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SONIC BOOMPROPAGATION IN A STRATIFIED ATMOSPHERE,
WITH COMPUTERPROGRAM

Wallace D. Hayes*, Rudolph C. Haefeli, and H. E. Kulsrud
Aeronautical Research Associates of Princeton, Inc.

SUMMARY

An analysis is presented of the propagation of sonic boom in

a horizontally stratified atmosphere with winds. This analysis,

to some extent a synthesis of established theory but with many new

features, is given in sufficient detail to serve as an algorithm

for the computation of sonic boom pressure signatures. This algo-

rithm is realized in a FORTRAN computer program.

Required inputs include atmospheric properties and horizontal
winds as functions of altitude, information on the flight path of

the maneuvering aircraft, and aircraft F-functions. Ray-tube

areas are computed according to geometric acoustic theory, and

nonlinear effects are accounted for through an appropriate age

variable. The output includes midfield pressure signatures at any

altitude.

Results from sample calculations are presented and discussed.

INTRODUCTION

Sonic booms have become of prime importance in the design and

operation of suoersonic aircraft. A need has been felt for a
comprehensive analysis and algorithm, realized in a practicable

computer program_ which would provide realistic calculations for
sonic boom signatures in our atmosphere. The project reported

here was to carry out such an analysis with computer program.

Earlier algorithms for sonic boom have used various unjusti-

fied simplifying assumptions. A basic aim of the present algo-
rithm has been to avoid these assumptions as far as possible and

to extend the cases which could be considered. Thus, the present

algorithm includes the following features"

(1) The inclusion of maneuvering aircraft in a sonic boom
pressure calculation;

(2) An appropriate ray-tube area calculation based on linear
geometric acoustics;

*'Profe'ssor' "of A--erospace Sciences, Princeton University



(3) Results in the form of complete signatures_ without

far-field assumptions_ obtained through the use of an

"age" variable in the calculation of nonlinear effects.

The present algorithm assumes a horizontally stratified atmosphere

with horizontal winds but without turbulence. This limiting

assumption corresponds to the case of greatest practical interes_ _
and considerably simplifies the calculation.

The analysis is largely a rational synthesis of existing
theories described in the literature_ with some new theoretical

development. Specific references are cited in the body of the

report. A principal new theoretical development is in the calcu-
lation of ray-tube area. The analysis is also new in the careful

piecing together of a number of calculations_ principally in the
relation of the wave system and rays issuing from the aircraft

with a wave system and rays properly describing propagation in the

stratified atmosphere with winds. This relation requires the

consideration of a galilean transformation connecting a local coor-
dinate system with the fixed coordinate system.

A note of caution at this point may be in order. Although

our analysis may be described as largely a synthesis of existing

theories_ it should be pointed out that not all these theories may
be familiar to all workers in the field of sonic boom. In order

to make the analysis feasible_ the concept of galilean invariance

has been brought in from the subject of mechanics_ and a number of

concepts have been brought in from the general theory of wave

propagation. The pertinent literature is diffused through many
sources. A number of basic papers were written in contexts diff-

erent from that of sonic boom. Thus_ some readers will not find

our analysis as a synthesis of the theories with which they are
well acquainted. In general_ the more familiar sonic boom
theories are inadequate.

The digital computer program has been written in ASA FORTRAN
IV (except some literal text enclosed in asterisks) with flexibi-

lity a main aim. The program is designed to be usable on a wide

variety of modern computers and to be applicable to a variety of
problems. It was developed using an !BM-II30_ Model 2B_ and then

modified for and operated with a CDC-6600. The program may be
altered to accommodate the operating system constraints of a

particular computer through simple changes in input-output unit

designation. It may also be necessary to make some alterations in

program structure from subprogram linkage to main program linkage

to meet core storage requirements_ as in the case for the IBM-II30.
A number of input options have been provided. There are choices

in the specifications of input and output units_ in how the atmos-

phere is to be specified_ and in how certain maneuver time deriva-
tives are to be obtained from input data.



This report is accordingly divided into two main parts - one
giving an exposition of the basic theory and development of the
equations, the other describing and listing the computer program
and presenting sample results. The first part occupies the chapter
entitled THEORETICAL ANALYSIS. This begins with a general descrip-
tion of the theory, with accent on the physical reasoning and
motivation underlying the analysis. In the course of the analysis,
b_ief statements are included on its applications in the computer
program. Besides current references, there are some historical
notes appended.

The second part, consisting of COMPUTERPROGRAMand COMPUTA-
TION RESULTS, includes a complete description of the program, with
tables giving the FORTRANnomenclature used for various variables
and subroutines, and with a program listing. Sample input and
output listings are included, and typical computation results are
presented.

SYMBOLS

This section includes symbols used in the analysis, excepting
a few which are only used where they are defined. FORTRAN symbols
that are employed in the computer program are identified in
Table i.

Symb oi

A(x o )

C
0

C
P

C
D

CD@r

C
L

Page No.

speed of sound (eq. 6)

ray-tube area cut by horizontal plane

(eqs. 19, 26)

area distribution of slender body

group or ray velocity (eq. 12)

normal phase velocity (eq. Ii)

Sne ll's law invariant (eqs. 14, 16)

specific heat at constant pressure

wave drag coefficient (eq. 36)

21

65

drag coefficient per unit azimuth angle (eq.36)49

lift coefficient (eq. _) 18
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L

L

L
a
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R

n
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q
CO

D net axial force coefficient (eq. 3)

drag (eq. 3)

line force distributions

F-function for aircraft signatures (eq.

input F-function

F-function conversion factor (eq. 3_)

gravitational acceleration (eq. i)

altitude of ground above sea level

integrals used in calculation of A (eq.

heat conduction coefficient (eq. 58)

reflection factor

direction cosines of initial wave normal

equivalent line force distribution

lift (eq. _)

distance along aircraft axis

aircraft reference length

Hach number of aircraft, V/a

unit vector normal to wave front

normal and axial load factors (eqs. 3, _)

reduced longitudinal kinematic viscosity
(eq. 60)

pressure (eqs. I, 39)

perturbation velocity (eq. 39)

dynamic pressure (eq. 3)

cylindrical radius in local coordinates

position vector (eq. 12)

33)

(eq.8)

(local phase)

!8

43

46

48

16

39

63

64

18

21

66

16

51

44

29



R

S
ref

s(xi'Cr)

o

t(Xo,Y O )

t
a

T

m

Ii

V

VE

W

horizontal position vector

gas constant; hyperbolic radius

distance normal to wave front (local phase)

reference wing area for force coefficients

(eqs. 3, t_)

area distribution of equivalent body of

revolution

integral of VE(_) (eq. 5_)

integral of VE(_I' _ ) (eq. 51)

wing thickness

time along ray (eq. 18)

time along aircraft trajectory (eq. 2)

absolute temperature

thrust (eq. 3)

wind velocity (-u x,-uy,O)

minus components of u in

(eq. 15)

aircraft velocity relative

(eq. 2)

(eq. 2)

(xl'Yl) coordinates

to atmosphere, Ha

measure of signal invariant on kinematic ray

(eqs. l_O, _LS)

weight of aircraft (eqs. 3, 4)

fixed coordinate system; east,

above ground, respectively

north, and

coordinate

velocity

system aligned with aircraft

coordinate

(eq. 19)

system aligned with wave normal

36

44

56

18

58

44

18

16

18

16

31

17

52

18

16

22

31
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X _y _Z
0 0

X
\ i
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!

