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SONIC BOOM PROPAGATION IN A STRATIFIED ATMOSPHERE,
WITH COMPUTER PROGRAM

Wallace D. Hayes*, Rudolph C. Haefelil, and H. E. Kulsrud
Aeronautical Research Associates of Princeton, Inc.

SUMMARY

An analysis 1is presented of the propagation of sonic boom in
a horizontally stratified atmosphere with winds. This analysis,
to some extent a synthesis of established theory but with many new
features, is given 1in sufficient detail to serve as an algorithm
for the computation of sonilc boom pressure signatures. This algo-
rithm is realized 1n a FORTRAN computer prograr.

Required inputs include atmospheric properties and horizontal
winds as functions of altitude, information on the flight path of
the maneuvering aircraft, and aircraft F-functions. Ray-tube
areas are computed according to geometric acoustic theory, and
nonlinear effects are accounted for through an appropriate age
variable. The output includes midfield pressure signatures at any
altitude.

Results from sample calculations are presented and discussed.
INTRODUCTION

Sonic booms have become of prime importance 1n the design and
operation of supersonic aircraft. A need has been felt for a
comprehensive analysis and algorithm,realized in a practicable
computer program, which would provide realistic calculations for
sonic boom signatures in our atmosphere. The project reported
here was to carry out such an analysis with computer program.

Earlier algorithms for sonic boom have used various unjusti-
fied simplifying assumptions. A basic aim of the present algo-
rithm has been to avoid these assumptions as far as possible and
to extend the cases which could be considered. Thus, the present
algorithm includes the following features:

(1) The inclusion of maneuvering aircraft in a sonic boom
pressure calculation;

(2) An appropriate ray-tube area calculation based on linear
geometric acoustics;
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(3) Results in the form of complete signatures, without
far-field assumptions, obtained through the use of an
"age" variable in the calculation of nonlinear effects,

The present algorithm assumes a horizontally stratified atmosphere
with horizontal winds but without turbulence. This limiting
assumption corresponds to the case of greatest practical interest
and considerably simplifies the calculation.

The analysis is largely a rational synthesis of existing
theories described in the literature, with some new theoretical
development, Specific references are cited in the body of the
report. A principal new theoretical development is in the calcu-
lation of ray-tube area. The analysils is also new in the careful
piecing together of a number of calculations, principally in the
relation of the wave system and rays issuing from the aircraft
with a wave system and Tays properly describing propagation in the
stratified atmosphere with winds. This relation requires the
consideration of a galilean transformation connecting a local coor-
dinate system with the fixed coordinate system.

A note of caution at this point may be in order. Although
our analysis may be described as largely a synthesis of existing
theories, it should be pointed out that not all these theories may
be familiar to all workers in the field of sonic boom. In order
to make the analysis feasible, the concept of galilean invariance
has been brought in from the subject of mechanics, and a number of
concepts have been brought in from the general theory of wave
propagation. The pertinent literature is diffused through many
sources. A number of basic papers were written in contexts diff-
erent from that of sonic boom. Thus, some readers will not find
our analysis as a synthesis of the theories with which they are
well acquainted., In general, the more familiar sonic boom
theories are inadequate.,

The digital computer program has been written in ASA FORTRAN
IV (except some literal text enclosed in asterisks) with flexibi-
lity a main aim., The brogram is designed to be usable on a wide
variety of modern computers and to be applicable to a variety of
problems. It was developed using an IBM-1130, Model 2B, and then
modified for and operated with a CDC-6600. The program may be
altered to accommodate the operating system constraints of g
particular computer through simple changes in input-output unit
designation. It may also be necessary to make some alterations in
brogram structure from subprogram linkage to main program linkage
to meet core storage requirements, as in the case for the IBM-1130,
A number of input options have been provided. There are choices
in the specifications of input and output units, in how the atmos-
phere is to be Specified, and in how certain maneuver time deriva-
tives are to be obtained from input data.



This report is accordingly divided into two main parts - one
giving an exposition of the basic theory and development of the
equations, the other describing and listing the computer prograii
and presenting sample results. The first part occupies the chapter
entitled THEORETICAL ANALYSIS. This begins with a general descrip-
tion of the theory, with accent on the physical reasoning and
motivation underlying the analysis. In the course of the analysis,
brief statements are included on its applications in the computer
program. Besides current references, there are some historical
notes appended.

The second part, consisting of COMPUTER PROGRAM and COMPUTA-
TTON RESULTS, includes a complete description of the program, with
tables giving the FORTRAN nomenclature used for various variables
and subroutines, and with a program listing. Sample input and
output listings are included, and typical computation results are
presented.

SYMBOLS

This section includes symbols used 1n the analysis, excepting
a few which are only used where they are defined. FORTRAN symbols
that are employed in the computer program are identified in
Table 1.

Symbol Page No.
a speed of sound (ed. 6) 21
A ray-tube area cut by horizontal plane 34

(eas. 19, 26)

A(xo) apea distribution of slender body 43
c group or ray veloclty (eq. 12) 29
c, normal phase velocity (ed. 11) 28
c, Snell's law invariant (eqs. 14, 16) 29
s specific heat at constant pressure 65
Cp wave drag coefficlent (ed. 36) L9
CDqu drag coefficient per unit azimuth angle (eq.36) 49
Cr, 1ift coefficlent (ed. 4) 18



Cn - Cp net axial force coefficient (eq. 3) 18
D drag (eq. 3) 18
fy,fz line force distributions 43
F F-function for aircraft signatures (eq. 33) 46
Fy input F-function L6
F F-function conversion factor (eq. 34) 48
oS gravitational acceleration (eq. 1) 16
H, altitude of ground above sea level 16
I1,2,3 integrals used in calculation of A (eq. 24) 39
k heat conduction coefficient (eq. 58) 63
Kp reflection factor o4
4,m,n direction cosines of initial wave normal (eq.8) 25
ﬁ(xl) equivalent 1line force distribution 45
L 1ift (eq. 4) 18
L distance along aircraft axis (local phase) 43
L, agircraft reference length 48
M Mach number of aircraft, V/a 21
n unit vector normal to wave front 28
Ny >0y normal and axial load factors (egs. 3, U4) 18
N(7) reduced longitudinal kinematic viscosity 66
(eqa. 60)
p pressure (eqs. 1, 39) 16
q perturbation velocity (eq. 39) 51
a,, dynamic pressure (eq. 3) 18
r cylindrical radius in local coordinates 44
r position vector (eq. 12) 29



ref
S(xy,0.)

So(€)

t(x,,v,)

= =

ci

horizontal position vector
gas constant; hyperbolic radius
distance normal to wave front (local phase)

reference wing area for force coefficients

(egs. 3, 4)

area distribution of equivalent body of
revolution

integral of VE(i) (eq. 54)
integral of VE(él,T) (eq. 51)

wing thickness

time along ray (eq. 18)

time along aircraft trajectory (eq. 2)
absolute temperature

thrust (eq. 3)

wind velocity (—ux,-u ,0) (eq. 2)

Y
minus components of u in (xl,yl) coordinates

(eq. 15)

aircraft velocity relative to atmosphere, Ma
(eq. 2)

measure of signal invariant on kinematic ray

(eqs. 40O, 45)
weight of aircraft (egs. 3, 4)

fixed coordinate system; east, north, and
above ground, respectively

coordinate system aligned with aircraft
veloclty

coordinate system aligned with wave normal
(eqa. 19)

36
Lo
56
18

b5

58
Lo
26
18
16
18
16

31

17

52

18
16

22

31



X,V ,% local coordinates near aircraft 43

Ixo,yo,zo dummy coordinates near aircraft 43
txl axial coordinate for equivalent body of 45
\ revolution

B Prandtl-Glauert parameter, (M2 - 1)1/2 43
B inverse of atmospheric scale height 59
v aircraft climb angle (eq. 2) 17
Ve ratio of specific heats 16
AP perturbation from undisturbed value 39,28
7 wind heading angle (whence wind blows) 16
) inclination angle of n below horizontal 25

(egs. 10, 17)
i Mach angle, sin_l(l/M) = tan—l(l/B) 22
TR shear and dilatational viscosities (eq. 58) 65
v heading angle of wave normal n (eq. 9) 25
£ linear phase variable (time) (eq. 41) 51
£y actual phase variable (time) (eq. 49) 56
P atmospheric density (eq. 1) 16
T age (eq. 46) 57
[0 azimuth angle of wave normal from vertical plane 22
¢y aircraft bank angle 18
¢r a;imuth angle of wave normal relative to 20
ailrcraft

o local perturbation velocity potential (eq.30) 43
¥ heading angle of aircraft (eq. 2) 17



Subscripts
a aircraft 17

o initial value at time of emission of a ray 32
from aircraft

1 wing )

Vector Components

Vector Coordinate Systems
Name Symbol (x,y,2) (x",y ,-2) (Xl,yl,-z)
Position T X,5,% x',y',-z X155 "2
Horizontal unit,| _
east 1 1,0,0 sin ¥,-cos ¥,0|sin v,-cos v,0
Horizontal unit,| _
north J 0,1,0 cos V¥, sin ¥,0 cos v, sinv,0
'Vertical unit b 0,0,1 0,0,-1 10,0,-1
Horizontal pos- _ O
ition r' x,y,0 x',y , O 1 %1,57,0
Aircraft v V cos v,0,
velocity -V sin v
Initial wave _
normal N, J,m,n cos 6 ,0,
sin ©
o
Wave normal n cos 6,0,sin ©
,EWind u —ux,—-uy,o U, > ~Ug 50
Horizontal unit,| _
propagation ' sin ¥,cos v,0 1,0,0
Inverse phase - _1 ~1
veloclity c.n ¢ ~,0,c _~tan 6
n e o
Ray or group _
velocity c a cos 6 - Up,
~Uy s a sin ©
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THEORETICAL ANALYSIS

General Description

The intent of this section is to present a guilde to the
thgoretical analysis which will be developed in this chapter.
This guide is presented in several subsections. The first gives
a brief description of the nature of sonic boom theory. The next
three discuss certain basic concepts of geometric acoustics, with
one purpose being that of explaining the basis for the assumption
of steady ray geometry on which the entire analysis is based. The

last describes the detailed analysis in digest form, egssentially
section by section,

The nature of sonic boom theory.- Sonic boom is an acoustic
phenomenon. The appropriate theory for sonic boom propagation is
an acoustic theory with both simplifications and complications
which do -not normally appear in acoustic theory. With certaln
exceptions, the appropriate theory is the theory of geometric
acoustics, analogous to geometric optics. The theory of geometric
acoustics is valid in an asymptotic sense when the wave length 1is
small compared with characteristic macroscopic scales of the
problem. Such macroscopic scales include the radii of curvature
of the wave fronts and the scale height (e.g., p/pg) of the atmos-
phere. (Symbols are defined in the list of SYMBOLS.) Geometric
scoustics is invalid in the region near the aircraft, where a
separate treatment is needed to obtain initial conditions for the
propagated signal.

Standard acoustic theories are l1inear. In sonic boom propa-
gation, nonlinear effects are locally very weak, but they have a
nonnegligible cumulative effect during propagation over large
distances. The cumulative nonlinear effect comprises distortion
of the signal and the production of shock waves. We can thus
describe sonic boom theory as an application of geometric gacoustics,
with a particular matching theory for initial conditions and with
a modification for nonlinear effects. A recent review of the
theoretical approach to sonic boom which is here developed 1in
detail may be found 1n reference 1.

In any sonic boom theory with the generality of the theory
presented here, the concepts of galilean transformations and of
phase necessarily appear. These concepts are discussed below.

Coordinate systems and galilean transformations.- Two prin-
cipal coordinate systems are required in our theory. One 1s an
unaccelerated coordinate system fixed relative to the ground, and
the propagation through the atmosphere is treated in this coordi-
nate system. The other, defined locally at a particular instant,
is an unaccelerated coordinate system aligned with the aircraft




flight axis and moving with the aircraft velocity at the instant
of interest. The flow near the aircraft is conveniently described
in this coordinate system. These two coordinate systems are
related through a galilean transformation. A galilean transform-
ation is a transformation from one unaccelerated coordinate system
to another moving relative to the first at a constant velocity. A
quantity is galilean invariant if it does not change under a
galilean transformation.

In one particular step of the analysis the consideration of
the galilean transformation is inescapable. This step appears
when the variables describing the (local) flow near the aircraft
are transformed into the appropriate variables describing the
(global) acoustic propagation in the coordinate system fixed rela-
tive to the ground. In this critical step we shall avoid going
through the formal details of the galilean transformation. Instead
we ldentify corresponding variables which are inherently galilean
invariant; by relating these to both the local and global variables
of the problem, we are able to connect the local with the global
variables. This stratagem simplifies this critical step consid-
erabdly and, in effect, accomplishes the inescapable galilean
transformation in a relatively easy way. No other feasible way of
relating the local and global variables was discovered.

In this report we are concerned primarily with the case of a
horizontally stratified atmosphere with winds. Such an atmosphere
remains horizontally stratified under g horizontal galilean trans-
formation, one in which the relative velocity is horizontal.
Hence, any theory for this case must be invariant under such a
transformation. This property has been used in the development of
the analysis presented here to check it for algebraic consistency.

In general, consideration of which variables are galilean in-
variant was of great help in the development of the analysis
presented in this report. A quantity which is galilean invariant
is independent of the choice of coordinate system. It is found
that the analysis is simpler, both algebraically and conceptually,
when such variables are chosen to describe the solution. Thus the
consideration of galilean invariance has guided the general course
of the analysis and the specific choice of variables used.

In this report, we mention in a number of places whether
particular variables are or are not galilean invariant. Except in
the critical step mentioned above, the reader uninterested in this
property may ignore the mention. In the critical step where the
galilean transformation is inescapable, the galilean invariance of
the pertinent variables is essential to the analysis. This step
appears in the section entitled Geometric Acoustics and Blokhint-
sev Invariance.

10



Wave fronts and phase.- According to the basic concepts of
acoustics, the signal is propagated on wave fronts. Wave fronts
are surfaces that move through space and are characteristic
surfaces for the complete hydrodynamic equations (more precisely,
they are characteristic hypersurfaces in space—time). A wave
system includes & one-parameter family of wave fronts. A variable
that parametrizes the wave fronts is termed a phase. Accordingly,
the phase 1is the principal independent variable in terms of which
an acoustic signal or pressure signature 1s described. Any mono-
tonic differentiable function of a phase variable ig also a phase
variable, as it will serve equally well to parametrize the wave
fronts. Since the only purpose of the phase 1is to label wave
fronts, what its dimensions may be 1is unimportant. A phase may be
chosen to be dimensionless Or to have the dimensions of time or
distance, as may be convenient.

As defined, the phase parametrizes the wave fronts over the
entire history of the wave Propagation and is, in this sense, &
global variable. The word 'phase" used alone refers to this global
concept, although to emphasize this property we occasionally use
the term global phase. It is convenient to distinguish from this
concept the concept of a local phase, defined to be any variable
in terms of which an acoustic signal may Dbe expressed locally. A
local phase is not generally a phase in the global sense. A micro-
phone fixed in space records pressure as a function of time as a
wave system goes by. Thus, time measured from the passage of a
reference wave front is & phase variable, one that turns out to be
global as well as 1local in a steady atmosphere; this particular
variable 1s the one we shall use in our general treatment of
geometric acoustics. Distance measured at a given instant normal
to the wave fronts from a reference wave front is a suitable local
phase, Distance aft of a reference Mach cone in a coordinate
system fixed with respect to the aircraft is another local phase,
and is the one we shall use in treating the flow near the aircraft.

To illustrate the distinction between phase and a local phase,
we consider the particular variable distance normal to wave fronts.
The distance between two wave fronts in an atmosphere elther with
winds or with nonuniform speed of sound does not remain constant
as the fronts move. A wave front 10 feet from the reference front
at one time will be gifferent from the front found 10 feet from
the reference front at some different time. Thus, distance from
the reference front is not a global phase, even though it can be
used as a local phase.

The reason the concept of phase 1is important is that we must
correctly identify the wave fronts over the entire history of the
wave propagation. A phase variable, correctly defined globally,
serves precisely this purpose. In our presentation of the theore-
tical analysis, we use two local phases (L/Lg and s ) as well as
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a basic global one (€). we may note that in the general case in
which the atmospheric properties change with time, it is impossible
to use a physically defined entity (e.g., time measured by a fixed
observer) as the (global) phase. In this case the phase must be
defined as a variable in its own right, with no generally valid
physical interpretation.

We pick a particular reference wave front as the front of zero
phase. This wave front is a surface in space which is tangent at
the aircraft to the Mach cone with vertex at some specified
reference point on the aircraft axis. Such a surface is termed a
Mach conoid., For convenience, we consider the reference point to
be at the nose of the aircraft, Other points on the aircraft axis
are at the vertices of Mach conoids or wave fronts of different
phase. These concepts are discussed further in the section on
Mach Conoids and Ground Intersections.

Geometric acoustics and rays.- The basic concept of geometric
acoustics is that the signal is propagated along rays. Rays are
trajectories of points moving in space. Each ray moves with a wave

front, and the concept of the propagation of a signal on rays is
consistent with that of its propagation on wave fronts., Since g
ray is a point trajectory, that i1s, a specification of the motion
of a point with time, it is a kinematic rather than a geometric
entity. Where it appears desirable to emphasize this character, we
term a ray a kinematic ray. The path of a ray is a geometric
entity. When a number of rays traverse the same path, we term the
path a geometric ray. Since phase is constant on each wave front
and each ray moves with a wave front, phase is also constant on
rays. In a general solution the rays form a three-parameter family
of point trajectories. The three parameters are analogous to
Lagrangian coordinates for particles moving in a fluid flow. One
of the parameters is the phase, while the other two are selected to
be an azimuth angle ¢ and a time ty (to be defined later),

In general, the rays corresponding to values of the phase
other than zero do not follow the same paths through space as do
the rays for which the phase is zero. An important sSpecial case is
that in which the ray geometry is steady, in which every ray path
is the path for a one-parameter family of kinematic rays. In this
case the ray paths are what we have termed geometric rays which
form a two-parameter family of curves in space. In applying the
analogy to particles moving in a fluid flow to this case, the flow
is assumed steady, with the geometric rays then analogous to
streamlines. The property of steady ray geometry is not galilean
invariant, and this fact indicates that the assumption of this
property must be made with care.

Historically, for the most part only this special case has
been considered. Moving sources are rarely considered in geometric
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optics; moving acoustic sources are generally treated in a coord-
inate frame in which they are fixed and, generally, only aircraft
in steady flight have been considered as generators of sonic boom.
Thus, historically, rays have been considered primarily as geo-
metric entities.

We make the assumption of steady ray geometry in the sonic
boom problem, with tg and ¢ as the parameters for the geometric
rays. This assumption 1is justified by the thinness of the entire
wave system of interest, essentially by the fact that the aircraft
length is small compared with other macroscopic characteristic
scales. A ray emanating from the tail is simply so close to the
corresponding one of zero phase that the difference in thelir ray
paths may be neglected. If L 1s a measure of the thickness of
the wave system and R a macroscoplic scale measure, the required
condition is Lg/R <K 1 . If A is a measure of the character-
istic wave length of the acoustic signal, it 1s the condition
A/R << 1 which justifies geometric acoustics. The sonic boom
problem is unique among acoustic problems in having A = Lg, with
the consequence that the steady-ray-geometry assumption is valid
when geometric acoustics is valid. Thus this assumption is sound
even though the problem with a maneuvering aircraft 1is not a
steady one.

This assumption 1s basic to our analysis. It permits our
calculating only the two-parameter family of rays corresponding to
zero phase, considering the aircraft to be a single moving point in
space. Another basic assumption 1is that the cumulative nonlinear
effects do not affect the ray geometry. This 1s discussed later
when we treat the nonlinear distortion. Hence, ray calculations

follow linear theory.

Besides the concepts of wave fronts, phase, and rays, another
basic concept in geometric acoustics is that of ray tubes and ray-
tube areas. Although ray tubes may be defined in the general case,
they are much easier to visualize with the steady-ray-geometry
assumption. In the neighborhood of a given geometric ray, we
visualize a tube of geometric rays, i.e., a ray tube. The corres-
ponding entity in the analogous steady fluid flow is a streamtube.
A ray-tube area 1s a measure of the differential area intercepted
by a surface cutting the ray tube and may be considered a vector
quantity. Like a streamtube, a ray tube is a differential quantity,
and a ray-tube area 1is actually defined in terms of derivatives
with respect to the ray parameters.

An element that greatly simplifies the calculation is the
assumption that the atmosphere with its winds is horizontally
stratified (layered). A refraction law of the type of Snell's law
in geometric optics then holds. This law permits the calculation
of both the rays and corresponding ray-tube areas by gquadratures.

13



Digest of the theoretical analysis.- We turn now to a general
description of our analysis of sonic boom, the details of which are
presented in the subsequent sections of this chapter. The analysis
may be conceptually divided into three main parts which will appear
in sections of the chapter preceded by a short section on The
Atmosphere; at the end we add a Note on Viscous Effects. The first
part of the analysis comprises the sections entitled Aircraft
Maneuvers, Initial Wave Normals, Mach Conoids and Ground Inter-
sections, Snell's Law and Ray Tracing, and Ray-Tube Area. Tt con-
cerns the calculation of the rays and ray-tube areas for zero phase
(the reference phase). The second part comprises the sections
entitled Flow Near the Alrcraft, and Geometric Acoustics and Blok-
hintsev Invariance. It concerns the calculation by linear theory
of' acoustic signals along each geometric ray. The third part
comprises the sections entitled Signal Distortion and Age Variable,
and Shock Location. It concerns the calculation, with shocks
properly accounted for, of the nonlinear distortion of the signal,
A number of vector quantities are introduced and used in the
analysis. The components of these vectors in the various coordi-
nate systems used are given in the section entitled SYMBOLS, Vector
Components.

The maneuver of the aircraft (strictly speaking, of the refer-
ence point) is required in detail. Variables are introduced in the
section on Aircraft Maneuvers which describe the trajectory in
space, the orientation of the flight axis, the velocity of the air-
craft relative to the local atmosphere, and the local sound Speed,
all as functions of time g . Time derivatives of certain of the
variables are also determined, for later use in the ray-tube area
calculation., At each instant tg we visualize a Mach cone attached
to the nose of the aircraft. Tho normals to the Mach cone form a
one-parameter family of directions forming a wave-normal cone with
the parameter being an azimuth angle ¢ . The two quantities tg
and ¢ are the ray parameters discussed earlier.

In the section Mach Conoids and Ground Intersections, the wave
fronts and rays from an aircraft in maneuvering flight are dis-
cussed generally, with particular attention to the intersections of
the rays and wave fronts with the ground,

The generators of the wave-normal cone at the aircraft are the
initial wave normals for the calculation of the rays. The orien-
tation of these normals is known as a function of the ray para-
meters, For each wave normal we calculate two quantities which are
invariant on rays according to the appropriate Snell's law, These
invariants are then used to calculate the ray trajectories.

The ray-tube area is defined as that given by horizontal
cutting planes. An analytic expression for this area is obtained

14



in terms of the maneuver variables, certain of their time deriva-
tives, and three quadratures along the ray. The ray-tube area is
thus obtained as a function of altitude along each ray and may be
caleulated concurrently with the ray trajectory.

Tor the second part of the analysis (Flow Near the Aircraft,
Geometric Acoustics and Blokhintsev Invariance), we consider first
the flow close to the aircraft. In particular, we need the asymp-
totic form of the local solution, valid at a distance from the
flight axis large compared with the effective lateral dimensions
of the aircraft but small compared with characteristic scales for
the atmosphere. This asymptotic form of the local solution is
interpretable as a geometric acoustics solution. At a sufficiently
large distance r 1n a particular direction away from the flight
axis of the aircraft, the solution appears the same as that from a
1line distribution of sources and sinks, the same as that from an
equivalent body of revolution. The pressureg perturbation in the
asymptotic solution is proportional to I~ times a function F
of a suitable defined phase and of an azimuth angle ¢ (simply
related to ¢ ). This F-function depends also upon the Mach number
and 1ift coefficient of the ailrcraft, which are functions of the
time tg . The F-function is then a function of phase and of the
ray parameters tg and ¢ and is invariant along each kinematic
ray. 1t is obtainable either by a computation (outlined here in
the section Flow Near the Aircraft) or from experiment. It 1is
assumed to be a known function in the computer program.

Tn the general stratified atmosphere with winds, the appro-
priate general definition of phase is as the time £ measured by
an observer fixed 1in a ground-based coordinate system and defined
to be zero the instant the zero-phase wave front passes. Invar-
iance results of Blokhintsev permit the acoustic signal of each
ray to be described in terms of a function V_(€) which 1s
constant on the ray.

The relation between the local and general phase variables 1is
then found so that F may be expressed as & function of £ . The
relation between the function F and Vg 1s also found, which
then gives the function V(&) for each ray (since F 1s assumed
known). The relation betwéen Ve and pressure perturbation AD
is known, so that Ap(€) is determined at any point on each
geometric ray.

In the third part of the analysis (Signal Distortion and Age
Variable, Shock Location), we consider the change in propagation
speed proportional to the strength of the signal. This nonlinear
effect does not, in principle, influence the magnitude of the
pressure perturbation in the acoustic signal. Rather it causes
phase shifts 1n the signal, whereby a given point in the signature
may appear earlier or later than predicted by the linear theory.
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This phase distortion arises because compression waves travel
slightly faster, and expansion waves slightly slower, than do
infinitesimal disturbances. In terms of the phase variable ¢ s
this phase shift equals Ve times an age variable T which can
be computed along each ray by a quadrature., The distorted signal
appears as the original one Vé(&) sheared by an amount propor-
tional to =

The distorted signal may be multivalued and may thus give
several values of the pressure perturbation for a single value of
£ . Physically, this anomaly indicates the presence of shock
waves and disappears when shocks are properly taken into account.
A separate analysis shows where shock waves must lie and shows
which parts of the signature have been "eaten up" by the shocks
and no longer appear. The result of the analysis is the complete,
single-valued pressure signature at any desired point, with
shocks shown if they are present. The nonlinear effect does
affect the magnitude of the pressure perturbation insofar as the
parts of the original signal that are eaten up by shocks no
longer appear.

The theory fails near a caustic, a surface in space at which
the ray-tube area becomes zero, It also fails near the boundary
of a shadow zone into which no rays penetrate and may fail near a
critical ray for which the F-function is singular in some way.

The linear solutions in these regions are solutions to diffraction
problems for which geometric acoustics is invalid. These problems
are outside the scope of the analysis of this report.

