] , the marginal functional distribution, multiply

(3) by the full pdf of U for all time, i.e, by F [o], defined by

6
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FCv j Sv* p(v (y, $)°a=U(y,$)< v (y, $)+dv(y,$) dy and Q<ds5T}

where T to some finite time greater than any considered in the problem, and

then perform a functional integration over all v . The result is similar to (3)

except for an integral over the convection term involving the joint distribution

of Y with u. The ability to evaluate this terra at any t is tantamount to

knowing F Cv), , whereas in practice we can only deal with a few moments of

The procedure of Ref. 9 is to expand P t Cyr	 in the convection term about

P c Cyr j before carrying out the v integration, in order to obtain an expression

for P t Cyr j in terms of moments of v.

The single point pdf is obtained by multiplying (3) by F [vl and integrating

over all v and over ,y for all points except x. The result is

A'

fd3U U V PX, X	 U	 (4)

where the convection term, which involves the joint distribution of w with u ,

must be approximated, say as in the preceding paragraph. For the particular
^i.
	

tcase of joint statistical homogeneity of P and U, i.e. PX x (,, u ) is independent
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of x,,the convection term in (4) is zero. If D were also zero, then P t (0) may be

calculated from the result for zero motion in accordance with O'Brien's invariance.

We shall discuss this in more detail later. 'Unfortunately, there is also a closure

problem associated with the nonlocalness of the diffusion term. An unclosed

hierarch y for these iwultipoint pdf1 s can be set up, with each equation similar

in form to (4), and with the reaction term treated exactly, as ^n the left hand side

of 44). For example the two point pdf obeys the equation

-76 _ C ( 'a ^2 + B 02	
(^l 1 02)

1	 2	
2 )] 

PXt I 1% 2

- D	 1 1M	 a + i im	 a	 V2
	 d 413 03 Px , x , x (Ol t ^?, 1 03)

X3 -*X1 
atj	 X3"X2 at 2	 X 3 	 1 2 3

-	 d3 u V	
Cvx^ 

PX1 , X2,x^ (^1 , 2' V) + VX 2 p:K i ,X 2 .,x 2 (Y'1'02' u)^

Higher order equations may be obtained by induction. This sequence is analogous

to that for the ordinary turbulence problem. 11,12

In the ordinary passive scalar problem, for which C 0, the nonlocalness of

the diffusion term could be removed by using the spatial Fourier transform of

(1). B,. for C j 0 the reaction term in wavenumber coordinates is a convolution,

and closure on that term may lead to violation of the D = 0 invariance. In

8
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x,-coordinates a closure must be made on the diffusion term, but the reaction

may be treated examiy and will preserve the invariance. However, for small

C, large D, or in regions of phase space where I 0 t1b I is large, the invariance may

not be as important, and in those instances it is more important that the diffusion

be treated exactly.

We suggest the following method for dealing with the diffusion term. First,

for the velocity term, make a suitable closure for Pt [W I ul . Then, base the

reduction from Pt f w) for use in the diffusion term, say at the two point level,

upon the formulation of (1) in k-space, where the diffusion may be treated exactly

at the expense of exact treatment of the reaction. This approach would guarantee

correct handling of the reaction term in (4) when diffusion is weak, with the dif-

fusion term being treated properly when diffusion is dominant.

IV. THE SINGLE POINT PROBABILITY DENSITY

FUNCTION FOR D = 0

Let us now consider the single point probability density function (pdf) of

P in the limit D 0 to see what form must be retained in any distribution

function approach that satisfies O'Brien's invariance. In this section, the term

homogeneity means that the attribute in question, say F 1 (x, t) 9  is statistically

homogeneous with respect to position: the probability density function of the

attribute is independent of the position of the attribute.

1

x

9	 1



Pt (^) _ (1 - Ct ^) - 2 P°	 C1	 t
(7)
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First, examine the case when there is no motion, U(x, t) 0. Then (1) reduces

to

at 
r(x,t) +C r 2 (X, t) =0

'a
	

(5)

which has already been studied by O'Brien.' The solution of (5) is

P (x, t) _ 2t r (x, 0) = r (x, 0) [ 1 j Ct I' (x, 0) J - i .

The single" point pdf of r (x , t ) can be related to the initial distribution of r by

the identity

Px M = Px ( -t 0) 
d -	

(6)

Now introduce the condition that r is initially homogeneous, i.e. P ° is independent

of x. From (6) the same condition prevails for 17 at time t , whereby

:14,

t

We now observe that Pt is the same as (7) for D = 0 in homogeneous tur-

bulence if P° is independent of x. This is clear from (4). Alternatively, the

single point moment equations, which are independent of U in accordance with

10
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O'Arien's invariance, are the same as those for (5); and because the pdf, or

equivalently the characteristic function, is determined completely by the moments,

the equality of the l"s follows.