@

local coordinates near aircraft _3

dummy coordinates near aircraft _3

axial coordinate

revolution
for equivalent body of _5

Prandtl-Glauert parameter, (M 2 - I)1/2

inverse of atmospheric scale height 59

aircraft climb angle (eq. 2) 17

ratio of specific heats 16

perturbation from undisturbed value 39,28

wind heading angle (whence wind blows) 16

inclination angle of n be low horizontal 25
(eqs. 10, 17)

Hach angle, sin -I(I/M) - tan-l(i/_) 22

shear and dilatational viscosities (eq. 58)

heading angle of wave normal (eq. 9) 25

linear phase variable (time) (eq. 1_I) 51

actual phase variable (time) (eq. _9) 56

atmospheric density (eq. I) 16

age (eq. _6) 57

azimuth angle of wave normal from vertical plane 22

aircraft bank angle 18

azimuth angle of wave normal relative to 20
aircraft

local perturbation velocity potential (eq.30) _3

heading angle of aircraft (eq. 2) 17



Subscripts

W

aircraft

initial value at time of emission of a ray

from aircraft

wing

32

Vector Compomen.ts

Vector

Name

Position

Horizontal unit,

east

Horizontal unit,

north

Vertical unit

Horizontal pos-
ition

Aircraft

velocity

Initial wave

normal

Wave normal

Wind

Horizontal unit,

propagation

Inverse phase
velocity

Ray or group
velocity

Symbol (x_y_ z)

Coordinate Systems

X _y .,-Z)

rl

I !

x ,y , 0

(xI_Yl _-z )

Xl,Yl, -z

sin v,-cos v,0

'COS V_ sinV_0

0,0,-I

Xl,Yl ,0

COS @ ,0_
sin @o

o

cos @,O,sin

-u n , -ut '0

1,0,0

-I 0 c-ltan @
C 0 _ ; 0

a oos @ - UL13._

-u t, a sin





PRECEDING PAGE BLANK NOT F" "__'_

THEORETICAL ANALYSIS

General Description

The intent of this section is to present a guide to the

theoretical analysis which will be developed in this chapter.

This guide is presented in several subsections. The first gives

a brief description of the nature of sonic boom theory. The next
three discuss certain basic concepts of geometric acoustics_ with

one purpose being that of explaining the basis for the assumption
of steady ray geometry on which the entire analysis is based. The
last describes the detailed analysis in digest form_ essentially

section by section.

The nature of sonic boom theory.- Sonic boom is am acoustic

phenomenon. The appropriate theory for sonic boom propagation is
am acoustic theory with both simplifications and complications

which do not normally appear in acoustic theory. With certain

exceptions_ the appropriate theory is the theory of geometric
acoustics_ analogous to geometric optics. The theory of geometric
acoustics is valid in an asymptotic sense when the wave length is

small compared with characteristic macroscopic scales of the

problem. Such macroscopic scales include the radii of curvature
of the wave fronts and the scale height (e.g._ p/pg) of the atmos-

phere. (Symbols are defined in the list of SYH_OLS._ Geometric
acoustics is invalid in the region near the aircraft_ where a

separate treatment is needed to obtain initial conditions for the

propagated signal.

Standard acoustic theories are linear. In sonic boom propa-

gatiom_ nonlinear effects are locally very w eak_ but they have a
nommegli{i_ible cumulative effect during propagation over large
distances. The cumulative nonlinear effect comprises distortion

of the signal and the production of shock waves. We cam thus
describe sonic boom theory as an application of geometric acoustics_

with a particular matching theory for initial conditions and with
a modification for nonlinear effects. A recent review of the

theoretical approach to sonic boom which is here developed im

detail may be found in reference I.

In any sonic boom theory with the generality of the theory

presented here_ the concepts of galilean transformations and of

phase necessarily appear. These concepts are discussed below.

Coordinate systems and galilean transformations.- Two prin-

cipal coordinate systems are required in our theory. One is an
unaccelerated coordinate system fixed relative to the ground_ and

the propagation through the atmosphere is treated in this coordi-

nate system. The other_ defined locally at a particular instamt_
is an unaccelerated coordinate system aligned with the aircraft



flight axis and moving with the aircraft velocity at the instant
of interest. The flow near the aircraft is conveniently described
in this coordinate system. These two coordinate systems are
related through a galilean transformation. A galileam transform-
atiom is a transformation from one unaccelerated coordinate system
to another moving relative to the first at a constant velocity. A "
.quantity is galilean invariant if it does not change under a
galileam transformation.

I_ one particular step of the analysis the consideration of
the galilean transformation is inescapable. This step appears
wherl the variables describimg the (local) flow near the aircraft
are transformed into the appropriate variables describing the
(global) acoustic propagatior_ in. the coordinate system fixed rela-

tive to the ground. !n this critical step we shall avoid going
through the formal details of the gatilear_ tramsformation, Instead

we identify corresponding variables which are inherently galilea_
in variant; by relating these to both the local and global variables

of the problem_ we are able to conrlect the local with the global
variables. This stratagem simplifies this critical step consid-

erably and_ in effect_ accomplishes the inescapable galilean

transformation in a relatively easy way. No other feasible way of
relating the local and gloo&l variables was discovered.

!n this report we are concerned primarily with the case of a

horizontally stratified atmosphere with winds. Such am atmosphere
remains horizontally stratified under a horizontal galileam trams-
formatiom_ one in which the relative velocity is horizontal.

Hemce_ any theory for this case must be invariant under such a

tramsformatior_, This property has been used in the development of

the a_alysis presented here to check it for algebraic consistency.

In general_ consideration of which variables are galilean in-

variant was of great help in the development of the analysis
presented in this report. A quantity which is galilean invariamt

is independent of the choice of coordinate system. It is found

that the analysis is simpler_ both algebraically and conceptually,
wherl such variables are chosen to describe the solution., Thus the
consideratio_ of galilea_ invariance has guided the general course
of the analysis and the specific choice of variables used.

In this report_ we mention in a number of places whether

particular variables are or are not galilean imvariamt. Except in
the critical step mentioned above_ the reader uninterested in this

property may ignore the mention, in the critical step where the
ga!ilea, m transformation is in escapable_ the galilean imvariamce of

the pertinent variables is essential to the analysis. This step
appears in the section entitled Geometric Acoustics and Blokhint-
sev In variance.

I0



Wave fronts and phase.- According to the basic concepts of

acoustics_ the signal is propagated on wave fronts. Wave fronts
are surfaces that move through space and are characteristic

surfaces for the complete hydrodynamic equations (more precisely_

they are characteristic hypersurfaces in space-time). A wave
system includes a one-parameter family of wave fronts. A variable

that parametrizes the wave fronts is termed a phase. Accordingly_

the phase is the principal independent variable in terms of which
am acoustic signal or pressure signature is described. Any mono-

tonic differentiable function of a phase variable is also a phase

variable_ as it will serve equally well to parametrize the wave
fronts. Since the only purpose of the phase is to label wave

fronts_ what its dimensions may be is unimportant. A phase may be

chosen to be dimensionless or to have the dimensions of time or

distance_ as may be convenient.

As defined_ the phase parametrizes the wave fronts over the

entire history of the wave _ropagation and is_ in this semse_ a

global variable. The word phase" used alone refers to this global

concept_ although to emphasize this property we occasionally use
the term global phase. It is convenient to distinguish from this

concept the concept of a local phase_ defined to be any variable
in terms of which an acoustic signal may be expressed locally. A

local phase is mot generally a phase in the global sense. A micro-

phone fixed in space records pressure as a function of time as a
wave system goes by. Thus_ time measured from the passage of a
reference wave front is a phase variable_ one that turns out to be

global as well as local in a steady atmosphere; this particular
variable is the one we shall use in our general treatment of

geometric acoustics. Distance measured at a given instant normal
to the wave fronts from a reference wave front is a suitable local

phase. Distance aft of a reference Mach cone in a coordinate

system fixed with respect to the aircraft is another local phase_
and is the one we shall use in treating the flow near the aircraft.

