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TOS EVALUATION CENTER (TEC) POSTOPERATIONAL
TEST RESULTS FOR ESSA 4

INTRODUCTION

In late 1967, ESSA* 4 came to the end of its usefulness as an operational space-
craft, Camera 1 had failed; camera 2 no longer produced usable pictures; and
one data bit of the digital solar-aspect indicator (DSAI) was inoperative,

However, ESSA 4 even in this condition represented an opportunity to examine
and gvaluate a functional, nearly complete spacecraft with no loss of operational
data. It could provide information that had never been obtained from operational
spacecraft: programming pictures in the dark, for instance, or at high gamma
and roll angles. The TOS Evaluation Center (TEC) therefore set up a program
of four groups of progressively hazardous tests. This report describes the tests
and their results.

Objectives of the four groups of fests were:
e To determine the aging or degradation of spacecraft subsystems as com-
pared with their performance at launch checkout
e To exercise commands and subsystems not previously used
e To ascertain the thermal and power limitations of TOS spacecraft
e To use ESSA 4 as a test vehicle in special investigations of the command

system, QOMAC** gsystem, etc.

The test plan consolidated the items to be tested (Table 1) into four groups con-
taining tests of a similar nature, carried out in order of increasing hazard to
the spacicraft.

Group 1

1. Measure degradation of spacecraft receiver.

2. Measure video levels of both cameras in spacecraft darkness and space-
craft sunlight /earth darkness.

3. Test vulnerability of the command system.

*Environmental Science Services Administration
**Quarter-orbit magnetic attitude control



Table 1
Status of ESSA 4 Subsystems
At Turnoff, May 5, 1968+

Subsystem Condition Date
Programmer 1 Good 4/26/68 *
Programmer 2 Good 5/2/68 *
Beacon transmitter 1 Good 11/15/67*
Beacon transmitter 2 Good 5/5/68 *
HCI¥*~-1 A Good 5/27/67 *
HCI-1 B Good 5/5/68 *
HCI-2 A Good 5/217/67 *
HCI-2 B Good 5/5/68 *
Regulator 1 Good 4/24/68 *
Regulator 2 Good 5/5/68 *
TV transmitter 1 Good 1/16/68 *
TV transmitter 2 Good 5/5/68 *
MASC*** coils Good 5/5/68 *
MBC**** coils Good 4/12/68 *
Camera 1 Failed 1/28/67
Camera 1 picture quality N. G. 1/28/67
Camera 2 Poor 5/5/68 *
Camera 2 picture quality Poor 5/5/68 *
Command tone A Good 5/5/68 *
Command tone B Good 4/30/68 *
Digital solar-aspect indicator Intermittent 5/5/68 *
Housekeeping T/M commutators Good 5/5/68 *
QOMAC coils Good 5/1/68 *

*Date last used
+E-4 APT operational satellite launched 1/26/67
**Horizon-crossing indicator
*##Magnetic attitude spin control
*#*%*Magnetic bias control



Group 2

1. Test spinup rockets for thrust and for response to digital command.
2. Investigate camera triggering at high and low spin rates.

Group 3

1. Roll spacecraft to extreme gamma angles (up to 110 degrees) to check
thermal response, solar-array output, and cameras.

2. Roll spacecraft to low gamma angles (down to 0 degrees) to check ther-
mal response, solar-array output, and cameras.

3. During these maneuvers, examine sun interference in the sensors.

1. Reduce hattery power below regulation level; observe spacecraft per-
formance, and exercise Hi-Charge to recover power.

2. Switch cameras with full power on.

3. Switch regulators with full power on.
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GROUP I TESTS

1. Spacecraft Receiver Degradation Test

A. Purpose: To determine if either of the two receivers on the spacecraft
has changed in sensitivity during the time in orbit

B. Procedure:

e First test receiver 1 in a long low~-elevation pass by taking enable-
tone A telemetries every 30 seconds.

The CDA* station shall report transmitter power (use 250w), antenna
gain, line losses etc., to determine radiated power. Compare
telemetry automatic gain control (AGC) levels with those obtained
during launch checkout.

e Repeat with receiver 2 using enable~tone B.

