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Abstract

The representation of a magnetic field by the cross-product of the gradients

of two scalars has recently seen wide use in plasma physics and in the studyof

energetic particles in space. The properties of such a representation are re-

viewed, and as an example of its application, the first-order guiding center mo-

tion of a charged particle in a time-independent magnetic field is derived in

canonical form.
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"From my earliest experiments on the relation
of electricity and magnetism, I have had to think and
speak of lines of magnetic force as representations
of the magnetic power; not merely in the points of
quality and direction, but also in quantity"

Michael Faraday, Experimental Researches
in Electricity, § 34.

"As I proceeded with the study of Faraday, I
perceived that his method of conceiving the
phenomena was also a mathematical one, though
not exhibited in the conventional form of mathe-
matical symbols. I also found that these methods
were capable of being expressed in the ordinary
mathematical forms..."

James Clerk Maxwell, Preface to "A Treatise
on Electricity and Magnetism", 1873

I. General Properties

Introduction

The concept of magnetic field lines is to a large degree due to Michael

Faraday. Faraday's views were often more intuitive than mathematical, and he

regarded magnetic field lines (or to use his term, magnetic lines of force) as a

useful way of visualizing the magnetic field. Later generations of scientists,

more inclined towards mathematical abstraction, replaced Faraday's qualitative

description with the more precise terms of vector fields and of vector and scalar

potentials, relegating the use of field lines mainly to elementary textbooks.

Recently, however, there has arisen renewed interest in such lines, following

investigations of charged particle motion in magnetic fields and of plasma
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phenomena, effects in which the configuration of field lines is significant. The

purpose of this article is to describe a mathematical tool which is appropriate

for such applications and to review some of its uses.

Euler Potentials

A general vector field in three dimensions requires 3 scalar functions of

position for its description, but the magnetic field B requires only two, since it

satisfies 0 • B = 0 (in this work, B rather than H will be regarded as the field

vector). One such representation (which can be shown to be generally possible

at least locally) is

B = Ga x 0^
	

(1)

The scalars a and 8 are termed Euler Potentials. They naturally lead to

the vector potential

A = a 0/3

satisfying the gauge condition (A • B) = 0. Clearly, they are far from unique,

for an arbitrary function of a can always be added to 8, or vice versa. More

generally, given the Euler potentials (EP) a and ^3, one can show by inspection

that any pair of functions u (a, 8) and v(a, 8) may replace them in Equation (1),

provided

a (u , v )/ a ( a , ^3) = 1	 (2)

A necessary (though not sufficient) condition for a and 8 to satisfy eq. (1)

is that they be independent solutions of the same linear partial differential equation
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B Vu	 = 0

B V,8	 = 0

Since Va and 0,8 are perpendicular to B, surfaces of constant a and a are

tangential to he field at all points, and the same golds for the lines along which

such surfaces intersect. Such lines are therefore magnetic field lines.

Suppose that we know the EP representing a given field in some region in

space. We then have two families of surfaces

a(x, y, Z) = al

,8 ( x + Y, Z ) = 8i

Each field line in the region is the intersection of two surfaces, one from

each family. It is consequently characterized by two parameters (a i ,/3 i ),

equaling the constant values assumed by a and ^3 along it. In this manner, a

formulation of the field in terms of EP affords a direct representation of the

field lines, in a way not possible with the ordinary vector potential A.

A Short History

Long before the nature of magnetic fields was understood, mathematicians

investigated the velocity field v of incompressible fluids, which is likewise

solenoidal, since the equation of continuity then reduces to

V • v = 0

The field lines of v are usually termed streamlines. Leonhard Euler(i)

was the first to introduce into the description of v 'stream functions" F and G
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which are conserved along streamlines (Figure 1). Because of the difficulty in

deriving such functions explicitly, subsequent developments of fluid dynamics

showed relatively little interest in the representation of streamlines. An excep-

tion was the Stokes stream function (2) , derived by Sir George G. Stokes early in

his scientific career (3) , which gives streamlines in the more tractable case of

axisymmetrical flow.