The Atmosphere

The coordinate system used is cartesian with x and y
horizontal distances east and north, respectively, from a refer-
ence origin on the ground. The ground 1is assumed level at an
altitude Hy above sea level, and z is altitude above the
ground. The atmosphere is assumed to be a calorically perfect gas
(constant specific heat ratio ye) with the thermodynamic proper-
ties temperature T i density p , pressure P = RTp , and speed
of sound a = (vygRT) /2 given as functions of altitude. The
pressure obeys the hydrostatic law

d
= = -pg (1)

with g the acceleration due to gravity. Winds are horizontal
with magnitude wu and direction dependent only upon 2z . The
wind direction is specified by the wind heading angle mn  measured
clockwise from north. In accord with ancient historical conven-
tion, the wind heading is taken as the direction from which the
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wind comes ("the north wind doth plow"), and we have acceded to
this convention. The velocity of the wind has east and north com-
ponents (—uX,—uy) with

u, = u sin 7
u._ = u cos
v T
Application in the program. - Inputs into the program include

the temperature T , cither the density p or the pressure D ,
the wind speed u , and the wind heading angle 1 gilven as
functions of the altitude 2z + H above sea level., Also input 1is
the ground altitude Hg . An opgion provides for specification of
the 1962 U.S. Standard Atmosphere (ref. 2) with any wind distri-
bution.

There 1s no provision in the prograim to ensure that the hydro-
static relation (1) is satisfied. Hydrostatic consistency of the
input data is the responsibility of the operator.

Aircraft Maneuvers

Tn our study of sonic boom, we need the trajectory of the air-
craft in order to know where the rays start. The equations to be
integrated for the aircraft trajectory, if it is not specified, are
presented in this section. The time derivatives of heading angle,
climb angle, and aircraft velocity or Mach number are needed later
in the calculation of ray-tube area. Equations permitting the
calculation of these derivatives from the aircraft load factors are

also included here.

The aircraft moves through space supersonically on some known
trajectory. This trajectory 1is described by the coordinates
x5 (ta), valta), and z5(tg) of a reference point on the aircraft,
which we choose to be the aircraft nose. The subscript a
identifies varilables defining the aircraft position in a ground-
rixed coordinate system.

The first stage of our analysis is an investigation of the
equations governing the trajectory of the aircraft. The aircraft
has velocity ¥V measured 1n a coordinate system in which the local
atmosphere is at rest (i.e., in a coordinate system moving with the
wind velocity). This velocity has magnitude V , a heading angle
¥ measured clockwise from north, and a climb angle -y above the
horizontal. The direction of 'V at any instant 1is termed the
flight axis.

With respect to the ground-fixed coordinate system, the diff-
erential equations for the flight trajectory are then
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g6 = V cos v sin ¢ - uX(za)

g5 = V cos v cos ¥ - uy(za) (2)

V sin vy

If V, v, and ¥ are known functions of ty , we can integrate
the third equation to obtain z5(ty), and then obtain Xg and
Yg by integrating the other two.

The acceleration of the aircraft is equal to the net force
divided by the aircraft mass W/g. The component along the flight
path is (nT - 8in vy)g, where np  is a net thrust load factor
defined by

ap = (T - D)/W = (Cp - Cp)a S, /W (3)

with T and D representing the thrust and drag on the aircraft,
respectively, Cp and Cp the thrust and drag coefficients, Qoo
the dynamic pressure (l/2)pV2 » and  Spngp the aerodynamic
reference area. The quantity g cos vy "is a component of the
acceleration due to gravity acting laterally, or normal to the
flight direction.

The aircraft is assumed to be laterally symmetric, without
Side forces, and to be banked at an angle ¢4 about the flight
axis. The 1ift on the aircraft then provides a normal accelera-
tion component nrg , where ny, is the 1ift load factor defined

by
O T LA = CLquref/w (4)

where L and Cr, represent the 1ift and 1ift coefficient, respect-
ively. This is directed so that nrg cos ¢ opposes the gravity
component g cos y , while nrg sin ¢5 1is horizontal, Figure 1
shows the acceleration components while figure 2 shows how Pgq 1s
defined and shows the lateral acceleration components. The coord-
inate frame (x',y',z) is rotated T/2 - ¥ counterclockwise
relative to the reference frame (x,y,2z) and is used later to
develop wave propagation directions.
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(flight
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x (east) %! {heading)
Figure 1. Acceleration diagram for maneuvering aircraft.

To obtain expresslons for the lateral and axial acceleration
components, we differentiate equations (2) with respect to tg and
combine terms. This yields

L2 2
ax, d Vg
n.g sin ¢_ = COS v - sin ¥
L a at 2 at .
a a
dgza
(n, cos ¢, - cos v)g = cos ¥
L a 2
dtg
dgx dgy -
. . a a
- gin vy <51n v 5+ cos V¥ 2)
dt, dta
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Figure 2. View looking forward along flight axis showing
acceleration components, bank angle, and azimuth angle.

(nT - sin v)g = sin v

Carrying out the differentiation with respect to ta » We then

obtain
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aw dza du duX
V cos ¥ g = 48 sin ¢a - I sin ¥ EEX - cos ¥ 3z >
a a

Y %1— = (nL cos ¢, - cos v)g
a
(5)
dza duy du
- 5?; sin v<cos Y T + sin ¥ Iz >
av : 0zq MY 4 sin g ox
a€; = (nT - sin v)g + JT, cos cos U gz> * sin 1 g§—>

The factor dz,/dty; 1s, from (2), simply V sin vy . Equations
(5) relate the two load factors nrp, and np with the time deri-
vatives of ¢ , v , and V .

Although they are not directly involved in the aircraft dynam-
ics, the speed of sound a and the aircraft Mach number M = V/a
are convenient to use in the acoustic analyses. The speed of sound
is obtained from

a = (yrr)Y/2 (6)

The gradient of the speed of sound satisfies the relation

The time derivative of V = Ma may then be expressed as

daz
qv au
i =
a a a
B dM 2 s da
- a(a%; -2 sin v §2) (7)
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Application in the program.- Inputs into the program include
v, v >, and M as functions of the time t_, . Equations (2) are
integrated to obtain the aircraft trajectory. The time derivatives
of ¥y , v , and M (actually of the Mach angle pu = sin=L(1/M)
are required later in the program for the ray-tube area calculation
and, for this purpose, two Maneuver Options are provided. In the
first option, the load factors ny, and np are additional inputs,
and the time derivatives are calculated from equations (5) and (7).
In the second option, the time derivatives are calculated directly
within the program by differentiating the input data.

The purpose of including Maneuver Option 1 is to provide a
more accurate calculation of the time derivatives in case the load
factors are accurately known, as perhaps from accelerometer data
from a flight test. In this option, the input data are redundant,
and it is the responsibility of the operator to ensure that they
are reasonably consistent.

Initial Wave Normals

The purpose of this section is to express the initial orienta-
tion of the wave fronts as they leave the aircraft. This initial
orientation gives the basic parameters needed for the ray calcu-
lation.

Here we have an example of the principle discussed earlier of
using galilean invariance to identify the variables which are
preferable for use in the analysis. The wave normals are the ray
directions in one particular coordinate system, that fixed in the
undisturbed atmosphere at the aircraft altitude. Ray directions
are not galilean invariant, while wave front shapes and wave
normals are. The use of wave normals rather than ray directions to
define the basic variables keeps the analysis in its simplest form.

With each instant of time tg during the aircraft flight, we
associate a Mach cone with vertex located on a given reference
point on the aircraft. This Mach cone is tangent to the Mach
conoid (wave front) moving with the aircraft. The normals to the
Mach cone at the vertex form a wave normal cone. We consider an
instantaneous coordinate system (x',y',z) for purposes of descri-
bing direction only (fig. 1), rotated an angle T7/2 - ¥ counter-
clockwise relative to the basic coordinate system, with origin at
the reference point on the aircraft. The two cones are illustrated
in this coordinate system in figure 3. The half-angle of the wave
normal cone is the complement of the Mach angle

An arbitrary azimuth angle ¢ is chosen, measured according
to a right-hand rule about the flight axis from the downward
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(a) Sketch showing wave normal cone and one wave normal.

1
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(b) Plan view showing projection of wave normal.

Geometry of initial wave normal directions, showing

Figure 3.
coordinate axis orientation.
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direction (see figs. 2 and 3). The particular wave normal corres-
ponding to this azimuth angle is considered and will determine the
particular ray determined by the parameters tg, ¢ . The direction
cosines (4,m,n) of the wave normal relative to the axes (X',y',~z)
are to be determined next.

The pertinent vector directions may be represented by points
on a unit sphere. The desired direction cosines can be derived
either by spherical trigonometry or by calculating cartesian coord.s
inates of points on the unit sphere. Choosing the first approach,
we consider the spherical triangles of figure 4 and obtain

Figure 4, Spherical triangles for calculating wave
normal direction cosines.
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f = sin p cos y + cos p sin vy COs ¢

m cos W sin ¢ (8)

il

n

- sin pu sin y + cos g cos 7y cos ¢

using the law of cosines to obtain £ and n and the law of sines
for a right triangle to obtain m . Essentially the same results
are obtained in Appendix IV of reference 3. The downward or (-2)
axis is used here because we want to consider primarily descending
acoustic signals and rays.

The angle v 1s defined as the heading angle of the wave
normal (fig. 3(b)), and the angle 0O, 1s defined as the angle of
the wave normal below the horizontal (fig. 4). Using these defini-
tions, m/4 = tan (¥ - v) and n = sin 85 . With equations (8),
these yilield

-1 cos W sin ¢ )
Vo= -
v tan {sin L cos Y + cos W sin ¥ cos ¢ (9)
and
sin GO = - sin p sin y + cos W cos Y cos ¢ = n (10)

The maneuver history of the alrcraft provides p and vy , SO that
these equations give v and 65 as functions of the two ray para-
meters ty; and £ . We note that

4 = cos 6 cos (v - v)

B
Il

cos 6_ sin (v - V)

Another coordinate system (xl,yl,z) is shown in figure 3 and
is aligned with a particular wave normal. This coordinate system
is not used in this section but is used below in the treatment of
ray tracing and ray-tube areas.

Application in the program.- Using the known values of ¥ ,
v , and M , the gquantities v and sin 6, are calculated from
equations (9) and (10) as functions of the ray parameters tg
and ¢ .
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Mach Conoids and Ground Intersections

At this point we are ready to calculate the rays. The purpose
of this section is to describe the rays and the Mach conoids (wave
fronts) in general terms before going into the detailed calculation
of the rays. The intent also is to show the functions needed to
describe the rays and wave fronts globally and needed to determine
when and where the sonic boom signals hit the ground. The primary
purpose of the section is, thus, largely conceptual, and the reader
primarily concerned with the algorithm may skip the section.

As the aircraft moves through space, a wave system associated
with the aircraft moves with it and propagates away from the flight
path. The wave system, which consists of a one-parameter family of
wave fronts, is characterized by a single wave front chosen here
to be the one of zero phase. This wave front is attached to the
aircraft at the reference point on the aircraft and is tangent to
the Mach cone associated with this point. The front is the same as
the Mach cone only in the special case of straight flight at
constant speed in an atmosphere of uniform temperature. This
reference wave front is termed the reference Mach conoid and is
shown schematically in figure 5,

The reference wave fronts or Mach conoids are not calculated
directly. What we calculate are the kinematic rays corresponding
to that wave front, which here are the rays of zero phase. With
the basic assumption discussed in the section General Description,
the ray paths for these rays are also those for other values of the
phase and have been termed geometric rays.

The rays are specified by three functions giving x , y , and
z as functions of tg » & , and t . Here t 1is the time on
the ray, while ty, and ¢ are the ray parameters defined in the
preceding section. In a stratified atmosphere we replace t by
z as Independent variable. The ray is then specified by the two
functions x(tg,¢,z) and v(ta,%,z) describing the ray path (or
geometric ray), together with the function t(ta,%,2) giving time
along the ray. The calculation of these functions is described in
the following section. The ray paths for a given time tg of
emission are illustrated schematically in figure 5, shown here as
straight lines. In the general case, they are curved lines.

The ground is at =z = O . The solid ground intersection curve
in figure 5 is given by the functions x(ta,9,0) and y(tg,9,0)
for a given emission time tg . The time of arrival of the signal

on this ground intersection curve is not constant and is given by
the function t(t,,¢,0)

The wave fronts or Mach conoids are surfaces of constant t
An inversion of the function t(tg,$,z) gives a function to(d,2,t).
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Figure 5. Maneuvering aircraft, showing coordinate system,
rays, and Mach conold.

When this is substituted into the ray path functions, the result
is two functions, x(¢,z,t) and yv(¢,z,t) , giving the Mach
conoids parametrized by the variables ¢ and =z

The intersection of a Mach conoid with the ground is the
curve given by the functions x(¢,0,t) and v(¢,0,t), obtainable
by the process just described but with =z kept equal to zero.
Such a ground intersection of coincident signals is illustrated Dby
the dashed curve in figure 5.

The phase variable which 1s introduced later in the analysis
is a time £ measured from passage of the zero-phase wave front.
Rays and wave fronts of phase different from zero obey the same
equations as do those of zero phase, except that the arrival time
t is replaced by the time t + E .

Application in the program.- After the rays are calculated,
following the procedure described in the next section, the Mach
conoid ground intersections are obtained by interpolation of the
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variable t . These ground intersection curves, together with
corresponding maximum values of the pressure in the final signature,
are part of the output.

Snell's Law and Ray Tracing

The purpose of this section is to present the appropriate
Snell's law for geometric acoustic propagation in a stratified
atmosphere and to derive with this law the equations whose quadra-
ture gives the rays.

In acoustic theory a signal on acoustic disturbance is propa-
gated on a moving wave front. (From the mathematical point of
view, a wave front is a characteristic hypersurface in four-dimen-
sional space-time for the full equations of motion.) It moves in
such a way that its normal velocity relative to the medium is the
speed of sound., Its actual normal velocity in space is

c_=a +n - u (11)

where n 1s a unit vector normal to the surface pointing in the
direction of propagation and U is the vector velocity of the
undisturbed medium (wind vector),

A signal initiated at one instant from a point is found a
short time 6t Ilater_within a spherelet of radius adét whose
center is displaced udt from the original point. If every point
on a wave front emits a signal at a given instant, Huygen's prin-
ciple identifies one of the two envelopes of the spherelets 6t
later as the wave front at that time (the other envelope corres-
ponds to -n and is usually without meaning). This principle
glves a motion to the wave front in accord with equation (11).

In geometric acoustics, the concept of a ray 1s fundamental.
A ray is a point trajectory and may be defined

(a) as a characteristic in an asymptotic development of the
equations of motion for small wave length;

(b) as a bicharacteristic for the full equations of motion,
corresponding to the wave front as a characteristic
hypersurface;

(c) to move from the point of emission of a spherelet to the
point of tangency of the spherelet with the envelope
wave front at a time 6t later.

Any of these definitions leads to the result that the ray is a
trajectory of a point that moves with the velocity
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af

= Cc =an + u (12)
at

where r = xI + yJ + zk 1s the position vector of the point and

i, j, and k are cartesian unit vectors. This veloclty 1is
termed the ray veloclty or group velocity. In geometric acoustics,
the signal 1s propagated along rays with this velocity. DNote that
c_ =n . ¢

n

Besides the ray or group veloclty, an important entity is the
slowness vector or inverse phase velocility n/cn . This entity i1s
more familiar in geometric optics than in geometric acoustics,
primarily because the subject of geometric optics has been SO
thoroughly studied and applied to practical problems.

In order to calculate rays, it is necessary to know how the
wave normal vector n changes along rays. A general refraction
law may be derived (see ref. 4, for example) which states that

dn _ va + (va) . n -nfn - Vva +n - (va) - n] (13)

dat

along a ray. The combination of equations (12) and (13) is a
system of differential equations which must be solved to obtain
the ray.

In the case treated herein of a steady horizontally strati-
fied atmosphere, the calculation of a ray is much simpler. A part-
icular refraction law or Snell's law is available which gives n
explicitly along a ray (see ref. 5, for example). This "Snell's
law", stated in its most general form, 1s that the horizontal vector
component of the inverse phase velocity vector n/c, 1s constant
along each ray. We decompose I into horizontal and vertical
components according to

5 = cos 60 - sin 6k

where n' _is a horizontal unit vector. The angle ©6 1s the
angle of n below the horizontal. Our Snell's law then states

that the horizontal vector cos GiEVC is constant along each ray
(see figs. 6 and 7). We define the velocity ¢, @&s
°n
© = Tos @ (1%)
in terms of which the invariant horizontal vector 1s cslﬁ‘ The

initial value of 6 when the ray is emitted from the aircraft is
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Figure ©, Propagation velocity plot.
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Figure 7. Oblique view of velocity plot.

the angle 6, _defined by equation (10). The quantity cg, and the

direction of n are thus invariant along each ray. The direction
or heading angle of 4' is denoted v 1in accord with the notation
of the previous section. The two invariants c¢o and Vv are

functions co(tg,¢) and v(ty,9) of the two ray parameters.

We introduce a coordinate system (x ,yl,—z) aligned so that
the wave normal n 1lies in the (x1,-z) plané (see fig. 3(Db)).
This system is one rotated an angle &7 - V counterclockwise
relative to the basic coordinate system. The main use of this coor-
dinate system will be 1n the following section, in the calculation
of ray-tube area.

The wind vector u has components (-uy,-uy) in the (x,¥)
frame and components (-u,,-ug) in the (x1,91) frame with

u
n

u cos (v - m) =u, sin v + ug, cos v

(15)

Il

ug = u sin (v - m) =-u, cos v +u, sinwv

The minus signs before the components come from the ancient wind
convention mentioned earlier. Note that uw - n = -u, COS C
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For each initial wave normal (and corresponding value of ¢ )
in the wave normal cone at the ailrcraft, there is one corresponding
ray, The value of v for this ray is that obtained from equation
(9). We obtain Cqo for the ray from the expression

0 0 o 0 0 6
© cos 04 cos 6, cos 64 o

where cos 6, 1s obtained through equation (10) and the subscript
O denotes conditions at the initiation of the ray at the aircraft,
At any other altitude, with Co and v known, the angle 6 may
be calculated from

cos 6 = 5 i(ii(zf (17)

Thus 6 is known as a function of o » ¥V , and z and thereby as
a function of tg » ¢ , and =z . Figures 6 and 7 show the relation
between Co » 6, and a and the wind components -u, and -u. .
The wave front appears edge-on in the (Xl,Z) plot. Note that the
wind component -uy tangential to the wave front does affect ¢
but has no effect on the Snell's law,

In order to carry out the ray tracing (to calculate the rays),
we need to integrate the following equations (see figs. 6 and 7):

ax

1
T = a cos 6 - u,
S
dt t
a(=z) = a sin 6
at
These equations are components of the vector equation (12), The

independent variable is changed from t to -z ; 8lving the
equations

dxl B a cos 6 - un
a(-z) = a sin 0O
ayq ~Uy

d(-z) ~ 3 sin @
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A transformation from (x1,y1) to (x,y) gives the desired ray
equations

dx B a cos 6 sin v - Uy
da(-z) ~ a sin ©
a cos 6 cos v - Uu
v r (18)
d(-z) a sin ©
at 1

d(-z) a sin 6

With a downward propagating ray (sin 8 > 0), the integration of

equations (18) is carried out in the -z direction from the ini-
tial point (z = 23 , X =Xag » ¥ =7JYa t = tg) to the ground
(z = 0). The functions sin 6 and cos 6 are obtained as

functions of =z from equation (17).

Equations (18) are the basic equations of this section as they
yield the rays by quadratures. BY integrating them we obtain the
functions x(tg,9,2), y(tg,9,z), and t(tg,¢,z) discussed in the
preceding section. The equations immediately preceding equations
(18) (in terms of x3 and y1) may be expressed with a minor
modification to take neighboring rays into account. The ray
equations in this form are more convenient than equations (18) for
computing ray-tube areas and will be used for this purpose.

Application in the program.- In the program, for the selected
values of the ray parameters (ta,¢) , Co 18 calculated from
equation (16) with wu,, obtained from equation (15). Equations
(18) are then integrated for the rays with 6 obtained from
equation (17). Only downward propagating rays are calculated, and
the calculation is stopped when the ray 1is approximately horizontal

Historical note.- The refraction law of the type of Snell's
law, equation (14) or (17), was given by Lord Rayleigh in 1878
(Sect. 289 of ref. 6) in planar flow. Rayleigh did not distinguish
between wave normals and rays, however. Barton, in 1901 (ref. 7),
noted that the correct ray propagation velocity was not in the wave
normal direction. He gave the correct planar ray tracing equations
with examples. Fujiwhara, in 1912 (ref. 8), gave the correct
Spnell's law in three dimensions and the corresponding ray tracing
equations (18) with examples. Emden (ref. 9) identified the ray in
terms of energy transport without defining the energy.
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Ray-Tube Area

The purpose of this section is to obtain an expression for
ray-tube area along the rays. The ray-tube area is needed sSubse-
quently in the analysis in order to express the acoustic signal
quantitatively, and also thereby to calculate the nonlinear
distortion.

A ray tube is a differential concept, to be visualized as a
tube made up of rays which are differentially close to the parti-
cular ray being investigated. The actual cross-sectional area of
such a tube is thus also a differential Quantity. The quantity
which we term ray-tube area is a finite measure of such a differ-
ential area and not actually a physically identifiable area.,
Multiplying any ray-tube area by a constant factor will make no
difference in the final results of the analysis. A consequence of
this fact is that the dimensions assigned to the ray-tube area are
completely unimportant and may be changed through such a factor to
sult our convenience. The invariance of the final result to a
multiplication of the ray-tube area by an arbitrary constant factor
was used as a check of the analysis.

In our case, we use the (xl,yl,—z) coordinate system intro-
duced earlier, corresponding to thé particular angle v = v, for
the reference ray, with the rays parametrized in terms of the ray
parameters ta and ¢ . Our use of Snell's law for a stratified
atmosphere directs the use of horizontal cutting planes with the
vector ray-tube area directed in the direction of the -z axis. We
can visualize a differential ray-tube area as the quadrilateral
area on a plane gz = constant, determined by the rays with para-
meters (ta,¢) , (tg + 6t5,0) , (ta,¢ + 6¢) , and (ta + 6tg,¢ + 60)
as illustrated in figure %. This differential area is 6taé¢
times the Jacobian of (xl,yl) with respect to (tg,9) . We
define the ray-tube area ~A " as

Bxl Byl
3ty dt,
1
A(t,,¢,2) = = (19)
o
Bxl Byl
3¢ ¢
in terms of the functions x1(tg,%,2z) and v1(tg,¢,2z). These we
may conceive of as obtained by a rotation of ir - v from the
functions x(tg,¢,z) and v(ta,®,z) that were” obtained from
integrating equations (1 ). The analysis is much simpler in this

form. The factor cgl is included in the definition of A so as

34



Aircraft flight path

Differential
ray-tube area

z = constant

Neighboring ray
¢ + 00)

Neighboring ray
(t, + oty »¢)

Reference ray Neighboring ray
(tayq)) (ta’¢+ 5(1))

Figure 8. Sketch showing ray-tube area.

to make the subsequent formulas simpler; the factor cgl here,
incidentally, makes A galilean invariant. Note that A has
dimensions of length in this definition. We shall evaluate (19)

by expressing the terms in the Jacoblan as integrals taken downward
along the ray and eventually arrive at the expression (26) below.

A few authors have defined entities analogous to ray-tube area
in terms of Jacobians. 1In the acoustic stratified case, an identi-
fication equivalent to that of equation (19) was glven by Lighthill
(ref. 10). The recognition that the area may be obtained by quad-
ratures and the area calculation in these terms is new in the
present analysis. This treatment of ray-tube areas, developed in
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Somewhat more general terms, may also be found in reference 4,
(Our analysis may be considered g special case of a general
approach to calculating Jacobians of analogous type for general
wave propagation; a paper on this subject by the first author is
being prepared,)

The terms in the Jacobian of equation (19) are to be expressed
as initial values plus integrals along the ray from z = z4 = Zg .
The initial values (at the point of emlssion of the rays) of the ¢
derivatives are zero. The initial values of 0x3/0ty and dy1/dtg
are not zero., They form a horizontal vector Bf'/ata (shown in
fig. 8 multiplied by 6ty ) where

We rewrite equation (19) in the form

o) () (21 o Gy
c a0 NESol|BE, T\Se/, w \3t,/,
ox oy

a
R Y oxy oy
3¢ 3¢ d¢ o9

with the lower terms in the first determinant and alil those in the
second equal to zero at the point of emission. The variables x3
and y1 are expressible as integrals over -z , and their deriva-
tives with respect to the ray parameters may be similarly expressed
by differentiating under the integral sign. Thus, all the terms
except the upper terms in the first determinant are integrals over
-z taken from the point of emission. We make a transformation of
the independent variables (tg,9) to (co,v) and write

/9% Byl

o (5= St
dta/o a’/0 3¢ 3 dxy 3y,
c A — - a_V axl 5y1 . Bt_a ta acO acO (20)
0 A¢ Sco aco 500 3 axl ayl
Sco le Byl ¢ ¢ v ov
3¢ dv ;v
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Here we have used the theorem that the determinant of the product
of two matrices is the product of their determinants. The deriva-
tives of x7 and V3 with respect to c¢c5 and v 1in equation
(20) are again integrals over -z taken from the point of emilission.
Our next step is to evaluate these quantities.