Let us examine n t from another point of view. Rewrite (1) in Lagrangian

form as

at	 t) +C 1-2 0 + t) =DC-' (^,t) : v^ v^ F ^^,t>
	

(8)

where C is position in the Lagrangian or material, frame, C - 1 is the inverse Green

deformation tensor

C-1 (^T t) = [(v f° 1 )	 (v f-1),r]X _ f 	t)

the motion is given by x = f 	 t ) with inverse	 f _ 1 (x , t) and velocity

U (x , t) = of	 t )/fit , the Eulerian and Lagrangian concentrations are related

as

ti
(x, t ) = ^'(f(^,t),t) =r(C,t),

and v and vc are the Eulerian and Lagrangian del operators. 13 In analogy with

(2) we introduce the Lagrangian single particle pdf of r

ti	 ti
Pt (0)do	 {0 P(C,t)<o+do),

11



also the conditional Eulerian pdf of I' for a particular fluid particle

PzI ` (^) d^	 1'(x,t)<0 +d^Ig<f-I(x,t)<g+dg)

and the pdf for the initialization of trajectories that pass through x at the time t

	

F, (g) d'g 	{g< f	 t) <g+dg).

For the case D = 0 (8) has the same form as (5), i.e.

t( t) + C p2 (C, t) = 0,

and for homogeneous initial conditions P^ = PO = P° independent of x or

	

where we have noted f ( , 0) _	 From (6) we obtain the result analogous to (7)

Pt M = ( 1 - Ct ^) -2 
P° 1 - Ct	 ^ P, (q)

independent of C. The Eulerian pdf is recovered by summing the conditional pdf

over all particles,

PX M =	 Pt, I Q (^) Ft, (B) d3 g .
w
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Note that PI,	 and P t (^) are pdfls for the same fluid particle g at the

same time; they are therefore equal and, from (10), independent of g. Conse-

quently, g integrates out of (11) with the result

PX M=PtM

independent of x and of the motion, or

Pt (0) = 
Pt (0) = (1 - C t 0)-2 

P° 1 - C t i
	 (12)

Recall the weakness of the assumptions used in obtaining (12) . Of course

D = 0, C = constant, and P° (^) must be independent of x. The motion must also

be isochoric so that (9) does not contain a dilatation term. However, we have

made no assumption about the turbulence itself, such as spatial homogeneity

of the velocity fluid. The derivation does not even require the motion to be

turbulent, as (12) holds for each realization of the motion. We have had to

introduce, however, an ensemble of initial h fields in addition to the ensemble

of velocity fields.

The following physical picture is presented by (12). Because P ° is the same

for all particles, any particle that passes x at time t had the same P ° in each

.realization of U and also the same age t . Because P t depends only on age for

D = 0, it will be the same at x in each realization regardless of the motion, and

the same for all points x .

14

a

r
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Our conclusion for D = 0 is, then, that if at some time r becomes homogeneous,

it will remain so independent of the subsequent motion, and P t may be calculated
4

from the result (7) for zero motion. It would also be desirable to determine

the circumstances under which r becomes homogeneous, although we will not

investigate this here. (We would like to use the continuity equation for P t C yf I u

to show that P tends toward homogeneity if the U field is completely homogeneous.)
r'.

The Lagrangian formulation had to be used here because there is no counter-

part to (6) in the Eulerian formulation. The order of the reaction is unimportant;
r:

in other instances the equivalent of (9) would be that ( , t) be independent

of other fluid particles so that (6) can be used. For no reaction we obtain the

familiar passive scalar result P t	 o^

	

	 p	 (^i) = P 	 i.e. all moments of P are constants

of the motion.

.;	 V. A "WHITE NOISE" INVARIANCE FOR D = 0

_.	 In addition to the property of the single point pdf given by (12) for D _ 0,
4

there is a similar invariance for the two point pdf of P: if Pis initially homogeneous
v

and pairwise independent for all points, then it will remain so regardless of the

subsequent motion.

The proof is similar to that for ( 12), except for the use of PXl,x
2 (01 , 02),

the two point pdf of P; Y 1 a (tiGl , ^2 ), the two particle pdf of P ; P t 1 x z i gs

G1 , q2 ), the conditional Eulerian pdf of P for two particles and FX 1 , x a (91192) 9

r	 14

t
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the joint pdf of particles passing through x l and xz at time t — all defined by

analogy to the single point functions. The formula equivalent to (11) is

	

PX 1 ,x2 
(Oi l Y'2) M	 PX 1 ,x 2I g 1 ,R2 

01+ 02) FX 1 ,x2 (91 1 82) d3g1 1392

	

=	 P91 , g 2 C^1 , 02) FX1 ,x2 (9 1 1 g2) d3gl d3 921	
(13)

and that equivalent to (6) is

P- ,C ( ,̂1 , Y2 ) P^ +	 (2- t ,^,1 , -t 
q2) 

a
Ca

rt ^1, -t ^ 2	
(14)