The first application of EP to magnetic fields is due to Sweet (4) and was

continued by Dungey (5). In a work on solar magneto-hydrodynamics, Sweet

represented the field as

B = F(0(t x V^)	 (4)

with F a function of position. The functions ^p and V) are evidently conserved

along field lines, and must therefore be functions of the EP. Indeed, if one re-

places (a, 8) in eq. (1) by two functions cp(a, l3) and 4)(a, ,8) not bound by eq. (2),

one obtains a relation of the above form, with F equaling the jacobian. Pairs of

functions such as (P and q will be termed unmatched EP: the cross product of

their gradients is parallel to B, but not proportional to it in magnituO.

The use of EP as given in eq. (1) originated in investigations of charged

particle motion by Northrop and. Teller ( ') , Gray,") , Gardner (9) , Ray( 10) and

others. It has become customary to designate them in that case by a and f3; if

one of the potentials can be derived in a straightforward manner from considera-

tions of symmetry (e.g. the azimuth angle <P in axisymmetrical fields) the

symbol /3 is usually reserved for it.
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While there has been considerable uniformity in notation, less of it exists

in terminology (and on one occasion, at least O 1) , the symbol a has been used as a

name). Grad has referred to a and k as "Euler Stream Functions" (1) and "Flux

Coordinates" (8) , while Truesdell, in a work on fluid dynamics("), has called them

"Euler's Potentials". Most authors, by and large, have studiously avoided using

any special name.

Mention may als,) be made here to the term "Monge Potentials", applied to

functions (a, 8, y) in the decomposition of an arbitrary vector field V in the form

V = (Da X V 13) + oy	 (5)

which is implied in a 1784 work by Gaspard Monge. By this definition, a and R

could be called Monge potentials. However, the application of eq. (5) to divergence-

free fields is particularly ambiguous. For instance, the main geomagnetic field

created by sources in the earth's interior can be represented either as

B = -Vy	 (6)

(the customary representation, with y expanded in spherical harmonics), or by

means of a cross product as in eq. (1), and of course by a large variety of ex-

pressions containing terms of both types as well.

In order to avoid such ambiguities, it appears best to use a special term

for a and 8 in divergence-free fields. The term Euler potentials, recently in-

troduced in work on the geomagnetic field, seems to be the most appropriate

here, giving credit to the originator of the formulation and at the same time

stressing that it provides a representation of the field by means of auxiliary
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functions, equivalent to that provided by the vector potential A or (in source::-free

regions) by the scalar potential y.

Properties of Euler Potentials

Given the magnetic field B in the region surrounding a point P, it is always

possible, in principle, to derive a set of Euler potentials describing it in some

vicinity of the point. The proof of this ( 13) will now be sketched.

The linear homogeneous partial differential equation (3) admits, in the

vicinity of P, two independent solutions. Let u and v denote two such solutions

(obviously, any well-behaved function f (u, v) is also a solution). Since they are

independent, they may be supplemented by a 3rd function w so that (u, v, w) can

be used as curvilinear coordinates in the vicinity of P.

Since vu and Vv satisfy (3), their cross product is tangential to B and

satisfies (4)

B = F(Du x Vv)

The divergence-free character of B limits the choice of F;

0 • B = 0	 (a F/ a w) Vw • (Vu X Vv)

_ (aF/dw) o(w,u,v) /a(x,y,z)

Since the functions are independent, the derivative of F must vanish, so

that F is a function of (u, %,) alone. One may now form

X(u, v) = r F(u, v')dv'
°o
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with v U some arbitrarily chosen constant. Then

V X - &Vu + F(u, v) Vv

with k some irrelevant function related to v o . The function X constructed in

this manner is thus indeed the EP matching u, which completes the proof.

For certain symmetrical fields, Euler potentials are readily obtained. For

instance, for a poloidal axisymmetric field (e.g. that of a dipole), the vector po-

tential may be chosen in the azimuthal direction

A = A(r, d) ¢

leading to the choice

a = A(r, d) r sin d

(7)

Similarly, one may represent by Euler potentials pure toroidal fields

B = V x r^ = V^ x V( r 2/ 2)

and two -dimensional fields (with neither dependence on cartesian z nor a com-

ponent in its direction)

B = V x A Z = VA(x, y) x Vz

In more general cases, however, the analytic derivation of EP is gaite d."ffi-

cult, since they enter eq. (11) in a nonlinear fashion involving products of deriva-

tives. This non-linearity prevents the superposition of solution (and thus the
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knowledge of EP for B 1 and B 2 does not help one find those of [B 1 + B 2 ] ), except

for the ^3se when the superposed fields all have one Euler potential in common

— e.g., when they all belong to one of the symmetric classes previously listed.