The initial values of the tg derivatives may be calculated
with the aid of the equations for the direction cosines of the
initial wave normals. We note that

L

I

cos 6_ cos (v - v)

l

m = cos 6_ sin (v - wv)

The result of the calculation is

Bxl\
55) _ Yiaos  cosly - ) < sin v con 8,
\,
_ sin vy
Yng <l T %in @ sin 90)
Ve .
3 sin vy 21
_COQ1+Sinusin eo> =)
ay . "
N ) ) ) sin 7y
5) = V cos vy sin (¥ - V) Yt <1 * %in p sin O )
a’ 0 ©
_ _Vcosycosusind 0 (1, SR Y o (22)
cos o Sin g sin v,

To calculate the derivatives of (x7,y1) relative to c¢o and
v , we first recognize that the coordinate system is defined to
correspond to one reference ray with v = v, and that we must
consider neighboring rays. The ray tracing equations (see equa-
tions preceding (18)) are written in terms of x3; and yj; and are

dx u

1 _ cos 6 _ n
d(-z) sin © a gin ©
_dyl _ _ cos Q(V - v ) Y
a(-z) sin © r/ ~ a sin O

31



In the second equation, (v - v,) represents sin(v - vy) with

vV - vy small. A factor cos(v - vy) in the first equation has
been set equal to 1. 1In the same terms, equation (17) relating
Co and 6 may be written

C = —2_ - u_ + up (V- ovy) (23)

o) cos 6 n
These three equations are differentiated at constant =z with
respect to the three variables Co » vV, and 6 , and then v is
set equal to Vy . The differential of 6 is eliminated to yield

dx; 4 0xXy
3 d(-z _ §Co - ¢ c053 6
BCO d(-z) e aESiHB 0
dx ox
1 1 3
o) m _ d Y . U_t cos~ 6
oV d(-z) © a2 sin3 6
Ay
dy 1
1 d 3
S q7=% _ oc g cos” 6
oc d(-z) a® sind o
dy oy
0 dZEz§ _ d 5% cos 6 _ ut2 COSB ©
SV T d(=z) sin © 2 o103 o
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We define the following integrals

r cosS 6 d(-z)

I.(-z) =
1 Joz a2 sin3 e
0
U cos3 @ d(-z)
(-2) = | s (211)
Y-z sin® ©
o)
2 3
o) ~u. cos~ O .
a v cos 0)
I (_Z) = < ;d("'Z)
3 \/_ZO K 22 o1n30 sin 0,
as indefinite integrals equal to zero at z = 2z, This notation,
avoiding the dummy variables of definite integrals, is a conven-
ient one. In terms of these integrals, we can evaluate the
gquantities
1 Bxl g
c_ oc 1
o) o)
1 6X1 - 6y1 . (25)
cy oV 500 o2
Byl ;
V. T T 43
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We now substitute the expressions obtained in equations (21),
(22), and (25) into formula (20) for the ray-tube area. The result
is

7 dc

i i V sin ¢ cos p cos vy 0
A = L<1 + SERAT N > I, - ug I,) - T
sin p sin 6, ( 2 to 1) cos 6, 11 3¢

sin vy > V sin ¢ cos | cos vy ov
- 1 I. - T - T —
[( T Sin L osin 6, ( 3 Yt 2) cos 6 24 ¢

o v —-—-——5> (1,15 - 15) (26)

This 1s the desired expression for A . This expression is given
in terms of the derivatives of Co and v with respect to the ray
parameters, and these derivatives must now be calculated,

In the calculation of these derivatives, the quantities v ,
Y , and p are functions of tg alone. The derivatives of v
are obtained with some algebraic manipulation from equation (9) and
are

v dy sin ¢ du. . ay
= + cos + cos8 sin ©
Oty dty  cosZe Y ag, " ° dt,
o
(27)
v _ —32%~E (cos p sin vy + sin W cos 7y cos ¢)
9¢ cos”0

To obtain the derivatives of c¢, , we first differentiate equation
(23) again at the aircraft (with z variable) to obtain

a, sin 6 Fq 0 dag duno>
de = d6_ + ug av + ( - dz
o cosgeo o o cos O dz dz

Equation (10) for sin 6o 1s also differentiated, and the O6
derivatives are eliminated. The quantity 0Jz/d¢ is zero and

3z dza a sin vy

Oty  dtg sin W
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We can then express the derivatives of s as

Bco 3v a, sinf9o[( au
52 = u - cos W sin ¥ + sin B cos 7Y cos ¢)H——
ta to Bta oos3 90 ta

+ (sin p cos ¥y + cos W sin 7y cos ¢)%%—]

du

a_ sinvy da n
+ O / 1 o _ o> (28)
sin B \cos QO dz dz
Bco . v a  sin 90 cos W cos ¥ sin ¢ (29)
oF to of cosseo
In equation (28) the derivative of u with respect to =z 1is

taken with v constant in the fixed %l:YI) coordinate system.
Thus, duno/dz is to be interpreted as sin v duyx /dz + cos Vv
duy_/dz . "Both dup /dz and dag/dz are, of course, evaluated
at’ €he aircraft altifude only.

Demonstration of the galilean invariance of A 1is, of course,
not essential to the analysis. Here we outline such a demonstra-
tion. The quantity c is altered by an added constant in a
galilean transformation in the xj7 direction, while a constant 1is
added to the function ug(z) in a galilean transformation in the
y1 direction. However, the combination of terms

aco oV

.————-—-u QRIS
Bta to oty

and the corresponding quantity using ¢ derivatives are galilean
invariant, as are the corresponding derivatives of v alone The
combinations of integrals I, - utoIl and I3 - 2ut012 + utoll
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are also galilean invariant. From these results it may be shown
from the expression (26) that A 1is galilean invariant.

Application in the program.- For each ray, the derivatives
of ¢, and v relative to t, and ¢ are calculated from (27),
(28), and (29) using information from the Aircraft Maneuvers
Section. The integrals of equations (24) are computed along the
ray. The ray-tube area A 1is computed from equation (26) at the
same time the ray is computed.

Historical note.- The concept of ray-tube area in sound
propagation without planar, cylindrical, or spherical symmetry
appears in a solution by Rayleigh in 1878 (Sect. 284 of ref, 6)
with straight rays. Most discussions in the literature of ray-
tube area with curved rays have been confined to cases in which
the aircraft is in steady level flight (no dependence upon ty)s
in these cases the solutions are much simpler than in the general
case.

Flow Near the Aircraft

The purpose of this section is to define the F-function used
in the analysis and to present an outline of the local theory near
the aircraft which leads to the concept of the F-function. The
F-function is needed as an initial acoustic signal in the basic
geometric acoustics calculation. The F-function can be directly
computed by linear theory from the geometry and 1ift distributions
of a slender aircraft. The reader uninterested in the details of
this computation may skip to equation (33) where the F-function as
used in this analysis i1s defined.

The initial conditions for the calculation of sonic boom pro-
pagation must be obtained from the flow field near the aircraft.
This section reviews the local theory near the aircraft which leads
to the concept of an F-function. This F-function is the function
in terms of which initial conditions are Specified.

Thus we describe here briefly the linear solution for the flow
about an aircraft with particular attention to the outer asymp-
totic form of this solution. We assume, for simplicity, that the
Slender-body and thin-wing assumptions of linearized supersonic
aerodynamic theory are valid, and that the aircraft may be repres-
ented by a combination of linear and surface distributions of
source and l1lifting elements.

We assume further, presuming the shape of the aircraft is
given, that the problem of finding the 1ift distributions has been
solved. Thus we shall treat the 1ift distributions (and corres-
pondingly the side force distributions) as known. With the slender
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body assumption, the source distributions are obtainable directly
from the aircraft shape. For simplicity in notation, we assume a
single 1line distribution (fuselage or nacelle) and a single
surface distribution (the wing). A complete aircraft will require
several of each type.

For this section only, we use an (x,y,z) coordinate system
fixed with respect to the aircraft, with the undisturbed velocity
V 4in the direction of the x-axis. The z-axils 1s vertical; the
y-axis 1s lateral. The velocity potential in the undisturbed
flow is Vx; 1let V& Dbe the perturbation to the veloclity poten-
tial. The reduced perturbation potential & , which has the dimen-
sions of distance, may be divided into the part due to the line
distribution and the part due to the surface distribution. Each of
these may be divided into contributions from sources (representing
cross-sectional area), from 1ift (z-forces), and from side force
(y-forces).

The 1lire distribution contribution from sources is

1
o _ -1 r A (Xo)dxo
B 2vaj R
-0
where
2 2 2 211/2
R = [(x - Xo)2 - B (y - v,)" - P (z - 2,)7]

62 = M2 -1 and y =Yoo » 2 = Zo 1s the axis of the line distri-

bution; the integral is taken to the value of X for which R = O
to the upstream Mach cone from the point (x,y,z?. The lower 1limit
-0 simply means far enough upstream to include all disturbances.
The quantity VA' is the linear source strength distribution;

A(xy) represents the cross-sectional area of the body represented
by the source distribution, and A'(xy) 1is its derivative.

The line distribution contribution from 1ift is

(z - z Y(x - x ) f dx
® — 1 0 o} Z 0
/i

2 2 2
empv-d (¥ - Vo)< + (z - 2z4) R
and that from side force by the same expression with (z - zg)
replaced by (y - ¥yo) 1in the numerator of the integrand and with

f,(x,) replaced by f (x,) . The distribution f,(xy) 1s the 1ift
force per unit distancg on the axis of the line distribution.
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Surface distributions of sources and lifting elements are
distributions on a cylindrical mean surface z = z26(X0,Y0) . The
contribution to @& of the surface source distribution 1s of the
form

xo,yo) dyo dxo

1
o1 bl
217 L/g/ R
-0

Here, t(xo,yo) represents the wing thickness distribution meas -

ured in the z-direction, and t' 1its derivative 1in the Xo
direction. The 1ift and side force contributions of the surface
may be expressed analogously; here f and f, are replaced by

distributions of force per unit projected area with an integration
over yo

We next pass to cylindrical coordinates (x,r,¢r) with

re = y2 4 g and y = -r sin ¢, , z = -r cos ¢, . With this defi-
nition, the ray parameter ¢ will be given by ¢g + ¢ where ¢g
is the bank angle. Our purpose is to define for each value of by

a body of revolution equivalent to the aircraft for a distant
observer. We define further

ro(v,.2,:9.) = -y, sin ¢ - z, cos ¢

SO(yO’ZO’(Z)I’) = —yo CcCOSs qbr + Z sin (Dr

O

In terms of these variables, we can write

1/2
R=[(x-x)%-e%r -z )% - p%2

Far from the aircraft, with x_ and Br both large but with
X - Pr not large, the term sg will be negligible. We drop this
term and write

R =[x - X

We next neglect x - Br - Xy = Pry 1n comparison with Br and
write

R = (2Br)l/2[x - Br - (xo - Sro)]l/2

In the expression for the contribution due to 1lift, making the ana-
logous asymptotic approximations, we replace the factor
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2 2.-1
(z - zo)(x - x0)[(¥y - Vo) + (2 - 20)"] by -p cos ¢, and the
analogous factor for the side force by -8 sin ¢, . We also re-
place the dummy variable x5 by
Xy o= X - Bro

Tn the contributions from the surface distributions the
integrals with respect to vyo are taken with x constant. We
obtain thereby expressions in terms of new equivalent line dis-
tributions which are functions of x3; thus, for example, Ay
is defined

Mlrpt) = [ oy

”x1=const.

O

Distributions fyw and T,y are defined analogously.

We now define an equivalent area distribution ESKX1,¢P)
which replaces all the others, by the relation

st at (g Br) 4 AL(x) + 5 A(x)
pV
where
L(xy) = fy(x1 + pr Jeos ¢, - f (xy + Br_)sin ¢,

+ £ cos ¢r -

- sin ¢r

ZW

In these expressions r, 18 the value for the 1line distribution.
Assembling the terms together gives for & the asymptotic ex-
pression

x-8Br

- _ -1
@(X Br’,l”,@r) 27’7‘(261’)1/2_\/;0 (X - Br - X1)1/2

S(Xl)dxl

(30)

The distribution S'(xl,¢r) is the area distribution of an
equivalent body of revolution on the x axis, as seen by an
observer a large distance away in the direction ¢... The distri-
bution S'(xl) is the sum of two terms. The rirst is A' + AL,
the X1 derivative of the projected cross-sectional area cut by
the planes xq = const. The second is proportional to 4(xq),
the equivalent force Jistribution formed by the sum over planes

X1 = const. of force components in the direction opposite to ¢P
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With (x,y,z) fixed, the surface R = O is an upstream-
facing Mach cone in the space (Xo,yo,zo) . This represents a
surface of "coincident signals" for the point (x,y,z). When such
points are far from the aircraft, these surfaces are approximately
the planes x; = const. (see fig. 9).

In an actual computation, the determination of the function
S5'(x1,¢r) may be fairly complicated. The force distributions must
be obtained, of course. Interference contributions generally must
be computed (ref. 11). If the slender-body approximation is
inappropriate for any line distribution, additional analysis is
needed to obtain the appropriate singularity distribution. The
inlet captured area and the exit jet area must be included with the
engine nacelle. Finally, the contributions from all line distri-
butions and all surface distributions are combined.

With S' assumed known, we differentiate equation (30) with

respect to x . The perturbation pressure Ap is given by
-pV=®y . The result of the differentiation is
1 1l Ap 1l q 1
o - Lo - LM _ 1a_ F.(x - Br,¢.) (31)
X 2 7p M2 pa2 M2 a (25P)172 1 r
where

x-Pr n

S"(x,,¢. ) dx
1 1’ 7"r 1
Fi(X - Sr;qbr) = 277_f

-0

e~ 2P (32)
1

Here we have introduced the magnitude of the perturbation velocity

a4 and the perturbation pressure Ap = paq , variables which are
appropriate for geometric acoustics. Equation (31) gives a solution
which fits geometric acoustic theory. The r which appears in the
factor (2Br)-1/2 1is a ray-tube area, x - Pr 1is a phase, and ¢,
and x + B-lr are ray parameters. In this case of steady flight,
fhe solution is essentially independent of the second ray parameter
fwhich will correspond to ta). Figure 9 shows the wave front

X - PBr = const. which are essentially the same family of planes as
those determined by constant values of the dummy variable x7

Equation (32) defines an F-function in the way in which it is
usually defined. For the purpose of this analysis, a somewhat

different definition is used. In place of equation (31) we write
AD a 1
===z = F (33)
pa2 a r172
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The phase variable x - Br is denoted L, in terms of distance
along the aircraft axis. This quantity is divided by Ly , the
length of the aircraft, to form the dimensionless phase variable
L/L, . The F-functions are directly related, of course, and we
write

F = BF, (34)

The quantity Fp 1s simply a conversion factor, to convert any
given F-function F; to the form corresponding to definition (33).
With F, defined by equation (32), this factor is

M2

F. = W (35)

A plot of this particular function is shown on figure 10,

14

12 -

| | 1 |
6] 1 2 3 4 5 6
Mach number

Figure 10. F-function factor.
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Not important in our sonic boom analysis but basic to the
linearized theoretical aerodynamics of the aircraft is the relation
between the F-function and wave drag. The inviscid drag of the
aircraft may be divided into two parts - the wave drag represented
by energy in the wave system and the vortex drag represented by
energy in the trailling vortex system. The wave drag may be
represented by

2
Csz ch) ao,, (36)
0 r
where I,
1 B 2
c = j F,(L,¢..)" dL
Por Sref_Oo + o
in terms of the F; defined in equation (32). A transformation
leads to the alternative expression
© X
l © n n
S é}?_s——f f 8" (x,)8" (xg) dn(xg = xp) @xy 9%, (37)

ref -owo -

Thus there is a direct relation between the F-function and the drag
of the aircraft.

The F-function, as we have described it, 1s a function of the
local phase L/Lg (or x - BT ) and of the azimuth angle bp -
It is also dependent upon the aerodynamic state of the aircraft (in
dimensionless terms). This state 1s determined by the values of WM
and Cg, , the center of gravity location and the engine operating
state, with some minor dependence upon other parameters (in a
maneuver, for example). We include the dependence upon M and CL
in our notation, and write

F= F(L/La,cbr,,M,CL) (38>

The quantities M and Cp, are known functions of time tgys as is
the angle of bank ¢g = ¢ - ¢ . Thus, in the remainder of the
analysis, F 1s considered a function F(L/Lg,ts,®) of phase and
the two ray parameters.

The linear theory described in this section does not give the
only method for obtaining F-functlons. Any local aerodynamic
analysis carriled out to a large enough distance from the aircraft
in the wave system will yield the F-functions. They may also be
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obtained from wind tunnel tests or from flight tests, with perhaps
minor modifications in the consequent analysis because of nonlinear
effects.

For example, let us consider that pressure measurements are
made with a microphone mounted under a balloon in an atmosphere
without winds. The aircraft flies by at a distance r in level
flight. The pressure perturbation Ap is measured as a function
of the time ¢ from the appearance of the signal. The function F
is then obtained from equation (33). The phase argument of F in
terms of L 1is obtained from I, — VE . The nonlinear correction,
if needed, may be carried out in two ways. One straightforward
approach would be to consider the measured F-function to correspond
to an acoustic signal that has already been distorted, to assign an
initial value T, of the age (defined below in eq. (46)) to account
for this initial distortion, and to proceed as in the next three
sections with T replaced by T - To . This approach would entail
additional analysis to compute 1o . A simpler method is to apply
the procedure of the next three sections to the experimental case
in reverse, starting with the pressure signature and going to an
F-function. In this reverse procedure, segments of the phase may
appear in which F is undefined, or rather is not uniquely
defined. This nonuniqueness does not matter in applications for
which the distortion is sufficiently great (T - 15 > 0). One
correct way of filling the empty phase segments for the purpose of
this analysis would be by connecting the known portions of the
curve with straight line segments (with F then continuous).

Application in the program.- The F-function must be specified
as an input function Fi(L/Lg,t5,¢) . The conversion factor Fp
is specified or calculated as a function of tg . The function F
is then obtained from equation (34) for use in the subsequent
analysis.

Higtorical note.- The theory of this section was given by
Hayes in 1947 (ref. 12), primarily as the basis of a method of com-
puting wave drag by means of equations (36) and (37). An alterna-
tive approach was given by Lomax in 1955 (ref. 13; see also ref,
14), An exposition of sonic boom theory in a uniform atmosphere by
Walkden in 1958 (ref. 15), based on an earlier paper of Whitham
(ref. 16), also uses an F-function dependent upon ¢, as a para-
?eter. ?he term F-function stems from a basic paper by Whitham

ref. 17).

Geometric Acoustics and Blokhintsev Invariance
The purpose of this section is to define an appropriate invar-

iant measure of the acoustic sienal along each ray, one that is
valid globally. This measure of the signal will be expressed in
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terms of the F-function for the aircraft.

Geometric Acoustics 1s & linear acoustic theory based upon
the assumption that the solution at every point in the field
appears locally as it would in a plane-wave system. The wave
fronts are actually gently curved surfaces, but locally they
appear to be planar. The local solution, therefore, takes the
form appropriate to a plane-wave system, with the perturbation
velocity aqn normal to the wave fronts and the perturbation
pressure Ap given by

Ap = pad (39)
As in a plane wave system, the quantity 4 1s & function of phase.

When the undisturbed flow field is steady in a specific
inertial coordinate system, as in the case we are considering, the
time required for a signal to be propagated between two fixed
points is a constant. The pressure perturbation experienced at
cach of these points is a function of time measured from the
passage of a reference signal. The function at the second point 1s
proportional to the same function at the first point. This
observation indicates that the time measured from the passage of
a reference wave front is a suitable choice for phase. The refer-
ence wave front is then the wave front of zero phase. The signal
phase measured from this zero reference is termed £ , and in the
following paragraphs will be related to the variable L/L in
terms of which F-functions are specified. An alternative demonstra-
tion that the time € here defined is a sultable phase may be
found in reference *.

The fact that a directly defined, useful, physical entity §&
is a suitable phase in this case 18 fortuitous and depends upon the
restriction to steady atmospheric properties. This convenient
element would not appear 1in an acoustic calculation in an unsteady
atmosphere, where a phase variable with no direct physical inter-
pretation would have to be used.

The ratio q/a 1is used as a measure of the signal intensity.
In a plane-wave system in & uniform atmosphere, this gquantity would
be a function only of phase, constant on each wave front and thus
constant on each kinematic ray. with the atmosphere non-uniform
and with the wave fronts curved, q/a 1is no longer constant on
each kinematic ray. Tn one approach to this intensity problem,
the intensity is expressed as an integral along the ray (refs. 1
and 19). In this approach the integrand always includes a term
proportional to the wave-front curvature, which must then be
obtained from Some other computation. The alternative approach
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which we follow depends upon theoretically established invariant
measures of the intensity. This approach requires the concept of
ray-tube area.

In an atmosphere at rest, with no winds, volume integrals of
the Rayleigh acoustic energy density (ref. 6, Sects. 245 and 292)
are conserved, This acoustic energy density is pq2/2+«Ap2/2pa
Within geometric acougtics, with equation (39) valid, this energy
density is simply pd™ . Half the energy is kinetic and half
potential, The energy flow down a ray-tube is pa-ah, , where Ay
is the normal ray-tube area, and is constant on a kinematic ray,
Thus, if q/a is known as 2 function of phase at one point on a
geometric ray, it can be predicted at another. Rayleigh (ref. 6,
Sects. 206 and 284) used essentially this approach to predict the
effect of density and ray-tube area changes.

In an atmosphere with steady winds, an analogous invariance
result was found by Blokhintsev in 1946 (Sect. 7 of ref. 20, or
ref, 21), valid only within geometric acoustics. A straightfor-
ward derivation may be found in reference 22, Sect, 1. The invar-
iant density is pgZc_/a and the quantity that is constant along

a kinematic ray is this density times the volume flow o . A . We
express this constant quantity as Co tTimes the square of a
variable Vi with the sign of Vg the same as that of q . We

have already defined A as A times the unit vector in the -z
direction, The invariant is thus

2
Q_Lq_ .
COV = = Acna sin ©

or, using the relation Ch = C, cos 0 (eq. 14),

1/2

V. (é,ta;¢) = %-(pagA sin © cos 6) (40)

E

The purpose of the Co factor in the definition of V% is to
make the subsequent analysis simpler and also to make VE gali-
lean invariant. Once Vg(¢) is known for a particular geometric
ray, we can solve directly for the bressure perturbation Ap(ﬁ) as
a function of the actual time t + € using equations (39) and
(40). Here t 1is the time obtained in the ray tracing computa-
tion for the kinematic rays of zero phase.

At this point, we come to the critical step mentioned in the
General Description of the analysis, in which a consideration of
a galilean transformation is inescapable. The local solution is
given as a function F of L/Lg and two ray parameters in a
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coordinate system moving with the velocity of the aircraft. The
global solution is of the form of a function Vg of £ and the
two ray parameters tg and ¢ 1in a coordinate system fixed rela-
tive to the ground. In order to express the solution in terms of
Vg(£) , we must relate both the dependent and independent variables
in the two coordinate systems. Although what has technically to

be accomplished is the galilean transformation, much of the Jjob has
already been done by the identification of ray parameters and phase.

The ray parameters give us no trouble, as the galilean trans-
formation has already been accomplished in the detaills of calcula-
ting the initilal wave normals and of the ray tracing. The
parameter t, dis identified locally through the functions M(ta),
Cr(ty) » and P (ty) - The local and global azimuth angles are
connected through %he relation ¢ = ¢g + ¢p

To relate the two phase variables, we use the stratagem of
introducing a third, local, phase variable which is readily inter-
pretable 1in either the local or ground-fixed coordinate system and
has the property that it is galilean invariant. Such a variable 1is
the distance s normal to the wave fronts, measured from the
reference wave front at a given instant. In the local coordinate
system, we have

s = L/M =1L sin

The quantity L is distance from the reference wave front in a
direction 17 - from the normal. In terms of the phase ¢
introduced in this section, the distance s 18

S = &cno = Ec, coO8 90

We equate the two expressions for s and obtain the basic phase
relation
L_ sin p
a L
. = (41)

cos 6 L
0 o Ta

The presence of the factor c¢, 1in this relation indicates that §
is not a galilean invariant quantity.

To relate the dependent variables Vg and F , we follow an
analogous course. The dimensionless measure q/a of the signal 1s
clearly galilean invariant and may be expressed in terms of either
F or Vg . We equate the two expressions for q/a . This relates
the dependent variables, of course, but the connection is incom-
plete. The ray-tube area is singular at the aircraft, 1s repres-
ented by the variable r in the local coordinates and by A in
the ground-fixed coordinates. We must then also relate the two
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corresponding ray-tube area measures to a measure which is clearly
galilean invariant. Such a galilean invariant measure is time

(t - ty) elapsed from emission of a signal from the aircraft axis.
In the local coordinates of the previous section, the quantity r
is related to this time by

r = a_  cos u (t - to)

The definition (33) of the function F leads to

F
- (42
[a, cos u (t - to)}l/2 )

e

For the function A we must carry out a local calculation of

equation (26) near the aircraft. To lowest order we have
A = _[(1 . sin vy \¢os 9, Ov. V. sin ¢ cos p cos vy
sin p sin 0 Jsin O, 3¢ cos
003390 / aco Bv\\_
X —5 3 \ 5 - U 33 J (zO - z)
aj sin GO ¢ o 0%/

The quantity (zo, - z) 1s approximately equal to a sin 0,(t - t).
The other terms may be re-expressed with the aid of equations ( O?,
(27), and (29). After some calculation, we obtain

2
a, cos"p cos O (t - t)

A - o (43)

sin p sin 90

From equation (40) we obtain

g _ fom w7 vy (51)
a [poa3 cosgu Cosgeo(t - to)]l/2

Equating the two expressions (42) and (44) for q/a gives
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7 2. 1/
/P, COSH cos 90>

Vg = Q sin W

This is the desired relation, giving VE in terms of the F-
function.

F (45)

Application in the program.- For each ray investigated, the
function V is computed from equation (45). This 1s expressed
in terms of the independent variable £ obtained from equation

(41).

Historical note.- The invariance result of Blokhintsev was
found independently by Chernov in 1946 (ref. 23), but only in the
special case of irrotational flow. Garrett (ref. 24) noted that
Blokhintsev's regult was equiv%lent to conservation of volume
integrals of pqg/Q where pq is the Rayleigh acoustic energy
and § a frequency, both measured by an observer moving with the
fluid. Hayes (ref. 25, 1968) showed that Garrett's result remains
valid when the undisturbed flow field is unsteady, and that the
quantity pqgaAn/Q2 = paccpC - A/w”a is constant on a kinematic
ray in this case, where A, 1s a ray-tube area cut by wave fronts
and o is a frequency measured by a fixed observer. Bretherton
and Garrett (ref. 26, 1968) present a general theory governing wave
motion in moving media.

Signal Distortion and Age Variable

The purpose of this section is to define an "age" variable and
to apply it in the calculation of the nonlinear distortion of the
acoustic signal. This distortion appears in the propagation of
acoustic signals over large distances. The distortion is caused by
a weak, nonlinear effect resulting from small changes 1in propaga-
tion speed which are proportional to the strength of the signal.
Although the nonlinear effect is locally weak, it is cumulative and,
as a consequence, the total distortion of a sonic boom signal 1is
far from negligibly small. Shock waves may appear in the signal
or two shocks (or more) may merge into one. The process of distor-
tion is governed by an age variable which 1s defined and applied in
this section. The study of the location and motion of shock waves
is to be covered in the following section.

We make here a simplifying assumption, one made by all invest-
igators of sonic boom. We assume that in a lowest-order approxi-
mation the phase shift due to the change 1in propagation speed 1is
the only nonlinear effect that needs to be considered. Thus, any
nonlinear effect on the rays, the ray-tube areas, or the Blokhint-
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sev invariance is assumed negligible. Although no comprehensive
theory 1is available to fully justify this assumption, it is not
made blindly. The neglected effects may be shown to correspond to
higher-order terms in a small parameter for level flight in a
uniform atmosphere (ref. 27, section on Finite Systems). 1In
general, 1t appears likely that this assumption fails to be valid
only when the assumptions of geometric acoustics fail or when the
perturbations are no longer weak. Nonlinear effects on rays are
discussed by Whitham in reference 16 and form an essential part of -
his method for predicting the trajectories of finite strength
shocks (refs. 28 and 29).

