ON THE DETERMINATION
OF MICROMORPHIC MATERIAL
CONSTANTS FROM PROPERTIES
OF THE CONSTITUENTS

by Richard F. Maye

Prepared by
GENERAL TECHNOLOGY CORPORATION
Lawrenceville, N. J.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MARCH 1969
ON THE DETERMINATION
OF MICROMORPHIC MATERIAL CONSTANTS
FROM PROPERTIES OF THE CONSTITUENTS

By Richard F. Maye

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Issued by Originator as Technical Report No. 8-6

Prepared under Contract No. NASw-1589 by GENERAL TECHNOLOGY CORPORATION Lawrenceville, N.J.

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 – CFSTI price $3.00
Abstract

Eringen and Suhubi [1], [2] introduced the general theory of micro-elasticity whereby the local deformations of material points are taken into account, the necessity for this consideration being the nonhomogeneity of the material at the local level.

One of the problem areas of micro-elasticity remaining is the determination of the material constants (either analytically or experimentally) which even for the linear isotropic theory number eighteen. In addition, an inertia constant must be determined.

This report is a study of the relationship of a linear micro-morphic material to linear classically elastic constituents and investigates the possibility of obtaining the material constants from the properties of the constituents.
1. **Introduction**

Using relationships given by Eringen and Suhubi [1, 2], it is shown that the strain energy of a linear micromorphic body is equal to the sum of the energies of the constituents when the constituents are assumed to be linear classically elastic. That is,

\[
Wdv = \int W'dv'
\]

where \(W \) is the macro-strain energy density, \(dv \) the macro-differential element, \(W' \) the micro-strain energy density, and \(dv' \) the micro-differential element. Assuming the constituents to be also isotropic, \(W' \) is given by the relation

\[
W' = \frac{1}{2} \lambda' u'_{i,i} u'_{j,j} + \frac{1}{2} \mu' (u'_{i,j} u'_{i,j} + u'_{i,j} u'_{j,i}).
\]

\(\lambda' \) and \(\mu' \) are the Lamé constants for the constituent (the value of each depends on which constituent is present). Here \(u'_{i,j} = \partial u'_{i}/\partial x'_{j} \), the \(x'_{j} \) are rectangular coordinates of a point in the body, and \(u'_{i,j} \) is the displacement vector at a point in the micro-volume.

By substituting (1.2) into (1.1) and using an expression for \(u'_{i,j} \) in terms of kinematical macro-quantities, the right-hand side of (1.1) can be expressed in terms of these macro-quantities and properties of the constituents. The left-hand side is given by Eringen and Suhubi in terms of the macro-quantities and micromorphic material moduli. Equating like terms, relationships for the micromorphic material moduli in terms of constituent properties are obtained.

The special case of a two constituent isotropic micromorphic material is considered in detail. For this case, all constituent properties except three are easily evaluated. Determination of the eighteen micromorphic material moduli and the micromorphic inertia constant, \(\rho I_0 \), is therefore reduced to the experimental determination of these three unknowns.
2. **Strain Energy Densities**

A differential element, dv, of the micromorphic material consists of many micro-differential elements, dv', as shown in figure 1 (where different shaded areas represent different constituents). It is assumed that each constituent is an elastic solid.

Upon deformation, the center of mass of dv moves from position X to x, and that of dv' goes from position X' to x'.

According to a first order approximation, the displacement vector, u', of x' can be represented in terms of the displacement of the mass center, u, as follows.

$$u'_k = u_k + u_{k\text{rel}}$$ \hspace{1cm} (2.1)

Here $u_{k\text{rel}}$ is a function of x and time, and ξ is the relative position vector of x' with respect to x as shown in figure 1.

This motion is identical to that described in [1] after linearization.