To illustrate the distinction between phase and a local phase_

we consider the particular variable distance normal to wave fronts.
The distance between two wave fronts in an atmosphere either with

winds or with nonuniform speed of sound does not remain constant

as the fronts move. A wave front i0 feet from the reference front

at one time will be different from the front found i0 feet from

the reference front at some different time. Thus_ distance from

the reference front is not a global phase_ even though it can be

used as a local phase.

The reason the concept of phase is important is that we must

correctly identify the wave fronts over the entire history of the

wave propagation. A phase variab!e_ correctly defined globally

serves precisely this purpose. In our presentation of the theore-
tical analysis_ we use two local phases (L/La and s ) as well as

II



a basic global one (_). We may note that in the general case in
which the atmospheric properties change with time_ it is impossible
to use a physically defined entity (e.g., time measured by a fixed
observer) as the (global) phase. In this case the phase must be
defined as a variable in its own right_ with no generally valid
physical interpretation.

We pick a particular reference wave front as the front of zero
phase. This wave front is a surface in space which is tangent at
the aircraft to the Mach cone with vertex at some specified

reference .point on the aircraft axis. Suc.h a surface is termed a
Mac h conoid. For convenience, we consider the reference point to

be at the nose of the aircraft. Other points on the aircraft axis
are at the vertices of Mac h conoids or wave fronts of different
phase. These concepts are discussed further in t.he section on
Mach Conoids and Ground Intersections.

Geometric acoustics and rays.- The basic concept of geometric

acoustics is that t.he sff.gnal is propagated along rays. Rays are
trajectories of points moving in space. Each ray moves with a wave

front_ and the concept of the propagation of a signal on rays is
consistent with that of its propagation on wave fronts. Since a

ray is a point trajectory, that is_ a specification of t.he motion

of a point with time_ it is a kinematic rather than a geometric

entity. Where iZ appears desirable to emphasize this character, we
term a ray a kinematic ray. The path of a ray is a geometric

entity. When a number of rays traverse the same pat.h_ we term the
path a geometric ray. Since phase is constant on each wave front
and each ray moves with a wave front, phase is also constant on

rays. In a general solution the rays form a three-parameter family
of point trajectories. The t.hree parameters are analo._ous to

o

Lagrangian coordinates for particles moving in a fluid flow. One

of the parameters is the phase_ while the other two are selected to

be an azimuth angle _ and a time ta (to be defined later).

In general, the rays corresponding to values of the phase

other than zero do not follow the same paths through space as do
the rays for which the phase is zero. An important special case is

that in which the ray geometry is steady, in which every ray path
is the path for a one-parameter family of kinematic rays. In this

case the ray paths are what we have termed geometric rays which

form a two-parameter family of curves in space. In applying the

analogy to particles moving in a fluid flow to this case, the flow
is assumed steady_ with the geometric rays then analogous to

streamlines. The property of steady ray geometry is not galilean
invariant, and this fact indicates that the assumption of this
property must be made with care.

Historically, for the most part only this special case has

been considered. Moving sources are rarely considered in geometric

12



optics; moving acoustic sources are generally treated in a coord-
inate frame in which they are fixed and, generally, only aircraft

in steady flight have been considered as generators of sonic boom.

Thus_ historically, rays have been considered primarily as geo-

metric entities.

We make the assumption of steady ray geometry in the sonic

boom problem, with ta and @ as the parameters for the geometric

rays. This assumption is justified by the thinness of the entire

wave system of interest, essentially by the fact that the aircraft

length is small compared with other macroscopic characteristic
scales. A ray emanating from the tail is simply so close to the

corresponding one of zero phase that the difference in their ray

paths may be neglected. If La is a measure of the thickness of
the wave system and R a macroscopic scale measure, the required

condition is La/R << I . If X is a measure of the character-
istic wave length of the acoustic signal, it is the condition

X/R << I which justifies geometric acoustics. The sonic boom
problem is unique among acoustic problems in having X _ La_ with
the consequence that the steady-ray-geometry assumption is valid

when geometric acoustics is valid. Thus this assumption is sound

even though the problem with a maneuvering aircraft is not a

steady one.

This assumption is basic to our analysis. It permits our

calculating only the two-parameter family of rays corresponding to

zero phase, considering the aircraft to be a single moving point in

space. Another basic assumption is that the cumulative nonlinear
effects do not affect the ray geometry. This is discussed later

when we treat the nonlinear distortion. Hence_ ray calculations

follow linear theory.

Besides the concepts of wave fronts, phase, and rays, another

basic concept in geometric acoustics is that of ray tubes and ray-

tube areas. Although ray tubes may be defined in the general case,

they are much easier to visualize with the steady-ray-geometry

assumption. In the neighborhood of a given geometric ray, we
visualize a tube of geometric rays, i.e., a ray tube. The corres-

ponding entity in the analogous steady fluid flow is a streamtube.

A ray-tube area is a measure of the differential area intercepted

by a surface cutting the ray tube and may be considered a vector

quantity. Like a streamtube, a ray tube is a differential quantity,

and a ray-tube area is actually defined in terms of derivatives

with respect to the ray parameters.

An element that greatly simplifies the calculation is the

assumption that the atmosphere with its winds is horizontally

stratified (layered). A refraction law of the type of Snell's law

in geometric optics then holds. This law permits the calculation
of both the rays and corresponding ray-tube areas by quadratures.

13



Digest of the theoretical analysis.- We turn now to a general
description of our analysis of sonic boom, the details of which are

presented in the subsequent sections of this chapter. The analysis

may be conceptually divided into three main parts whiclh will appear
in sections of the chapter preceded by a short section on The

Atmosphere; at the end we add a Note on Viscous Effects. The first
p.art of the analysis comprises the sections entitled Aircraft

Maneuvers, Initial Wave Normals, Mac h Conoids and Ground Inter-

sections_ Shell's Law and Ray Tracing, and Ray-Tube Area. It con-

cerns the calculation of the rays and ray-tube areas for zero phase
(the reference phase). The second part comprises the sections

entitled Flow Near the Aircraft, and Geometric Acoustics and Blok-

hintsev Invariance. It concerns the calculation by linear theory
of acoustic signals along each geometric ray. The third part

comprises the sections entitled Signal Distortion and Age Variable_
and Shock Location. It concerns the calculation_ with shocks

properly accounted for, of the nonlinear distortion of the signal.
A number of vector quantities are introduced and used in the

analysis. The components of these vectors in the various coordi-

nate systems used are given in the section entitled SYMBOLS, Vector
Components.

The maneuver of the aircraft (strictly speaking_ of the refer-
ence point) is required in detail. Variables are introduced in the

section on Aircraft Maneuvers which describe the trajectory in
space, the orientation of the flight axis, the velocity of the air-

craft relative to the local atmosphere, and the local sound speed,
all as functions of time ta . Time derivatives of certain of the

variables are also determined, for later use in the ray-tube area

calculation. At each instant ta we visualize a Mac h cone attached

to the nose of the aircraft. The normals to the Mach cone form a

one-parameter family of directions forming a wave-normal cone with

the parameter being an azimuth angle @ . The two quantities ta
and @ are the ray parameters discussed earlier.

In the section Mac h Conoids and Ground Intersections_ the wave
fronts and rays from an aircraft in maneuvering flight are dis-

cussed generally, with particular attention to the intersections of
the rays and wave fronts with the ground.

The generators of the wave-normal cone at the aircraft are the
initial wave normals for the calculation of the rays. The orien-

tation of these normals is known as a function of the ray para-
meters. For each wave normal we calculate two quantities which are

invariant on rays according to the appropriate Shell's law. These

invariants are then used to calculate the ray trajectories.