The propagation velocity, equal to ¢ = an + U in the undis-
turbed fluid, is changed by (Aa + g)n , where Aa is the pertur-
bation in the speed of sound. This quantity is given by

pa = Je “tap e -1
- 2 pa 2 4

so that the change in propagation velocity is simply (ve + 1)an/2 .

If the phase were expressed as distance s measured back-
wards normal to the wave fronts, the signal would experience a
phase shift arising from the change in propagation velocity given
by

ds Yo 1
at =~ 2 ¢

where t 1is time along the ray, that given by equation (18).

In treating the phase, we must distinguish between the actual
phase variable and the phase variable according to linear theory.
The nonlinear effect is basically the difference between the two.
We term the actual phase £, , defined in the same way as before,

and term the linear phase € . The local distance phase s is
related with 51 by ds = cp d&l . The expression for the change
in propagation velocity in terms of &l becomes

1 Yerlg Vel g

at 2 Ch - 2 c, cos 2]

This equation describes the phase shift for a particular point on
the signal, and thus with the linear phase ¢ fixed. The point
on the signal found at £ according to the linear theory is
actually found at £, , which 1s a function of £ and ¢t

We express ¢ 1in terms of Vy wusing equation (40), and
obtain
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The variable +t may be replaced by -z through equation (18). We
wish to transform the equation for the phase shift to a canonical
form. We introduce the age variable T defined by

T:Y_Q__j__l_f d‘(—z) (46)

25 a sin 6 cos 6 (pA sin © cos 9)172

The phace shift is then governed by

dél
aT = - VE (E’l’T) (47)

in the canonical form desired.

With our basic assumption that the linear results for the
ray-tube area and Blokhintsev invariance still hold with only
the phase shifted, we must have

VE(glJT) = VE(@ (48)
where Vg (€) is the linear solution (independent of t or 1T
because of the invariance). Here the actual phase E
satisfies equation (47) at constant £ and also the fnitial
condition él = £ gt T =0 . The solution of equation (47)
is then

The linear phase ¢ 1s a function of € and T which ma
become multivalued in €. . In this casg& the solution (4%)
and (49) must be modifie% to take into account the presence of
shock waves. This modification is explained in the following
section.

The solution (48) and (49) is the general solution to the
first-order partial differential equation

oV v
E _ E
ot VE'SEI (50)

57



This equation may be considered a canonical one for inviscid wave
propagation in one direction. One approach to the problem of
calculating the nonlinear distortion lies in first deriving an
equation of the form of equation (50). Equation (47) or its
integral (49) gives the characteristics for equation (50) and its
solution by standard methods is that of equation (48).

If Vg 1is set equal to the €1 derivative of a function o
in equation (50) and the resulting equation is integrated with
respect to €7 , the result is

df 1 (3N
Py §'<§g (51)

We have here assumed that the function  is zero for sufficiently
large negative &1 with the consequence that the additive arbi-
trary function of <t from the integration is identically zero. In
the following section, we define the function . as an integral
over £ and use its properties to locate shocks. Equation (51)
may be considered as an equivalent of equation (50). Actually, .
because of its properties when there are shocks, the function ’
contains more information than does VE

If the F-functions are obtained experimentally from wind-
tunnel or flight test results at distances from the aircraft at
which T would not be negligible, a correction may be needed.
This could involve a correction transforming F to an equivalent
F as mentioned in the section, Flow Near the Aircraft. An alter-
native method would require calculating an initial value of T in
equation (46) which is not equal to zero.

If 1 gets very large, the signal shape approaches that of
an N-wave. With the shocks properly taken into account, the
asymptotic behﬁﬁior includes a maximum to |Vg| which is propor-
tional to <t~ & and a total phase difference between head and
tail shocks which is proportional to w1/2 . The presence of the
factor p~1/2 in the integral of equation (46) indicates that for
downward propagating rays in a real atmosphere the integral will

be convergent; thus <1 approaches a limiting value T14 as «
approaches -o ., The signal in terms of VE approaches the
limiting shape Vg(€1,T14ip) - Thus the signal shape "freezeg"

and does not become the ever-thickening N-wave of common farfield
theory. This freezing effect is discussed in reference 1.

To illustrate the freezing effect a simple example is
instructive. With level flight in a constant temperature atmos-
phere the asymptotic value of the age in a downward (-37> ¢ > im)
direction is proportional to
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o)
where B—l is the scale height of the atmosphere.

The corresponding finite integral in a homogeneous atmosphere

is
Z
f (2 - 2)"Y2 a(-z) = 2(z_ - 2)/?
o) o
-Z
o
and the two integrals are equal 1f z, - 2 = 7/28 . The asymptotic

signal shape in the real atmosphere is, therefore, the same as it
would be in a homogeneous atmosphere at an altitude w/2 scale
heights below the aircraft.

Application in the program, - For each ray, the variable 7T
is calculated from equation (06) at the same time the ray and ray-
tube areas are calculated. At the ground the original phase € 1is
transformed to the actual phase £7 Dby equation (49), giving
thereby the function Vg(fy,7) at the ground. No provision 1is
made for the correction redquired 1f the F-function is obtained
from a measurement made a large distance from the aircraft flight
axis.

Historical note.- The solution (48) and (49) was obtained by
Poisson in 1807 (ref. 30) for plane waves in a constant-temperature
gas (ye = 1). He obtained also equation (51) corresponding to this
solutiodon, with d a velocity potential. In 1860, Earnshaw (ref.
31) showed that with a polytroplc gas the factor (v, + 1) which
appears in equation (46) must be included in the analysis. An
equation of the form of equation (50), although equivalent to
Poisson's integral (51), seems not to have appeared before the
issuance of a report of Chandrasekhar 1n 1943 (ref. 32).

With planar waves 1n a uniform gas, the age variable 1is simply
proportional to the distance coordinate. The simplest cases with
variable ray-tube area are those with cylindrical, spherical, or
conical symmetry. In these cases, for N-waves in a uniform atmos-
phere, Landau (ref. 33) obtained the correct laws. The solution
with a general signal, corresponding to that of this and the
following section, was obtained by Landau and Lifshitz in 1944
(ref. 34) with cylindrical and spherical symmetry and by Whitham
in 1952 (ref. 17) with axial conical symmetry (flow about a body
of revolution). The application to flows with general conical
symmetry, with the azimuth ¢ as an independent parameter, was
made by Hayes in 1954 (ref. 27, section on Finite Systems). The
arbitrary dependence of the solution of ¢ here involves the
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principle that nonlinear effects on the rays are negligible. Ray-
tube areas not based upon solution symmetry appeared in the age
variable used by Rao (ref. 35, 1956) for maneuvering flight in a
uniform atmosphere with straight line rays. Here the assumption
that nonlinear effects on rays are negligible is implicit.

Variable atmospheric properties appear in the age variable B
used by Whitham (ref. 36, 1953) with spherical symmetry in a study
of weak shocks in stars. Arbitrary area and fluid properties were
combined by Hayes in 1957 (ref, 37) without consideration of winds.
Several incorrect age definitions appeared in the Russian litera-
ture for the case with steady winds. In 1962 Ryzhov and Shefter
éref. 22) used the correct one but applied only to N-waves. Hayes

ref, 38, 1963) presented an analysis with winds similar to that of
this section but made an error in the definition of the age (a
factor a/crl is required under the integral); this paper includes
an algorithm for ray-tube area with winds. Cuiraud (ref. 19, 1965)
uses an age variable, but one defined somewhat differently because
he does not use Blokhintsev invariance or ray-tube areas,.

The freezing effect, although inherent in the age variables
appropriate with varying atmospheric density, appears not to have
been discussed before reference 1. The integral involved with
level flight in a constant temperature atmosphere is an error
function and appears in a related form in the appendix to a 1955
paper of Busemann (ref. 39),

Shock Location

The purpose of this section is to show how shock waves which
appear in the distorted signal may be located. TIn the algorithm
this is done at the same time the distorted signal is calculated.
In general, with the age =< sufficiently large, the distorted
signal Vg(€3,7) 1s multivalued in €1 and, thus, physically
meaningless. The actual signal contains one or more shock waves,
and a proper treatment of the shocks eliminates the multivaluedness.
A shock wave moves faster than the acoustic propagation speed in
front of it and slower than the propagation speed behind it.
Thereby, parts of the signal are propagated into the shocks (are
"eaten up" by the shocks) and this phenomenon permits the remaining
part of the signal to be single-valued.

The procedure for locating the shocks utilizes the function
z/(il,f) introduced in the preceding section. We drop the -+ in
the notation and write simply »f(¢7) . 1In order to have
defined over the entire range of € , it is defined as an integral
over £ , or, equivalently, as a Stieltjes integral over gl(g)
Thus we write
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f' /d N

(&) = [uperae () = [v(gzhhae (52)
- —00

This function satisfies equation (51) over the entire range of §€ .

The lower 1limit =~ gimply means sufficlently negative to begin

before the signal commences. The portions of the original signal
VE(&) which appear in the actual signal correspond to segments or
branches of the multivalued function )X(%l) , chosen in such a way
as to make up a single-~valued function.

The bisector law for a weak shock states that 1t moves with a
normal speed midway between the acoustic propagation speed 1n front
of and behind the shock. This law may readily be proved, and
requilres only that the curvature of the fluid isentrope be contin-
uwous. In terms of our notation, the law states that

=) 1 )
= -5V + Vg ) (53

dz shock 2 E+ E_

where + and - indicate the two sides of the shock. We use [ ]

to denote jump in a quantity; thus [f] = > . The =

derivative along the shock of [f] is calcufated using equations
(51) and (53), and 1is

wa- 2 (31 (9, [32]

dar ot dT “shock

d&l

:%(Vf:—v2 ) - Vg ) =0
+ ShOCK + -
The function xf is continuous in the original signal at T = 0 ,

so that [f] is initially zero at the point of formation of any
shock. Thus, s/ remains continuous across any shock. It is clear
that this property is preserved when two shocks merge into one,
and that the property thus holds in general.

We conclude then that the single-valued function of 61 made
up of segments of ,/(€7) 1s a continuous function. This result
we may term the equal-area law. In its simplest form the law states
that a shock, which appears when the final curve jumps from one
segment of s!(gl) to another, is located where it cuts off equal
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areas from the multivalued curve Vg (& é . Figure 11 shows in a
simple case the curves for Vg(£) , VE% 1,7) , £ (€1) , and
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Figure 11, Distortion of signal
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Two important properties of y!(ﬁj) are not evident from the
analysis above, and we state them without proof. One property is
that there is only one continuous function made out of segments

of f(€7) for which a€1/d¢ > O . The princlpal consequence of
this property is that we do not have to trace the trajectories of
the shocks from <1 = O but may locate them at a fixed value of =

Wwithout considering theilr Listory. The second property is that the
desired function is precisely supyf(ﬁl) , the superior limit of
,f(&l) , defined to be the function obtalned by taking the largest
value of f available for each value of E . This property sim-
plifies significantly the process of locating the shocks in a com-
plicated case.

The equal-area law may be established in other ways than that
of using the bisector law. One alternative approach invokes the
principle of conservation of mass, identifying y/ with a Lagrangian
variable or wilth a particle displacement variable. Another approach
involves establishing equations with viscosity and using the limit-
ing process W —0 . 1In the second of these alternative approaches,
the property that the desired function 1s sup,/(&l) appears
naturally.

The process of locating the shocks may now be described. The
function ;f(ﬁl) is obtained, and the single~-valued function
sup s/ (£,) 18 identified. The function Vg (£1,7) is thep plotted,
retaining only those segments of il which appear in supsd . The
corresponding function Ap(€;,7) 1is calculated and gives the desired
pressure signature. The parts of the original signal corresponding
to segments of &1 not represented in sup;! are the parts eaten
up by the shocks. Where there is a Jjump from one segment of €1 to
another in sup , Tthere 1s a corresponding Jump in Vg and Ap ,
and such a jump represents the shock.

The function s/ (£q1) may be obtained by direct integration,
but a somewhat different construction is advantageous. Together
with the original function VE(@) , We require 1ts integral

s(8) = | vy at (54)
From equation (49) we have
g avy (8)
cab R s

at constant T . Applying tThese relations to the integral (52),
we obtain
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S(E1) = 5,(8) - & 7 v (€)2 (55)

with equation (49) giving the relation between £, and £ .
Equations (49) and (55) may be combined to give the relation

(&, - €)°
S(E1) = 5,(¢) - L (56)

The graphical method of Burgers (ref. 40) is a method of finding
sup > (€1 ) from a given "summation" curve So » using equation (56).

The pressure signature Ap is to be calculated from Vi using
equation (40) and the relation Ap = pag (equation (39)). We are
usually interested in the pressure at the ground, and must take
into account the reflection of the wave system from the ground.
This reflection may be visualized as coming from the mirror image
wilh respect to the ground of the impinging wave system, and the
reflected pressure signature appears superimposed on the incoming
one. Very near the ground, say at a height h , the reflected
pressure 1is the same as the incident pressure, with a phase delay
(in €7) equal to 2h/a sin 6 . If we assume that h is small
enough that the phase delay may be neglected, the effect of the
ground is simply to double the pressure. This factor appears as a
reflection factor equal to 2 .

In practice, an empirical reflection factor KR other than
2 1s often used. The final expression for the pressure signature,
from equation (40), is then

Ap(ﬁl) = Kp V (51’1)(pa2/A sin 6 cos 9)1/2 (57)

The pressure signature far from the ground, with no reflection taken
into account, is obtained from ecquation (57) simply by setting the
factor Kgr equal to 1 . Our analysis and algorithm for cal-
culating sonic boom signatures are completed by equation (57). The
ray tracing and ground intersection calculations discussed earlier
tell us where and when the pressure signatures occur.

The pressure on the ground at any instant is approximately
constant along the ground intersections of the wave fronts ( the
y ;direction), and has its main variations in the direction normal
to these ground intersections (the x direction). Distance in a
bPlane 2z = const. normal to the wave front intersections (in the
X7 direction) from the zero phase wave front may be used as a phase
for describing the pressure on that plane at a given instant. This
distance phase variable is equal to c0€1 . This phase is galilean
invariant; it was not used in the analysis as the basic variable
because &l appeared to be a more useful quantity.
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Application in the program.- For each ray, the function S ( )
is obTained Trom equation (54), and the multivalued function;JKgl%
from equations (55) and (49). The branches corresponding to

sup of(€7) are identifiled, and Ap(£7) 1is calculated from equation

(57)

Historical note.- Shock waves remained i1l understood through
almost all of the nineteenth century. The bisector law was given
by Crussard in 1913 (ref. 41), who described what we would term a
half N-wave in a constant-area duct. This law was used by Landau
and Lifshitz (ref. 34, 1944) to obtain the equal-area law (see also
ref. 17). In 1950, E. Hopf (ref. 42) gave a thorough study of
Burgers equation with particular attention to the limiting process
W= 0 . This study establishes the equal-area law through this
limiting process and serves as the basis for Burgers' graphical
method (ref. 40). Landau (ref. 43, 1945) mentioned conservation of
mass as the basis for the equal-area law, but without giving
details. ILighthill (ref. 44, 1956) noted that the equal-area law
is equivalent to continulty of a lagranglan variable. Middleton
and Carlson (ref. 45, 1965) applied the equal-area law in prac-
tical calculations, obtaining ,/(él) through direct integrations.

A Note on Viscous Effects

Although they are not properly part of this analysis, this
exposition would be incomplete without some mention of viscous
effects. In sonic boom problems of practical interest, viscous
effects are sufficiently weak sO that their only effect is to
give finite thickness to shock waves. This thickness, though
finite, 1s generally several orders of magnitude smaller than any
of the other characteristic scales of the problem. Hence the
treatment of shocks as strict discontinuities is completely sound.
Tn certain other problems, as for example of acoustic propagation
at ionospheric heights, viscous effects are important. Here we
indicate briefly the governing equation, and describe a few of
its properties.

As in much of our development, we take advantage here of the
fact that the wave system 1s approximately a plane wave system,
The viscous effects are considered to comprise only viscosity
and heat conduction. They appear, in a coordinate system (s,t)
moving with the undisturbed inviscid propagation speed, in a
diffusion term of the form

3V (v, - 1)\,
B 1/4 ' e \ D)
= - U + o+ J (58)
St 2p\3 °p 3s°
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Here s 1is the dist@nce coordinate which serves as the phase
variable, u and pu are the shear and dilatational viscosity
coefficients, Ye 1s the ratio of specific heats of the gas, ¢
is the specific heat capacity at constant pressure, and k is tge
heat conduction coefficient. The variable VE 1in equation (58)
may be any intensity measure, but it is identified here as the Vg
defined earlier. The nonlinear term corresponding to that in
equation (50) has been omitted.
We next change the variables t and s to the corresponding

variables T and €7 and include the nonlinear term. The
result is

oV oV agv
E
3 = Vg gz + 5 N() = (59)
1 ael

where

(v, - 1)k aE \2
1/ \ e dt 1>
N*a@;“*“ * o >m<a§",

is a positive reduced kinematic viscosity. The quantity ds/dél
is simply Ch = Cy CO8 6 , while

dt 2C, cos O(pA sin € cos 8)1/2

dt (+ 1)

from equation (46). We obtain thereby

. 1/2 ( - 1)k
N — 2(pA sin 6 cos 6) <% P e > (60)

(Ve+ Ijbco cos 6 ch

Equation (59) is a generalized Burgers equation, generalized in
that the quantity N may be a general function of 7

Lighthill (ref. 44) introduced the concept of the Reynolds

number of a lobe of a solution of Burgers' equation. As applied
to equation (59), we identify a lobe as that part of the signal
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between two consecutive zeros of Vg , at €1 = a and él =Db .
Lobes can disappear with increasing T , but no new lobes can
appear. The first moment 211 of the lobe is

b
Z?l(T) :L[\VE ag,

a

The Reynolds number of the lobe 1s

2|7 |
— (61)

Re(T) =

If the Reynolds numbers of all the main lobes of a signal are very
large, viscous effects are unimportant and only determine shock
thicknesses. If the Reynolds number of the largest lobe 1is small,
nonlinear -effects are unimportant.

The first moment of a lobe obeys the equation

_ ;_N[@VE) i @VE ] (52)
aT T 2L\, T \SE/,

From this result it may be shown that ]2{11 cannot increase. It
is constant for N = O only if there are no shocks in the lobe for
which Vg changes sign. The Reynolds number can increase, but
only if N decreases sufficiently fast with T .

The second moment of a lobe is defined

b
P
<m2=£ Vg d&l

and represents the wave energy in the lobe. It satisfies the
equation
dh, . fb BVE\\_ " (63)
an Ya 51/ *
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This moment cannot increase. It is constant for N = O only if
there are no shocks in the lobe. These results were given in the
paper for which reference 37 is the abstract,

Application in the program.- Viscous effects are not included
in this program,

Historical note.- The combination of coefficients which
appears in equation (58) and which governs viscous weak wave propa-
gation appeared in a 1910 paper of G.I. Taylor (ref. 46) on the
structure of weak shock waves (with B' = 0). Lighthill (ref. Lk,
1956) showed that Burgers' equation was the appropriate one for
general planar weak wave propagation for a calorically perfect gas.
A generalized Burgers equation of the form (59) was obtained by
Hayes (ref. 37, 1957) without winds. Hayes (ref. 47, 1958) also
showed that the combination of coefficients in equation (58) was
appropriate with a general equation of state as well as for a
perfect gas. The inclusion of winds in a derivation of equation
(59) was done by Hayes (ref. 38, 1963) but with an error coming
from the error made in the definition of 1 . An equation of the
form (59) was obtained by Guiraud (ref. 19, 1965) in terms of his
equivalent of the variable Vg . Further details and discussion
of viscous effects may be found in references 44 and 4.

Summarizing Statement

At this point, the analysis is complete and ready to be used
for computing sonic boom. Here we briefly summarize the algorithm
for obtaining pressure signatures in the form realized in the
computer program.

To compute sonic boom pressure signatures in a stratified
atmosphere:

1. Specify input data.

a. The thermodynamic properties of the atmosphere and the
horizontal wind velocities are needed as functions of the
altitude 2z and are used throughout the calculation.

b. The aircraft Mach number M » 1ts heading angle v , 1ts
climb angle vy , and its bank angle ¢, are needed as
functions of the time t. . The initial location of the
aircraft is needed to start the trajectory calculation.
As an option, aircraft load factors may be specified as
functions of time ta

c. F-functions for the aircraft are needed in sufficient

number to serve over the range of aircraft Mach number
covered in the trajectory.
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2. Calculate aircraft maneuver functions using 1Db.

a. The aircraft trajectory, xaz(ta) , va(ta), and =zg(ty), is
calculated.

b. The derivatives of heading, climb, and Mach angles, dw/dta,
dy/dt, , and du/dt, , are calculated, either directly from
the input data or (optionally) from aircraft load factors.
These derivatives are needed in the ray-tube area calcu-
lation 4b.

3. Calculate the initial wave normals using 1Db.

The orientations of the initial wave normals, parametrized

by their azimuth angle ¢ , are needed to determine the

invariants ¢, and v used in the ray calculations 4.

L, Calculate rays and functions along rays using 3.

a. The rays, described by functions x(tg,¢,z), y(ta,¢,2),
and t(tg,¢,z), determine where and when the sonic boom
signal hits the ground.

b. The ray-tube area A 1is calculated along each ray using
2b. This ray-tube area is used in calculating both the
age lUc and the final pressure signature 6c.

¢c. The age 1 1s calculated along each ray. This 1s used
in calculating the signal distortion 6.

5. Calculate the linear acoustic signal on each ray.
The function VE(Q) is obtained from an F-function by a
transformation of both dependent and independent variables.
The integral Sg(£) of Vi 1s also calculated.

6. Calculate the distorted pressure signature.

a. For the age at the ground, calculate the distorted signal
Vg(€y,7) and its integral

b. Locate the shock waves using >

c. Calculate the final pressure signature Ap(€7) wusing a
selected reflection factor. This 1s the desired output.

The logical order of the algorithm follows closely that of the
theoretical analysis, with one exception. The age 1is computed at
the same times as are the rays and ray-tube area rather than later
with the distorted signal.
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COMPUTER PROGRAM

General Description

The computer program for solving the preceding sonic boom
equations has been written in FORTRAN with the aim of obtaining a
versatile computational technique adaptable to a variety of
computers. This program was developed on an IBM-1130 and has also
been run on a CDC-6600., A complete program listing for the CDC-
6600 is given in Appendix A, and a sample printout appears in
Appendix B. This printout will be discussed in detail in the next
chapter, COMPUTATION RESULTS.

The organization of the program is shown in figure 12. The
input processor reads input data and converts them to appropriate
units and format for use in the subroutines. The input data are
then listed on the output sheets (Appendix B) for identification
and checking purposes. The program next computes and lists out
pertinent maneuver data at the selected initial time tg . These
outputs include aircraft location, Mach number, direction angles,
and derivatives. The program then proceeds to the ray path and
ray-tube area calculations beginning with the ray parameters ¢ = O
and tg . The program computes the ray trajectory, angle with the
horizontal (cos 0) of the wave normal, the ray-tube area, and the
age variable. These outputs are listed as functions of altitude
z ; the time and (x,y) coordinates are cumulative from the first
maneuver point. When a stopping condition for the ray trajectory
is reached, such as 2z = O , the program computes phase variables
and the zf—function, and utilizes the F-function to determine the
distorted pressure signature. These output quantities are then
listed in the order of increasing values of L/LA . At each ray
intersection with the ground, the program stores parameters which
give the location, time, and maximum pressure of the calculated
signal. The program then returns to the same maneuver point (tg),
increments the ray azimuth angle ¢ , and proceeds again through
the ray tracing and pressure calculations. When calculations for
the set of rays are completed corresponding to the maneuver point
tg , the program proceeds to the next maneuver point tg,1 and
the ray tracings are repeated. In the event the ray-tube area
diminishes to zero during its traverse, or if the ray becomes
horizontal, fhe calculation along that ray stops. After completing
all of the maneuver, ray tracing, and pressure sequences, the
summary data which have been saved for each ray are used. Linear
interpolations are made to determine the locations of the rays and
maximum pressures at the same elapsed time t . Thus, ground shock
intersection coordinates are made available, together with indica-
tors of boom intensity there,
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Subroutines and Operations

The program consists of a master program, SONIC, and nine-
teen subroutines. Figure 13 gives a representation of the re-
lationships among these subroutines. A brief description of
their functions is given in the following paragraphs. Numbers
correspond to those shown on the flow diagram.

1. SONIC This is the master program which initializes and
calls the subroutines. It also serves as the main program for
the maneuver calculation.

2. INPU This subroutine reads in all input data, checks them
for self-consistency and validity, and prints out a copy of the
data for comparison and problem identification.

3. ATMO This program calculates atmospheric data when using
the standard atmosphere option. For a given altitude z , the
corresponding temperature, pressure, density, and speed of sound

are found. The altitude above sea level must be less than
170 600 £t (52 km).

4, ANGLE This routine corrects input data so that no two con-
secutlve angles are more than 180° apart for example, 25° and
-190° would be changed to 25° and 170° respectlvely

5. DERM2 This routine calculates the integrands used in
solving for the maneuver path.

6. OUTM2 This program controls printing of the maneuver out-
put. When a printout point is reached, subsidiary variables such
as dJ, and u are calculated.

7. INPOL This is a routine to perform linear interpolation
for a single variable,

8. LAGRA This program carries out quadratic interpolation for
nonequispaced points. The function value and/or its first deri-
vative is produced.

9. AREA This program controls the calculation of the rays,
area, and pressure. 1t saves the ground intersection points and
provides for the calculation of all o¢'s .

10. DERIZ The calculation of the integrands for the ray and
area integrals is carried out by this routine.

11, OUTPU This program calculates the age function using

Simpson's rule for integration. It provides for printing ray,
area, and age data at printout points.
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12, DERPR This program calculates the integrand required by
the pressure calculation.

13. OUTPR Evaluation of phase distortions ¢ ,x{—functions,
and pressure data, and printing of them, are carried out by this
routine,

14, NODE This routine provides for the solution of a set of
n first-order ordinary differential equations or integrals. A
Runge-Kutta-Gill (RKG) starting procedure and a highly stable
Adams~-type predictor-corrector method are used.

15. PASS This is an auxiliary routine used by NODE when
evaluating integrals,

16. GROUN This program retrieves the ground intersection data
and reshuffles it to provide tables of ray location and maximum
pressure in order of increasing time for each maneuver point., It
then determines the ground intersection contours for equal time
on the ground,

17. INTEP This program provides for the simultaneous linear
interpolation of x , y , and pressure for a given value of time.

18. MOVE This routine moves tabular data from location J to
location K .

19. RESTA This is a routine used to save data for restarting
the problem at a later time.

20. INITAL This routine provides for starting a problem from
previously saved data.

Three sense switches (SS) may be used as follows:

Sense Switch Function
SS-1 Restart solution from data saved on Tape 9.
SS-5 Print out during all integrations if trouble

is suspected.