Consider the total strain energy of an arbitrary volume, V, with surface S of the micromorphic material obtained by summing the strain energies of the constituents.

$$E = \int \int \int \limits_{V} W' dv' = \int \int \int \limits_{V} \frac{1}{2} t'_{ij} e'_{ij} dv'$$ \hspace{1cm} (2.2)

W', t'_{ij}, and e'_{ij} are the constituent strain energy density, stress tensor, and strain tensor respectively at any point x'. Upon carrying the linear strain measure

$$e'_{ij} = \frac{1}{2} (u'_{i,j} + u'_{j,i})$$ \hspace{1cm} (2.3)
Figure 1. Differential Elements for a Micromorphic Material.
into expression (2.2) we obtain

\[E = \int_V \int_{dv} \frac{1}{2} t'_{ij} u'_i, j dv = \int_V \int_{dv} \frac{1}{2} [(t'_{ij} u'_i)' , j - t'_{ij, j} u'_i] dv'. \]

(2.4)

Since the surface tractions and \(u'_i \) are continuous across the surface of each \(dv' \), the first volume integral can be changed to a surface integral.

\[E = \frac{1}{2} \int_S \int_{ds} t'_{ij} u'_i da'_j - \frac{1}{2} \int_V \int_{dv} t'_{ij, j} u'_i dv'. \]

(2.5)

\(ds \) is a differential surface area of \(S \) and \(da'_j = n'_j da' \) where \(n'_j \) is the outer normal of a micro-differential area \(da' \) (also on \(S \)).

Upon substituting (2.1) into (2.5) and remembering that \(u_i \) and \(\phi_{ik} \) are independent of integration over \(ds \) or \(dv \), we obtain

\[2E = \int_S [u_i \int_{ds} t'_{ji} da'_j + \phi_{ik} \int_{ds} t'_{ji, k} da'_j] \]

\[- \int_V [u_i \int_{dv} t'_{ji, j} dv' + \phi_{ik} \int_{dv} t'_{ji, j} \xi^k dv'] . \]

(2.6)

The following terms (averaged quantities) defined by Eringen and Suhubi [1] are now employed.

\[\int_{ds} t'_{ji} da'_j \equiv t_{ji} da_j , \]

\[\int_{ds} t'_{ji, k} da'_j \equiv \lambda_{ijk} da_j , \]

\[\int_{dv} t'_{ij} dv' \equiv s_{ij} dv . \]

(2.7)
\[da_j = n_j ds \] where \(n_j \) is the outer normal of \(ds \). \(t_{ij} \), \(s_{ij} \), and \(\lambda_{jik} \) are referred to as stress quantities.

It can also be shown (see appendix A) that

\[
\int_{dv} t'_{ji,j} dv' = t_{ji,j} dv,
\]

\[
\int_{dv} t'_{ji,j} \xi_k dv' = (t_{ki} - s_{ki} + \lambda_{jik,j}) dv.
\]

For an unprimed quantity, an index following a comma represents partial differentiation with respect to \(x_j \), e.g. \(t_{ji,j} \equiv \frac{\partial t_{ij}}{\partial x_j} \).

Using (2.7) and (2.8), expression (2.6) becomes

\[
2E = \int_S \left[u_{i} t_{ji} + \phi_{ik} \lambda_{jik} \right] da_j
\]

\[
- \int_V \left[u_{i} t_{ji,j} + \phi_{ik} \left(t_{ki} - s_{ki} + \lambda_{jik,j} \right) \right] dv.
\]

Changing the surface integral to a volume integral, (2.9) becomes

\[
2E = \int_V \left[u_{i,j} t_{ji} + \phi_{ik,j} \lambda_{jik} - \phi_{ik} \left(t_{ki} - s_{ki} \right) \right] dv.
\]

Again we employ linear strain and microstrain measures

\[
e_{ij} \equiv \frac{1}{2} \left(u_{i,j} + u_{j,i} \right),
\]

\[
\varepsilon_{ij} \equiv \phi_{ij} + u_{j,i}
\]

\[
\gamma_{ijk} \equiv - \phi_{ij,k}
\]
introduced in [1]. With these, (2.10) now becomes

\[2E = \int_V \left[t_{ji} (2\epsilon_{ij} - \epsilon_{ij}) - \lambda_{jik} \gamma_{ikj} + s_{ij} (\epsilon_{ij} - \epsilon_{ij}) \right] dv. \]