In fields deviating only slightly from symmetry, perturbation techniques may be

employed, and these have been successfully used in connection with the repre-

sentation of the main geomagnetic field(14).

The non-linearity is a distinct disadvantage compared with the ordinary

vector potential A which may be derived by linear superposition of contributions

from the various field sources, thus providing a general "brute force" method of

numerical derivation. However, as will be shown in what follows (and may, in-

deed, be inferred from the existence proof), somewhat similar methods also do

exist for Euler potentials.

Supposo that one is given the line pattern of a magnetic field in a certain

region, as well as the fielt; B on some surface a through which each field line

in the region passes exactly once. In that case, we shall now show, there exists

a numerical procedure for deriving a and ,, which, indeed, could be the most

straightforward way of obtaining B from such data.

The problem, incidentally is not without practical interest. Consider the

earth's magnetic field: one can observe it with great precision over the earth's

surface, while satellite observationsO5> provide us with a general field line

pattern (influenced by factors that are not too we:i understood) far away from

earth (the satellites also give information about the field's magnitude, but due to

the steep intensity fall-off and the appreciable variations observed, such informa-

tion tends to be less useful). The problem of reconstructing the field on the basis
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of such information is very similar to the one previously described, except that

due allowance must be made for the fact that most field lines cross the earths

surface twice.

Let (X, µ, v) be curvilinear coordinates, such that the surface o , is charac-

terized by a constant value v o of v (for the case of the magnetic field observed

outside a spherical earth, v will be the radial distance r or some function of it).

Then surface points may be labeled by two functions of the remaining coordinates,

e.g. by

U = u (^,, µ)

V = v (A, µ)

Since the field line pattern is given, one may associate with each point in it

two quantities U and V, equal to the values of u and v at the intersection with Q

of the field line passing through the point. By this definition, U and V are spatial

functions, numerically derivable and having the property

U ( X , ^,, vo) = u ( X , 4)

V(" /u ' vo) — V (X ,u)

Both U and V are conserved along field lines and thus constitute a set of EP, in

general unmatched. For some particular choices of (u, v), however, they will be

matched, and it will be now shown that such choices can be obtained using only

information about the field on a .

Given an unmatched set (U, V), let [U, ^(U, V)J be a matched one; then the

grid on generated by [u , /3(u, v)] g( nerates matched potentials. On , every
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vector quantity may be resolved into components tangential and normal to

the surface, denoted by subscripts ii and L respectively, with the latter com-

ponent oriented along Vu. One gets

B r = Ca '8 	 V) I VU " x VV„] ,
The gradient components involved in the cross product are readily derived

from the known functions u and v, since (^,, µ, v not necessarily orthogonal)

Vu„ _ ( aU / ak), V ^„ + ( au / a '"), V^”'

( aU / a '\. ) Vk „ + (au/au) o^U„

anc? similarly for V. Since B on o- is assumed given, one may derive a function

of u and v (to which U, V reduce on u)

f (u, v) = (B ,̂/ IVUII x VVii] ,

and obtain R by integration

13(u, v) = f f (u, v') dv'

This gives 8 within an arbitrary function of u, but such a function does not con-

tribute to the cross product.

The preceding existence proof and construction methods, unfortunately, are

only valid locally, enabling one to derive (a,,8) only in some neighborhood of a

given point and not necessarily for all space or even for the entire region of in-

terest. When one attempts to extend such construction over larger regions, one

often finds that the EP are no longer single valued.
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As an example ( , consider the field of a current in a ring filament. This

field is axisymmetrical, its a-surfaces are toroidal rings nested inside each

other (all of them enclosing the conductor) and its 3-surfaces are meridional

planes. By adding an infinitely long current filament perpendicular to the ring

and passing through its center, the field lines acquire a slant, causing each to

spiral around the ring (figure 2).

Let a point P be given in this field, and let Euler potentials (a, ^) be derived

(numerically or otherwise) in some small region T surrounding it. This labels

each field line with a pair of numbers, and one may extend this labeling to points

outside T by simply following labeled field lines after they have left the region.

Ultimately, however, these field lines will have circled the central wire and will

have returned into T, encountering previously labeled points, in general with

different values of (a,,8). Such points will then have more than one pair of values

(a, 6) associated with them; the number of such pairs can usually be made arbi-

trarily large by taking into account field lines that have circled the wire more

than once.