SS-6 Stop calculations at end of next ray trace
and pressure calculation., Save data on Tape 9
for future restart.

The names of variables (FORTRAN symbols) which are used in
the program are identified in Table 1. Comments which will be
listed by the program when appropriate are shown in Table 2, in-
cluding suggestions for correcting errors.

14



Program Utilization and Instructions

This section describes how to set-up the inputs for utili-
zation of the digital program and explains applications of the
equations presented in THEORETICAL, ANALYSIS. Details which are
needed for setting up a card input deck are presented in Tables
3, 4, and 5 and explained in the following paragraphs. Table 3
shows how input data are arranged on punched cards, giving the
data formats and notes relating to their set up. Table L pre-
sents definitions of the input nomenclature and option numbers,
whereas Table 5 lists the units used 1in the three choices of in-
put units. The following subsections are labeled to correspond
to related sections of THEORETICAL ANALYSIS.

The Atmosphere.- The inputs of tabular atmospheric data are
made on the sets of cards labeled Cards 5, 6, and 7 in Table 3.
The temperature and either the pressure or the density are tabu-
lated for various arbitrary altitudes in ascending order. Either
the pressure or the density table is used, not both. A separate
card is used for each altitude. The units are selected according
to Table 5, choosing a number for TUNIT according to Table 4, If
the 1962 U.S. standard atmosphere is desired, ISTAN = 1, and
Cards 5 and 6 are omitted from the deck. The wind magnitude and
wind direction are listed for various altitudes on Cards 7. The
sltitude on Cards 5, 6, and 7 may be geopotential or geometric,
selecting a corresponding digit for IALT (Table Iy,

These temperature, pressure, and density tables are interpo-
lated linearly, whereas the wind table is interpolated quadratically.
The number of altitudes 1s limited to 25 and should be selected
carefully depending on their change in gradients to avoid unaccept-
able errors in the interpolation.

Aircraft Maneuvers. - Physical data regarding the aircraft
are placed on Card 3. The altitude HG is the height of the
ground above sea level whereas HO is the initial altitude of the
aircraft above sea level. The initial values of the x,y coordi-
nates of the aircraft are set to zero within the program. Its
position and altitude at later times are calculated using equa-
tions (2) based on the maneuver inputs of Cards 8. The wing
loading WS is used only in an auxiliary calculation of force co-
efficients C1, and CT - Cp (egs. 3 and 4), and does not enter
into the sonic boom calculation here (except indirectly through
the F-function values). The aircraft length LA is used as a
reference length, whereas the radius of the earth is used in con-
versions between geopotential and geometric altitudes in the at-
mospheric functions.

The maneuver information is placed on Cards 8 as functions
of increasing flight time. For Option 1 (IM = 1) the axial and
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lifting load factors, Mach number, flight path angle, heading
angle, and bank angle are input using a separate card for each
flight time. The inputs should, of course, be made consistent;
that is, the Mach number and angles should be values which corres-
pond to the load factors ng and ny . Equations (5) and (7§
are used to obtain the time derivatives. For Option 2 (IM = 2),
the load factors are not required. These tables are interpolated
quadratically, so that at least three maneuver cards are needed.
The time derivatives are obtained by calculating slopes of quad-
ratic curves fitting the data. On Card 9 are given the initial
time and subsequent time intervals along the flight path for
which rays are to be initiated.

The force coefficients are determined using equations (3) and
(4) with the dynamic pressure de calculated in the program. In
Option 2, the load factors used in these equations are given by
N, = cos vy and nr = sin v to provide approximations to com-
p%ete the digital program output listing. This substitution is
exact only for nonaccelerating, straight flight.

Initial Wave Normals. - The ray parameters are specified by
the time tg (Card 9) and the azimuth angle ¢ . This angle is
first set to zero within the program, and then incremented by an
amount A¢ (DELFI) after each ray-path integration until b max
(FIMAX) is exceeded, as input on Card 10. The negative incre-
ments -A¢ are then taken until ¢ is exceeded. For a prob-
lem which is symmetric in ¢ , the input DELFI can be negative
to avoild duplicate calculations of the pressure signatures at
+p and -¢ . The values of v and sin 85 are evaluated
using equations (9) and (10).

Mach Conoids and Ground Intersections. - Each time s ray
trajectory intersects the ground, its location, arrival time, and
peak pressure are saved in a special table. This peak pressure
is selected from the array of pressures (Ap as functions of
phase £) which are determined, but not saved in other parts of
the program.l After all maneuver, ray tracing and pressure
calculations have been completed, these saved data are interpo-
lated to obtain intersection data at specific arrival times at
the ground, as follows.

1) These pressure values may be useful indicators of the
actual pressure increment at each location, but they are not
accurate. The peak values have not yet been adjusted, at this
point of the procedures, for the distortion of the signature and
the development of shock-wave structure. The user must Judge the
value of these interpolated peak pressure listings and, for
accurate values, properly process the signature data given in
the detailed tables for each ray-tube calculation.
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The program selects from the table the minimum arrival time
t for the set of rays which left the aircraft at the second
maneuver time (tg,7) . Then the program proceeds to the previous
ray set corresponding to tg and interpolates linearly to find
the ray locations and peak pressures for the same arrival time ¢t
There are generally two of these, corresponding to starboard and

port ray azimuths. The program then finds a new minimum arrival
time for the set of rays corresponding to tg,» and interpolates
the preceding sets (ta and ta+1) . This process continues

through each set of rays corresponding to subsequent aircraft
maneuver times.

An example of output for this ground intersection table is
shown in figure 14. These data were obtained for large ray azi-
muth increments of 20° and, therefore, yield somewhat crude inter-
polations. The maneuver flight times at which ray calculations
were initiated were at one-second increments. The solid-line
curves show ground intersection locations for sets of rays for
these maneuver times. The dashed-line curves show ground inter-
section interpolations for the fixed arrival times of 37.6, 38.4,
39.3, and 40.1 seconds.

Snell's Law and Ray Tracing. - The ray tracing initial inte-
gration step (ZOIEP) and print intervals (ZPRN) for the solution
of equations élB) are specified on Card 10. Equation 16 is cal-
culated for cCo . A quantity Cgyq = Co + Uno is also obtained.
The values of %6 , v , Coo and °8, are listed at the head of
each ray tracing table (Appendix B). The wind components Un
and ut are obtained using equations (15) and cos 6 1is ob-
tained using equation (17). The ray trajectory integration step
is halved or doubled as the calculations proceed from the air-
craft to the ground, according to predictor-corrector error
limits and comparisons made in sub-routine NODE. Listings of ray,
area and age variables are made at descending altitude increments
specified by ZPRN. These listings are also given at the altitude
corresponding to the next integration interval below the selected
altitude called PRIN input on Card 1O,

The calculations along a given ray are stopped at the ground
(z = 0), or if the ray-tube area converges to zero, or if the ray
angle decreases to within 29 of horizontal (cos 6 = 0.9994). The
additional displacement during the final 29 to the true horizon-
tal point is approximately

- o0 c

Ar =
57.3°/rad d(a - u,)/d(-z)

with the quantities evaluated at the horizontal point. In cer-
tain special problems, more than one Ar contribution may be
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needed. For standard atmosphere at sea level without winds, the
correction is

|AT| = 1.93 stat mi (3.1 km)

Ray-tube Area. - The partial derivatives of c¢co and Vv
with tg and ¢ are calculated in subroutine AREA using equa-
tions (27), (28) and (29). Variables dependent on altitude z
and the integrals (egs. (24)) are evaluated using subroutines
DERIZ and NODE, and the various terms of the area equation (26)
are combined in subroutine OUTPU. The values of the ray-tube
area are listed in the output table as a function of altitude =z .

Flow Near the Aircraft. - The program input of the aircraft
F-function is made of Cards 4. Fi is tabulated as a function
of length parameter L/LA . The input format permits specifying
the F4i vs. L/LA function for several azimuth angles ¢y (PHI)
relative to the aircraft vertical (butt-line). The program se-
lects that Fy vs. L/LA curve given in the input table which has
¢ closest to the current computed value ¢r = ¢ - ¢g , where
¢ is the ray parameter and ¢, 1is the bank angle of the air-
craft. The factor Fgy is input on Card 10, and multiplies F
before it is listed in the output tables (egs.(34)).

i

This format for inputing the aircraft's signal requires that
the dependency of F on ¢y » Cy, » weight and Mach number is
determined independently of this sonic boom program. Other sub-
routines for calculating variations in Fj may be substituted,
however, by a programmer. Also, the dimension specifications in
this program may need to be changed to allow for larger input
tables.

This program calculates pressure signature parameters at
each given value of L/LA and at three additional intermediate
stations, using linear interpolation to determine the intermediate
values of the F-function. These extrg data are useful for de-
termining the pressure curve and the f-curve which yields the
shock locations.

Geometric Acoustics and Blokhintsev Invarilance.- The quantity
vg (eq. (¥5)) is evaluated in subroutine DERPR. The phase €
(éq. (41)) is determined in OUTPR. These are listed in the output
tables (Appendix B) for corresponding values of L/LA

Signal Distortion and Age Variable.- Equation (46) for the
age variable must be rTewritten for the digital computations in
order to properly handle 1its initial singularity. This -1/2 power
singularity occurs because the initial ray-tube area is zero. Its
evaluation is as follows:
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The age variable is

1.

N

°l

f (-z) (6L4)
z, /G5GLL vVA(z)

where Z5 1s the alrplane altitude where the ray begins and z
i1s any lower altitude. through Gl represent combinations§
of terms in the area equaglo (26) which are used in the program
and defined in Table 1.

Let
1 zZ - Z
Q(z) = - ./; (65)
G5G4
so that
1az) 1 a(z) - a(z )
L ae Az) - q
T, = -l.2 [;/ o +Jf - “o dz]
(o] > 'VZO-Z 7 'VZO-Z
O O
1 a(z) - a(z )
-1.2 | z2) - Rlz, }
_ 20z Wi =% daz | (66
o LQ<zo)zoz+£ — (66)
O

This correctly yields Ty = O at z = Z, Wwhen Q(za) is deter-

mined. In the vicinity of zZo 5> let A = Aj(z, - z).g) Then from

equation (26) and Table 1,
Ai(z,) = 8,0y G5 Gg0 ,V + Gy Grp G Gy (67)

Then Q(zo) can be evaluated as

Az,) = . (68)
S/ G5G43 VAL

Q)The area A 1is linear in z for a uniform atmosphere,



In the digital program, the age is calculated in subroutine OUTPU
from equation (66) using equatlons (65), (67), and (68) and a
Simpson integration procedure for the integral. It is listed with
the ray-tube area and ray coordinates as a function of altitude z .

The phase variable &7 18 calculated at the ground (z = 0)
in subroutine OUTPR and 1s listed in the output table.

Shock Location.- The integral S,(€) (eq.(54)) and the
function s#(%7) (eq. (55)) are obtained in subroutine OUTPR. Values
of these variables are listed in the output table at corresponding
values of ¢ and €, , where SINT 18 So(€) and 8 1is X (61)
The reflection factor Ky , input on Card 10, 1is used to multiply
the pressure, also in subroutine OUTPR. The resulting pressure
increment Ap (ea. (57)) and pressure ratio pj = rp/p  (where p
is ambient pressure) are listed as DELP and Pl, respectively, 1in
this output table.

As described in THEORETICAL ANALYSIS, Shock Location, the user
must locate the shocks and the shock jumps by plotting & (€,) and
Ap versus &1 given in this output table.

Conversion to Other Computers

The program listing of Appendix B is the program used for
computations on the CDC-6600. The following remarks are pertinent
to conversion to other computers:

1. Input and output units are standard FORTRAN units 5 and
6. TFor other units, change KUNIT = 6 and LUNIT = 6 in
subroutine INPU. If a different working tape than tape
unit 8 is used (saves ground intersection data), change
MUNIT = 8 in INPU.

o, Some computers use FORMAT statements requiring the holli-
rith notation ' , whereas the symbol ¥ is used here for
the CDC-6600.

3. To fit within the core storage limitations of the IBM-
1130, links, locals and socals have been required,

L, Monitor control cards must be added to be compatible
with the compiler.

5. The sense switch subroutine SSWICH should be checked for
acceptability.

6. The dimension statements pertaining to the tabular input
data may need to be changed to accommodate larger tables.
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COMPUTATION RESULTS
Sample Printout

Appendix B presents a reproduction of a complete printout
for a typical solution. Various sections of the printout are
delineated on the right-hand side by letters A through E.

Section A is the input data which is listed for ldentifica-
tion and verification. The number of significant figures in the
listing might be less than those on the input data cards and
stored within the computer. These inputs represent an airplane
flying in an easterly direction (¥ = 90°) at 30 000 ft (9.1 km)
in a climbing turn near Mach 1.5. The ground altitude is 1500
Tt (457 m). An F-function is tabulated for two ray azimuth
angles, ¢ = 0 and 45°, and for 19 stations along the length of
the aircraft. The F-function table differs for the two d's
only at 8tation L/LA = 0.60. The wind direction is from the west
(n = 2707, & tail wind), but with zero speed. The inputs are in
Special units (IUNIT = 1), and the atmosphere is the 1962 U.s.
Standard (ISTAN = 1). Rays are to be initiated at the aircraft
at one-second intervals of flight time (DELTA T PRINT). Data are
to be computed for rays initiated at azimuth angle intervals of
20° (DPHI) to a maximum value of F 609 (MAXIMUM PHI) using an
initial integration interval of approximately 300 ft (91 m)
(DELTA Z). Ray-tube information is requested at 2000 ft (610 m)
intervals of altitude (PRINT INTERVAL) and at the next integra-
tion interval below 3500 ft (1.1 km) (PRINT OUT POINT). The
ground reflection factor K. which multiplies the pressure incre-
ment is 1.8 whereas the F-function multiplier Fg is 3.784

(eq. (34)).

Section B illustrates Maneuver Dats output. These include
the state variables of the aircraft at the time t, when the ray
tracing is started. Force coefficients, wind components, and
dynamic pressure are also listed. Maneuver Option 1 was selected
(IM = 1), so the derivatives V s Y, and ¥  were calculated
making use of the load factor data in the input section (nT, ng).

Section C represents the data listed during propagation of
the signal from the aircraft to the ground. The first line iden-
tifies the particular azimuth angle ¢ and the values of v,

Coo and c, at the aircraft altitude. Below this is a table of
ray location, time, ray-tube area, age, and cos 6 as functions
of altitude gz.

Section D is the pressure signal data at the ground. Data
are given for each integration interval of the sf-curve. It is
important to have a large set of points so that the pressure and
of-curves can be plotted accurately. In this table, F 1is the
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input value F; multiplied Dy Fr , Vp(L) is the signal invariant
(eq. (45)), XI O 1is the phase E , XI 1 1is the phase E1

3 INT is the integral of VE(Q) , and S 1s the value of %he
function from which shock locations are determined. The press-
ure parameters pj = Ap/p and Ap are listed in the last two
columns.

Both Ap and.,ﬂf are to be plotted against the independent
variable £7 as shown in figure 15 for a M = 1.2 solution.

: ———Shock wave
0.1 !
|
1
i ] Il

o
] -.01 0 0.01 0.02 0.03

L a) Pressure signature

0.004

0.002

Qg 0 / 1 1 1 1 1 [ 1

. . £ 0.09
-0.u02 6

-0, 0041

-0.006 b) »¥ -curve

Figure 15. Distorted pressure signature and f-curve at ground;
standard atmosphere, M = 1.2

The shock locations are defined wherever f crosses itself when
proceeding along the curve with increasing él on the uppermost
branches or boundary (sup xf). The first crossing is on the
apscissa (£ = -0.004 in the example of figure 15) because
originates at -« with value zero until g = 0 . The pressure
jumps at the shock waves are shown Dby dasheé lines. These repre-
sent the correct profile of the pressure where the solution would
otherwise appear to be multivalued.

Section E presents the listing for the ground intersection
curves. These are the interpolated values of ray location and peak
pressure for constant arrival time at the ground.
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Typical Results

Various solutions have been calculated to check the equations
which were programmed and to compare a few sample results with
previous analyses. Two characteristics which can be evaluated
analytically to provide checks on many factors and terms in the
equations, but excluding effects of winds, are

a) Rays travel in a circularp path (ref. 38) in an atmosphere
which has a speed of sound varying linearly in gz

b) Ray-tube area which 1s computed for an atmosphere with a
constant temperature will increase quadratically in the
lateral distance parameter (ax= + bx + ¢ , 1f the air-
craft is traveling south). Moreover, if the aircraft is
in steady flight (time derivatives all zero), the area
will increase proportionately to the decrease in Z

The present program accurately gave these analytic results for
representative examples.

In addition, solutions for typical practical situations have
been calculated to demonstrate the program using the F-function of
Appendix B, Section A. Two examples are shown in figures 15 and
16 for steady flight at = 1.2 and M = 3 , respectively, at
50 000 ft (15.2 km) altitude and for the ground intersection
directly below the aircraft (¢ = 0). In comparison with the data
for M = 1.2 , both the -curve and the pressure curve reflect
the greater age of the M = 3 signature, as the pressure profile
has developed nearly to an N-wave solution, Indeed, the two shocks
on the right for M = 1.2 have merged into only one at M = 3

Results using an atmosphere which has a larger lapse rate
than standard, with a temperature of 9OOF at the ground and -75°F
at 30 000 ft (9.1 km), are shown in figure 17 for several Mach
numbers. This atmosphere is designated ATM A-3 in reference 48,
The pressure ratio here is the maximum pressure listed for the
nonstandard atmosphere divided by the maximum pressure in a
standard atmosphere,

Tailwind effects on signal strength are summarized in figure
18 for some initial calculations. The wind is the mean zonal of
figure 19 (see ref. U48). The pressure ratio here is the maximum
pressure listed for the tailwind solution divided by the corres-
ponding value in a standard no-wind atmosphere. A headwind would
give pressure ratios larger than 1.0 near Mach 1.2 and represents
a more serious sonic boom environment,
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100 3 30 The preceding results were for rays
starting directly beneath the aircraft,
¢ = O . For increasing ¢ , the maximum

’ lateral extent of ray intersections with
the ground is shown in figure 20 for a

80 standard atmosphere. The effect of wind
on lateral range is shown in figure 21. It
is seen that lateral range is conslderably
reduced by a headwind. Results with a

— 20 nonstandard atmosphere are shown in figure
22 for atmosphere B-5 of reference 48
(multiple temperature inversions in tropo-
sphere) .
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Altitude,
|
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Altitude,

The wind and temperature effects
brought out by these examples on sonic
boom intensity and maximum lateral range

/ — 10 are similar to those presented in more

=
(@]

detail in reference 48, Specifically,
only small differences from standard atmo-
20 4 sphere, no wind solutions are indicated at
/// 4 s aircraft speeds larger than M = 1.3

listed in Appendix B provide an example of
0 a solution with an airplane maneuver., For
0 50 100 an axial acceleration of 0.2 g's and a
wind speed, ft/sec 1ift acceleration of 0.8 g's in a turn,
| | N the maximum pressure 1s 61% greater than
0 0.02 0.04 for nonaccelerating straight flight at
Wind speed, km/sec Mach 1.5. Thus, while atmospheric varia-
tions may be expected to be essentially
Figure 19. unimportant to sonic boom intensity at
Mean zonal wind speeds above M = 1.3 , madneuver effects
can continue to have a strong effect.

</ The results of the sample problem

CONCLUDING REMARKS

This report has presented an analysis of sonic boom propaga-
tions in a stratified atmosphere with winds, and a computer program
based on the analysis. The analysis and the program take into
account maneuvers of the aircraft and yield actual pressure signa-
tures without the common N-wave approximations. Some additional
theoretical discussion and historical notes have been included to
make the report more useful as an exposition of the fundamental
theory. Sample computer input and output data are presented with
results of some preliminary calculations made using the program.
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Figure 22. Lateral range with atmosphere B-5

The digital program was written to allow a number of input
options and to be readily adaptable to various computers. Complete
definitions and instructions for its use are presented.

Preliminary results have been shown which indicate the capa-
bilities of this new program. It can be applied to analyzing the
effects on sonic boom strength of changes in atmospheric conditions,
wind profiles, and aircraft maneuvers. It 1is, therefore, useful to
the aircraft designer to show effects of aircraft geometry and
initial signature, to the environmental science services (meteorol-
ogists) to show significance to atmospheric variations for specific
aircraft, and to the governmental aviation authorities and the
airlines operations analysts to provide a basis for specifying
permissible flight maneuvers and flight profiles within sonic boom
overpressure constraints.

It is possible and desirable, of course, to make certain
additions and alterations in the future to the program. One of
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these may be to provide equations at the beginning of the program
for directly calculating the aircraft F-function, now required as
a known input. Another is to extend the automatic calculations to

provide directly the -curve intersections (shock locations) and
shock strengths, and to provide automatic plotting of the final
pressure signatures. These are now manual operations. The present-

program, in common with other known techniques, cannot provide
pressure information when a caustic develops, nor can it account
for atmospheric turbulence. These are two important areas
requiring further research.
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TABLE 1.

NAMES OF VARIABLES IN PROGRAM

COMMON
A Speed of sound
AO A at the initial point of ray
ACC Accuracy criteria for integrals evaluated using NODE
ACCUR
PHSIG
AGE Age variable T
ALT Altitudes in altitude/temperature input table
ARA Area of ray tube
BETA M° - 1
BYHAL . . . . .
REDUC Halving suppression switch for integration
C Coefficients for Simpson's evaluation of AGE
CN cos T
2

CONL -/[é5o-cos Go/tan K also used as coefficients 1n
CON2 sin u/co-cos 6 AGE calculation
CON3 AGE/2
COoNA (G50,/G4 - ARA) /2
C00 ao/cos GO
CO o0 T Yno
CT cos 6
CTH cos 6

0
CU cos W
D Atmospheric density for a given altitude =z
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DADZ
DEL
DELFI
DELP
DELPT
DELZ1
DPMAX
DSIM
DTPRN
EETA
ENDNO

ENDVA
ENDVL

ETA

ETADZ

FA
FIA
FIMAX
FI
FLAG
GAMR
GDOT
GR

GO

da/dz

Current step in ¢

Angle increment for

¢

Maximum and initial step size for ray-area calculation

Print interval for ray-area calculation

Maximum initial step size for ray-area calculation

Maximum value of pressure for all F's at a specifiied ¢

Step for Simpson's rule integration for AGE

Print interval for maneuver calculation

Wind direction for a given =z

Number of points in integration range

Value of independent variable at end of integral

Wind direction in input table

dn/dz

Two-dimensional array of F-function input

Bank angle at initial point of ray

Bank angle in input table

Maximum value of ¢

Ray azimuth angle

¢

meagured from vertical plane

Set to -1 to terminate integration

Flight path angle

dy/dt,

Y

in input table

Value of vy for a given time

cos 9/sin ©
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Gl 603 /a®

G2 1 + (sin y/sin p sin 90) .
a3 cos y cos W sin ¢ /cos 90 also used as temporaries
Gl sin 6 cos ©

G5 pa2

G50 P2z

G6 cos u/cosgeo

GT7 cos W sin y + sin p cOS 7Y COS o)

G3 sin 90/0033 6

G9 cos p sin 6 sin ¢/0032 6,

G10 sin 90 sin ¢

Gl1 cos vy sin ¢/cosgeo

Gl2 cos W cos vy sin ¢

G1l3 sin p cos y + cos p sin y cOS 0]

ENODE Step size used for integration

HG Height of ground above sea level

HW Height for input wind table

HO Tnitial value of aircraft height above sea level

H1, H2, H3, H4, H5, H7: Variables representing terms and factors
in equation for ray-tube area:

- ay_ _ - ap
Hi Yo Tty <aoG8G7 utoG11> ats
(a2 GoG.. - u, G, )L
078713 to’9/ dty

. . 1 1 »

- <ao sin yr/51n u) (uno - ao/cos Go)
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_d du dy
H2 T agt %11 agt %% Tt
H3 = - utoG6G7 a G8G12
H4 = - G6G7
H5 = GBV + utOG2
HT (H1) (H4) = (H2)(H3)
I Counter for Simpson's rule and various DO loops
IALT Altitude geopotential/geometric switch
IM Maneuver option 1 or 2
10UT Switch for first =z printout

IPRIN Switch for printing at a selected =z

IRH Switch to indicate if ray is horizontal or area is Zero
TRHO Altitude, temperature, pressure/density switch

ISTAN Standard/tabular atmosphere switch

ITEMP Type of temperature units input

IUNIT English/metric/special units switch

KTIME Number of ground intersections stored

L DO instruction parameter for steps in S-integral
LAMDO Value of ¥ for a given value of time

LAMR Input table of heading angles (¥)

LA Length of airplane
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LUNIT

ML
MM
MTIME
MUDOT
MUNIT

MU

NNODE
NALTS
NEW
NIM
NL
NODUB

NODUM

NPHI

NSAVE

NT
NTAU

NWIND

PHI

PRESS

Output unit number

Mach number input table

Position in PHI table for F-function
Mach number for a given time

Switch to indicate if first maneuver step
dp/dty

I/0 unit on which ground data are saved

Mach angle
Number of integrals to be evaluated simultaneously

Number of entries 1in the altitude/temp/density table
Heading angle v of wave propagation vector

Number of entries in maneuver table

Ioad factor input table, 1ift direction

Switch to suppress doubling step during integration

Switch to suppress printing of bad points during
integration

Number of Qr's for the F-function table

Number of auxiliary variables calculated during
integration

ILoad factor input table, axial direction

Number of F-functions for each ¢

Number of entries in wind table

Pressure for a given =z

Input table of ¢r‘s for which F-values are tabulated

Pressure input table
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PRIN

PSIDT
RE

RF

RHOO
SN
ST
STH
SU
SUM

TNODE
TAU
TEMP
TIME
TIND
TINIT
TLAS
TPRIN
TP

TT

UNO

UTo

Selected value of =z at which additional printing
is desired

dwp/dta

Radius of the earth

Reflection factor

Atmospheric density input table

Density at the initial point of ray

sin v

sin ©

sin 90

sin p

Used in collection of terms for AGE calculation

Used in integration step size determination for NODE

Length ratio L/LA in input table

Temperature input table

Time at initial point of ray

Time at current integration point in maneuver

Time at which maneuver is to be started

Last value of time at which interpolation was made
Next value of time for a maneuver printout
Temporary location

Input table of times for maneuver table

Component of wind speed in direction of wave propagation

Component of wind speed transverse to wave propagation
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A% Speed of the airplane

VAR Two-dimensional array used to save back points in
integration

VVW Input table of wind speeds

VWX X-component of wind at maneuver point

VWXX X-component of wind

VWY Y-component of wind at maneuver point

VWYY Y-component of wind

VW Value of wind speed at a given =z

WS Wing loading

XM x at initial point of ray (a maneuver point)