(2.12)

Therefore, the strain energy density, \(W \), for the micromorphic material obtained by summing the strain energies of the constituents is

\[W = \frac{1}{2} t_{ji} (2\epsilon_{ij} - \epsilon_{ij}) - \frac{1}{2} \lambda_{jik} \gamma_{ikj} + \frac{1}{2} s_{ij} (\epsilon_{ij} - \epsilon_{ij}) \]

\[= (t_{ji} - \frac{1}{2} s_{ij}) \epsilon_{ij} + (\frac{1}{2} s_{ij} - \frac{1}{2} t_{ji}) \epsilon_{ij} - \frac{1}{2} \lambda_{jik} \gamma_{ikj}. \]

(2.13)

This expression can be shown to be equivalent to that given for the strain energy density, \(\Sigma \), in [2] (see appendix B).

Therefore, the total strain energy of the micromorphic body can be obtained by summing the strain energies of the constituents.
3. Extension of Clapeyron's Theorem to Micromorphic Theory

Proceeding in a manner similar to section 2, Clapeyron's Theorem can be extended to micromorphic theory.

According to Sokolnikoff [3] we have: Clapeyron's Theorem - If a body is in equilibrium under a given system of body forces \(F_i \) and surface forces \(T_{ij} = t_{ij} n_j \), then the strain energy of deformation is equal to one-half the work that would be done by the external forces (of the equilibrium state) acting through the displacements \(u_i \) from the unstressed to the stressed state, i.e.,

\[
2 \int \text{Wdv} = \int \int \rho' f'_{ij} u_i' \, dv' + \int \int t_{ij} u_i' \, da' .
\]

Applying the theorem to \(dv \) of the micromorphic body, and then summing over the complete body, we have (\(\rho' \) and \(f'_{ij} \) are the constituent mass density and body force per mass density respectively).

\[
2 \int \text{Wdv} = \int \int \rho' f'_{ij} u_i' \, dv' + \int \int t_{ij} u_i' \, da' .
\]

Note again that the tractions and \(u_i' \) are continuous across the surface of each \(dv' \). Using equation (2.1) we obtain

\[
2 \int \text{Wdv} = \int \int \left[u_i \int \rho' f'_{ij} \, dv' + \phi_{ik} \int \rho' f'_{ij} \, \xi_{ik} \, dv' \right]
\]

\[
+ \int \int \left[u_i \int t_{ij} \, da' + \phi_{ik} \int t_{ij} \, \xi_{ik} \, da' \right] .
\]

The definitions (2.7) and the following (also given in [1]) are applied.

\[
\int \rho' f'_{ij} \, dv' \equiv \rho f_{ij} \, dv,
\]

\[
\int \rho' f'_{ij} \, \xi_{ik} \, dv' \equiv \rho l_{ij} \, dv .
\]
\(\rho, f_i, \) and \(\lambda_{ik} \) are the mass density, body force per mass density, and first body moment per mass density respectively of the micromorphic material.

We have, therefore, the result

\[
2 \iiint_V W dV = \iiint_V [u_i \rho f_i + \phi_{ik} \rho \lambda_{ik}] \, dv \\
+ \iiint_S [u_i t_{ji} + \phi_{ik} \lambda_{jik}] \, daj
\] \hspace{1cm} (3.5)
4. Micromorphic Strain Energy Density in Terms of Constituent Properties

It has been shown in section 2 that the strain energy of a micromorphic body is equal to the sum of the energies of the constituents. That is, for the differential element, dv, shown in Figure 1,

$$Wdv = \int W'dv' .$$

(4.1)

W' is obtained from the classical relation

$$W' = \frac{1}{2} \lambda'e_{ii}'e_{jj}' + \mu'e_{ij}'e_{ij}' .$$

(4.2)

λ' and μ' are the Lamé constants for the constituent (the value of each depends on which constituent is present).