The ray-tube area is defined as that given by horizontal

cutting planes. An analytic expression for this area is obtained

14
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in terms of the maneuver variables_ certain of their time deriva-

tives_ and three quadratures along the ray. The ray-tube area is

thus obtained as a function of altitude along each ray and may be

calculated concurrently with the ray trajectory.

For the second part of the analysis (Flow Near the Aircraft_

Geometric Acoustics and Blokhimtsev invariamce)_ we consider first

the flow close to the aircraft, im particular_ we need the asymp-

totic form of the local solutiom_ valid at a distance from the

flight axis large compared with the effective lateral dimensions
of the aircraft but small compared with characteristic scales for

the atmosphere. This asymptotic form of the local solution is

interpretable as a geometric acoustics solutiQm. At a sufficiently

large distance r in a particular directiQm away from the flight
axis of the aircraft_ the solution appears the same as that from a

line distribution of sources and sinks_ the same as that from an

equivalent body of revolution The pressure_perturbation in the
asymptotic solution is proportional to r -i/s times a function F
of a suitable defined phase and of an azimuth angle @r (simply

related to @). This F-function depends also upon the Mach number
and lift coefficient of the aircraft_ which are functions of the

time ta . The F-function is then a function of phase and of the

ray parameters t a and @ and is invariant along each kinematic

ray. It is obtainable either by a computation (outlined here in
the section Flow Near the Aircraft) or from experiment. It is

assumed to be a known function in the computer program.

In the general stratified atmosphere with winds_ the appro-

priate general definition of phase is as the time _ measured by
an observer fixed in a ground-based coordinate system and defined

to be zero the instant the zero-phase wave front passes. Invar-

lance results of Blokhintsev permit the acoustic signal of each

ray to be described in terms of a function Ve(_) which is

constant on the ray.

The relation between the local and general phase variables is

then found so that F may be expressed as a function of _ . The

relation between the function F and V e is also found_ which

then gives the function Ve(_) for each ray (since F is assumed

known). The relation between Ve and pressure perturbation S p
is know n_ so that Ap(_) is determined at any point on each

geometric ray.

In the third part of the analysis (Signal Distortion and Age

Variable, Shock Location)_ we consider the change in propagation

speed proportional to the strength of the signal. This nonlinear
effect does not_ in principle_ influence the magnitude of the

pressure perturbation in the acoustic signal. Rather it causes

phase shifts in the signal_ whereby a given point in the signature

may appear earlier or later than predicted by the linear theory.
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This phase distortion arises because compression waves travel
slightly faster, and expansion waves slightly slower_ than do
infinitesimal disturbances. In terms of the phase variable _ ,
this phase shift equals Ve times an age variable _ which can
be computed along each ray by a quadrature. The distorted signal
appears as the original one Ve(_) sheared by an amount propor-tional to T .

The distorted signal may be multivalued and may thus give
several values of the pressure perturbation for a single value of

. Physically, this anomaly indicates the presence of shock
waves and disappears when shocks are properly taken into account.
A separate analysis shows where shock waves must lie and shows
which parts of the signature have been "eaten up" by the shocks
and no longer appear. The result of the analysis is the complete_
single-valued pressure signature at any desired point, with
shocks shown if they are present. The nonlinear effect does
affect the magnitude of the pressure perturbation insofar as the
parts of the original signal that are eaten up by shocks no
longer appear.

The theory fails near a caustic, a surface in space at which
the ray-tube area becomes zero. It also fails near the boundary
of a shadow zone into which no rays penetrate and may fail near a
critical ray for which the F-function is singular in some way.
The linear solutions in these regions are solutions to diffraction
problems for which geometric acoustics is invalid. These problems
are outside the scope of the analysis of this report.

The Atmosphere

The coordinate system used is cartesian with x and y
horizontal distances east and north, respectively_ from a refer-
ence origin on the ground. The ground is assumed level at am
altitude HG above sea level_ and z is altitude above the
ground. The atmosphere is assumed to be a calorically perfect gas
(constant specific heat ratio 7e) with the thermodynamic proper-
ties temperature T density p _ pressure p- RT9 , and speed
of sound a = (VeRT)_/2 given as functions of altitude. The
pressure obeys the hydrostatic law

d_%p_

with g the acceleration due to gravity. Winds are horizontal

with magnitude u and direction dependent only upon z . The

wind direction is specified by the wind heading angle _ measured
clockwise from north. In accord with ancient historical conven-

tion, the wind heading is taken as the direction from which the

16



wind comes ("the north wind doth blow")_ and we have acceded to
this convention. The velocity of the wind has east and north com-
ponents (-Ux,-Uy) with

u = u sin
X

LI : U OOS I]

Y

Application in the program.- Inputs into the program include

the temperature T , eithe'r' the_ density p or the pressure P ,

the wind speed u , and the wind heading angle _ given as
functions of the altitude z + H above sea level. Also input is

the ground altitude H G . An option provides for specification of

the 1962 U.S. Standard Atmosphere (ref. 2) with any wind distri-

bution.

There is no provision in the program to ensure that the hydro-

static relation (I) is satisfied. Hydrostatic consistency of the

input data is the responsibility of the operator.

Aircraft Maneuvers

In our study of sonic boom, we need the trajectory of the air-

craft in order to know where the rays start. The equations to be

integrated for the aircraft trajectory, if it is not specified, are

presented in this section. The time derivatives of heading angle,
climb angle, and aircraft velocity or Mach number are needed later
in the calculation of ray-tube area. Equations permitting the

calculation of these derivatives from the aircraft load factors are

also included here.

The aircraft moves through space supersonically on some known

trajectory. This trajectory is described by the coordinates

xa(ta) ' ya(ta), and za(ta) of a reference point on the aircraft,
which we choose to be the aircraft nose. The subscript a

identifies variables defining the aircraft position in a ground-

fixed coordinate system.

The first stage of our analysis is an investigation of the

equations governing the trajectory of the aircraft. The aircraft
has velocity V measured in a coordinate system in which the local

atmosphere is at rest (i.e., in a coordinate system moving with the

wind velocity). This velocity has magnitude V , a heading angle

measured clockwise from north, and a climb angle 7 above the
horizontal. The direction of V at any instant is termed the

flight axis.

With respect to the ground-fixed coordinate system, the diff-

erential equations for the flight trajectory are then

17



dx
a

- V cos 7 sin ¢- u (za)

dYa

----- v cos 7 cos _ - u (z
dt a y a) (2) ,_

C]Z
a

d--_- V sin 7
a

If V, 7 , and 9 are known functions of ta _ we can integrate

the third equation to obtain Za(ta), and then obtain Xa and
Ya by integrating the other two.

The acceleration of the aircraft is equal to the net force

divided by the aircraft mass W/g. The component along the flight
path is (n T - sin 7)g, where n T is a net thrust load factor
de fined by

= (T - D)/w : (cT - cD)%Sef/W (3)

with T and D representing the thrust and drag on the aircraft

respectively_ CT and CD the thrust and drag coefficients_ q_
the dynamic pressure (I/2)pV 2 _ and Sre f the aerodynamic

reference area. The quantity g cos 7 is a component of the

acceleration due to gravity acting laterally, or normal to the
flight direction.

The aircraft is assumed to be laterally symmetric, without

side forces_ and to be banked at an angle @a about the flight
axis. The lift on the aircraft then provides a normal accelera-

tion component nLg , where nL is the lift load factor defined
by

n L - L//W - CLq Sref/_ (%)

where L and CL represent the lift and lift coefficient_ respect-

ively. This is directed so that nLg cos @a opposes the gravity
component g cos 7 , while nLg sin @a is horizontal. Figure I

shows the acceleration components while figur_e 2 shows how @a is
defined and shows the lateral acceleration components. The coord-
inate frame (x' '_y ,z) is rotated _/2 - _ counterclockwise
relative to the reference frame (x_y,z) and is used later to
develop wave propagation directions.