C. Results: While checking the spacecraft receivers for possible degradation,
the CDA station maintained a constant transmitter power of 250 watts
and obtained a number of telemetries throughout the pass from acqui-
sition of signal to loss of signal (AOS to LOS). This test used both tone-
pair A and tone-pair B. (Varying signal strength to the spacecraft
would be a function of the slant range.)

This test indicated no receiver degradation during the lifetime of the
spacecraft; in each case, if the AGC was out of clamp, a solid confirm
was returned. The lower level could not be precisely determined be-
cause of the normal fluctuations of signal strength and the fact that, if
the spacecraft did not receive a valid command, it did not respond with
a telemetry of its receiver AGC. Within the bounds of the information
thus available, both receivers are operating as well now as they did
when launched.

2. Pictures in Spacecraft Darkness Test

A. Purpose: To determine the aging of both cameras by measuring the
black and the white video levels when the spacecraft is in darkness
(earth also dark) and spacecraft in sun (earth still dark)

This test also is a limited check on light leakage through the shutter.

*Command and data-acquisition



B. Procedure:

e Choose an orbit in which the spacecraft is in darkness over WALOMS*
(an ascending-node pass). Program a picture sequence on the pre-
vious orbit to alarm over WALOMS. If possible, the spacecraft
should come into sunlight during the picture sequence. Therefore,
pictures can be obtained with spacecraft darkness/earth darkness
and spacecraft sunlight/earth darkness conditions.

o Record telemetry before, during, and after all pictures.

e Turn on the digital solar-aspect indicator (DSAI) during the space-
craft transition from darkness to sunlight. The first reading of DSAI
will give an azcurate fix on spacecraft-illumination time.

C. Results: Pictures were taken with both cameras while the spacecraft
was looking at a dark earth, and travelling from darkness to sunlight.
The purpose of this test was to compare data with these obtained during
launch checkout.

Camera 1 (Figure 1) has had a failure in the shutter board, and the
black level in camera & (¥:gure 2) is now so high that usable contrast is
gone. The loss of contrast due to aging appears as an increase in the
black level, resulting in less range between black and white. Analysis
of the pictures revealed two things:

1) The banding or venetian-blind effect caused by the spacecraft spin-
ning in a magnetic field while reading out pictures was still present,
at the same magnitude seen during launch checkout. This banding is
a condition that has already been evaluated, and a fix has been made
by the spacecrait contractor on ESSA 6. Our tests merely confirmed
that no changes in magnitude have occurred on ESSA 4.

2) The true '"black level' of a black earth is so close to that of the
fiducial marks that it is difficult to pick out the difference in either
the facsimile picture or on A-scans. The black level of the fiducials
is a valid criterion of what the actual black level of the picture
would be if in fact tlie spacecraft were seeing a black subject in its
picture area. This is very useful to TEC, as the black level in an
A-scan through the cenier fiducial i3 used as a criterion for the
performance quality of the camera. The reticle, as the only black
available in the working area of a normal picture, is a standard for
monitoring the degradation of an APT** camera (Figures 3 and 4).

*Designation of Wallops Island CDA
** Automatic picture iransmission



Figure 1. Spacecraft in Darkness, Camera |
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Figure 2. Spacecraft in Darkness, Camera 2



Figure 3. Spacecraft in Sun, Camera 1
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3.

Command-System Vulnerability Test

A.

Purpose: The command system in the spacecraft (receiver and decoder)
will be subjected to abnormal signals and commands in an attempt to

get a ""bad' commar... into the spacecraft. Jamming will probably occur,
but the spacecraft should act on no '"bad'" or improper commands.

Procedure:

e Require both CDA's to transmit digital commands to the spacecraft
at the same time: One CDA will transmit a '"Request Telemetry"
command; the other will transmit "DSAI ON."

e Have one CDA transmit a valid message (such as '"Request Telemetry')
while the other at the same time transmits a message with all "1'"'s.
This will check to see if an extra '"1'" can be inserted in a valid mes-
sage by noise, etc.