YM y at initial point of ray

Z z at current point of ray

ZINIT z at initial point of ray

ZPRIN Next value of 2z to be printed

ZSIMP Value of 2z for next Simpson's step
INPU

FE Factor to rescale F table

I DO instruction parameter

J DO instruction parameter

KUNIT I/0 unit for input

ATMO

D Density at height =z
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H Z plus height of ground

HGLTB Array for base heights

HGP H 1in table value units (geopotential meters)
I DO instruction parameter

J Layer number being used

K1 Array of Kl coefficients

K23 Array of K23 coefficients

P Pressure at height =z

PB Array of PB coefficients

RHOB Array of Py coefficients

TB Array of tB coefficients

TEM1 Difference between HGP and table value
TEM2 Quantity used in calculation of D

TH Temperature at height =z

THDZ dTH/dz

VS Speed of sound at height =z

7 Current height above ground

ANGLE

ARRAY Array to be checked

I DO instruction parameter
MAX Number of entries in ARRAY table
MAXS MAX - 1
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DERM2

BLANK Dummy variable for LAGRA call
COSGA cos 7Y

COSLA cos Y

J Sense switch value

SINLA sin ¥

TH Temperature from standard atmosphere program
T™ Temperature at a given 2

OUTM2

BLANK Dummy variable for LAGRA call

CL ILift coefficient

COSDI cos (v - 1)
COSGA cos vy

COSMU cos W

Cl Axial force coefficient
NLZ Value of NL at point =z
NTZ Value of NT at polint =z
Q Dynamic pressure

SINDI sin (v - 1)

SINGA sin vy

TERM1 Subterm in derivative calculations

TH Temperature at =z from standard atmosphere program
THDZ dTH/dz by quadratic interpolation

™ Temperature for a given =z value
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VDOT av/ dt,

VG Velocity of aircraft relative to ground

INPOL

rT Interpolation value

I DO instruction parameter

K Place 1in table where found

T Point at which interpolation value is needed

X Table containing point at which interpolation occurs
Y Table to be interpolated in

LAGRA

ANS1 Interpolated value

ANS2 Interpolated derivative value

ﬁé Differences between input T and tabular values
A3 in table TIME

gé Differences between three consecutive values of T
B3 in table TIME

Cl

ca2 Terms used in evaluation formulas

C3

L DO instruction parameter

N Number of entries in each table

NN N -1

NSWIT -1 only derivative, O both, 1 only function
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T Point at which interpolated value is to be found

TABLE Table to be interpolated in
TIME Table which contains values of T
AREA

COSET cos 0
CTH2 cos 95
IDEL Number of print steps - 1

SINET sin m

DERIZ
AST a.gin 6
J Setting of sense switch 5
VA% Value of wind velocity at given z
OUTPU
TAUA Integrand for AGE integral
DERPR
J Setting of sense switch 5
QUTPR
Pl Ap/p

2
S SINT - 0.5 Tage VEQQ)
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SINT
XIO

XTIl

NODE

CK

COMPD
COMPE
COMPT
COMPY
I,J,K
NN

NSWHF

PERR

TEMP
TEMPA

XSAVE

GROUN

FI

Jvg(g) at
Linear phase (time) £

Actual phase (time) &1

Coefficients for RKG starting procedure

Subterm in RKG evaluation

Name of subroutine which calculates integrands
Name of subroutine accessed before doubling and halving
Name of subroutine to produce output

Used in differential equations

DO range parameters

Number of integrals plus saved quantities
Rehalving switch

Maximum error at step

Subterm in RKG evaluation

Predictor value of variable

Error for nth equation

Value for independent variable when step was halved

¢ for given ground data

position in tables at which current data are stored
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IC
IMIN

ISAVE

JMAX

KERR

KT

KMAX
KN

LOOPS

NMNSW

NPHSW

NREC

NRMAX

PVAL

TMIN

TVAL

XVAL

Step for moving and for looking up in tables
Position in main table where current table starts

Place in tables where values are stored during
permutation

Place in current T-table which has minimum value of time
Place in tables where current table ends

Place current value is stored in N-table

Indicates when there is no TVAL in table

Next position in table and DO parameter

Table number

Last table used for current curve

Starting place of current table

Place moved from

Table of table lengths

Switch to indicate first negative ¢ for maneuver point
Switch to indicate first maneuver point

DO range parameter

Number of ground intersections saved

Table of pressure values at the ground

Pressure value at time TVAL in KKth table

Table of time values at the ground

Minimum value of time for the current table

Time along curve being plotted

Table of x-values at the ground

s-value at time TVAL in KK'® table
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Y Table of y-values at the ground

YVAL y-value at time TVAL in KKth table

INTEP

IN Place in T-table where current table starts

INF Place in T-table where current table ends

IS DO instruction parameter

KK Place in table N which gives position in table T
N Table of table lengths

NERR Set to 1 4if no time TVAL in table, otherwise O
P Table of pressure values at the ground

PANS Pressure at time TVAL

PERCT Distance between table entries for values

T Table of time values at the ground

TVAL Entry in time table at which interpolation is made
X Table of x-values at the ground

XANS X at time TVAL

Y Table of y-values at the ground

YANS y at time TVAL

MOVE

J Position in tables moved from

K Position in tables moved to
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TABLE 2.

COMMENTS GENERATED IN PROGRAM

Comment

Interpretation

ALTITUDE VALUES NOT
INCREASING

TIME IN TABLE NOT
INCREASING

DELTA PHI IS ZERO WITH
PHIMAX NOT ZERO

TABLES TOO SHORT

ABSCISSA VALUE OUTSIDE
RANGE

AREA ZERO

RAY HORIZONTAL

NEGATIVE SQUARE ROOT IN
AGE

ALTITUDE LARGER THAN
52 000 METERS

Altitude in tables must increase
monotonically; correct data and
rerun the problem.

Time in maneuver table must
increase monotonically; correct
data and rerun problem,.

Maximum ¢ must be zero if 6¢
is zero; correct data and rerun
problem,

Tables should have at least three
entries. Revise data and rerun
problem,

Linear interpolation is attempted
outside the range of the table.
Execution continues but answers
will not be correct. Revige
table or the problem statements.

Area in ray tube diminishes to
zero, Current ray calculation
is terminated. Age may not be
exactly correct,

Ray has turned to become within
29 of horizontal. Current ray
calculation is terminated.

Current ray calculation is
terminated.

Altitude outside range of standard
atmosphere program; execution is
terminated.
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TABLE 3.

FORMATS FOR INPUT DATA

Card 1 Title card
Card 2 (A1l input is fixed point, right justified)
Cols 1-5 6-10 11-15 16-20 21-25 26-30 31-35
JUNIT ISTAN TALT ITEMP IRHO M NPHI

Cols 36-40 41-45 46-50 51-55

NTAU NALTS NWIND NIM
Card 3 (All input is floating point F10.3, except last ifem
is E20.7, right justified)
Cols 1-10 11-20 21-30 31-40 41-60
W3 LA HG HO RE

Cards 4 to (3 + NPHI x NTAU)(F10.3)

Cols 1-10 11-20 21-30
PHI L/LA F

List L/LA and F for a given ¢y, then proceed to next larger ¢r
and list corresponding L/LA and F

If loading nonstandard atmosphere, use Cards 5 or 6; otherwise
omit.

Cards 5 to (4 + NALTS)(F10.3)

Cols 1-10 11-20 21-30
ALT TEMP PRESS

Cards 6 to (5 + NALTS)(F10.3)

Cols 1-10 11-20 21-30
ALT TEMP RHO
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Cards 7 to (6 + NWIND)(F10.3)

Cols 1-10 11-20 21-30
HwW VVW ETA

Cards 8 to (7 + NIM)(F10.3)

If IM = 1
Cols 1-10 11-20 21-20 31-40 41-50 51-60 61-70
T NT NL M GR PSIR FIA
= LAMR
Irf IM =2
Cols 1-10 11-20 21-30 31-40 51-60
T M GR PSIR = LAMR FIA

Card 9 (F10.3)

Cols 1-10 11-20
TINIT TSTEP

Card 10 (F10.3)

Cols 1-10 11-20 21-30 31-40 ki1-50 51-60 61-70
ZSTEP ZPRN DELFT FIMAX PRIN RF rE

NOTES:

l-

2.

Altitude means geometric altitude except in input when
geopotential option is used.

Angles in input and output are in degrees.

Output listings are English units. The wind speed in output
listings has units ft/sec, whgreas in input the units are knots.
The unit for pressure is 1b/ft< .

Pressure, density, temperature and F-function tables are inter-
polated linearly, whereas other input tables are interpreted
quadratically. Therefore the tables require a minimum of

three input cards. The inputs must be selected to avoid wrong
quadratic representation between the specified data.

The F-function used in the computation is the tabular data for
the ¢ nearest the ¢ being computed.
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For a steady-state flight, a minimum of three maneuver cards
must be used with arbitrary time T increasing from the first
card to the last. To avoid duplicate solutions, select TSTEP
so that TINIT + TSTEP is larger than the latest time T .
If both A9 and ¢y are input as zero, only the ¢ = 0O ray
is computed. If A¢ is input as zero and dmax is nonzero,
an error statement is given and no solution 1s made, If A

is input as a negative number, only the rays for ¢ = 0 and
negative ¢'s are computed.
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TABLE 4.
INPUT DEFINITIONS
TUNIT: -1--ENGLISH
O0--METRIC Input units; outputs are English units
+1--SPECIAL

1--1962 US Standard Atmosphere

LSTAN: 2--Tabular atmosphere
TALT: 1--Geopotential altitude} input for tabular atmosphere
: 2--Geometric altitude and wind data

l--Fahrenheit
ITEMP: 2--Centigrade
3--Rankine

l--Altitude, temperature, pressure table

TRHO 2--Altitude, temperature, density table
™ l--Maneuver, op?ion 1
2--Maneuver option 2
NPHT : Number of PHI's (¢) in F-function table
NTAU : Number of length parameters IL/IA in F-function table
NALTS: Number of entries in IRHO table (Cards 5 or 6)
NWIND: Number of entries in wind table (Cards 7)
NIM : Number of entries in maneuver table (Cards 8)
WS : Wing loading, W/S
LA : Length of aircraft
HG : Altitude of ground above sea level
HO : Altitude of aircraft above sea level
RE : gadius of eargh (e.g., 2.089007 x lO7 ft or
.36729% x 100 m)
PHT Ray azimuth angle relative to aircraft z-axis, ¢

r
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FI : Ray azimuth angle relative to vertical plane, ¢

L/IA : Stations at which F-function is specified

F : Aircraft signature function

ALT A . .

TEMP tmospheric temperature and either pressure or

density as functions of altitude above sea level.

ﬁgggsf Altitude (ALT) may be geopotential or geometric.

HW : Wind speed and direction from which wind is coming as

VWwWw functions of altitude (HW) above sea level. Direction

ETA is the heading angle measured eastward from north.

T : Aircraft flight time

NT : Axial load factor

NL : Lift (normal) load factor

M : Mach number

GR : Flight path angle above horizontal relative to the

. . atmosphere

PSIR : Heading angle measured clockwise . . -
from north (eastward) including wind

FIA @ Bank angle of ailrcraft, ¢a

TINIT: Tnitial time at which first ray tracing is to be
calculated (must correspond to any T input)

TSTEP: Time interval along aircraft flight path at which
ray calculations will be initiated

ZSTEP: Tnitial ray-area integration interval of time (DELZ1)

ZPRN : Altitude intervals at which ray data are to be listed
(DELPT)

DELFTI: Increments of FI (ray azimuth angles) at which
calculations are desired

FIMAX: Maximum FI desired

PRIN : A selected altitude at which ray data are desired

RF : Ground reflection factor (normally 1.8 to 2.0)

FE : F-function factor to multiply input parameter Fi
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TABLE 5.

INPUT UNITS AND CONVERSION FACTORS

OPTION (-1) OPTION (0) OPTION (+1)
English Metric Special
Atmospheric temper- _OF orOOC °m orOOC °F or °c
ature, T ' or "R or R or "R
Atmospheric pressure, p: lb/ft2 N/m2 mbars
Atmospheric density, p :slug/ft3 Kg/m3 kg/m3
Wind speed, VW or u : knots m/sec knots
Wind direction, n . deg deg deg
Length or altitude : 't m 't
Wing loading, W/S . 1b/ft° ke /me 1b/ft°
CONVERSION FACTORS

ft tom : multiply by 0.3048
1b/Ft° to mbars : 0.47880258

N/m? : 47.880258

kg /me : L. 88242
Slug&/ft3 to Kg/m3 : 515.379
knots to ft/sec : 1.68781

m/sec : O.514444
°F to °C °c = (5/9)(°F - 32)
°F to °r : °R = °F + L5967
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APPENDIX A
PROGRAM LISTING

PROGRAM SONIC

EXTERNAL DERM2,0UTM2,PASS

REAL MyLAMDO sMMI(25)sLAMR(25) sNT(25)sNL(25) s LAsMUSMUDOT

DIMENSION PHI(20)s>TAU(20)9F(20+20)sFIA(25))

1 ALT(25)sTEMP(25) sPRESS(25) sHW(25)sVVW(25)9ETA(25)sTT(25)sGR(25)

COMMON NNODE s HNODE s TNODE s ACC s NODUM» BYHAL s NODUB sENDNO s ENDVL sNSAVEs
SFLAGs TINDsVAR(14+8)

COMMON TUNITsISTANSIALTSITEMPsIRHOs IMsNPHIsNTAUSNALTSsNWINDsNIM
1sWSsHGsHOsREsPHIsTAUsFsFIAsALT S TEMPsPRESSsRF s HWsVVWIETASMUSMUDOT
2TTsMMsGRsLAMRSNTsNL9LASTINIT»GDOTsDTPRNSDELZ1 sDELPT9FIMAXsDELFIsPR
3INsMTIME sKTIME sMsV sVWX s VWY s GAMRsPSIDT s RHOOs LAMDOs TPRINSs TIMESZINITo
5XMsYMsAsBETASLUNITsDADZsVWSsEETASVWDZSETADZs MUNIT»FIsFASDELSTLAS

EXECUTIVE PRCGRAM FOR THE SONIC BOOM CALCULATION
CALL SSWTCH(1sNNODE)
GO TO (491) 9sNNODE
THE REAL BEGINNING OF A DATA CASE
1 CALL INPU
2 FI=0.
DEL = DELFI
MAIN PROGRAM FOR MANEUVERS
80 IF(TPRIN=TT(NIM)) 7057020
70 IF(ABS(TPRIN-TT(NIM))=e01l) 20920410
20 NNODE = KTIME+1
WRITE(MUNIT) FIsFIsFIsFIoFI
NODUM = MUNIT
NODUB = LUNIT
REWIND MUNIT
CALL GROUN

10 TIND = TPRIN
TLAS = =9999.

VAR(1s1) = XM
VAR(1s2) = YM
VAR(1s3) = ZINIT

GO TO (30,+40)sMTIME
30 MTIME = 2

ENDNO = Oe

CALL DERM2

CALL OUTM2
CALL RAY TRACING THE FIRST TIME
GO TO 3

40 TPRIN = TPRIN + DTPRN

NSAVE = O

ENDVL = TPRIN

NNODE = 3

FLAG = Oe

ACC = 1o

TNODE = 1.

NODUM = O

NODUB = O

BYHAL = 5

ENDNO = 10

50 CALL NODE ( DERM2sDERM2sOUTM2,4PASS)
3 CALL AREA

GO TO 2
4 CALL INITAL

GO TO 3

END
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SUBROUTINE INPU

REAL MsLAMDO sMM(25) s LAMR(25) sNT(25)sNL(25) sLAsMUIMUDOT

DIMENSION PHI(20)sTAU(20)sF(20+20)sFIA(25)

1 ALT(25)sTEMP(25)9PRESS(25)sRHO(25) sHW(25)
2 VVWI(25)3ETA(25)sTT(25)sGR(25)

COMMON NsHsT sACCUR s NODUMsREDUC s NODUB s ENDNO s ENDVL s NSAVE s FLAG» Z VAR
1(144+8)

COMMON IUNITsISTANSIALTSITEMPsIRHOs IMsNPHIsNTAUSNALTSsNWINDINIM
1sWSsHGsHOsRESPHI s TAUSF o FIASALTs TEMPsPRESS9RFs HWsVVWIETAsMUSMUDOT
2TTsMMsGRLAMRSNTsNLOLASTINIT»GDOTsDTPRNsDELZ1sDELPTsFIMAXsDELFI®PR
BINQMTIME9KTIME’M’V,VWx9VWY’GAMR’PSIDT’RHOODLAMDO’TPRIN’TIME’ZINIT’
5XMsYMsAsBETASLUNIT sDADZ sVANIEETASVWDZSETADZsMUNIT

EQUIVALENCE (PRESS(1)sRHO(1))

IUNIT = NEGATIVE NUMBER FOR INPUT VALUES IN ENGLISH SYSTEM
IUNIT = 0 FOR INPUT VALUES IN METRIC SYSTEM
IUNIT = POSITIVE NUMBER FOR INPUT VALUES IN ESSA
ISTAN = 1 FOR STANDARD ATMOSPHERIC DATA
ISTAN = 2 FOR TABULAR ATMOSPHERIC INPUT
IALT = 1 FOR ALTITUDE IN GEOPOTENTIAL UNITS
IALT = 2 FOR ALTITUDE IN GEOMETRIC UNITS
ITEMP = 1 FOR TEMPERATURE INPUT IN DEGREES FARENHEIGHT
ITEMP = 2 FOR TEMPERATURE IN DEGREES CENTIGRADE
ITEMP= 3 FOR TEMPERATURE IN DEGREES RANKINE

IRHO =1 FOR ALTITUDEsTEMPERATUREs PRESSURE TABLE
IRHO = 2 FOR ALTITUDESTEMPERATURESDENSITYsTABLE

IM = 1 FOR MANEUVER OPTION 1sTABLES OF LOADFACTORSs GAMsPSI AND BANK
IM IM = 2 FOR MANEUVER TWOs FOR MACHs GAMMA AND PSI TABLES

NIM IS THE NUMBER OF ENTRIES IN THE MANUVEVER INPUT TABLES

NPHI IS THE NUMBER OF PHI'S IN THE F FUNCTION TABLE
NTAU IS THE NUMBER OF TAU'S IN THE F FUNCTION TABLE

NALTS IS THE NUMBER OF ENTRIES IN THE ALTITUDEsTEMPERATURES
PRESSURE/DENSITY TABLE

NWIND IS THE NUMBER OF ENTRIES IN THE WIND VELOCITY TABLE

RE 1S THE RADIUS OF THE EARTH

##x#%*READ CONTROL CARD

KUNIT = 5
LUNIT = 6
MUNIT = 8

READ (KUNITs4)

READ(KUNIT»1)

1 IUNITsISTANSIALT 9 ITEMPs IRHO» IMsNPHI sNTAUSNALTSsNWINDs
2NIM
1 FORMAT(11(2X»13))

Cxxx%%PRINT CONTROL VALUES

WRITE(LUNIT»8)
WRITE (LUNIT»s4)
WRITE (LUNIT»2)
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WRITE(LUNIT»9)
1 (ALT(I) oTEMP(T) sRHO(TI) s I=1sNALTS)
202 WRITE(LUNITS15)
WRITE(LUNIT16)
1 (HWI)sVVWIT)sETACT) o I=1sNwIND)
GO TO (70460) M
60 ARITE(LUNIT61)
WRITE(LUNIT62)
1 (TTCI) o™MMIT) o GRITI) SLAMR(I) SFIA(T) s I=1sNIM)
GO TO 900
70 WRITE(LUNITs 71)
WRITE(LUNITS72)
1 CTTOID oNTOI) o NL T ) oMUT) 9GRITI) s LAVRIT) s FIACT ) s I=19N1M)
900 WRITE(LUNITS91) TIMITSDTPRN
WRITE(LUNIT92) DELZ1sDELPTPRINIDELFISWFINMAXIRFFF
IF(DELFI) 1609 1554160
155 IF(FIMAX) 158415645158
158 WRITE(LUNIT»159)
159 FORMAT(20Xs 39HDELTA PHI IS ZERO wITH PHI MAX NOT ZERO)
CALL EXIT
250 WRITF (LUNIT»251)
251 FORMAT(//20X30HATLITUDE VALUES NOT INCREASING )
CALL FEXIT
252 WRITE (LUNIT253)
253 FORMAT(//20Xs28HTIME IN TARBLE NCT INCREASING )
CALL EXIT
156 DELFI ==N00005

CONVERSIONS

CONVERSION TO GEOMETRIC UNITS IF ALTITUDE IN GEOPOTENTIAL UNMITS

AN NIYANANN

160 GO TO (200+204) s ISTAN

204 IF(NALTS=2) 150451509205

205 GO TO(201+203)IALT

201 DO 181 I = 1sNALTS

181 ALT(I) = (ALT(I)*RE)/(RE=ALT(I))

CONVERSIONM TO 7

"N N

203 DO 183 I=1sNALTS
183 ALT(I)=ALT(I)=HG

CHECK FOR TABLES TO HAVE INCREASING VALUES
NO 206 I = 2sNALTS
IF(ALT(I) = ALT(I=1)) 25092505206
206 CONTINUE
200 GO TO (182091821)sIALT
1220 DO 182 1I=1sNWIND
182 HW(I)=(HW(I)*RE)/(RE=HW(T))
1221 DO 184 I=1sNWIAND
184 HW(I) = HW(I) =HG
NO 207 I = 2sNWIND
IF(HW(I)= HW(I=1)) 250,250,207
207 CONTIMUF
DO 20R I = 2sNIM
IF(TT(I)=TT(I=1)) 252+2525208

NN

202 CONTINUE
C
C CONVERSION TO ENGLISH SYSTEM IF NECESSARY
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1 IUNITsISTANSIALT s ITEMP S IRHO» IMsNPHI sNTAUSNALTSsNWINDINIM
IF(NWIND=2) 15091509151
150 WRITE(LUNITs152)
CALL EXIT
152 FORMAT (20X 920HTABLES TCO SHORT )
151 IF(NIM =2) 15091509154
C READ WING LOADINGISLENGTH OF AIRPLANEs ALTITUDE
C OF THE GROUNDs ALTITUDE OF THE AIRCRAFTs AND RADIUS OF THE EARTH
154 READ(KUNITs3)
1 WSsLAYHGIHOSRE
3 FORMAT(4F10e39E20e7)
8 FORMAT(1H1)
4 FORMAT (8OH
1 )
‘C READ AIRCRAFT SIGNATUREs F FUNCTION
READ(KUNITs5)
1 ((PHI(J)sTAU(I)sF(IsJ)sI=1sNTAU) sJ=1sNPHI)
GO TO(103422)s1ISTAN
C READ ALTITUNESTEMPERATURE sPRESSURE/DENSITY TABLE
22 GO TO (1019102)sIRHO
101 READ(KUNITsS)

1 (ALT(I)sTEMP(I)sPRESS(I)s I=1sNALTS)
GO TO 103
102 READ(KUNITsS)
1 (ALT(I)sTEMP(I)sRHO(I)sI=1sNALTS)
C REAPD WIND VFLOCITY TABLE
C HW IS THE ALTITUDEs VVW 1S THE WIND SPEEDs AND ETA IS DEGREES FROM
C NORTH
103 READ(KUNITS5)
1 (HW(I)eVVWI(I)SETA(I)sI=1sNWIND)
CALL ANGLE(ETAWNWIND)
IF(IM=1) 79796
6 READ(KUNIT55)
1 (TT(I) sMMUI)sGROI)D s LAMR(I)sFIA(I) s I=1sNIM)
GO TO 90
7 READ(KUNIT57)
1 (TTCOI) oNTCI)oNLCI) oMM(T) 9GRITI)sLAMR(I) oFIA(I) 9 I=19NIM)
CALL ANGLE(FIAWNIM)
90 READ(KUNIT»S) TINITsDTPRN
CALL ANGLE(GRsNIM)
CALL ANGLE(LAMRNIM)
READ(KUNIT958)DELZL1sDELPTsDELFI sFIMAXIPRINIRFsFF
58 FORMAT(7F10e3)
FIMAX = ARS(FIMAX)
C
C
C*%##%DRRINT OUT ALL INPUT DATA
C
C

WRITE(LUNIT141) WSsLA
WRITE(LUNITs14) HGsHOSRE
WRITE(LUNIT13)
WRITE(LUNIT»12)
1 ((PHI(J) s TAUCI)sF (I19J)sI=19NTAU) sJ=1sNPHI)
GO TO (2029222)sISTAN
222 GO TO(111+112)s1IRHO
111 WRITE(LUNITs10)
WRITE(LUNIT»9)
1 (ALT(I)sTEMP(I)sPRESS(I)sI=1sNALTS)

GO TO 202
112 WRITE(LUNITs11)
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C

C

IF(IUNIT)

303093019338

C CONVERSION FOR METRIC TO ENGLISH

301

381
405
483
406
484

C

HG =HG/ 3
HO=HO/ 30
LA=LA/430
WS = WS/&
RE=RE/«30
DO 381 1I=
HW(I) = H
VWW(Tl)=(V
GO TO(405
DO 483 1

ALT(1)=AL
PRESS(1)=
GO TO 333
DO 484 I=
ALT(I)=AL
RHO(1)=RH
GO TO 333

048

48

48

¢88242

48

1sNWIND
W(l)/e3048
VW(I)/e3048)
9406) » IRHO
= 1sNALTS
T(I)/e3048
PRESS(1)/47.88026

1sNALTS
T(I)/e3048
0(I)/515379

C CONVERSION FROM ESSA

C
338
3338
601
681

602
682

GO TO (30
GO TO(601
DO 681 1I=
PRESS(I)=
GO TO 303
DO 682 1I=
RHO(I)=RH

3093338) sISTAN
+602) s IRHO

1sNALTS

PRESS(1)/ 4788026
0

1sNALTS
0(1)/515379

C CONVERT WIND SPEED FROM KNOTS TO FEET PER SECOND

3030
782
C
333
3031
901
981

902
982

DO 782 1=
VVWI(I) =V

CONVERT
GO TO (30
GO TO (90
DO 981 I=
TEMP(I)=T
GO TO 303
DO 982 I=
TEMP(I)=(

1sNWIND

VW(I)*#1.688944
TEMPERATURE TO RANKINE
393031)sISTAN
1590253031 ITEMP
1sNALTS

EMP(I1)+459.7

1sNALTS
9e/5e ) ¥ (TEMP(1)+273415)

C CONVERT ALL DEGREES TO RADIANS

303
781

783
784

786
787
788

2

5
9
10
11
12

1
2
3

DO 781 1=
PHI(I) =P
DO 783 1=
ETA(I) =
DO 786 1I=
GR(1) = G
LAMR(I)=L
DO 788 1
FIA(I) =F
FORMAT (/1
6HITEMP
10X » 6HN
10Xs 5H
FORMAT ( 3F
FORMAT (17
FORMAT (//
FORMAT(//
FORMAT (20