Carrying (2.3) into (4.2) we have

$$W' = \frac{1}{2} \lambda'u'_{i,i}u'_{j,j} + \frac{1}{2} \mu'((u'_{i,j}u'_{i,j} + u'_{i,j}u'_{j,i}) .$$

(4.3)

It is necessary to find an expression for $u'_{i,j}$ in terms of macro-quantities as is the case for u'^i_i introduced in [1], i.e.

$$u'_{i,j} = u'_{i,j}(x'_{j}, t) = u'_{i,j}(x'_{j}, t) + \phi_{ij}(x'_{j}, t)\xi_{i} .$$

(4.4)

If we consider $u'_{i,j}$ expressible as a function of (x'_{j}, t) then clearly for (4.4) to be valid, we must have

$$x'_{j} = x'_{j}(x'_{j}) , \quad \xi_{j} = \xi'_{j}(x'_{j}) .$$

(4.5)

Differentiating $u'_{i,j}$ by the chain rule gives

$$u'_{i,j} = \frac{\partial u'_{i,j}}{\partial x'_{k}} \frac{\partial x'_{k}}{\partial x'_{j}} + \frac{\partial u'_{i,j}}{\partial x'_{j}} \frac{\partial x'_{j}}{\partial x'_{j}}$$

$$= (\frac{\partial u'_{i,j}}{\partial x'_{k}} + \frac{\partial \phi_{i,k}}{\partial x'_{j}} \xi_{j}) \frac{\partial x'_{k}}{\partial x'_{j}} + \phi_{i,k} \frac{\partial \xi_{k}}{\partial x'_{j}} .$$
The following relationship between x'_i, x_i, and ξ_i is now used, [1].

$$x'_i = x_i + \xi_i.$$ \hfill (4.8)

Differentiating with respect to x'_j we have

$$\delta_{ij} = A_{ij} + H_{ij}.$$ \hfill (4.9)

or

$$H_{ij} = \delta_{ij} - A_{ij}.$$ \hfill (4.10)

Expression (4.6) for $u'_{i,j}$ now becomes

$$u'_{i,j} = (u_{i,k} + \phi_{i\ell,k} \xi_{\ell})A_{kj} + \phi_{ik} H_{kj},$$ \hfill (4.11)

In general, A_{kj} is a function of x'_j. However, an examination of the analysis which follows shows use of a non-constant value would give material moduli for the micromorphic material which are functions of position. That is, the material would not be homogeneous. We exclude this case and consider A_{kj} constant.
Using (4.11) and (4.3) in (4.1) we obtain

\[W_{dv} = \int \left\{ \frac{1}{2} \lambda^\prime [A_{ki}A_{mj} [u_{i,k}u_{j,m} + 2u_{i,k}^p, m^p - 2u_{i,k}^p] \right. \\
+ \phi_{i,l,k}^p, m^p \cdot m^p - 2\phi_{i,k}^p, m^p + \phi_{i,k}^p] \\
+ 2A_{ki}[u_{i,k} \phi_{jj} + \phi_{jj}^p, m^p - \phi_{jj}^p, k^i] \right. \\
+ \phi_{ii}^p \phi_{jj} \\
+ \frac{1}{2} \mu^\prime [A_{kj}A_{mj} [u_{i,k}u_{j,m} + 2u_{i,k}^p, m^p - 2u_{i,k}^p, k^j] \\
+ \phi_{i,l,k}^p, m^p \cdot m^p - 2\phi_{i,m}^p, m^p + \phi_{i,k}^p] \\
+ 2A_{kj}[u_{i,k} \phi_{ij} + \phi_{ij}^p, m^p - \phi_{ik}^p, i^j] \right. \\
+ \phi_{ij}^p \phi_{ij} \\
+ A_{k} A_{m} [u_{i,k}u_{j,m} + 2u_{i,k}^p, m^p - 2u_{i,k}^p, k^j] \\
+ \phi_{i,l,k}^p, m^p \cdot m^p - 2\phi_{jm}^p, m^p + \phi_{ik}^p] \\
+ 2A_{k} A_{j} [u_{i,k} \phi_{ij} + \phi_{ij}^p, m^p - \phi_{ik}^p, i^j] \right\} dv^\prime. \]
We note that \(u_i \), \(\phi_{ij} \), and their derivatives and \(A_{kj} \) are independent of the integration variables. The following integrals are introduced for convenience. Some of these will be evaluated explicitly later.