Results: On February 1, 1968, during revolution 4701, hoth the Wallops
and Gilmore CDA stations commanded the spacecraft at the same time.
Both CDA'sused command tone-pair A and transmitted digital commands.
Figures 5 and 6 are samples of the responses. Some narrow '0'" bits and
some narrow sync bits were received as indicated in Figure 5. Once

an extra '""1'" bit was obtained in an address; Figure 6 shows the readout
of this incident. The spacecraft accepted no invalid commands when
both CDA stations were transmitting, although an address or command
could be made invalid and consequently rejected by the spacecraft.
However, a remote word might possibly be altered by "jamrming' and
still be accepted by the spacecraft, because the 2-out-of-12 parity check
does not apply to the remote word; however, CDA error sensing nor-
mally prevents transmission of an invalid remote word.

When one station uses tone-pair A and the other station uses tone-pair

B, neither station can command the spacecraft or receive a confirm
signal back. This test was performed during revolution 4714.

11
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GROUP Lff TESTS

Tests

1. Test command of spinup rockets, and check amount of thrust from one
pair of rockets.

2. Investigate camera triggering at high and low spin rates.

Purpose

1. To test the operation of the spinup rocket command. The "Fire Spinup"

command has never been tested on a TOS spacecraft in orbit.

2. To determine the amount of spinup obtained from the thrust of one rocket

pair

3. To test camera-triggering operation at the higher spin rate. The space-

craft spin rate will be slowed down later using the MASC system. The
nominal spin rate on ESSA 4 need not be maintained beciause normal
pictures are no lcnger being taken.

4. To test camera-triggering operation at lower than normal spin rates
Procedure

1. Choose an ordinary orbit for exercising the spinup rocket command;
follow the program procedure described in the programmer's manual
to fire one pair of spin rockets. Note and record the amount of spin-
up: an increase of approximately 3.5 rpm is expected.

2. Set in a camera program sequence and test it over a CL.\, preferably
in earth sunlight, during a long acquisition pass. A dummy plus two
pictures are desired. Use the ''good' camera (camera 2) and observe
pictures for possible horizons. Monitor the timing between frames,
picture alarm, etc., to observe triggering.

3. Select a later orbit or orbits to spin down the spacecraft to a point where

camera triggering can be tested closer to the nominal spin window.
The efficiency of the MASC system at high and iow spin rates can also
be observed.

15



4. Continue despin until a rate of approximately 5.567 seconds is reached.
Program another picture sequence over a CDA as before to observe
mistriggering.

5. Return spin rate to normal limits of 5.475 to 5.525 seconds.

D. Results

The Group II tests investigated the performance of the spacecraft in relation
to its spin rate.

The spin period of the spacecraft was allowed to delay to 5.738 seconds
(10.45 rpm) and a picture sequence was commanded. The resulting pictures
showed the earth's horizon in the southern half of each picture (as a result of the
backup shutter pulse which triggers the camera). Whenever 5.5666 seconds
elapse‘without a horizon-crossing indicator (HCI) pulse, the backup camera-
trigger pulse is generated in the spacecraft programmer. The spacecraft had
0.172 second to spin before the camera would look straight down and the HCI
field~of-view would intersect the horizon, generating the normal HCI pulse for
camera triggering. The 8-channel Brush analog recording showed the backup
pulse occurring approximately 0.2 second before the HCI pulse. This was re-
ceived on revolution 5049-W (Figures 7 and 8).

On revolution 5050-W, the four-picture sequence alarmed over the station
again and the spinup rocket command was sent during the dummy frame. The
command was successful, and resulted in a spin period of 4.367 seconds (or,
a spin rate of 13.73rpm). Therefore, the first pair of rockets increased the
spin rate by 3.28 rpm.

The fast spin rate caused inhibition of the first good frame by the dummy
frame readout. Because the 41 spins occurred before the end of the 206-second
dummy readout, a long hold period intervened before the start of what should
have been the second picture. The time between the second and third pictures
was also shortened, as expected; both these pictures were taken when the camera
was looking into space. This is also caused by the generation of a backup spin
(HCI) trigger if the HCI pulse occurs too early. The function of this backup
triggering is given in the I & O* Handbook, Vol. 1, p. 2-54, through 2-59.