1sNPHI

HI(1)%#61745329E-01

1»NWIND

ETA(1)%e¢1745329E=01

1sNIM

R(I)*41745329E-01

AMR(1)#e1745329E=01

=19oNIM

IA(I)%61745329E=01

OXs6HIUNIT=s 13 10Xs 6HISTAN=913910X> 6HIALT= 139210X»

=913910Xs SHIRHO=» I3y 10Xs3HIM=s [39//

PHI= s13s10Xs6HNTAU= 5I3910Xs6HNALTS=913310Xs6HNWIND=913>

NIM= 13 //7)

10.3)

X3sF7e60922XsF560915XsE2067)
916X s8HALTITUDE»19X9s11HTEMPERATURE 921X9s8HPRESSURE)
516Xs8HALTITUDEs 19X s 11HTEMPERATURE » 22X s THDENSITY)

X9F5e62910X9F562910XsF106e5)
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13 FORMAT(21X93HPHI 12X s4HL/LA 516Xs1HF)

14 FORMAT (10X s*HG=%5F7e0s10Xs*HO=%#3FT7e¢09s10Xs#RE=#E20e7///)

15 FORMAT(// 19X 9»8HALTITUDE»8Xs 1O0HWIND SPEED»5XsSHDIRECTION)

16 FORMAT (20X 9F7e¢098XsF84299XsF64e1l)

55 FORMAT(5F10.3)

57 FORMAT(7F10e3)

61 FORMAT(///23Xs4HTIME»17Xs THMACH NO» 14X »5SHGAMMA s 14Xs4H PSI»10Xs10HB

1ANK ANGLE)
62 FORMAT(20X»sF10e3910XsF10e33510X9sF10e3510X9sF10e3910X9F10e3)
71 FORMAT(// 13X s4HTIME 9 15X o ¥NT %9 1S X¥NL*10X s *MACH NO*12X*GAMMA*11X

19%¥PSI*]10Xs*BANK ANGLE*)
72 FORMAT(7F17.3)
91 FORMAT(//1X913HINITIAL TIME=9F10e3513Xs14HDELTA T PRINT=sF1l4e5//)
92 FORMAT(1X+8HDELTA Z=sFl4e5514X9s15HPRINT INTERVAL=9F10e33s//91X

2 16HPRINT OUT POINT=9F10e¢3510X9s5HDPHI=9F10e3510Xs12HMAXIMUM PHI=)»

3 Fl0e3//1X»s19HREFLECTION FACTOR =3 F10e3s TX91O0HF FACTOR =9F10e3)
141 FORMAT(10Xs13HWING LOADING=3sF1063+10Xs16HAIRPLANE LENGTH=9sF10e3

1/777)
785 TPRIN = TINIT

DO 789 J = 1sNPHI

DO 789 I = 1sNTAU
789 F(lsd) = FFXF(14J)

ZINIT = HO-HG

XM = Oe

YM = 0o

MTIME = 1

KTIME = O

REWIND MUNIT

RETURN

END
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SURROUTINE ATMO (ZsTHsP+DsVS)
REAL K1(5)9K23(5)

REAL MsLAMDO 9MM(25),LAFR(25)oNT(ZB)sNL(ZB);LA;MUo

DIMENSION HGLTR(6) sPR(5)sRHOBI
PIMENSION PHI(20)sTAU(20)9F (20
1 ALT(25)sTEMP(25)sPRESS(25) sHw

COMMON NNODE s HNODE s TNODE s ACC s NODUMs BYHAL s NODUR 9 ENDNO

SFLAGs TINDsVAR(1498)
COMMON TUNITsISTANSIALT»ITEMPS
1sWSsHGsHOWRESPHI»TAUSFsFIASALT

2TT,MMsGR’LAMRQNT’NL¢LA9TINIT.GDOT-DTPRN’DELZIoDEL
BIN’MTIMEo(TIME,W’VyVWXvVNYsGAMR’PSIDT’RHOO;LAWDOv

MUDOT
5)sTR(5)
s20)sFIA(25)sRHO(25)

(25)’VVN(25)9ETA(25)oTT(ZS)vGR(ZS)
s ENDVL s NSAVE s

IRHOs IMsNPHI s NTAU»
s TEMP sPRESSsRFs HWeVV

SXM’YM’AoRETA0LUNIT9DADZ-VW,EETA9VW029ETADZ’MUNIT

EQUIVALENCE(PRESS(1)sRHO(1))

H IS THE HEIGHT IN METERS FOR WHICH A CORRESPONDING TEMPERATURES

ARE STANDARD ATMOSPHERE DATA ARRAYS

ARE THE TEMPERATURE s PRESSURE s DENSITY » AND SPEED OF SOUND

CALLING PROGRAM

C

C

C PRESSURE AND DENSITY WILL BRE COMPUTED

C

C HGLTRsK19K235sTRsPRByRHOR

C .

C THsPsD VS,

C TO RE COMPUTED AND RETURNED TO THE

C

C

C
HGLTR(1) =0
K1(1) ==e225571E=04
K23(1) ==54255894
TR(1) =5184670
PR(1) =2116421695
RHOR(1) =237692E=03
HGLTB(2) =11000.
K1(2) =0
K23(2) =.157689E-=03
TR(2) =389.970
PR(2) =4T72.68
RHOR(2) =706126E=4
HGLTR(3) =20000.
K1(3) ze461574E=05
K23(3) =344163426
TR(3) =3894970
PR(3) =1144346
RHORBR ( 3) =e170817E=3
HGLTB(4) =32000.
K1l(4) =¢12245E=04
K23(4) = 1220122
TR(4) =411657
PR (4) =184129
RHOR(4) =2456609E=05
HGLTB(5) =47000e
K1(5) =0
K23(5) =¢12622733E=03
TR(5) =48Te17
PB(5) =2+3163
RHOR(5) =24 7T6983E=6
HGLTB(6) =52000

C TO FIND LAYER NUMBER

C
H=Z2+HG

HGP=O-304R*H/(1.0+O.3048*H/635676600)

IF (HGP=53000e) 19595
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1 DO 20 I=1,5
IF(HGLTB(I)=HGP)2s3s7
2 J=1
20 CONTINUVE
GO TO 7
3 J=1
GO TO 7
5 WRITE(LUNITs6)
6 FORMAT(//20X33HALTITUDE LARGER THAN 52000 METERS)
CALL EXIT
C
C TO COMPUTE TEMPERATURE,DENSITY,PRESSURE AND SPEED OF SOUND
C
7 TEM1=HGP-HGLTB(J)
TH=TB(J)
THDZ = TH*K1(J)
IF(K1(J))10351045103
103 TEM1=1.0+K1(J)*TEM]1
TH=TH*TEM]1
TEM2=TEML%*(=-1.0-K23(J))
D= RHOB(J)*TEM2
P =PB(J)*TEM1*TEM2
GO TO 105
00104 TEM1=EXP(=K23(J)*TEM1)
P = PB(J)I*TEM1
D =RHOB(J)*TEM1
105 VS=49.02057%#TH*%0e5
DADZ = (1201.5081%THDZ)/VS
RETURN
END

SUBROUTINE ANGLE (ARRAY sMAX)

DIMENSION ARRAY(10)

MAXS = MAX - 1

DO 4 I = 1sMAXS

IF(ABS{ARRAY (I+1)=ARRAY(I))=180e) 43448

IF (ARRAY (I+1)=ARRAY (1)) 1094511

ARRAY (I+1) = ARRAY(I+1) +360.

GO TO 9

11 ARRAY(I+1)
GO TO 9

4 CONTINUE
RETURN
END

O ® v

ARRAY (I+1) =360,
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60

40
50

55

100
155

200

SUBROUTINE DERM?2

REAL MsLAMDO sMM(25)sLAMR(25)sNT(25)sNL(25)»LAsMUIMUDOT
DIMENSION PHI(20)sTAU(20)sF(20520)sFIA(25)sRHO(25)

1 ALT(25)sTEMP(25) sPRESS(25) sHW(25) sVVWI25)sETA(25)sTT(25)3sGR(25)
COMMON NNODE s HNODE s TNODE s ACC s NODUM» BYHAL sNODUB s ENDNO+ENDVL s NSAVES

SFLAG» TINDsVAR(14+8)

COMMON IUNITsISTANSIALTsITEMPsIRHO» IMsNPHIsNTAUSNALTSsNWINDsNIM
1 sWSsHGsHOsREsPHI s TAUsFsFIASALT s TEMPsPRESS9RFs HWsVVWSETASMUSMUDOT
2TTsMMsGRLAMRSNT sNL9LAsTINITsGDOT>DTPRNsDELZLSDELPT sFIMAXSDELFI PR
3IN’MTIME9KTIME,M’V,VWX’VWY’GAMR9PSIDT’RHOO!LAMDOoTPRIN)TIMEQZINIT’
SXMsYMsAsBETASLUNITsDADZ sVWsEETASVWDZSETADZs MUNITsFIsFASDEL»TLAS

EQUIVALENCE(PRESS(1)9RHO(1))

IF (TIND=TLAS ) 596095

CALL LAGRA(TINDsNIMsTTsGRsGAMRsBLANKs1)

CALL LAGRA(TINDSNIMsTTsLAMRs LAMDOSBLANK 1)
CALL LAGRA(TINDsSNIMsTTsMMsMsBLANK 1)

TLAS = TIND

SINLA = SIN(LAMDO)

COSLA = COS(LAMDO)

COSGA = COS(GAMR)

CALL LAGRA(VAR(193)sNWINDsHWsVVWsVW »BLANK»s1)
CALL LAGRA(VAR(153)sNWINDsHWsETASEETAsBLANK»1)
GO TO (40+50)sISTAN

CALL ATMO (VAR(133)sTHsPsD>sA)

GO TO 55

CALL INPOL(ALTSTEMPsVAR(193)5sTM)

A = 49,020576*SQRT(TM)

vV = Ax*M

VWX = VW*SIN(EETA)

VWY = VW *COS(EETA)

VAR(851) V *COSGA*SINLA=VWX

VAR(852) V *COSGA*COSLA=VWY

VAR(853) V *SIN(GAMR)

CALL SSWTCH(5+d)

GO TO (1005200)sJ

WRITE (LUNIT»155) TINDsVAR(1s1)sVAR(192)9VAR(153)

nonu

FORMAT (% TIME = * E15e8 s5Xs*X =%#3E15e895X9*Y =%,E15e895Xs%*2Z

1e8)
RETURN
END
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20

11

13
10

12

50

55
71
70

72

60

62

61

SUBROUTINE QUTM2

REAL MsLAMDO +MM(25) 9 LAMR(25) sNT(25)sNL(25)sLA
1 yMSQsMUDOT sMUSNTZsNLZ sMDOT

DIMENSION PHI(20)sTAU(20)9sF(20+20) sFIA(25)9sRHO(25)

1 ALT(25) sTEMP(25) sPRESS(25)sHW(25) sVVWI(25)sETA(25)sTT(25) sGR{(25)

COMMUN NNODE s HNODE s TNODE s ACC s NODUM» BYHAL sNODUB sENDNO s ENDVL s NSAVE »
SFLAGTINDsVAR(1458)

COMMON TUNITsISTANSIALTS»ITEMPsIRHOs IMsNPHIsNTAUSNALTSsNWINDsNIM
1sWSsHGsHOSREsPHI s TAUSF s FIASALT s TEMP sPRESSsRFs HWsVVWIETASMUISMUDOT»
2TTosMMeGRILAMRINT sNLsLASTINITsGDOTsDTPRNSDELZL sDELPTsFIMAXsDELFIsPR
B3INSMTIMEsKTIME sMeV VWX VWY s GAMRSPSIDTsRHOO s LAMDO s TPRINSTIMESZINITS
S5XMeYMeASBETASLUNIT sDADZ sVWIEETASVWDZsETADZy MUNITSFISFASDELs TLAS

EQUIVALENCE(PRESS (1) sRHO(1))

IF (ENDMO) 209205100

FLAG = =1

HH = VAR(193) +HG

50 TO (11413)sIM

WRITE(LUNITS7)

G = RE/(RE+HH)

G = 32425724%G*G

GO TO 12

WRITE(LUNIT»1)

CALL LAGRA(TINDsINIMsTTsGRsBLANKSGDOT 9s~-1)

CALL LAGRA(CTINDsSNIMsTTsLAMRSBLANKSPSIDTs~1)

CALL LAGRA(TINDsSNIMsTTsMMsMsMDOTy=1)

WRITE (LUNITs2) TINDsHH

MSQ = MM

BETA = SQRT(MSQ-=1.)

MU = ATAN(1le./BETA)

G1 57e¢29578%¥GAMR

G2 57e29578*LAMDO

G3 57e29578%MU

WRITE (LUNIT»3)VAR(191)3VAR(192)sVAR(193)9G19G2+G3

GO TO (50455)s ISTAN

CALL ATMO (VAR(193)sTHsPsRHOOQO»A)

GO TO 60

50 TO (70471)sIRHO

CALL INPOL(ALTHSRHO sVAR(1s3)sRHOO)

GO TO 72

CALL INPOL(ALTSPRESSsVAR(193)sP)

CALL INPOL(ALTHSTEMPsSVAR(193)sTM)

RHOO = P/(1716+%#TM)

CALL LAGRA(VAR(193)sNALTS»ALT s TEMPsBLANKsTHDZ »=1)
DADZ = (12015081 %THDZ)/A

Q = «5#RHOO*V*V

COSMU = COS(MU)

SINGA = SIN(GAMR)

COSGA = COS(GAMR)

CALL LAGRA(VARI(193)sNWINDsHWsVVWIBLANKs»VWDZs=1)
CALL LAGRA(VAR(193)sNWINDsHWs ETASBLANKSETADZs~-1)
CALL LAGRA(TINDsNIMsTToFIAsFASBLANK 1)

GO TO (61+62) 1M

VDOT = A*MDOT+(MSQ*¥DADZ*SINGA) *A
cl1 = (WS*SINGA) /Q

CL = ( WS*COSGA)/Q

GO TO 63

CALL LAGRA(CTINDsNIMsTToNLsNLZsBLANKS1)

CALL LAGRACTINDSNIMeTToNTsNTZ+sBLANK 1)

COSDI = COS(LAMDO-EETA) :

SINDI SIN(LAMDO-EETA)

PSIDT (G*SIN(FA)* NLZ =VAR(853)*(VWDZ*SINDI-ETADZ*¥VW*¥COSDI
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NNNNOYNNONO N

1))/7(V
TERM1

63 G1
MUDOT
G2
G3
VG
WRITE
WRITE
WRITE
XM =
YM =
ZINIT
TIME

100 RETUR

1 FORMA
2 FORMA
3 FORMA
1 =%
4 FORMA
1T =%
5 FORMA
1=% F
6 FORMA
1 =%
7 FORMA
END

"

*COSGA)

= VAR(893)% (VWDZ*COSDI
G*(NTZ-SINGA)+COSGA*T
(G* (COS(FA)%#NLZ-COSGA
(NLZ%WS)/Q

(NTZ%WS)/Q

57e29578%GDOT

= (DADZ*SINGA)/COSMU -

57429578%#PSIDT
57629578*MUDOT
SQRT(VAR(8s1)%VAR(8s1)

(LUNITs5) ClsCLsMsQsVy

(LUNITs6) VWXsVWYsAs»VG

VAR(1s1)
VAR(192)

= VAR(153)

= TIND
N

T (1H1 30X *MANEUVER DA
T(*OTIME =% Fllels* H
T(*0XG =% Flleloe¥* Y
F6e29% PSI =% Fb6el2>
T(*OXGDOT =% Fllels* Y
F6be2o* PSIDOT =% F6e2

T(*#0CT—=CD =% Fllebo¥* C
Bels * v =¥F8els¥*
T(*0UX =% Fllebos* U
F8el)

T (1H1 30X *MANEUVER DA

SUBROUTINE INPOL(XsYsTsFT)

GENERAL

X IS
Y IS
T IS
CORRE

DIMEN
IF (X(
11 DO 1
IF (X(
1 CONT1I
12 WRITE
10 FORMA
GO TO
2 FT=Y(
GO TO
3 K=l=-1
FT=Y(
4 RETUR
END

INTERPOLATION SUBROUTIN

THE ABSICISSA ARRAY

THE ORDINATE ARRAY

THE ABSICISSA VALUE FOR
SPONDING ORDINATE VALUE

SION X(25)sY(25)
1)=T)11s1112

I1=1+25

I1)=T)19293
NUE

(3,10)
T(1Xs29HABSICISSA VALUE
4

1)

4

K) +(Y(I)=Y(K))*(T=X{(K)
N

+VW*SINDI*ETADZ)
ERM1
) =SINGA*TERM1) /V

(VDOT) / (A*¥COSMU*MSQ)

+ VAR(892)#VAR(B92)+VAR(8s3)*¥VAR(8+3))
(LUNITs4) VAR(89s1)sVAR(852)sVAR(853)9GlsG2+G3

vDOT

TA = OPTION TWO#*)

=%F1le1)
G =%¥F1lels* 2G
* MU =¥F6e2)

GDOT =%#F1lleles* ZGDOT
*  MUDOT =#F10e4)

L =*¥Fllebs* M
VDOT =%F12.2)
Y =%F1llebs® A

TA = OPTION ONE#*)

E

WHICH A
sFTs WILL BE FOUND

OUTSIDE RANGE)

) ZEX(I)=X(K))
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10

15

18
19

SUBROUTINE LAGRA(TSNsTIMES TABLESANS1sANS2sNSWIT)
DIMENSION TIME(10)sTABLE(10)

THIS ROUTINE FINDS THE INTERPOLATED VALUES OF A FUNCTION TABLE AT

THE POINT T AND STORES THE ANSWER IN ANS1le

AND STORES THE RESULT IN ANS2.

ALSO THE DERIVATIVE

NSWIT IS SET TO O FOR BOTHs 1 FOR ONLY FUNCTIONS =1 FOR ONLY DER

NN = N-1
DO 3 L =24NN
IF(T=TIME(L+1))10933

CONT INVE

L = N=1

Bl = TIME(L-1) - TIME (L)
B2 = TIME(L=-1) - TIME (L+1)
B3 = TIME(L)-TIME(L+1)

Al = T - TIME(L=-1)

A2 = T = TIME(L)

A3 = T = TIME(L+1)

Cl = TABLE(L-1)/(B1*B2)

C2 ==TABLE(L)/(B1%B3)

C3 = TABLE(L+1)/(B2%*B3)

IF(C NSWIT) 18915515

ANS1 = A2%#A3%C1l + A1*A3%C2 + A1%#A2%(C3

IF( NSWIT) 18518519

ANS2 = Cl*(A2+A3) + C2*(A1+A3) + C3%(Al + A2)

RETURN
END
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2000

2001

SUBROUTINE AREA

REAL MULNEWsMUDOT

REAL MsLAMDO sMMI(25) s LAMR(25) sNT(25)sNL(25) LA

EXTERNAL OUTPUSDERIZsPASSsDERPRYOUTPR

DIMENSION PHI(20)sTAU(20)sF(20920)sFIA(25)

1 ALT(25)sTEMP(25)sPRESS(25)sRHO(25) sHW(25)»
2 VVUWI(25)9ETA(25)sTT(25)9GR(25)

DIMENSION C(5)

COMMON NsoHsTsACCURINODUMIREDUC s NODUBSENDNO ENDVL s NSAVEsFLAGsZ»sVAR
1(14+8)

COMMON TUNITsISTANSIALTITEMP s IRHOs IMsNPHIsNTAUSNALTSsNWINDsNIM
1sWSsHGIHOsRESPHIsTAUSFsFIASALT s TEMPsPRESSIRFs HWIVVWIETASMUIMUDOT s
2TTsMMsGRILAMRINTsNLILASTINITsGDOTsDTPRNSDELZ1sDELPTsFIMAXSDELFI®PR
BINIMTIMEsKTIME sMsV s VWX s VWY s GAMRsPSIDT sRHOOs LAMDOs TPRINSTIMESZINIT
5XMsYMsASBETASLUNITsDADZ sVWIEETASVWDZsETADZs MUNITsFIsFASDEL

COMMON VWXXsVWYY sUNsUTsPsDsGOsGlsG4 9GS

COMMON SUMsT19sDSIMs CsZSIMPIOUTHIAGESIPRINSZPRIN

COMMON G2+G39G509G59G79G89G99G10sG11sGl3sH1sH29H3sH4 sHS 9 TP sHT

COMMON CFsSFsSTHsCTHsTHTAO CUsSUsCGsSGINEWICNISNI»AOSUNO »
1UTO0sCO0sCOsCT»STsIRHIARAYML

COMMON CON1sCON2sCON3sCON4sL sPRESSDELP»DPMAX

EQUIVALENCE (PRESS(1)sRHO(1))s(ZsTIND)

NODUM=0

REDUC=0s

CALL SSWTCH(6sN)

GO TO (200192002) sN

CALL RESTA

C INTEGRATION INITIALIZATION

C

<002

2004

2003

KTIME=KTIME+1

IF(KTIME=400) 20035200352004
TIME =TT(NIM)

GO TO 105

ML =1
N=6
NSAVE
ACCUR
T = 1.
NODUB=1
ENDNO=0.
ENDVL=0e.
Z=ZINIT
VAR(151)=0e
VAR(192)=0e
VAR(193)=0e
VAR({1ls4) =XM
VAR(1s5)=YM
VAR(1s6)=TIME

"o
—

C AREA AND RAY INITIALIZATION

C

CF=COS(FI%#e1745329E-01)
SF=SIN(FI*41745329E~01)

STH=(BETA/M) *CF*COS(GAMR) = (14 /M) *SIN(GAMR)
CTH=SQRT(1e=STH*STH)
THTAO=ATAN(STH/SQRT(1e=STH*STH) )

cU = COosS(MU)
SU = SIN(MU)
CG = COS(GAMR)
SG = SIN(GAMR)

NEW=LAMDO=ATAN(CU*SF/ (SU*CG+CU*CF*SG) )
CN =COS(NEW)
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C

C

DN

70

1

2

T0

3

559
558
551
552

553

SN =SIN(NEW)
TP IS A TEMPORARY LOACATION

FIND THE SPEED OF SOUND AT INITIAL 2Z
GO TO (152)sISTAN

CALL ATMO(ZsTPsPsD»AO)

GO TO 3

CALL INPOL(ALTSTEMPsZsTP)
A0=49.020576%SQRT(TP)

FIND WIND SPEED AT INITIAL Z

SINET=SIN(EETA)

COSET=COS(EETA)

TO FIND DU/DZ

TP =VWDZ*(SINET*SN+COSET*CN)=VYW*ETADZ* (SINET*CN=COSET*SN)
UNO=VWX *SN+VWY *CN

UTO==VWX *#CN+VWY *SN

COO0=A0/CTH

CO=C0O0=UND

G2=1e+SG/ (SU*STH)

G3=CG*CU*SF/CTH

G50=RHO0O*A0*A0

CTH2=CTH*CTH

G6=CU/CTH2

G7=CU*SG+SU*CG*CF

G8 = STH/(CTH*CTHZ2)

GO9=CU*STH*SF/CTH2

GlO0=STH#%*SF

Gl1=CG*xSF/CTH2

Gl3=SU*CG+CU*SG*CF

H1=UTO*PSIDT=(G8*GT7*A0=UTO*G11) *MUDOT—-(AQ*G8*G13=UTO*G9 ) *GDOT
1 =(AO%SG/SU)I*(TP =DADZ/CTH)

TP = CUXSF*CG

H2=PSIDT+G11*MUDOT+G6*G10%#GDOT
H3==UTO*G6*¥GT7=A0O%G8*TP

H4==G6%G7T

H5=G3*#V+UTO*G2

H7=H1%H4~H2%*H3

CON1 = (VXTP*¥G3)/(STH*STH®AO) + (G6*GT7*G2* CTH)/STH
CON1l = le/( STH*CTH *SQRT(CON1*#GS50*STH*CTH))

= (244%CON1)/CO

IRH = 2

2SIMP=ZINIT

FIND ZPRIN THE FIRST PRINT OUT POINT
DELP = ZINIT/DELPT

IDEL = DELP

TP = IDEL

IF(TP~DELP) 55845599559

IDEL = IDEL -1
IF(IDEL) 5519552+553
IDEL = O

IOUT = 2

ZPRIN = 401

GO TO 183

ZPRIN= IDEL*DELPT
FIND DSIM FOR INITIAL INTEGRATION STEP
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183 DELP =(ZINIT = ZPRIN)/2e
184 DELP =DELP/2.

IF(DELP-DELZ1)1855185,184
185 DSIM==DELP

H = DSIM
DELP = (DSIM*.4)/CO
C(1)=DELP

C(2)=4+%DELP
C(3)=2+%DELP

Clay=C(2)
Cc(5)=C(1)
I=0

CALL NODE(DERIZsPASSsQUTPUsPASS)
GO TO (3105995100)sIRH
99 GO TO (300s310)sI10UT
300 IOUT = 2
GO TO 184
310 GO TO (304+40) $ISTAN
30 CALL ATMO(OesTPsPRESsDsA)
GO TO 50
40 CALL INPOL(ALT4PRESSs0esPRES)
C PRESSURE CALCULATIONS
50 N =1
T=3e
ACCUR=0.
NopbuB = O
NSAVE = 1
TP = ABS(FI*41745329E-01~FA)

4 [F(PHI(ML)=TP) 69545
6 IF (ML=NPHI) 74545
7 IF(ABS(PHI(ML)=TP)=ABS(PHI(ML+1)=TP)) 5,55,8
8 ML = ML + 1
GO 70 4
5 CON1l = SQRT((G50%#CU*CTH2)/SU)
CON2 = SU/(CO*CTH)
CON3 = «5¥AGE
CON4 = SQRT{G5/(G4*ARA))
TIND = TAU(1)*LA
DPMAX = O
VAR(1s1) = O
VAR(8s1) = O
VAR(1s2) = F(1sML)
ENDNO = O,
ENDVL = TIND
Lo=1

CALL OUTPR
DO 11 L = 2sNTAU

FLAG = Qe
ENDVL = TAU(L)*LA
ENDNO = 4.