18
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cos 7

nLg -
CLq_Sg

W

Figure 2. View looking forward along flight axis showing

acceleration components, bank angle, and azimuth angle.

d2z
_ a

(n T sin V)g - sin 7--2-
dt

a

<+ cos sin 9 d-_- + cos
a a

Carrying out the differentiation with respect to t
obtain a

we then
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dz < du
Y

V cos 7 d_ sin _ - a sin _ dz
dt a : nLg a dt a

dux 
-cos

\

_ - cos 7)gV d7 - (n L cos _adt

dz

dt du du )
X

sin cos _ dz y + sin 9

du du )
Y X

dZadt dz + sin 9dV = ,(nT - sin 7)g + cos cosdt
a a

The factor dza/dt a is, from (2), simply V sin 7 . Equations

(5) re late the two load factors n L and n T with the time deri-

vatives of _ , 7 , and V .

Although they are not directly involved in the aircraft dynam-

ics, the speed of sound a and the aircraft Mach number M- V/a
are convenient to use in the acoustic analyses. The speed of sound

is obtained from

RT) /2 (6)
a - (7 e

The gradient of the sp._ed of sound satisfies the relation

da 7eR dT

dz - 2a dz

The time derivative of V : Ma may then be expressed as

dz
dV dM a da

: a + H
dt dt dt dz

a a a

dH 2 da>: a dt + M sin 7 _-_
a
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Application im the program.- Inputs into the program include

_ 3' _ and M as functions of the time t a . Equatiorls (2) are
integrated to obtai_ the aircraft trajectory. The time derivatives

of _ , 7 _ and H (actually of the Hach angle _- sin-l(i/H)
are required later in the program for the ray-tube area calculation_
and_ for this purpose, two Maneuver 0ptioms are provided. In the

first option, the load factors n L and n T are additional inputs_

and the time derivatives are calculated from equations (5) a_d (7).
In. the secomd optiom_ the time derivatives are calculated directly
within the program by differentiating the i_put data.

The purpose of including Maneuver Option i is to provide a
more accurate calculation of the time derivatives in case the load

factors are accurately known_ as perhaps from accelerometer data

from a flight test. In this option_ the input data are redundant_

and it is the responsibility of the operator to ensure that they
are reasonably consistent.

Initial Wave Normals

The purpose of this section is to express the initial orienta-
tion of the wave fronts as they leave the aircraft. This initial

orientation gives the basic parameters needed for the ray calcu-
lation.

Here we have an example of the principle discussed earlier of

using galilean invariance to identify the variables which are

preferable for use im the analysis. The wave mormals are the ray
directions in one particular coordinate system_ that fixed im the

undisturbed atmosphere at the aircraft altitude. Ray directiorls
are not galilean i_variant_ while wave fro_t shapes and wave

mormals are. The use of wave normals rather than ray directions to

define the basic variables keeps the analysis in its simplest form.

With each instant of time t a during the aircraft flight_ we
associate a Hach come with vertex located om a given reference

point om the aircraft. This Mach cone is tangent to the Mach

con.oid (wave from.t) movimg with the aircraft. The normals to the
Mach cone at the vertex form a wave normal cone. We co_sider a_

instantaneous coordinate system (x' '_y _z) for purposes of descri-
bing directio_ only (fig. i), rotated a_ angle _/2 - _ counter-

clockwise relative to the basic coordinate system_ with origin at
the reference point on the aircraft. The two comes are illustrated

in this coordinate system in figure 5. The half-angle of the wave
normal corse is the complement of the Math angle _ .

Am arbitrary azimuth a_gle _ is chosen_ measured according
to a right-hand rule about the flight axis from the downward
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Mach cone

(a) Sketch showing wave
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Geometry of initial wave normal directions, showing
coordinate axis orientation.
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= sin, b cos, _ + cos _ sin 7 cos

m = cos b sin @

n : - sin _ sin 7 + cos b cos 7 cos

using the law of cosines to obtain _ and n and the law of sines

for a right triangle to obtain m . Essentially the same results
are obtained in Appendix IV of reference 3. The downward or (-z)

axis is used here because we want to consider primarily descending

acoustic signals and rays.

The angle v is defined as the heading angle of the wave

normal (f-_g.)(b))_ and the angle 9o is defined as the angle of
the wave n.ormal below the horizontal (fig. _). Using these defini-

tions, m/_ = tan (9- v) and n. = sin _o • With equations (8),

these yield

and

v - 9 - tan-li [
COS sin ¢

sin _ cos 7 + cos _ sin 7 cos

sin @ =- sin. b sin 7 + cos b cos V cos _ = n
0

¢} (9)

(10)

The maneuver history of the aircraft provides b and 7 _ so that

these equations give v an.d 0 o as functions of the two ray para-

meters t a and 2 . We note that

0
if- \: cos cos - v j

0 J

(9 /-- \m : cos s±.r - v j
0 J

Another coordinate system (Xl_Yl_Z) is shown in. figure 3 and

is aligned with a particular wave normal. This coordimate system
is not used in this section but is used below in. the treatment of

ray tracing and ray-tube areas.

Application in the program.- Using the known values of 9

7 , and M _ the quan.tities v and sin e o are calculated from

equations (9)and (i0)as functions of the ray parameters ta

and @ .
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Mach Conoids and Ground Intersections

At this point we are ready to calculate the rays. The purpose

of this section is to describe the rays arid the Mach con.oids (wave
fronts) in general terms before going into the detailed calculation
of the rays. The inter_t also is to show the functions r_eeded to

describe the rays and wave fronts globally and needed to determine _

_her_ and where the sonic boom signals hit the ground. The primary
purpose of the section is_ thus_ largely conceptual, and the reader
primarily concerned with the algorithm may skip the section.

As the aircraft moves through space_ a wave system associated

with the aircraft moves with it and propagates away from the flight

path. The wave system_ which consists of a one-parameter family of
wave fromts_ is characterized by a single wave front chosen here

to be the one of zero phase. This wave front is attached to the

aircraft at the reference point on the aircraft and is tangent to
the Mach cone associated with this point. The front is the same as

the Mach cone only in the special case of straight flight at
comstan.t speed in an atmosphere of uniform temperature. This

reference wave front is termed the reference Mach comoid and is
shown schematically in figure 5.

The refere_ce wave fronts or Mach conoids are mot calculated

directly. What we calculate are the kinematic rays corresponding
to that wave front_ which here are the rays of zero phase. With

the basic assumptior_ discussed ir_ the sectiorl Gen.eral Description._
the ray paths for these rays are also those for other values of the

phase arid have been termed geometric rays.

The rays are specified by three functions giving x _ y _ and
z as functions of ta _ _ _ and t . Here t is the time on
the ray_ while %a and _ are the ray parameters defined in the

preceding section. In a stratified atmosphere we replace t by
z as independent variable. The ray is then specified by the two

functions x(ta_,z ) and Y(ta_z ) describing the ray path (or
geometric ray)_ together with the furlctior_ t(ta_b_z ) giving time
along the ray. The calculation of these functions is described in

the following section.. The ray paths for a giverl time t a of
emission are illustrated schematically in figure 5, shown here as
straight lines, in the gen.eral case, they are curved limes.

The ground is at z- 0 . The solid ground intersection curve

in figure 5 is given by the functiom.s x(ta,_O) and Y(ta_,0 )
for a give,n emission, time t a . The time of arrival of the sigrlal
on this ground intersection curve is not constant and is given by
the fu.r_ctiorl t(t a,_O) .

The wave fronts or Mach conoids are surfaces of constant t .

An inversion of the function t(ta_,z ) gives a function ta(_z_t ).
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variable t . These ground intersection curves, together with

corresponding maximum values of the pressure in the final signature,
are part of the output.