*Instruction and Operating

16



Figure 7. Spacecraft at High Roll Angle, Picture 1
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Figure 8. Spacecraft at High Roll Angle, Picture 2
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GROUP III TESTS

Tests

1. Roll spacecraft out to extreme gamma angles (up to 110 degrees) to
evaluate spacecraft thermal response, solar-array output, and cameras.

2. Roll spacecraft down to low gamma angles (down to zero degrees) to
evaluate spacecraft thermal response, solar-array output, and cameras.

3. Examine performance of the horizon-crossing indicator (HCI) and the
attitude/horizon indicator (AHI), including sun interference, during these
extreme roll maneuvers.

Purpose

1. To evaluate spacecraft performance at extreme gamma angles in order
to determine spacecraft deterioration, operating limitations, and
thermal response (comparison with published thermal data), and to
obtain data for emergencies that may arise during launch turnaround.

2. To examine camera performance at high and low temperatures
(although APT cameras are temperature-compensated, other peculi-
arities may occur).

3. To observe and examine sensor performance at high roll argles and
with respect to sun interference.

Procedure

1. Increase spacecraft reil to a gamma of 110 degrees in 50-degree incre-
ments. Record spacecraft performance and temperatures. Program
a four-picture sequence using camera 2 over WALOMS when the space-
craft is at 90-degree gamma. Choose N’ (lambda = the point at which
maximum roll occurs in an orbit) so that minimum roll occurs over
WALOMS for picture-taking purposes.

Generally, about two orbits per dsy are available for command of

ESSA 4. Therefore, each day, a QOMAC program can be set in tc
accomplish 5 degrees of additional roll per day.

19



After attaining 110-degree gamma, try another four-picture sequence
over WALOMS. The temperatures should have increased to somewhat
more favorable levels than at 90-degree gamma. If the battery volt-
ages are low as a result of poor illumination angle of the solar-array
side panels, use the Hi-Charge mode during the picture sequence.

After the tests at 110-degree gamma, return the spacecraft immediately
to mission-mode attitude and gamma. The spacecraft is now at approxi-
mately 72-degree gamma in mission mode; sun time is approximately

70 percent.

2. In the next portion of this test, similar to the first, go down to zero-
degree gamma in 10-degree steps per day. The larger 10-degree steps
are chosen because lower gamma angles mean less danger to the space-
craft, and some data in this region are already available from ESSA 5
and ESSA 2.

Choose lambda’again so that minimum roll nccurs over WALOMS for
picture purposes. Program a four-picture sequence while the spacecraft
is at zero-degree gamma. The sequence should be the same as the pre-
vious (program a four-picture sequence to alarm over the station; re-
ceive approximately two good frames; shut off programmer before loss
of signal). Record telemetry before, during and after pictures.

After the picture sequence at zero-degree gamma, return the space-
craft immediately to mission-mode orientation. This completes this
phase of testing. :

3. Follow the precautionary temperatures and voltages listed on page V-8,
"APT Prelaunch Operational Analysis Handbook, " September 15, 1967.
Danger regions to be watched in the telemetry channels appear in
""Alignment and Calibration Datafor TOS-B Satellite, '' September 21, 1967.

4. Spacecraft should follow the applicable temperature charts of '"Mission
Mode Orientation and Thermal Response cf TOS/AVCS* Spacecraft, "
September 21, 1967.

D. Results
Group 3 tests on ESSA 4 took place from April 1 to April 12, 1968, to

examine the operation of the spacecraft at extreme gamma angles. Figures
9, 10, and 11 show spacecraft attitude during these tests.

*Advanced vidicon—-camera system

20
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Figure 11. Attitude Plot of QOMAC Cycles



(The term gamma angle used in this report means the angle between the
spin axis and the sun, measured from the top-hat end. For example, zero-
degree gamma means the sun on the top hat only; 90-degree gamma would be the
sun in line with the rim of the spacecraft.)