Mathematically, this ambiguity can be sidestepped by introducing a cut —

a surface of discontinuity at which the labeling is artificially terminated. In the

example cited, the r'ane surface (or any other) bounded by a suitable section of

the ring and two radii can serve this purpose, so that each (a, J) line begins on

the surface and ends there as well.

In actual practice, this artifice has limited value, for given problems often

involve following field lines for long distances 1 7> 18> . For example, particles
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trapped in a stellarator field (which resembles that of Fig. 2) may, under

suitable conditions, execute many circuits around the central wire while following

a field line. One may still use a surface of discontinuity to achieve unique char-

acterization; on such a surface, then, to each (a, ^) line-segment corresponds

some point P. After one circuit, the representative point is usually shifted some

distance, so that one can regard each circuit as a mapping of one point on the

surface into another, and repeated circuits as iterated mappings. The study of

long-term behavior of field lines — at least, in situations where the above-

mentioned shift is not too wild — is then transformed into an analysis of iterated

mappings (19) (20).

As was noted before, Euler potentials are useful in problems where the

physical situation involves the field line configuration. In such cases it often

turns out that the equations are easier to handle when of the 3 coordinates of

position needed to define a point in space, two are chosen as its Euler potentials

a and 8. The 3rd coordinate is usually chosen as the distance s along a field

line, measured from some arbitrary surface.

By its definition, Os has a component of magnitude unity along B. However,

it is not generally parallel to B: if it were, this would mean

B = XOs

B • (P x B) = 0

a condition not always fulfilled. A transformation of (a,,8) will not in general

affect s, since that latter quantity depends only on the field line structure, not

Sip _t,
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on its representation by Euler potentials. Similarly, without affecting the EP, s

may be transformed by changing the surface from which it is measured. The

general form of such a transformation is

S - s' = s + f (a, ,a)

with f an arbitrary function.

With these preliminaries, we now proceed to an example of the application

of Euler potentials.
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H. Annlication

Guiding Center Motion

As an example of the application of Euler potentials we shall now carry out

the canonical derivation of the nonrelativistic guiding center motion of a charged

particle, following a course outlined in general form by Gardner (9).

Consider a particle of change a and mass m in a time-independent magnetic

field that is given in terms of Euler potentials, with canonical variables of posi-

tion x i and their conjugate cononical momenta II i . The Hamiltonian will be

H
 =I

( 	 l
H - ( e/c)UV '81

2
 / 2m	 (8)

We assume that the Euler potentials a and 8, as well as the arc length s

along field lines are known functions of the x i . Following Gardner, we introduce

a canonical transformation to variables (Q i , P i ) , generated by

F(xi ,Pi ) = sP2 +,6P1 + aP3 - (c/e) P 1 P3	 (9)

From the transformation equations

Qi = a F / a P i 	(10)

One obtains

	

a = (c/e) P 1 + Q3 	(11)

	

= Q 1 + (c/e) P3	 (12)

S = Q2	 (13)
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while the remaining equations

Ili. = a F/ a x,	 (14)

yield, when substituted in (8)

'	 H = (1/2m) 
I 

P 2 Vs - (e/c) Q3 Dpi + P 3 Da } 2 	(15)

Homogeneous Field

Assume at first that the field is in the z direction and has a constant in-

tensity B. We may then take

a = x

,Q = B y	 (16)

s = z

The Hamiltonian separates into two parts, representing motion parallel and

perpendicular to the field

H _ (1/2m) P2 = E^^	 (17)

H, _	 /2m) 
I 

( eB /c) 2 Q3 + P3 t = E,	 (18)

The parallel part simply gives constant motion along the z axis

P 2 = m VII = constant	 (19)

while H, resembles the HamiltoniLn of the harmonic oscillator and yields
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P3 = (2 m E, ) 'A cos wt	 (21)

where

w = e B/m c	 (22)

is the well-known gyration frequency and R  is the particle's gyration radius.