Sne l!'s Law and Ray Tracing

The purpose of this section is to present the appropriate

Sne ll_s law for geometric acoustic propagation in a stratified

atmosphere and to derive with this law the equations whose quadra-
ture gives the rays.

In acoustic theory a signal on acoustic disturbance is propa-
gated on a moving wave front. (From the mathematical point of
view, a wave front is a characteristic hypersurface in four-dimen-

sional space-time for t.he full equations of motion.) It moves in
such a way that its normal velocity relative to the medium is the

speed of sound. Its actual normal velocity in space is

_ m

Cn = a + n. u (11)

m

where n is a unit vector normal to the surface pointing in the

direction of propagation and _ is t.he vector velocity of the
undisturbed medium (wind vector).

A signal initiated at one instant from a point is found a

short time St later_within a sphere let of radius a6t w.hose

center is displaced uSt from the original point. If every point

on a wave front emits a signal at a given instant, Huygen's prin-
ciple identifies one of the two envelopes of the spherelets 6t

later as the_ wave front at that time (the ot.her envelope corres-
por_ds to -n and is usually without meaning). This principle

gives a motion to the wave front in accord with equation (11).

In geometric acoustics_ the concept of a ray is fundamental.
A ray is a .point trajectory and may be defined

(a) as a characteristic in an asymptotic development of the

equations of motion for small wave length;

(b) as a bicharacteristic for the full equations of motion,
corresponding to the wave front as a characteristic
hype r surface

(c) to move from the point of emission of a spherelet to the

point of tangency of the spherelet with the envelope
wave front at a time St later.

Any of these definitions leads to the result that the ray is a

trajectory of a point that moves with the velocity

28



m _ m

d_ r=c = an + u (L2)
dt

where r = XI + yJ + zk is the position vector of the point and

- - and k are cartesian unit vectors. This velocity is

termed the ray velocity or group velocity. In geometric acoustics,

the signal is propagated along rays with this velocity. Note that

C -- _i • C .
n

Besides the ray or group velocity, an important entity is the

slowness vector or inverse phase velocity n/c n . This entity is

more familiar in geometric optics than in geometric acoustics,

primarily because the subject of geometric optics has been so

thoroughly studied and applied to practical problems.

In order to calculate rays, it is necessary to know how the

wave normal vector n changes along rays. A general refraction

law may be derived (see ref. _, for example) which states that

d___n= Va + (Vu) • n - n[n •
dt

va + • (vG) •

along a ray. The combination of equations (12) and (13) is a

system of differential equations which must be solved to obtain

the ray.

In the case treated herein of a steady horizontally strati-

fied atmosphere, the calculation of a ray is much simpler. A part-

icular refraction law or Snell's law is available which gives n

explicitly along a ray (see ref. 5, for example). This "Shell's

law", stated in its most general form, is that the horizontal vector
component of the inverse phase velocity vector n/c n is constant

along each ray. We decompose n into horizontal and vertical

components according to

m

n = COS @ nT- - sin ek

where n' is a horizontal unit vector. The angle e is the

angle of n below the horizontal. Our Shell's law then states
that the horizontal vector cos e n'/c n is constant along each ray

(see figs. 6 and 7). We define the velocity Co as

C

n
Co- cos @

-I-I

in terms of which the invariant horizontal vector is co n The
initial value of @ when the ray is emitted from the aircraft is
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defined by equation (I0). The quantity c o and the
the angle eo _,
direction of n are thus invariant along each ray The direction

or heading angle of n' is denoted v in accord with the notation

of the previous section. The two invariants co and v are

functions Co(ta,_) and V(ta_¢) of the two ray parameters.

We introduce a coordinate system (x ,y (see fig. 3(b)).the wave normal n lies in the (Xl_-Z) P_ anl_-z) aligned so that

This system is one rotated an angle ½_- v counterclockwise
relative to the basic coordinate system. The main use of this coor-

dinate system will be in the following section, in the calculation

of ray-tube area.

- -u ) in the (x,y)
The wind vector u has components (-u x,)

frame and components (-u n_-u t) in the (x I,yl rame with

un : u cos (v - _) : ux sin v + uy cos v

u t : u sin (v - _) : -u x cos v + Uy sin v

(_5)

The minus signs before the components come from the ancient wind
o - - cos e

convention mentioned earlier. Note that u • n = -u n
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For each initial wave normal (and corresponding value of _ )
in the wave normal cone at the aircraft, there is one corresponding
ray. The value of v for this ray is that obtained from equation
(9). We obtain Co for the ray from the expression

R

o n a + u • n a
C -- O _ O O O O

___ -_- __

o cos _a cos @o cos @ - un° (16)

where cos @o is obtained through equation (I0) and the subscript

o denotes conditions at the initiation of the ray at the aircraft.

At any other altitude, with co and v known, the angle _ may
be calculated from

cos 0 = - a(z)
co + u (z) (ZT)n

Thus e is known as a function of c o , v , and z and thereby as
a function of ta , @ , and z Figures 6 and 7 show the relation

between Co _ e , and a and the wind components -u n and -u t
The wave front appears edge-on in the (Xl,Z) plot. Note that the
wind component -u t tangential to the wave front does affect c
but has no effect on the Shell's law.

In order to carry out the ray tracing (to calculate the rays),

we need to integrate the following equations (see figs. 6 and 7)-

dx
I

- a cos @- u
dt n

dY I

dt -ut

_= a sin @
dt

These equations are components of the vector equation (12). The
independent variable is changed from t to -z , giving the
equations

dx I a cos e - un

d(-z-)- .... a sin e -

dY I -u t

d(-z-_ a sin e

32
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A transformation from (Xl_Yl) to (x_y) gives the desired ray

equations

dx a cos e sin v - ux

d('-z) = a sin (9

dy a cos @ cos v -Uy (18)

d(-z) a sin e

dt I
__ _-- ___

d(-z) a sin (9

With a downward propagating ray (sin @ ) 0), the integration of

equations (I_) is carried out in the -z direction from the ini-tial point z = za _ x = x a , Y = Ya _ t = ta) to the ground

(z = 0). The functions sin @ and cos e are obtained as
functions of z from equation (17).

Equations (18) are the basic equations of this section as they

yield the rays by quadratures. By integrating them we obtain the

functions x(ta_z)_ y(ta_%_z)_ and t(ta,%_z) discussed in the

preceding section. The equations immediately preceding equations

(18) (in terms of x I and Yl) may be expressed with a minor
modification to take neighboring rays into account. The ray

equations in this form are more convenient than equations (18) for

computing ray-tube areas and will be used for this purpose.

Application in the program.- In the program, for the selected
values of the ray param'eters (ta_%) _ co is calculated from

obtained from equation (15). Equations
equation (16) with u,no
(]8) are then integra_%d for the rays with 8 obtained from
equation (17). 0nly downward propagating rays are calculated_ and
the calculation is stopped when the ray is approximately horizontal

Historical note.- The refraction law of the type of Sne ll's

law_ equation (I_')_or (17)_ was given by Lord Rayleigh in 1878

(Sect. 289 of ref. 6) in planar flow. Rayleigh did not distinguish
between wave normals and rays_ however. Barton, in 1901 (ref. 7)

noted that the correct ray propagation velocity was not in the wave

normal direction. He gave the correct planar ray tracing equations

with examples. Fujiwhara_ in 1912 (ref. 8), gave the correct

Snell's law in three dimensions and the corresponding ray tracing

equations (18) with examples. Emden (ref. 9) identified the ray in

terms of energy transport without defining the energy.
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Ray-Tube Area

The purpose of this section is to obtain an expression for
ray-tube area along the rays. The ray-tube area is needed subse-
quently in the analysis in order to express the acoustic signal
quantitatively, and also thereby to calculate the nonlinear
distortion.