The first series of tests was to roll the spacecraft to gamma angles up to
118 degrees in order to duplicate the predicted temperature profiles given in the
manual "Mission Mode and Thermal Response of TOS/APT and TOS/AVCS
Spacecraft, " AED-M 2143, September 21, 1967, Contract NAS 5-9034.

Conflicts of time and available orbits made it possible to look for only gross
indications. A spacecraft not in constant sunlight never actually achieves a
constant temperature equilibrium on its surface areas (Figure 12). In many
instances, temperatures plotted were taken shortly after the spacecraft had just
come out of darkness; in other instances, the spacecraft had just completed a
series-of high-torque QOMAC cycles, with resulting large changes in gamma.
Both conditions produce sudden temperature changes. During this group of tests,
the amount of sun time was approximately 70 percent.

Figures 13 through 17 show the temperature response of the batteries.
Actual temperatures observed, plotted with predicted curves in these figures,
appear slightly flatter than expected; this is probably the result of little or no
stabilization time.

Baseplate temperatures (Figures 18 and 19) follow the predicted profile well,
certainly within the excursions of Figure 12. This fact supports the theory that
the batteries, with their interior position and large mass, would follow closely
the predicted temperatures if given time to achieve equilibrium.

These figures, together with Figures 20 and 21, suggest that the temperature
minima may occur at a gamma angle of 80 to 83 degrees rather than at the 90
degrees predicted by the mission-mode and thermal-response manual. Con-
sidering that the rib structure of the baseplate is external and not normal to the
sidewalls, this assumption is probably true. This fact may influence operational
considerations for spacecraft that operate in near-high-noon angles (where
normal mission-mode orientation of the spacecraft would result in gamma angles
around 90 degrees).

Sidewall temperatures (Figure 20) show the extreme excursions predicted
in Figure 12: the magnitudes and slopes of these excusions are too large for
meaningful evaluation. Temperatures of the top hat (Figure 21) did not follow
the predicted profile nor, apparently, the broad violent excusions of Figure 12,
probably because the top hat is in shadow when the spacecraft is at a gamma
angle of greater than 90 degrees. In fact, top-hat temperatures dropped well
below the telemetry-reduction curves in the calibration book for ESSA 4.
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Here again, because of the low mass of the structure in question, and the
few telemetries available, the plots are not a smooth curve. Measurements
obtained suggest that, under these conditions (gamma greater than 90 degrees),
the top hat is running far cooler than pxedictéd. Again, these plots suggest
that—although the temperature minima may be considerably colder than expected—
the stabilized temperature profile might well approximate the shape of the pre-
dicted curve more closely than these test plots indicate. In any case, minima
for these tests are colder than had been expected.

Figures 22 through 25 show solar-array outputs plotted over a wide range
of gamma. Note that these plots show up as two fairly distinct series of points:
The lower values (zero) are telemetries taken as the spacecraft emerges from
darkness over Gilmore; the higher level plots (+) are taken over Wallops later
in the same revolution. The curves are unexpected. More reasonable plots
appear in Figure 25, which represents telemetries from four random (over a
day or two) 12-picture sequences by ESSA 3. Temperature and/or albedo effect
on ESSA 4 may account for the fluctuations shown in the plots; the anomaly is
not explainable at present.

Figure 24 shows that the optimum operational mode (from the power stand-
point) is around 45-degree gamma. As the power available from a solar cell is
essentially a cosine function, loss of efficiency by the sidewalls is compensated
for by the increased output of the top hat, resulting in a reasonably constant
power available at all gamma angles that are less than 45 degrees.