The motion is periodic, and the associated action variable is

J = f P3 dQ3 = 277E /w	 (23)

Let

W = WO (Q3' J) - E, t	 (24)

be the solution of the Hamilton-Jacobi equation for H; WO generates a transfor-

mation to action-angle variables (J, i) and satisfies

(eB/c) 2 Q3 + (aW0 /aQ3 ) 2 = 2m ET	(25)

from which (J substituted for E, )

Wo = J { (JBe/7rc) - (eB/c) 2 Q3 	 dQ3	(26)

Differentiation beneath the integral sign gives

0 = aWo /aJ = (27x)' 1 aresin Q3 (7reB/Jc)'h	 (27)

which, compared to (20), identifies 27Tfl as the accumulated gyration angle, so

that Q grows linearly in time and increases by 1 each period, as required of a

canonical angle variable.
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Both P 1 and Q 1 are absent from either of the Hamiltonians, showing that

they are constant. By equations (11) and (12), they may be identified with (e/c) a

and /3 of the field line around which the particle spirals. In what follows, the

poin'i

(a„ Q, s) = ((c/e)Pi , QV Q2 )

around which the particle instantaneously revolves will be termed its guiding

center and quantities associated with it will be distinguished by subscript zero.

Inhomogeneous Field

In an inhomogeneous field, one can define w and R  at every point by using

the local value of B. Suppose next that the ratio of R Q to the scale L on which the

field varies — a ratio which will be loosely designated by E — is everywhere

much less than unity; this occurs when either the extent of the inhomogeneity or

the perpendicular energy E, is small. Then to lowest degree of approximation,

the particle on its local scale senses a homogeneous field, and its motion is the

same as derived in the preceding section, with its canonical variables and

guiding center defined as before.

To obtain a better approximation, one has to take into account the variation

of field quantities over the course of a gyration, and this is usually done by ex-

panding them around the guiding center. If 8Q is the value of Q at the guiding

center, the expansion of a function f(,3) would be, by eq. 11

f 0) - f (,aQ ) + ( c/e) P3 ( a f/a/3) ¢ + ...	 (28)
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Here P 3 is of order R 9 while f /(a f/ag) is of order L, so that the ratio of

the terms is O(E) and, under the assumption made, the series provides a good

approximation. The approximation is even better (by one order of E ) when we

consider quantities averaged over one gyration, since in homogeneous fields

such averages vanish and in slightly inhomogeneous ones it seems logical (and

may be shown) that they are no larger than O (E ). The gyration-averaged ratio

of the terms in (28) is thus 0 (E 2).

By the same reasoning, since in a homogeneous field a and C of the guiding

center are conserved, in a slightly inhomogeneous field their deviation from

their initial values (a 0 , f30 ) will be O(E ), as long as the time scale is not too

large. All this will be assumed a-priori in the following calculation but will

also be borne out by the final results.

To extend the canonical formalism to slightly inhomogeneous fields, one

replaces the transformation generator of eq. (9) by

F(x i , P i ) = s o P 2 + /3P 1 + aP3 -'h ^P3 - (c/e) P 1 P3 	(29)

where s is replaced by

so = s -( a -ao)a-(^- f%) b 	 (30)

and

a	 ^	 B-2 1 (VN)2 (V s VU) - (VU Oti) ( V S 0'8) 1

b	 B-2 (Va)2(VS V %8) - (VU V ,8)(VS Va) 1	 (31)



Retracing the transformation equations

(c i e) P 1 + Q3 + /. P3	 (32)

fs = Q1 +	 P3	 (33)

So - Q2
	 (34)

and

2
H	 (1,'2m) { P2 Vs o - (e 	 AP3 ) VP + P3 Vu - ii2 P3 Vii	 (35)

Let H U denote that part of the Hamiltonian that is contributed by the scalar

products (Vs 0) 2 , (VU)2, (V/3) 2 and (Vu • VN). Using

B2 = ( 'J a) 2 ( Vp ) 2 - ( Vu ' 73)2	 (36)

one finds

	

Ho = (1%2m) i P2 (Vs o ) 2 + (e /c) 2 (Vtij 1Q3	 + P3 B 2%(V/3) 2 }	 (37)

The remaining terms in H can be classified by the scalar products which

they contain, of which there exist 6. It will now be shown that these terms are

all of a lesser order of magnitude than those contained in Ho.