1 2	 1 9 2	 a (
^
I 02 )

where the Jacobian in (14) reduces to

[(1 - Ct 01) (1 -' Ct ^2)] -2

Under the conditions that P is initially homogeneous and pairwise independent

for all points,

.N

and (14) becomes

Pico 14 2 (Y'1' 02) = P° (Y d P° (`F'2)

15
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0 C
91 

,C2 01142)	 t (^,> t (02 )	 (15)

where P t is given by (10). With the substitution of (15) into (13), P^ ,x inte-

grates out and we obtain, using (12)

	

P^,,xs (^11 ^2) = P t (01) Pt (02 )
	

(16)

independent of the motion and of the points x l and xz . Consequently, homogeneity

and pairwise independence is preserved. Results analogous to (16) also hold for

multipoint pdf's of any order.

This invariance may be called a "white noise" invariance, as it implies for

D = 0 that if the truncated power spectrum of r (in k -space) is initially flat,

it will remain so, with all spectral components decaying at the same rate. Hence,

once spatial correlations are lost, in the absence of diffusion they may not be

regained. It would also be desirable, although we will not attempt this here, to

be able to demonstrate with the continuity equation for P t [W I u ] that P tends

towards this equipartition.

The DI approximation evidently does not satisfy this invariance, at least

one cannot tell by examination of Eqs. (1.11) and (1,12) of Ref. 6. However,

the LHDI approximation (and also the abridged version) does preserve it, as

one can tell from Ref. 7 by using Eqs. (38) 0 (39), (45) - (47), the properties of

16
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G when D = Q, and by noting that a property similar to Eq. (62) holds for the

Fourier transform of the covariance of the generalized concentration field

(normalized by (27r)- 3 x volume of wavenumber space).

VI. THE USE OF SPECIFIC VOLUME

Let us turn our attention to the reciprocal of the concentration of the con-

taminant r, its specific volume

a

A,

i

'r (X, t) 
* F- 1 (X, 

t) .	
(17)

Any moment of r depends on !all the moments of 1^, and vice versa. From (1)

the behavior of Y is given by

ft(X,t)x(x,t) =C- 2D	 IVy(X,t)12.
r (x, t)
	 (18)

The quadratic nonlinearity of the reaction term in (1) has been replaced at

this level in (18) by a logarithmic nonlinearity in the dissipation term. Such a

nonlinearity is actually present in the single point hierarchy equations for

either (1) or (18), as we have

n 1, " - n C f n + 1 - (n - 1) D (0 log f) - (P 1,")

nY"=nCY 1 - (n+1)D(0 log Y').(0r").

17
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The standard practice (nonreactive passive scalar problem) for avoiding this

dissipative term is to consider only the r hierarchy for multiple point correla-

tions. After closure, certain points are made to coincide before substitution

into lower order equations. The same approach could be used for C j 0, but

one must be careful with the role played by the velocity field in the multipoint

moments so that the O'Brien invariance is retained when the points coincide and

D = 0. Unfortunately, the log term appears in the first equation of the r hierarchy.

It is not apparent how to avoid dealing with it.

Because the dissipation term in (18) disappears when D = 0, whatever type

of statistical approximation we apply to this term cannot destroy O'Brien's

invariance. For D = 0 in homogeneous turbulence, (1) and (18) give the following

hierarchies of moment equations

Qi _- 0O2
	

C

and
On -nCOn+1 	^h =nC l _i

.	 .	 .	 .	 .

where On <r n > and ltn w <rn> are averages defined over ensembles of initial

data and velocity fields. Each hierarchy preserves O'Brien's invariance. How-

ever, the 1D hierarchy has the advantage of being closed at each level, and trunca-

tion does not alter from the true values the growth of specific volume or its

moments, contrary to the Q hierarchy. Another advantage of dealing with (18)

is that the conditions under which the model (1) is at all applicable, dilute liquid

18
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phase reactions for which D is extremely small and x is large, may allow

they dissipation term to be linearized.

A substitution similar to (17) can be used for irreversible reactions of

arbitrary order N ^ i, T * r I ' N , yielding an equation equivalent to (18) for the

(N - 1)st power of the specific volume.

VII. CONCLUSIONS

We have suggested two approaches that could be followed to guarantee pres-

ervation of O'Brien's invariance and the correct rates of decay of single point

moments when D = 0 Description by the distribution function approach is difficult,

and we have not pursued it far enough to demonstrate practical use. The use of

specific volume in place of concentration in the moment approach is simpler, but

the experimentalist would prefer to see results in terms of concentration, and the

singularity in Y for large times may be difficult to handle.

The generalizations (12) and .(1..0) of the zero diffusivity invariance for the

one and two point pdf's of P should, in retrospect, seem obvious on physical

grounds. These properties should provide tests for the adequacies of either

moment or distribution function approaches to either (1) or (18).14
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