When ESSA 4 was at higher gamma angles, a new anomaly was observed in
the readout of the digital solar-aspect indicator. On this spacecraft, the second
DSAI bit has been a constant zero; however, during revolutions 5489, 5490, 5494,
5503, 5507, and 5508, the fourth bit also turned up a constant zero. On revolu-
tions 5494 and 5503, this produced a reasonable reading, but an obvious error
on the others. All these readings occurred when the gamma was greater than
84 degrees and the spacecraft was, as a result, quite cold. With the return of
the gamma to lower values, the fourth bit again worked correctly; also, for the
brief period when the spacecraft was left at gamma angles of more than 115
degrees (resulting in warmer temperatures), the fourth bit once more was
working correctly. We infer from this that the DSAI circuitry has become
temperature-sensitive, and that we can expect a failure of the fourth bit when-
ever the baseplate temperature drops below approximately 0°C. The high rate
of temperature change during each orbit makes it impossible to pinpoint an exact
temperature at which DSAI failure will occur; nor do we know whether this failure
is related in any way to the failure of DSAI bit two, which also is always a zero.
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During revolutions 5518 and 5520, a partial picture sequence (Figures 26
through 31) was run for two purposes:

e To evaluate operation of the spacecraft as a whole when gamma is in-
creased past 90 degrees enough to reach "operational' temperatures again

e To evaluate operation of the secondary spin counting of the spacecraft
when the HCI's are not aimed at the earth

The pictures came out with no observable degradation, and the timing was
as close as we could predict without knowing the exact times at which the HCI's
lost and reacquired the earth. This procedure finally confirms the operation of
a backup system we had not had occasion to use before. The significance of the
picture and the spacecraft systems during this particular test may prove to be
of operational use: the data suggest that, by using mission mode and a gamma
of about 110 degrees, the spacecraft can reach operational temperatures with
about 10 degrees less gamma than if the spacecraft had been turned around to
obtain gamma of less than 90 degrees. Considering the slow rate of spacecraft
orbital drift in relation to the sun, this procedure could put a spacecraft back
into mission-mode operation much quicker than turning it around as soon as it
reaches a high-noon position (spacecraft in line between the sun and the earth;
i.e., local apparent noon).
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Figure 26. Dummy Frame, Revoluticn 5518
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Figure 27. Spacecraft at Extreme Roll Angle, Picture |




Figure 28. Spacecraft at Extreme Roll Angle, Picture 2
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Figure 29. Dummy Frame, Revolution 5520
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Figure 30. Spacecraft ot Extreme Roll, Picture 1
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Figure 31. Spacecraft at Extreme Roll, Picture 2



1.

2.

3.

GROUP IV TESTS

Switch MASC polarity when MASC coil is powered.
Switch regulators with full power on.

Switch cameras with full power on.

Purpose

1.

The MASC polarity will be changed while a MASC sequence is in progress
(preferably during the powered portion of a cycle) in order to test the
spacecraft's vulnerability to an undesirable command. The MASC
switching circuits will be operated while carrying full current so that
any abnormal reaction will be apparent. No damage is expected from
this test, but the particular command combination has never been
tested on an operating spacecraft.

Regulator 2 on ESSA 4 has never been used. The purpose of this test
is, first, to try regulator 2 in normal operation to see how well it has
survived a year of storage without action. A picture sequence with one
or two shutter throws will be programmed in order to use regulator 2
under normal load conditions.

After regulator 2 has proved satisfactory, the regulators will be
switched under full spacecraft power load (during a picture). The
switch to regulator 1 will be made without the normal OFF time be-
tween switching, in order to impose the greatest stress on the regu-
lator; the resulting transient may cause some damage.

The next test is to determine whether the camera 2 shutter board will
fail when switching powered cameras. Camera 1's shutter board failed
under similar circumstances during the launch checkout; design changes
have been made to prevent this happening to ESSA 6 and succeeding APT
spacecraft. However, it could happen to ESSA 2. The cameras will be
switched during a picture sequence (frame readout) to see if something
blows.
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C. Procedure

1. Reverse the MASC polarity during a normal pass when no other pro-
gramming is planned. Start a normal double MASC-coil spinup
(MASC-POS) program; during the powered portion of a cycle, send a
MASC-NEG command. In order to do this, it may be necessary tosend
the command by manual direction. Switch polarity during an unpowered
portion of the cycle, using either a MASC-NEG or MASC-POS command,
whichever is opposite to the one in use.