Consider first the terms involving (Vs o • Va) and (V so • V,5). If B is the

unit vector in the fields direction, one finds
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Os o = B - (a - ao ) Da - ( )3 - 80 ) Vb

B + 0(E)	 (38)

Thus these terms are 0(E) — and, sin^.e they turn out to have factors of Q3

or P31 their averages are 0 ( E 2 ). The reason for replacing s with s o now

becomes evident: in a slightly inhomogeneous field, the term P 2 Vs in (15)

usually does not represent the momentum component parallel to B, whereas

the term P 2 V s 0 in (35) does, to the lowest order of approximation.

The other terms all involve ` k, which is of order L- 1 , and they therefore

belong to the same order, except for the term involving (0^) 2 , which is 0(E 2)

even without any averaging. To this collection of O(E) terms with 0 ( E 2 ) averages

we new add several others by expanding the functions of position contained it Ho

around the guiding center in the general manner of eq. (28) , using the relatii: 1-a

(32) and (33). Only the lowest order terms of this expansion are retained in H o .

If we wish to solve the motion in Q 3 and P 3 to order E — for instance, to

derive the first-order correction to the magnetic moment (see later) — the

higher order terms have to be retained and no averaging is permitted. Such a

calculation, obviously, is quite lengthy. Here, instead, we shall only investigate

the average first-order motion of the guiding center coordinates, in which case

H o is all that is needed. We begin with a transformation to new canonical

variables

(J, 0, P 1 , q 1 , P 2 , q2)

with a generator that is a cross between the one of eq. (26) and that of the

identity transformation, namely

20



W(p, Q) =	 e (Oj3) /cB f JBc /Ire 0	
^h d
	 +	 +	 392	

3 l^	
( ^) 2 - Q3 1	 Q3	 P 1 Q 1	 P 2 Q2 ( )

where B and (0/3) 2 are defined for mixed guiding center variables

a = cpl/e

Q1

SO	
Q2

Applying

P3 = a"%

one finds that the terms in H o involving P3 and Q 3 condense to

JBe /7rc = µB
	

(40)

The expression obtained for ^'z resembles that of (27), except that B there

is replaced by (oa) 2 /B.

To obtain the rest of the variables, one first has to derive the integral I1

in (39). One gets two terms — one containing a factor Q 3 , the other proportional

to ^. Fortunately, in the coefficient multiplying the latter term, the dependence

on position cancels out, so that when one derives quantities such as

P1 = aW/aQl

I 1 contributes no terms proportional to 0, only such ones that resemble in form

the second part of (28), i.e. of order E with 0(E 2 ) averages (a possible vanishing
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denominator also cancels). Apart from such terms, which will be neglected,

the remaining new canonical variables are the same as the corresponding old

ones. We get, to our order of approximation

	

H = (1/2m) {p2 (Osp) 2 + 4BI
	

(41)

Since f2 appears only in 0(E) terms, µ is constant to the lowest order: this is

the well-known adiabatic invariance of the magnetic moment to its lowest order.

If p, is the perpendicular component of the momentum, then

µ = p}2/B

We now use (41) to derive the first-order variation of q l and p l , the so-

called guiding center_ drifts. The velocity component normal to B is defined

V T = B' 2 (B x (v x B))

Using the identification of (cp l/e, q l) as (a,,8) of the guiding center, Hamilton's

equations give

(v x B) = Da (v 4/) - V^ (v • Da)

^Da -a 0/3

(c/e) (v x B) = Da(aH/aa) + OR(aH /a^)

	

VH - Os o (aH /a so)
	

(42)

with (38), this gives to lowest order

v T = (c/eB2 ) (B x 4H)
	 (43)
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Referring to (41), we find that v , consists of two parts. The second term in H

contributes the so-called gradient drift, proportional to VB

V  = (µc /2meB2 ) (B x VB)	 (44)

The first term contributes the curvature drift, proportional to the curvature of

field lines

(c/meB2) p2 ( B x (Vso • VVSo))

From (38), to lowest orders

Vs 0 • VVs o = B • (VB - (Va-Va) - (V^Vb) + 0(E2))

= B • VB + 0(e 2 )	 (45)

If E ll _ E - µB denotes the energy associated with motion parallel to the field

lines, this leads to

v c _ (2cE,,/eB) (B x (B • VB))	 (46)

The drifts thus derived are local and vary from point to point; however,

making use of the constancy of µ and E, they are easily derived if the initial

conditions and structure of the field are given. On time scales of 0(e - 1 ) gyration

times, the accumulated drift will be of order R ¢ , justifying eq. (38) for such time

scales.
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The 2nd Adiabatic Invariant J 2

If the dependence of B on the coordinates is known, one may deduce its

dependence on s o and use this to integrate the motion along field lines. In par-

ticular, if this motion turns out to be periodic, it will have an action variable

J 2 = f P2 dq2	(47)

which may be shown from general principles (21) to be adiabatically invariant

under slow perturbations, e.g. those arising from the drift motion. This may

also be shown directly, as will be done in the following calculation, which re-

sembles one by Northrop (22) but is shorter due to the canonical formulation.