CALL NODE(DERPRsDERPRsOUTPR»PASS)
11 CONTINUE

GO TO (1109400+110)9IRH
110 KTIME = KTIME-1

GO TO 100
400 WRITE (MUNIT) FIsVAR(1s4)9sVAR(195)sVAR(156)sDPMAX
100 FI=FI+DEL

IF(ABS(FI)—-FIMAX) 2000+2000,101
101 IF(FI) 105+102,102
102 FI = =DELFI

DEL = =DEL

GO TO 2000
105 RETURN

END
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SUBROUTINE DERIZ

REAL MUSNEWsMUDOT

REAL MsLAMDO sMM(25) s LAMRI(25) sNT(25)sNL(25)sLA

DIMENSION PHI(20)sTAU(20)9sF(20920)9sFIA(25)

1 ALT(25)sTEMP(25) sPRESS(25) sRHO(25) sHW(25)
2 VVW(25)9sETA(25)9TT(25)9GR(25)

DIMENSION C(5)

COMMON NsHsT s ACCURsNODUMIREDUC s NODUBENDNOSENDVL s NSAVE sFLAGsZ VAR
1(14+8)

COMMON IUNITsISTANSIALTSITEMPsIRHOs IMsNPHIsNTAUSNALTSsNWINDNIM
1sWSsHGIHOSRESPHIsTAUSFsFIAsALTsTEMPsPRESS9RF» HWsVVWIETASMUIMUDOT)
2TTsMMIGRILAMROINT sNLsLASTINITsGDOTsDTPRNDELZL sDELPTsFIMAXsDELFIsPR
BINISMTIME sKTIME sMeV s VWX s VWY s GAMRsPSIDT sRHOO s LAMDO s TPRINSTIMESZINITo
5XMsYMsAsBETASLUNIT9sDADZsVWSsEETASVWDZHSETADZs MUNITSFIsFASDEL

COMMON VWXXsVWYYsUNsUTsPsD9sGOsGlsG4 G5

COMMON SUM»s 1 sDSIMs C9ZSIMPsIOUT»AGES IPRINSZPRIN

COMMON G29+G39G509G69G79G83G99G109sG1l19Gl3sH1sH29H39HGsHS s TPH7

COMMON CFsSF9STHsCTHs THTAO CUsSUsCGISGINEWSICNsSNsAOSUNO »
1UTOsCO0sCOsCTsSTsIRHIARAIML

EQUIVALENCE (PRESS(1)sRHO(1)) s (ASTesVV)Is(SCHTP)

CALL SSWTCH(54+J)

GO TO (100s4)9J

100 WRITE (LUNIT9155) ZsVAR(1s4)sVAR(195)9sVAR(196)sVAR(1s1)9sVAR(19s2)sV
1AR(153)
155 FORMAT(3H Z=9E12e493H X=9E1l2e¢493H Y=9E1l2e4s4H T= El2e4s4H 11=9E12
lebds4H 12= ElbeliotsH [13= 9El4e4)
C CALCULATE SPEED OF SOUNDSDENSITY»PRESSUREs AND WIND SPEED
4 IF(Z) 55646
5 IF(Z=H*401) 1051097
7 2 = 0e
6 GO TO(1s2)9ISTAN
C TP 1S A TEMPORARY LOCATION
1 CALL ATMO(ZsTPsPsDsA)
GO TO 3
2 CALL INPOL(ALTSTEMPZs»TP)

A=494020576*SQRTI(TP)

CALL INPOL(ALTSPRESSsZsP)

GO TO(11912)sIRHO

11 D=P/(1716e*TP)
GO TO 3
12 D =P

P=D*(1716+*TP)

3 CALL LAGRA(ZsNWINDsHWSETAsTPsUTH»1)

CALL LAGRA(ZsSNWINDssHWsVVWsVVIUNs1)

VWXX=VV%*SIN(TP)

VWYY=VV#COS(TP)

UN=VWXX*SN+VWYY*CN
UT==VWXX*¥CN+VWYY*SN
CT=A/ (CO+UN)

ST=SQRT(14=CT*CT)

AST=A%*ST
SC=ST/CT
GO=CT/ST
Gl=GO*GO*GO/ (A*A)

C
VAR(8s1)==G1
VAR(8+2)==G1*UT
VAR(8+3)==G1*UT*UT-GO
VAR(894) = =SN/SC+VWXX/AST
VAR(895)==CN/SC+VWYY/AST
VAR(896)==~1e/AST
VAR(1ls7) = CT
VAR(198) = D¥*A*A

C

10 RETURN

END
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210

200
1
CAL

CAL
410
350

556

430
420
421
415
427

416
401

SURROUTINE OUTPU

REAL MUsNEWsMUDOT

REAL MeLAMDO sMM(25) s LAMR(25) sNT(25)9NL(25)9LA

DIMENSION PHI(20)9sTAU(20)sF(20+20)sFIA(25)

1 ALT(25)sTEMP(25)sPRESS(25) sHW(25) sVVWI(25)9sETA(25)sTT(25)9GR(25)

DIMENSION C(5)

COMMON NsH»TsACCUR s NODUMIREDUC s NODUBSENDNO S ENDVL sNSAVEsFLAGSZ 9 VAR
1(14+8)

COMMON IUNITsISTANSIALTSITEMPsIRHOs IMsNPHISNTAUSNALTSsNWINDINIM
1sWSsHGsHOSRESPHIsTAUsFsFIAIALT s TEMPIPRESSIRFs HWoVVWIETAIMUIMUDOT
2TTsMMsGRILAMRSNT sNLLASTINITsGOOTsDTPRNSDELZLsDELPTsFIMAX9DELFI PR
3INSMTIME9KTIME oMoV s VWX s VWY s GAMRsPSIDT s RHOO s LAMNDO s TPRINSTIMESZINITo
SXMsYMsAsBETASLUNITsDADZ sVWIEETASVWDZHIETADZs MUNITeFIsFASDEL

COMMON VWXX s VWYY sUNSUT9sP9D9sGOsGLlsG49G5

COMMON SUMsIsDSIMs CsZSIMPsIOUTsAGEIPRINSZPRIN

COMMON G2+G35G503G69GT79G89G99G10sG1l1lsGLl3sH1IsH29H39HL4sHS59TPH7

COMMON CFsSFsSTHsCTHs THTAO s CUsSUSICGsSGINEWSCNsSNsAOSUNO »
1UTOsCO0sCOsCTsSTeIRHsARAIML

COMMON CON1sCON29CON3sCONG4sLsPRESIDELP

CT = VAR(1s7)

IF(VAR(197)=e¢9994) 20092109210

FLAG = =1,

IRH = 1

GO TO 6

IF(2/2SIMP=1400001) 1919300

I=1+1
CULATE AREA

ST = SQRT(1le=CT*CT)

Gu4=ST*CT

G5 = VAR(1.8)

ARA=H3# (VAR(192)%*G2=VAR(191)¥H5)=H4*(VAR(193)*¥G2=VAR(192)%*H5)

1 +H7%(VAR(191)%*VAR(193)=VAR(192)%VAR(1s2))
CULATE INTEGRAND OF AGE FUNCTION AND SUM

IF (ARA) 41094109415

TAUA = Do

IF(Z=2INIT) 42093505350

TP = NEW/e1745329E-=01

WRITE(LUNIT9556) FIsTP sC0O0»CO

FORMAT (//30X s *¥RAY s ARFA AND PRESSURE CALCULATIONS*//
110X 93HFI=9F10e3910Xs3HNU=9F10e63510X94HCN0=9F10e397X93HCO=9F10e3//
26X 91HX915X91HYs15X9s1HZ 915X s 1HTs12Xs4HAREA9 11X 93HAGE 910X s9HCOS THET
1A)

GO 7O 50

IRH = &

GO TO 421

IRH = 3

FLAG = =1,

AGE = =SUM+CON2*SQRT(ZINIT=2)
GC TO 6

TP = SQRT(ZINIT=2Z)

IF(G4xR5) 43054304427
TAUA=1e/SORT(G5*ARA*G4%G4%*G4)=CONL/TP
SUM= SUM+C(1)*TAUA

IF(I=5)5045450

AGE = =SUM+CON2*TP

SUM=C(1)*TAUA+ SUM

I=1

HXS=VAR(1ls4)

HYS=VAR(1s5)

HZS=Z
HTS=VAR(146)
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AREAS=ARA
cTs=CT

C CHECK TO SFE IF AT ZERO OR PRIN OR PRINT INTERVAL

AN NN

C

21
6

61
68
10

99
90
77
70

]8
20

9
8
66
64
65
67

100
14

50

52

IF(Z2/7PRIN=1400001) 6636699

IPRIN = 2 )

VAR(194)=HXS

VAR(1s5)=HYS

Z2=H7S

VAR(196)=HTS

ARA=AREAS

CT=CTS

SAVE VARIARLES FOR USE IF THETA OR AREA APPROACH ZERO
RESTORE VARIABLES wWHEN THETA OR AREA APPROACH ZERO

WRITE(LUNIT61)VAR(194)sVAR(195)9Z9VAR(196)9ARAIAGESCT
FORMAT (1Xs3(E1364592X))

IF(Z=¢1) 10510+100

FLAG = =1,

GO TO (8849300977999 )yIRH

WRITE(LUNIT90)

FORMAT (/720X s 27THNEGATIVE SQUARE ROOT IN AGE )
IRH = 13

RETURN

WRITE(LUNIT»70)

FORMAT (/20X s9HAREA ZERO)

RETURN

WRITE(LUNITR0)

FORMAT (/20X 9 14HRAY HORIZONTAL)

RETURN

GO TO (Rs50)sIPRIN

IF(Z=PRIN) 21921s50

ZPRIN = ZPRIN =DELPT

IF(ZPRIN) 64964465

ZPRIN = .1

IF(Z= PRIN) 6746796
IPRIN = 2

GO TO 6

GO TO (144+50)s10UT

DELP=DFLPT/2.

GO TO 10
2SIMP=7SIMP+DSIM

GO TO (BRs52977)sIRH
IF(Z2SIMP=1s) 514514300

ADJUST ZSIMP SO THAT DIVIDE BY ZERO DOES NOT OCCUR

51
300

ZSIMP = .1
RETURN
END
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SUBROUTINE DERPR
REAL MsLAMDO sMM(25)sLAMRI(25) sNT(25)9sNL(25) s LAsMUIMUDOT s NEW

DIMENSION PHI(20)sTAU(20)sF(20920)sFIA(25)9C(5)

1 ALT(25)sTEMP(25) sPRESS(25) sHW(25)sVVW(25)sETA(25)sTT(25)sGR(25)

COMMON NNODE s HNODE s TNODE s ACCs NODUMsBYHAL sNODUBENDNOsENDVL s NSAVE

SFLAGs TINDsVAR(14+8)

COMMON IUNITsISTANSIALTSITEMPsIRHOs IMsNPHIsNTAUSNALTSsNWINDINIM

1sWSsHGsHOSREsPHI s TAUSFsFIASALTSsTEMPyPRESSsRFs HWesVVWIETASMUSMUDOT
2TTsMMsGRsLAMRSNTsNLSLASTINITsGDOTsDTPRNSDELZ]1 sDELPTsFIMAXSsDELFI»PR
FINSMTIME sKTIME sMsV o VWX s VWY s GAMRsPSIDT sRHOOs LAMDOs TPRINSTIMESZINIT»
5XMsYMsA+sBETASLUNITsDADZ sVWIEETASVWDZsETADZs MUNITHSFIsFASDEL

100
155

5
200

6
10

60
50

30

COMMON VWXXsVWYYsUNsUTsPsDsGO0sGlsG4 G5

COMMON SUMsIsDSIMs CsZSIMPsIOUTSAGESIPRINZPRIN

COMMON G2+G39G509G63G79G89G99G10sG1l1sGl3sHLesH29H39H4sHS59TPsH7
COMMON CF sSFsSTHesCTHs THTAO»CU9sSUsCGsSGINEWICN9sSNsAO»UNOUTOsCO0O»CO
1sCTsSTesIRHIARAWML

COMMON CON1sCON2sCON3sCON&4>sL

TP = TIND/LA

CALL INPOL(TAUsSF(1sML)sTPsVAR(152))

VAR(8s1) = CON1%*VAR(1+2)

CALL SSWTCH(5sJ)

GO TO (1009s1)sJ

WRITE(LUNIT»155) TINDsVAR(1s1)sVAR(851)

FORMAT( 3H Z= E15e4s9HINTEGRAL= E1l4¢5910HINTEGRAND= E1544)
RETURN

END

SUBROUTINE OQUTPR

REAL MsLAMDO +sMM(25)sLAMR(25) sNT(25)sNL(25)sLAsMUSMUDOT s NEW

DIMENSION PHI(20)sTAU(20)sF(20+20)sFIA(25)sC(5)

1 ALT(25)sTEMP(25)sPRESS(25) sHW(25) sVVWI(25)sETA(25)sTT(25)sGR(25)

COMMON NNODE s HNODE s TNODE s ACCs NODUMsBYHAL sNODUBENDNO»ENDVLINSAVES
SFLAGsTINDsVAR(14+8)

COMMON IUNITsISTANSIALTSITEMPsIRHO IMsNPHIsNTAUSNALTSsNWINDsINIM
1sWSsHGsHOSRESPHI s TAUsFsFIASALTs TEMPsPRESSsRFs HWsVVWSETASMUSMUDOT
2TT sMMsGRLAMR sNT sNLsLASTINITsGDOTsDTPRNSsDELZ1sDELPTsFIMAXsDELFIPR
3INSMTIME sKTIME sMsV s VWX s VWY s GAMRsPSIDT>RHOOSLAMDO s TPRINSs TIMESZINITo
5XMsYMsAsBETAsLUNITsDADZ sVWEETASVWDZHSETADZs MUNITsFIsFASDEL

COMMON VWXXsVWYY sUNsUTsPsD9sGO9sGlsG4 G5

COMMON SUM»sI1sDSIMs CsZSIMPsIQUTSAGEs IPRINSZPRIN

COMMON G2+G33G509G635G79G89G99G10sG1l19G13sH1sH2sH39H4sHS5sTPsHT

COMMON CF9SFsSTHsCTHsTHTAOsCUsSUICGsSGINEWSCNsSNsAO»UNOsUTO9»CO0sCO
19CTsSTeIRHIARAIML

COMMON CON1sCON2sCON3sCON4sLsPRESYDELPsDPMAX

IF(L=1) 54596

WRITE (LUNIT»200)

FORMAT(//5Xs1HL910Xs1HFs11Xs5HVE(L) 9 7Xs4HXI O09s8Xs4HXI 198Xs5HS INT
197X91HSs11X»s2HP1910Xs5HDEL P)

IF (ENDNO=4e¢) 109204520

XIO = TIND*CON2

XI1 = XIO=AGE*VAR(8s1)

SINT = CON2*VAR(1s1)

S = SINT -~CON3#VAR(891)%VAR(8s1)

DELP = VAR(8s1) %CON&4*RF

IF(ABS(DELP)~=DPMAX) 50950460

DPMAX = ABS(DELP)

Pl = DELP/PRES

WRITE (LUNIT»2)TINDsVAR(152)9sVAR(851)sXIOsXI1ls SINTsSsP1sDELP

FORMAT (9F12.6)

IF(ENDNO) 30+30,20

FLAG = =1,

RETURN

END
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500
501
502
503

504
505
506

400

401
402

403

404

405

406
407
412
410
408

411

409

SUBROUTINE NODE (COMPD »sCOMPY s COMPT s COMPE

)

DIMENSION VAR(14s1) 5sA(4)sB(4)sC(4)
COMMON NsHs»TsPHSIGsNODUMsBYHAL sNODUBSENDNOIENDVA

1VAR
INITIALIZE

sNSAVEsFLAG X

MODF ( XSAVEsPERR) = XSAVE =FLOAT(IFIX(XSAVE/PERR))*PERR

FLAG=0.

IF (BYHAL 150295014502
BYHAL =45

IF (ENDNO)503+504+503
ENDPOINT COMPUTES H
H=(ENDVA =X)/ENDNO
PREPARE FOR RKG

CALL COMPD

CALL COMPT

IF (FLAG)560+506+506
XSAVE=X

PROGRAM USING RKG AS A STARTING PROCEDURE

IF(A(1)=e5) 40054015400
A(l)=e5
A(2)=629289322
A(3)=1.7071068
Al4)=616666667
B(l)=1.
Bl2)=e29289322
B(3)=17071068
B(4)=e33333333
Cll)=e5
C(2)=429289322
C(3)=167071068
Cl4)=e5

DO 402 I=1»N
VAR(691)=0e

J=4

GO TO 410

DO 407 K=1s4

DO 404 1I=1sN
CK=H%¥VAR(8s1)
R=(A(K)*CK)=(B(K)*VAR(621))
VAR(1sI)=VAR(1,sI)+R
VAR(651)=VAR(6sI)+(3e*¥R)=(C(K)*CK)
IF (K=1)405+4055413
IF(K=3) 40654055406
NEwW VALUE OF X
X=X+(H/2e)

CALL COMPD

GO TO 407

CALL COMPY

CONTINVE

IF (NODUM)41094129411
NODUM==1

NN=N+NSAVE

DO 408 I=1sNN
VAR(J+151)=VAR(1s1])
VAR(J+851)=VAR(8s1I)
J=Jd=-1

IF (J) 40954095403
CALL COMPT
IF(FLAG)5609410+410
NSWHF =1

IF (ENDNO)507+5089507
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507 ENDNO=ENDNO=-3.

508 M=3

509 FLAG=Q.

510 X=X+H
PROGRAM FOR THE PREDICTOR
DO 450 I=1»sN

450 VAR(I’I)=(1.5476511*VAR(2¢I))-(1.8675052*VAR(3.I))+(2o0172069*
1VAR(4;I))—(-6973528*VAR(5,I))+H*((200022473*VAR(991))-(2-0316877*
2VAR(10¢I))+(1.8186108*VAR(11;I))—(.71432005*VAR(12'I)))

512 CALL COMPD

513 PERR=O0.
PROGRAM FOR THE CORRECTOR
DO 462 I=1sN

460 TEMP=VAR(20!)+H*((.375*VAR(8;I))+(.79166667*VAR(991))
1-(-20833333*VAR(10oI))+(.041666667*VAR(1191)))

IF (PHSIG=1.) 46394649463
463 TEMPA=ABS ((TEMP=VAR(1sI))/TEMP)
GO TO 465

464 TEMPA=ABS (TEMP=VAR (1ls1))
465 VAR(1s1)=TEMP
IF (PERR=TEMPA)461 4625462
461 PERR=TEMPA
462 CONTINUE
515 CALL COMPY
516 IF (PERR=160219659%10%%(=T))517+5175535
NO HALVING NECESSARY
517 NSWHF=0
IF (NODUM)5505518+518
518 IF (ENDNO)519+5209519
519 ENDNO=ENDNO-1le
520 CALL COMPT
IF (FLAG)56055215521
1S DOUBLING POSSIBLE
521 IF (PERR=(( 164219659% 10e%¥(=T))/2004)) 52595259522
522 M=3
528 J=13
523 DO 524 I=1sN
524 VAR(J+1s1)=VAR(JsI)

J=J=-1
IF (J) 5099509523
DOUBL ING

525 M=M=-1

526 IF (M) 530+527+528
527 IF (ENDNO)5309531+530
530 IF (MODF(ENDNOs2e)152895315528
531 FLAG=2s

CALL COMPE

IF(FLAG)5609532+532
532 IF(NODUB)522+5299522
529 NN=N+NSAVE

DO 533 I=1sNN

VAR(2s1)=VAR(1,s1I)

VAR(451)=VAR(5,s1)

VAR(S5s1)=VAR(7s1)

VAR(9s1)=VAR(8s1)

VAR(11s1)=VAR(12s1)
533 VAR(12s1)=VAR(14s1)

H=2 e *H

IF (ENDNO)534,5089534
534 ENDNO=ENDNO/2.

GO TO 508
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535
565
561
536
537

548
563

543
542
538
539
544
549
540

541

550

551
552

553
557

554

560
562

555
556
558

559

HALVING

FLAG=ABS (BYHAL )
CALL COMPE

IF (FLAG)56055615561
IF (NODUM)537+537+536
CALL COMPT

IF (FLAG)560+537+537
IF (BYHAL =1¢)5489517,517
IF (ENDNO=1e) 54295634543
ENDNO= 2+*ENDNO
H=H/2

FLAG=45

CALL COMPE

IF (FLAG) 5609543+543
ENDNO=ENDNO/BYHAL
NN=N+NSAVE

IF (NSWHF)538+540+538
REPEATED HALVING

DO 539 I=1sNN
VAR(191)=VAR(5,41)
VAR(8s1)=VAR(12s1)
X=XSAVE

IF (ENDNO) 54955494544
ENDNO=ENDNO+3 4+ /BYHAL
H=H*ABS (BYHAL )

GO TO 506

DO 541 I=1sNN
VAR(191)=VAR(2s1)
VAR(89s1)=VAR(9s1)
X=X=H

GO TO 549

DUMMY OUTPUTTING
X=XSAVE+H

IF (ENDNO)5519552+551
ENDNO=ENDNO+2.

K=3

NN=N+NSAVE

DO 553 I=1sNN
VAR(65s1)=VAR(1s1)
VAR(13+s1)=VAR(8s1])

DO 554 I=1,sNN
VAR(1s1)=VAR(K+1s1)
VAR(8s1)=VAR(K+8s1)
CALL COMPT
IF(FLAG)5609562+562
RETURN

X=X+H

K=K=1

IF (K) 586895584555

IF (ENDNO) 55645579556
ENDNO=ENDNO-1.

GO TO 557

DO 559 I=1sNN
VAR(1s1)=VAR(6+1)
VAR(89s1)=VAR(13,1)
NODUM=0Q

GO TO 518

END
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SUBROUTINE PASS
RETURN
END

SUBROUTINE GROUN
ROUTINE FOR INTERPOLATION OF GROUND

INTERSECTIONS

COMMON NRMAX,HNsTNgACoMUNIT’BYoLUNIT,T(400),X(QOO),Y(QOO)»P(400)o

IN(41)

I =1

K =1

NPHSW = 1

WRITE (LUNIT»667)

667 FORMAT(1H1s20Xs34HLIST OF SAVED GROUND INTERSECTIONS)

DO 150 NREC = 1sNRMAX
READING A RECORD FROM THE DISK OR TAPE
30 READ(MUNIT)

FIoX(I)aY(I)sT(I)sP(I)

WRITE (LUNIT»666) FIoX(I)sY(I)sT(I)sP (1)l
666 FORMAT (3F20e552110)
IF(FI) 5042005100
50 GO TO (51+100) sNMNSW

FIRST NEGATIVE ANGLE
51 NMNSW = 2
CALL MOVE(IsI+1)
CALL MOVE(IMINSI)
N(K) = 1
K =K + 1
I =1 +1
FIND THE TIME MINIMUM FOR CURVE

100 IF(T(I) = TMIN) 11051504150
110 TMIN = T(I1)

J =1

GO TO 150

FI IS EQUAL TO ZERO

200 GO TO (2019210) sNPHSW
201 NPHSW = 2
220 N(K) =1

K =K+ 1

IMIN = 1

NMNSW = 1

GO TO 110

CHECK IF TMIN IS AT FI = 0O
210 GO TO (2119215) sNMNSW
211 KI = I+1
CALL MOVE(TIsKI)

CALL MOVE(IMIN,I)

N(K) = I

K =K + 1

I = 1+1
IF(J=IMIN)
ISAVE = I+1
JMAX = N(K=1)=1
LOOPS = IMIN +1

215
230

100092205230

MOVE TABLES OUT OF PERMUTATION AREA
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231

240

242
244

250

252

254

150

400

405
410
406

420
411
222
499
450

60
412
413

1000
1001

DO 231 KI = LOOPSsJMAX
CALL MOVE(KI»sISAVE)

ISAVE = ISAVE + 1

MOVING THE TABLES AROUND
IF(J=N(K=1))2404+10005250
KK = J=IMIN-1
LOOPS = 1 + KK +1

IC =1
N(K=1) = UMAX - KK
DO 244 KI = IMINsJIMAX
CALL MOVE(LOOPS,KI)
LOOPS = LOOPS + 1IC
IF(LOOPS-ISAVE) 24442424242
LOOPS = I + KK +1
IC = -1
CONTINUE
GO TO 220
JMAX = J=-1

IC = =1
LOOPS = J
DO 254 KI=IMINsJUMAX
CALL MOVE(LOOPSsKI)
LOOPS = LOOPS + 1IC

IF(LOOPS =~ N(K=1)) 25292544254
LOOPS = 1 +1

IC =1
CONT INVE
N(K=1) = J
GO TO 220

I =1 + 1
KMAX = K=2
WRITE(LUNITs413)
DO 450 K = 3sKMAXs2
WRITE (LUNITs412)
KN = N(K)
TVAL = T(KN)
KI = K + 1
KK =1
IC = 2
CALL INTEP(TVALsXVALsYVALIPVAL KK SKERR)
GO TO (405+499) 4KERR
WRITE(LUNIT»410) TVALsXVALSYVALPVAL
FORMAT (4F20e5)
KK = KK +IC

IF(KK=KI) 42094509411

IF(KK) 45094505400
KK = K =1

IC = =2
GO TO 400
FORMAT (*# NO DATA POINT ON CURVE * [5)
WRITE(LUNIT»222) KK
GO TO 406
CONT INVE
WRITE (LUNITs60)
FORMAT(//20X»17HPROBLEM COMPLETED)
RETURN
FORMAT(/10Xs4HTIME 916X 91HX919X91HY»19X s 8HPRESSURE)
FORMAT (1H1 20X »26HGROUND INTERSECTION CURVES)
WRITE(LUNIT»1001)
FORMAT(13H KULSRUD GOOF)
CALL EXIT
END
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SUBROUTINE INTEP(TVAL sXANSsYANSsPANSsKKsNERR)
C AN TNTERPOLATION ROUTINE IN THE SPECIAL TABLES
COMMON NRMAX»HNsTNsACsMUNITsBYsLUNITsT(400) sX(400)»Y(400)sP(400)>»
IN(41)
IN = N(KK)
INF = N(KK+1)=-1
DO 200 IS = INsINF
IF(T(IS)=TVAL) 200,100,300
100 PERCT = 1.
GO TO 302
200 CONTINUE
201 NERR = 2

RETURN
300 IF(IS=IN) 20152015301
301 PERCT = (TVAL=-T(IS=-1))/(T(IS)=T(IS=1))
302 XANS = PERCT*(X(IS)=X(IS=1))+ X(IS-=1)
YANS = PERCT*(Y(IS)=Y(IS=1))+ Y(IS-1)
PANS = PERCT*(P(IS)=P(IS-1))+ P(IS~-1)
NERR = 1
RETURN
END

SUBROUTINE MOVE (KsJ)
COMMON NRMAXsHNsTNsACIMUNIT9BY s LUNIT»T(400)9sX(400)sY(400)sP(400)

IN(41)

T(J) = T(K)
X(J) = X(K)
Y(J) = Y(K)
P(J) = P(K)
RETURN

END

SUBROUTINE RESTA
COMMON C(1000)
REWIND 9
WRITE (9) C
REWIND 9
WRITE (691)
1 FORMAT (/23HOTERMINATED BY OPERATOR
CALL EXIT
2 RETURN
END

SUBROUTINE INITAL
COMMON C(1000)
REWIND 9

READ (9) C

REWIND 9

RETURN

END
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