2. Switch the regulator during a normal pass when no other programming
is planned. First, put in a normal program to switch to regulator 2
and leave it in normal use for at least an orbit or two, in order to be
sure that it is operating properly. During a later orbit, initiate the
command to switch back to regulator 1 without regard to the normal
delay procedures. Reccrd telemetries before and after to determine
spacecraft status. If time permits during this orbit (or on a later
orbit), start a pirture sequence over Wallops in daylight with camera
2, to be sure that the spacecraft is still operating properly; then, during
a picture readout, immediately switch regulators again to observe the
effect of a regulator-change command when spacecraft is under full
load.

3. Perform the camera switch-under-power test on a fairly high-elevation
pass over Wallops in daylight. Program a picture sequence to start
with camera 2 selected; halfway through the first good picture frame,
manually send the command to switch to camera 1. Get a succeeding
complete good frame readout before shutting off the camera system.
Record telemetries during and between pictures.

Switch the cameras again—back to ''good' camera 2—during the next
available Wallops daylight pass. Switch over again during aframe read-
out, and record telemetries during and between pictures.

A complete and normal picture (with shutter throw) must be obtained
from camera 2 in order to determine whether it is operating satisfac-
torily after these switching tests.

Selection of programmers, transmifters, etc. is optional during these

tests. The above directions assume that the spacecraft will be in
normal mission mode and within spin tolerance.
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D. Results

The Group IV tests, which were potentially destructive, were the last of the
ESSA 4 postoperational tests. Their purpose was to do fast switching of regu-
lators, MASC polarity, and cameras, and to observe the results.

The first step—a switch to regulator 2, never used on this particular
satellite—went through without incident and the regulator was found to be in ex~
cellent condition after a year in storage. This regulator had never been checked
since launch.

With the integrity of regulator 2 verified, the next experiment was to shift
from one regulator to the other without delay. This occurred without discernible
spacecraft damage. However, as all power was momentarily removed from the
programmers, we effectively lost our remote-word and stored random bits in
the remote-word register when power returned. This was expected, and is not
considered a problem but rather a side effect to be taken into account.

MASC polarity switching under full load was the nearest to a problem that
was encountered: Actual changing back and forth in MASC polarity occurred
with no sign of any problem to the spacecraft, but on revolution 5743-G we
observed an anomaly in the MASC trigger. Instead of the normal 50-percent-on/
50-percent-off telemetry indication, we observed a 70-percent-on/30-percent-off
indication varying throughout the pass (reversed 30-percent/70-percent in
negative MASC). Examination of the SCO-3 telemetry recording showed that the
cause was apparently sun interference on one HCI sensor, showing up after the
earth/sky transition of the opposite HCI sensor. This pulse occurring during
"sky time' caused a false MASC spin trigger. Gamma at this time was 77 per-
cent (DSAI readout is either 77 or 80 degrees, as hit two is always zero).
Figures 32 through 39 are excerpts from an 8-channel Brush recording from
revolution 5743-G;this series of charts shows MASC switching while the space-
craft is misiriggered by a pulse which shows up in the HCI lines.

The anomaly was caused by:
o field-of-view of the HCI sensor

e slight canting of the HCI's from each other and the spacecraft (as it
appeared in one sensor only)

e the low threshold of the spin trigger which provides MASC triggering

This condition could have resulted in a spin-count error or an off-earth
picture.
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When the spacecraft was rolled to a lower gamma, the problem disappeared,
indicating that the sun was no longer in the field-of-view of the HCI sensors and

no damage had occurred.

The final test was to switch cameras under power. The camera 1 shu' ar failed
during the switch and did not recover. Switching from camera to camera with
a picture sequence in progress was common practice before, and has been
successfully done many times at RCA/AED in the course of evaluating the ESSA
4 degradation. The camera 1 failure was later attributed to a defective fuse on
the shutter board. The effect of the switch and its accompanying failure was a
loss of the last portion of the picture in progress, although the next picture in
the sequence appeared on schedule with the newly selected camera 2. No obvious
damage was apparent. This switch was made while the readout mode prevailed;
the conclusion is that an inadvertent camera switch should not damage the
camera or its electronics.
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