We begin by associating the particle with guiding center at

( a , ^31 Sp) - ( C P 1 / e , q l , q2)

with an "instantaneous adiabatic invariant"

J2 ( E, µ, P 1 , q l ) -	 { 2mE - µB	 Oso t dqz

{P„ /jVsol}d12
(48)

where E is the energy integral and P,, is defined by the last relation. Qualita-

tively, JZ may be viewed as the value J 2 would assume if the particle ceased

drifting.
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Actually, J2 will slowly change, due to its dependence on p l and q l which vary

in the course of the drift motion. The purpose of this calculation is to show that,

to the lowest order of expansion, this variation is periodic and averages zero.

By equation (38)

(VS O ) 2 = 1 - 2(a - ao)( Va - ° so) - 2(,8 - /o)( Ob - '7so)

1 - 2(cp l /e - a o )(a a/ a s o ) - 2(q l - 60 )(a b/ a so)

1 - 2u	 (49)

To the' same order

J2 -	 P ^ 0 + u + (3/2)u 2 ) d q2	 (50)

Hamilton ' s equations give

dJ2/dt = g l ( a J2 / aq l ) + P 1 ( a J2 / ap l )	 (51)

( aH/ap l)( a J2 /aql) - (aH/agl)(aJ2/apl)

Explicitly

2m(a H/a %) = µ(a B/) q l ) - 2P2 (a u/a q 1 )	 (52)

with an analogous expression for (aH/ap l ) and similar ones for primed quanti-

ties. Since q l and p l are associated with the drift motion, they are O(e) and

so are the terms of eq. (52).

To express dJ 2/ d t , we have to differentiate the integrand of (50) , discarding

higher order terms. In this integrand, if P,, is 0(1), then u is O(E) (see eq. 38);
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however, taking DP,,/ -6q, as 0(e) (it contains a term of eq. 52), we find that

au/aq l is also of the same order, due to the factor q l in eq. (49). Thus, keeping

the two lowest orders

6J2/aq l 
= f {-µaB/ag l (1 +u) + 2P,?(au/aq l + 3v'6u/aql) I /2P, dq2

^-
4a13 /agl(1 +u) + 2p 2 (1 - 2u) (au/a% + 3uau/aq l ) /2P^^ dq2

-M	
{ ( 1 + u ) ( 6H / -6 %) + 0 ( E3 ) /P 11 dq 2 	 (53)

By Hamilton's equations

q2 = a H /4 2 = P 2 0 - 2u)/m

dq 2 = P,,dt/(1 + u) m	 (54)

If T is the period of the motion in q 2 , one may write

a J2/aq l _ -
fo,

( a H /aq i ) dt

where among the arguments of H, q2 and p2 vary with t but q l and p l are held

fixed. Substituting this in (51) and using Hamilton's equations

dJ2/dt' = f(-6H'/-6%) T j 	(aH/apl) - ( aH ^ /ap l ) (aH/aq l ) I dt	 (55)
O 

where q2 and P2 that appear in H are functions of t and participate in the inte-

gration, while those in H' relate to the particle's parameters at time t at which

a J 2 /d t is evaluated and do not participate. The expression, in general, does
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not vanish; however, let us calculate the total change 0J 2'  of J 2' in one period

T
AJ'2 = 	 ( d J 2/d t') dt'

0

- 
= J T J 

( aH ^/a %) ( aH / ap l ) - ( aH ^ / ap l ) (aH/aq l ) dt dt'	 (56)
0	 0

If H were the same function of t as H' of t', this vanishes by symmetry, since

an interchange of the dummy variables then reverses the sign. This, however, is

not strictly true, for two reasons. First, the arguments q 2 (t ) and p 2 (t) of H

follow the motion of a particle the drift of which has been 'turned off", whereas

the corresponding variables in H'— call them q2 (t') and p2(t') — follow the actual

trajectory. Secondly, both H and H' depend on ql and p i of the drifting particle,

which in turn depend on t' alone.