A ray tube is a differential concept, to be visualized as a
tube made up of rays which are differentially close to the parti-
cular ray being investigated. The actual cross-sectional area of
such a tube is thus also a differential quantity. The quantity
which we term ray-tube area is a finite measure of such a differ-
ential area and not actually a physically identifiable area.
Multiplying any ray-tube area by a constant factor will make no
difference in the final results of the analysis. A consequence of
this fact is that the dimensions assigned to the ray-tube area are
completely unimportant and may be changed through such a factor to
suit our convenience. The invariance of the final result to a
multiplication of the ray-tube area by an arbitrary constant factor
was used as a check of the analysis.

In our case_ we use the (xl,Yl,-Z) coordinate system intro-
duced earlier_ corresponding to the particular angle v = vr for
the reference ray_ with the rays parametrized in terms of the ray
parameters t a and @ . Our use of Shell's law for a stratified
atmosphere directs the use of horizontal cutting planes with the
vector ray-tube area directed in the direction of the -z axis. We
can visualize a differential ray-tube area as the quadrilateral
area on a plane z - constant_ determined by the rays with para-
meters (ta_@) , (t a + St_@) _ (ta_ @ + $@) _ and (t a + Sta_ @+ $@)
as illustrated in figure . This differential area is St $@
times the Jacobian of (xl,Yl) with respect to (ta ,@) a. Wedefine the ray-tube area A as

I
A(ta,@_z) = _--

o

_Xl _Yl

_t a _t a

_Xl _Yl

(19)

in terms of the functions x l(t a,@,z) and Yl(ta,@,z). These we

may conceive of as obtained by a rotation of ½_ - vr from the
functions x(ta,@_z ) and Y(ta,@,z ) that were obtained from

integrating equations (i). The analysis is much simpler in this

form. The factor col is included in the definition of A so as
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Aircraft flight path

t + 6ta

\ \

Differential
ray-tube area

z = constant

\
\
\

Neighboring ray
ta + 6ta, ¢ + 6_)

Neighboring ray
+ 6t ,_)

(ta a

Reference ray Neighboring ray

(ta,$) (ta,$ + 65)

Figure 8. Sketch showing ray-tube area.

-I

to make the subsequent formulas simpler; the factor c o here_

incidentally_ makes A galilean invariant. Note that A has
dimensions of length in this definition. We shall evaluate (19)

by expressing the terms in the Jacobian as integrals taken downward
along the ray and eventually arrive at the expression (26) below.

A few authors have defined entities analogous to ray-tube area

in terms of Jacobians. In the acoustic stratified case_ an identi-
fication equivalent to that of equation (19) was given by Lighthill

(ref. i0). The recognition that the area may be obtained by quad-
ratures and the area calculation in these terms is new in the

present analysis. This treatment of ray-tube areas_ developed in
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somewhat more general terms, may also be found in reference 4.
(Our analysis may be considered a special case of a general
approach to calculating Jacobians of analogous type for general
wave propagation; a paper on this subject by the first author is
being prepared.)

The terms in the Jacobian of equation (19) are to be expressed
as initial values plus integrals along the ray from z = z o = za .
The initial values (at the point of emission of the rays) of the _
derivatives are zero. The initial values of SXl/_t a and _yl/_t a
are not zero. They form a horizontal vector _'/_t a (shown in
fig. 8 multiplied by 6t a) where

--I _- "r --I

r = xm + yj = Xl n + Yl
m

Exn'

We rewrite equation (19) in the form

c A =
o

_Xl SYl

with the lower terms in the first determinant and all those in the

second equal to zero at the point of emission. The variables x I
and Yl are expressible as integrals over -z , and their deriva-

tives with respect to the ray parameters may be similarly expressed
by differentiating under the integral sign. Thus_ all the terms

except the upper terms in the first determinant are integrals over

-z taken from the point of emission. We make a transformation of

the independent variables (ta,@) to (Co,V) and write

c A =
o

\
o ° <t ga/°

_v SXl SYl

_¢ _c o _c o

_c _x _y
o I I

_c
o chv

6t
a a

_c
o cbv

_Xl _Yl

 0-7

by _v

(20)
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Here we have used the theorem that the determinant of the product

of two matrices is the product of their determinants. The deriva-

tives of x I and Yl with respect to co and v in equation
(20) are again integrals over -z taken from the point of emissio_

Our next step is to evaluate these quantities.

The initial values of the ta derivatives may be calculated

with the aid of the equations for the direction cosines of the

initial wave norma!s. We note that

= cos e cos (? - v)
0

m = cos e sin (? - v)
0

The result of the calculation is

= v[cos v cos(? - v) + sin 7 cos @ ]0

- Uno <i

/

-- O 0 <I +

\

sin 7 )
s'in b sin @o

sin 7 )
sin b sin 0 °

(21)

_YI_ = - V cos sin (_ - v) - u t <I
_ta_ 0 7 o

sin 7 .)
sin b sin @o"

V cos 7 cos _ sin @ _ ut I +
cos @ o sin b sin e

0

(22)

To calculate the derivatives of (xl,Yl) relative to c o and

v _ we first recognize that the coordinate system is defined to
correspond to one reference ray with v = v r and that we must
consider neighboring rays. The ray tracing equations (see equa-

tions preceding (i$)) are written in terms of x I and Yl and are

dx! cos e un

'd'('-_{)- sin 0 a 'sin 0

dYl _ cos @ u
d (','z') sin-.i--ff-_(v v ) _ t__ ,..., _ ___ ,__ o- _± _,

r a stun @
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In the second equation_ (v- Vr) represents sin(v- Vr) with

v- vr small. A factor cos(v- Vr) in the first equation has

been set equal to i. In the same terms_ equation (17) relating
c o and _ may be written

a

c : - u + ut {v - v_, Jo cos e n r (23)

These three equations are differentiated at constant z with

respect to the three variables c o _ v _ and _ _ and then v is

set equal to Vr . The differential of _ is eliminated to yield

dXl d _xl

b d. (_izl), - $c, .. o cos3 e

' ' bc - d(-z') : -c 2 in 3o ° a s @

bx 1
dXl d :b:v

: .) -c u t
cos 3 0

o 2 3
a sin 0

bY I
dYl d bc 3
ai(,izi o u t cos @

bc - d('-z') = 2 in 3o a s

dY 1 bY 1

- .):

2 3
cos 0 ut cos

sin _ 2 3
a sin
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We now substitute the expressions obtained in equations (21),
(22), and (25) into formula (20) for the ray-tube area. The result
is

..... O

A = I + sin 7 (I - u I ) V sin _ cos _ cos _ ii _sin _ sin 2 to i - cos _o

- I + sin 7 (I - u t I ) - V sin @ cos _ cos _ 12 _-sin _ sin 0ot 3 o 2 cos 0 o

Svo _ o ( i11 _ 12
+ _ a _@ _@ _t a" 3 2 ) (26 )

This is the desired expression for A This expression is given
in terms of the derivatives of c o and v with respect to the ray

parameters, and these derivatives must now be calculated.

In the calculation of these derivatives, the quantities _ ,
, and _ are functions of ta alone. The derivatives of v

are obtained with some algebraic manipulation from equation (9) and
are

_v d_ sin _ _ d_ dd__a_- + 2- cos 7 dt + cos _ sin
_ta dta cos 0 a o

©

by _ _ cos _ (cos _ sin 7 + sin _ cos 7 cos @)
b@ cos2@

O

(27)

To obtain the derivatives of c o , we first differentiate equation
(23) again at the aircraft (with z variable) to obtain

dc -
o

a sin @ _ da _u n \
o o f i o o

2 d@ + u t dv + _ - dzcos _ o o cos @ dz dz
O

O

Equation (I0) for sin @o is also differentiated, and the

derivatives are eliminated. The quantity _z/_ is zero and

dz a sin 7_z a o

St a dt a sin

40



We can then express the derivatives of c o as

_c Sv ao sin e
__oo_ ut ..........-6t _a c os'3_0

a o o

d_o (cos sin 7 + sin cos V cos

du

a sinT<c I d no)ao _d'z_ ,o ..... OS _ d z -
+ _s'in _ o

(28)

_c a sin 8 cos b cos 7 sin
0 _V 0 0

6_ = ut o _7 - cos 30
O

(29)

In equation (2$) the derivative of u_. o with respect to z istaken with v constant in the fixed I_Yl) coordinate system.