\[
\begin{align*}
\int \lambda' \, dv' & \equiv 2Bdv, \\
\int \mu' \, dv' & \equiv 2Cd\nu, \\
\int \lambda' \xi_m \xi_k \, dv' & \equiv 2D_{mk} \, dv, \\
\int \mu' \xi_m \xi_k \, dv' & \equiv 2E_{mk} \, dv, \\
\int \lambda' \xi_m \, dv' & \equiv 2F_m \, dv, \\
\int \mu' \xi_m \, dv' & \equiv 2G_m \, dv.
\end{align*}
\]

(4.13)

The micromorphic strain energy density now takes the following form.

\[
W = B \{ A_{ki} A_{mj}[u_i, k_{j,m} - 2u_i, \phi_{jm} + \phi_{ik}\phi_{jm}] + 2A_{ki} [u_i, k_{jj} - \phi_{jj}\phi_{ik}] + \phi_{ii}\phi_{jj} \} \\
+ C[A_{kj} A_{mj}[u_i, k_{i,m} - 2u_i, \phi_{im} + \phi_{ik}\phi_{im}] + 2A_{kj} [u_i, \phi_{ij} - \phi_{ik}\phi_{ij}] + \phi_{ij}\phi_{ij} \} \\
+ A_{kj} A_{mi}[u_i, k_{j,m} - 2u_i, \phi_{jm} + \phi_{ik}\phi_{jm}] + 2A_{kj} [u_i, \phi_{ji} - \phi_{ik}\phi_{ji}] + \phi_{ij}\phi_{ji} \} \\
+ D_{kp} A_{ki} A_{mj}[\phi_{il}, k_{jp,m}] \\
+ E_{kp} A_{kj} A_{mj}[\phi_{il}, k_{ip,m}] + A_{kj} A_{mi}[\phi_{il}, k_{jp,m}] \\
+ F_{kp} A_{ki} A_{mj}[2u_i, k_{jp,m} - 2\phi_{ik}\phi_{jp,m}] + 2A_{ki} [\phi_{jj}\phi_{ip,k}] \\
+ G_{kp} A_{kj} A_{mj}[2u_i, k_{ip,m} - 2\phi_{im}\phi_{ip,k}] + 2A_{kj} [\phi_{ij}\phi_{ip,k}] \\
+ A_{kj} A_{mi}[2u_i, k_{jp,m} - 2\phi_{jm}\phi_{ip,k}] + 2A_{kj} [\phi_{ji}\phi_{ip,k}] \}.
\]

(4.14)
Expression (4.14) must now be compared with the linearized form of the theory developed by Eringen and Suhubi [1], [2]. In that development, the strain measures defined by (2.11) are utilized. The most general expression for \(W \) in the linear theory of micromorphic elastic solids must be a quadratic expression in these strain measures. Therefore,

\[
W = \frac{1}{2} c_{ijkl} \varepsilon_{ij} \kappa_{kl} + \frac{1}{2} b_{ijkl} \varepsilon_{ij} \kappa_{kl} + \frac{1}{2} a_{ijklmn} \gamma_{ijkl} \gamma_{klmn}
\]

\[+ d_{ijklmn} \varepsilon_{ij} \gamma_{klm} + f_{ijklmn} \gamma_{ijkl} \gamma_{klm} + g_{ijkl} \varepsilon_{ij} \kappa_{kl} \tag{4.15}\]

where the following symmetries must hold.

\[c_{ijkl} = c_{klij} = c_{jikl},\]

\[b_{ijkl} = b_{klij},\]

\[a_{ijklmn} = a_{kmlnjk},\]

\[f_{ijklmn} = f_{ijkmnl},\]

\[g_{ijkl} = g_{ijlk}.\]

Substituting (2.11) into (4.15) and comparing with (4.14), it is found that the symmetry conditions, (4.16), are satisfied if \(A_{ij} \) is of a special form, namely

\[A_{ij} = A \delta_{ij}.\]

This is a sufficient condition and has not been shown to be a necessary condition. Further investigation into the generality of \(A_{ij} \) is needed.