However, due to the slowness of the drift, the integrand may be expanded in

the small differences between (q l , p l ) and their initial values (q lo , plo) at t = 0,

and between (q 21 p 2 ) and (q2, p 2 ). The leading term of this expansion is com-

pletely symmetric, so that to lowest order 4J 2 vanishes.

Let us evaluate what this means. If E is the energy, by (48) and (55)

J2 = o(E T)
	

(57)

The integrand of (56) is proportional to the energy involved in the drift motion

and thus O(E 2 E); however, since its lowest order does not contribute,

oJ2 = o(: ET2)
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Combining, and assuming T is of order E - 1

A log J2 = 0 ( E2 )
	

(58)

Thus in the course of E - 1 periods, one would expect J2 to vary by no more

than 0(E) of its value. The integral J 2 of (47) closely approximates J2 and its

long-term behavior is the same.

Motion in the Earth's Magnetic Field

An example of the preceding is afforded by radiation-belt particles moving

in the earth's magnetic field, which may be viewed as a dipole field with external

and internal distortions added. A typical field line starts from one hemisphere

and ends in the other; it has a high field intensity B near its ends and a minimum

of B somewhere near the point at which it is farthest away from earth.

A particle trapped on such a line and conservingµ will bounce back and

forth between "mirror points" at which

B = 2mE/µ = B

slowly drifting azimuthally at the same time and conserving J 2 while doing so

(Figure 3).

The bounce motion is evidently periodic in s, if s is defined to be measured

from the mirror surface B (x, y, z) = B, , but it is not immediately evident that it

can also be regarded as periodic in s o , as required by the preceding formalism.

This, however, may be ensured by a proper choice of s. By substitution in

equations (.9 1), it may be shown that the general transformation
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s -• s o = s + f (a, 8)

leads to

so - so = so + f ( a , Q) + (a - ao ) ( a f / a a)

+ ( 13 - ao)( a f/aQ)

Given some function g(a, )3), one can in principle find a solution f for

(a - ao) (a f / a a) + (Q - Ro) ( a f /a R) + f ( a , a) + g ( 2 , ,8) = 0

which means that for a prescribed transformation of so

s o - so = s o - g ( a , /3)	 (59)

there usually exists some transformation of s that leads to it. Now suppose that

s is given as vanishing on one mirror surface. Every point on that surface can

be labeled by a pair of values (a,,8), and there will in general exist a function

g(a,^3) giving the values assumed by s o on that surface at each point. If we now

derive and apply that transformation of s which makes s o transform as in

eq. (59), we will have arrived at an (a,,3, s o ) system in which s o vanishes on

the mirror surface. The motion is then periodic in q 2 and all preceding

arguments apply.

In the geomagnetic field, the drift motion may carry the particle all the way

around the earth — as in the case of the dipole field — or else the particle may

drift off and eventually become "untrapped" before completing its full circuit(231.

29

All-



In the former case, the motion will have a third periodicity and an associated

adiabatic invariant, the so-called Flux Invariant (01) . In the present case there

exists no need for 41 , since µ, J 2 and the energy integral E are sufficient to

describe the motion; it comes into its own in the case of time dependent magnetic

fields, which will generally have an associated electric field as well. It is

possible to extend the Hamiltonian formalism to include such fields, but this is

beyond the scope of the present work.

Another application, which will be only briefly mentioned here, involves the

Liouville equation corresponding to the guiding center Hamiltonian. Writing

down this equation leads almost immediately to the gyration averaged version

of the equation describing the behavior of a collisionless plasma, the so-called

CGL (for Chew, Goldberger and Low) approximation to the Vlasov equation.

Conclusion

The preceding review of the properties and applications of Euler potentials

is in no sense complete. The example worked out, involving the canonical

description of guiding center motion, will provide those persistent enough to

follow it with some practice in their application, but it is only one of a

rapidly growing number of applications of Euler potentials. Because of this

increasing importance, it appears that the time has come to include at least a

brief introduction to Euler pc tentials in the standard course on Classical

Electrodynamics. Hopefully, this article will provide the material and the

background for such an introduction.

The author is grateful to Dr. Thomas Birmingham for his critical review

of this work.
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