With (4.17) imposed, the following expressions are found for the constants in (4.15).
For the case where the micromorphic material is isotropic, the following conditions must be imposed.

\[F = G = 0, \]
\[D_{ij} = D_{ij}, \]
\[E_{ij} = E_{ij}. \] (4.19)

Using (4.17) and (4.19), expression (4.14) can be compared with the expression of energy for a linear isotropic micromorphic material [2, pp. 396, 397]. The material moduli of Eringen and Suhubi, \(\lambda, \mu, \eta, \tau, \sigma, \nu, \kappa, \tau_1, \tau_2, \ldots, \tau_{11} \) in terms of the constituent properties are found to be

\[\lambda = 2(2A-1)^2B, \quad \mu = 2(2A-1)^2C, \]
\[\tau = 2(2A-1)(1-A)B, \quad \sigma = 2(2A-1)(1-A)C, \]
\[\eta = 2A(1-A)B, \quad \nu = 2A(1-A)C, \]
\[\kappa = 2A(1-A)C, \quad \tau_6 = 2A^2D, \]
\[\tau_7 = 2A^2E, \quad \tau_{11} = 2A^2E, \]
\[\tau_i = 0 \quad (i = 1, 2, 3, 4, 5, 8, 9, 10). \] (4.20)
Expressions for B, C, D, E and the inertia term, ρI_o, which appears in [1] and [2] are now considered for a material made of two constituents. The following operations may be performed on (4.13)\textsubscript{1}.

\[
\int \lambda' dv' = \sum_{p=1}^{2} \int \lambda_p dv' = \lambda_1 \int dv' + \lambda_2 \int dv' = \lambda_1 dv_1 + \lambda_2 dv_2
\]

where λ_1 and λ_2 are the first Lamé constant of materials 1 and 2 respectively.

Let ζ be the volume density of material 1. Then

\[
\zeta = \frac{\text{Volume 1}}{\text{Total Volume}} = \frac{dv_1}{dv}, \quad 1-\zeta = \frac{\text{Volume 2}}{\text{Total Volume}} = \frac{dv_2}{dv}.
\]

Therefore,

\[
2B dv = [\lambda_1 \zeta + \lambda_2 (1-\zeta)] dv,
\]

or

\[
2B = \lambda_1 \zeta + \lambda_2 (1-\zeta).
\]

In a similar manner, one obtains (μ_1 and μ_2 are the second Lamé constant for materials 1 and 2 respectively)

\[
2C = \mu_1 \zeta + \mu_2 (1-\zeta).
\]

It is thus seen that 2B and 2C are determined by the "Rule of Mixtures".

Consider now the following operations on (4.13)\textsubscript{3} for the isotropic microelastic material.

\[
2D_{m k} dv = \int \frac{\lambda' \xi_m \xi_k dv'}{dv} = \sum_{p=1}^{2} \int \frac{\lambda_p \xi_m \xi_k dv'}{dv}.
\]
\begin{equation}
= \lambda^1 \int_{\text{dv}_1} \xi_m \xi_k \text{dv}' + \lambda^2 \int_{\text{dv}_2} \xi_m \xi_k \text{dv}'
\end{equation}
(4.26)

\begin{equation}
= 2[\lambda^1 Q + \lambda^2 R] \delta_{mk} \text{dv}
\end{equation}

where

\begin{equation}
2Q \delta_{mk} \text{dv} \equiv \int_{\text{dv}_1} \xi_m \xi_k \text{dv}', \quad 2R \delta_{mk} \text{dv} \equiv \int_{\text{dv}_2} \xi_m \xi_k \text{dv}'.
\end{equation}
(4.27)

Therefore,

\begin{equation}
D = \lambda^1 Q + \lambda^2 R.
\end{equation}
(4.28)

In a similar manner one can obtain

\begin{equation}
E = \mu^1 Q + \mu^2 R.
\end{equation}
(4.29)

Noting that the inertia term, \(p I_o\), is given by [1]

\begin{equation}
p I_o \delta_{mk} \text{dv} \equiv \int_{\text{dv}} p' \xi_m \xi_k \text{dv}',
\end{equation}
(4.30)

one obtains (\(p^1\) and \(p^2\) are the mass densities for materials 1 and 2 respectively)

\begin{equation}
p I_o = 2[p^1 Q + p^2 R].
\end{equation}
(4.31)

This completes the determination of the micromorphic material constants and \(p I_o\) for a two constituent material. All quantities except \(A, Q,\) and \(R\) can be found once \(\xi, \rho^1, \rho^2, \lambda^1, \lambda^2, \mu^1,\) and \(\mu^2\) are given. \(A, Q,\) and \(R\) are left for experimental investigation.

A physical interpretation of \(A\) can be made. Conditions (4.17) and (4.10) used in (4.7) give

\begin{equation}
\frac{\partial x_k}{\partial x'_j} = A \delta_{kj}, \quad \frac{\partial \xi_k}{\partial x'_j} = (1-A) \delta_{kj}.
\end{equation}
(4.32)
Integration, setting the arbitrary integration constants equal to zero gives

\[x_k = Ax'_k, \quad \xi'_k = (1-A)x'_k. \quad (4.33) \]

When \(A \) goes to unity, \(\xi'_k \) goes to zero and \(x'_k \) becomes \(x_k \). Then, from (4.27), \(Q \) and \(R \) become zero, and therefore, from (4.28) and (4.29), \(D \) and \(E \) become zero. Looking at (4.20), it is seen that all constants except \(\lambda \) and \(\mu \) go to zero. \(\lambda \) and \(\mu \), however, are calculated by the "Rule of Mixtures" and are actually just the Lamé constants for the material which now behaves as a classically elastic material.

It appears then that \(A \) is a measure of whether a material behaves as classically elastic or exhibits other phenomena. Also, since \(A \) relates \(x_k \) to \(x'_k \), it appears to be a measure of how large \(dv \) (which is actually considered finite) must be taken such that averaging is possible—however, there must be a limit to how large \(dv \) can be taken. With the above considerations in mind, it is conjectured that

\[1 \leq A \leq M, \quad (4.34) \]

where \(M \) is some finite value.

\(A \) is probably very close to unity since most tensile tests on composite materials give close agreement with the "Rule of Mixtures" values.

As a final step, using (4.20), the linear isotropic micromorphic displacement equations of motion [2] may be written as

\[
\begin{align*}
2A^2(B+C)u_{k,k\ell} & + 2A^2Cu_{\ell, kk} + 2A(1-A)B\phi_{kk, \ell} \\
+ 2A(1-A)C(\phi_{kk} + \phi_{k\ell}),_k + \rho f_\ell &= \rho u_\ell \\
2A^2(D+E)\phi_{km, k\ell} & + 2A^2E\phi_{km, kk} - 2(A-1)^2B\phi_{kk, m\ell} \\
-2(A-1)^2C(\phi_{m\ell} + \phi_{\ell m}) & - 2A(1-A)Bu_{k, k\ell} \delta_{m\ell} \\
-2A(1-A)C(u_{m, \ell} + u_{\ell, m}) & + \rho \ell_{\ell m} = \rho I_0 \phi_{\ell m}.
\end{align*}
\]
Acknowledgement

This work was supported by the National Aeronautics and Space Administration under Contract Number NASw-1589 with General Technology Corporation.

The author wishes to thank Mr. T. Y. Chang for checking part of the analysis, Dr. E. S. Suhubi for contributing the proof in Appendix B, and Dr. L. M. Habip and Dr. A. C. Eringen for helpful discussions.
References

Appendix A

I) \[\int_V \int_{\mathcal{J}_{ij,j}} t'_{ij,j} \, dv' = \int_S \int_{\mathcal{J}_{ij,j}} t'_{ij,j} \, da' \]

\[= \int_S t_{ij,j} \, da_j = \int_V t_{ij,j} \, dv . \]

Therefore,

\[\int_V t_{ij,j} \, dv' = t_{ij,j} \, dv . \]

II) \[\int_V \int_{\mathcal{J}_{ij,j}} t' \xi_k \, dv' = \int_V \int_{\mathcal{J}_{ij,j}} (x'_{k} - x_k) \, dv' \]

\[= - \int_V x_k \int_{\mathcal{J}_{ij,j}} t'_{ij,j} \, dv' + \int_V \int_{\mathcal{J}_{ij,j}} x'_{k} \, dv' \]

\[= - \int_V x_k t_{ij,j} \, dv + \int_V \int_{\mathcal{J}_{ij,j}} [(t'_{ij,j} x'_{k})' \, j - t'_{kj}] \, dv' \]

\[= - \int_V x_k t_{ij,j} \, dv + \int_S \int_{\mathcal{J}_{ij,j}} x'_{k} \, da' \, j + \int_V s_{k} \, dv \]

\[= - \int_V x_k t_{ij,j} \, dv + \int_S x_k t_{ij,j} \, da' \, j + \int_S t_{ij,j} \xi_k \, da' \, j \]

\[- \int_V s_{k} \, dv \]

\[= - \int_V x_k t_{ij,j} \, dv + \int_V x_k t_{ij,j} \, dv + \int_V \lambda_{ik} \, da' \, j - \int_V s_{ij} \, dv \]

\[= - \int_V x_k t_{ij,j} \, dv + \int_V x_k t_{ij,j} \, dv + \int_V t_{ki} \, dv \]

\[+ \int_V \lambda_{ij} \, dv - \int_V s_{ki} \, dv \]

\[= \int_V (t_{ki} + \lambda_{ij} - s_{ki}) \, dv . \]
Therefore,

\[\int_{dV} t'_{j_i, j_k} dV' = (t_{ki} + \lambda_{jik,j} - s_{ki}) dV. \]
Appendix B

A comparison of expressions can be made in the following way.

In the linear theory of [1] and [2], the stress components are given in terms of the derivatives of the strain energy density.

\[t_{kl} = \frac{\partial \Sigma}{\partial \varepsilon_{kl}} + \frac{\partial \Sigma}{\partial \varepsilon_{lk}} \]
\[s_{kl} = \frac{\partial \Sigma}{\partial \varepsilon_{kl}} + \frac{\partial \Sigma}{\partial \varepsilon_{lk}} + \frac{\partial \Sigma}{\partial \gamma_{lm} \varepsilon_{kl}} \]

\[\lambda_{klm} = -\frac{\partial \Sigma}{\partial \gamma_{lk}} \]

Therefore, we obtain

\[t_{kl} - \frac{1}{2} s_{kl} = \frac{1}{2} \frac{\partial \Sigma}{\partial \varepsilon_{kl}} + \frac{1}{2} \left(\frac{\partial \Sigma}{\partial \varepsilon_{kl}} - \frac{\partial \Sigma}{\partial \varepsilon_{lk}} \right) \]

\[s_{kl} - t_{kl} = \frac{\partial \Sigma}{\partial \varepsilon_{lk}} \]

Then,

\[(t_{ji} - \frac{1}{2} s_{ij}) \varepsilon_{ij} + \frac{1}{2} (s_{ij} - t_{ji}) \varepsilon_{ij} - \frac{1}{2} \lambda_{jik} \gamma_{ikj} \]

\[= \frac{1}{2} \frac{\partial \Sigma}{\partial \varepsilon_{ij}} \varepsilon_{ij} + \frac{1}{2} \frac{\partial \Sigma}{\partial \gamma_{ij}} \varepsilon_{ij} + \frac{1}{2} \frac{\partial \Sigma}{\partial \gamma_{ikj}} \gamma_{ikj} = \Sigma \]

The last equality is obtained from Euler's relation for homogeneous functions [4] since \(\Sigma \) is homogeneous quadratic in its arguments.