Thus, d /dz is to be interpreted as sin v dUxo/dZ + cos v

duy /dz un°Both, dun,_,/dz and dao/dZ are_ of c ourse_ evaluated
at _he aircraft altitude only.

Demonstration of the galilean invariance of A is, of course,

not essential to the analysis. Here we outline such a demonstra-

tion. The quantity c o is altered by an added constant in a
galilean transformation in the x 1 direction_ while a constant is
added to the function ut(z) in a galilean transformation in the

Yl direction. However_ the combination of terms

_C
o 3v

_____ _ u t •
_t a o _t a

and the corresponding quantity using @ derivatives are galilean

invariant, as are the corresponding derivatives of v aloneo The
I and I - 2u t I + u_ I

combinations of integrals 12 - ut o I 3 o 2 o I
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are also galilean invariant. From these results it may be shown
from the expression (26) that A is galilean invariant.

Application in the program.- For each ray, the derivatives

of c o and v relative to ta and _ are calculated from (27),
(28), and (29) using information from the Aircraft Maneuvers

Section. The integrals of equations (2_) are computed along the

ray. The ray-tube area A is computed from equation (26) at the
same time the ray is computed.

Historical note.- The concept of ray-tube area in sound

propagation without planar, cylindrical, or spherical symmetry

appears in a solution by Rayleigh in 1878 (Sect. 284 of ref. 6)
with straight rays. Most discussions in the literature of ray-
tube area with curved rays have been confined to cases in which

the aircraft is in steady level flight (no dependence upon ta) ;
in these cases the solutions are much simpler than in the general
case.

Flow Near the Aircraft

The purpose of this section is to define the F-function used

in the analysis and to present an outline of the local theory near
the aircraft which leads to the concept of the F-function. The

F-function is needed as an initial acoustic signal in the basic

geometric acoustics calculation. The F-function can be directly
computed by linear theory from the geometry and lift distributions

of a slender aircraft. The reader uninterested in the details of

this computation may skip to equation (33) where the F-function as
used in this analysis is defined.

The initial conditions for the calculation of sonic boom pro-
pagation must be obtained from the flow field near the aircraft.
This section reviews the local theory near t.he aircraft which leads
to the concept of an F-function. This F-function is the function

in terms of which initial conditions are specified.

Thus we describe here briefly the linear solution for the flow

about an aircraft with particular attention to the outer asymp-
totic form of this solution. We assume_ for simplicity, that the

slender-body and thin-wing assumptions of linearized supersonic

aerodynamic theory are valid_ and that the aircraft may be repres-
ented by a combination of linear and surface distributions of

source and lifting elements.

We assume further, presuming the shape of the aircraft is

given_ that the problem of finding the lift distributions has been

solved. Thus we shall treat the lift distributions (and corres-
pondingly the side force distributions) as known. With the slender
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body assumption, the source distributions are obtainable directly
from the aircraft shape. For simplicity in notation, we assume a
single line distribution (fuselage or nacelle) and a single
surface distribution (the wing). A complete aircraft will require
several of each type.

For this section only, we use an (x,y,z) coordinate system
fixed with respect to the aircraft, with the undisturbed velocity
V in the direction of the x-axis. The z-axis is vertical; the

y-axis is lateral. The velocity potential in the undisturbed
flow is Vx; let V_ be the perturbation to the velocity poten-
tial. The reduced perturbation potential @ , which has the dimen-

sions of distance, may be divided into the part due to the line
distribution and the part due to the surface distribution. Each of

these may be divided into contributions from sources (representing
cross-sectional area), from lift (z-forces), and from side force

(y-forces) .

The line distribution contribution from sources is

-1 r, A' (x )dx
O 0¢ - R

--00

where

R- [(x- Xo )2- p2(y_ Yo
)2 _ iB2(z_ Zo)2]l/2

_2 = M 2 - I and y = Yo , z z o is the axis of the line distri-

bution; the integral is taken to the value of x_ for which R = 0
to the upstream Mach cone from the point (x,y,z . The lower limit

-_ simply means far enough upstream to include all disturbances.
The quantity VA' is the linear source strength distribution;

A(xo) represents the cross-sectional area of the body represented
by the source distribution_ and A' (Xo) is its derivative.

The line distribution contribution from lift is

®_ 1 f o)
2Tr9 V2-oo (Y - yo) 2 + Z - Z o)2

f dx
Z O

R

and that from side force by the same expression with (z - Zo)

replaced by (Y - Yo) in the numerator of the integrand and with

fz(Xo) replaced by f[(Xo) . The distribution fz(Xo) is the lift
force per unit distan on the axis of the line distribution.

43



Surface distributions of sources and lifting elements are

distributions on a cylindrical mean surface z = Zo(Xo,Yo) The
contribution to @ of the surface source distribution is of the
form

I tIxy_--- O _

2_ R

o ) dYo dXo

Here, t(xo,Yo) represents the wing thickness distribution meas-

ured in the z-direction, and t' its derivative in the x o
direction. The lift and side force contributions of the surface

may be expressed analogously; here f and fz are replaced by
distributions of force per unit projecYted area with an integration
over Yo •

We next pass to cylindrical coordinates (x,r,@r] with
r2 = y2 + z 2

and y- -r sin @r , z - -r cos @r • With this defi-

nition, the ray parameter @ will be given by @a + @r where @a
is the bank angle. Our purpose is to define for each value of @r
a body of revolution equivalent to the aircraft for a distant
observer. We define further

r (y ,z Cr) = -Yo r oo o o _ sin _ - z cos @r

s (y z '@r) - -Y0 cos _r + z sino 0 _ o 0 1-_

In terms of these variables, we can write

R-[(x -x )2 2 2 _s22o -_(r-r) - s]
0 0

Far from the aircraft, with x and _r both large but with

x - _r not large, the term So2 will be negligible. We drop this
term and write

i/2

R : Ix -x + _(r - r )] Ix -
0 0 x - @(r-r )]

0 0

I,/2

We next neglect x - _r - x o - _r o in comparison with _r and
write

0 0

In the expression for the contribution due to lift, making the ana-
logous asymptotic approximations, we replace the factor
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(_. - Zo)(X - Xo)[(Y - Yo) 2 + (z - Zo)2] -I by -_ cos @r and the

analogous factor for the side force by -_ sin @r • We also re-

place the dummy variable x o by

X --- X - _r
I O O

In the contributions from the surface distributions the

integrals with respect to Yo are taken with x I constant We
obtain thereby expressions in terms of new equivalent line dis-

tributions which are functions of Xl; thus, for example_ Aw

is defined

Aw(Xl'@r ) - _F t dy o

x!=c ons t.

Distributions fyw and fzw are defined analogously.

We now define an equivalent area distribution S'(Xl,@r)

which replaces all the others, by the relation

, (x) + P ,_(x__)
s' - A'(x I + Pro ) + Aw I pV2

where

- f (x + _r )sin ¢(_i): fy(xl + _o)C°S ¢_ z _ o

- f sin
+ fyw cos @r zw r

In these expressions r o is the value for the line distributions.

Assembling the terms together gives for @ the asymptotic ex-

pression

x-;_r s,(xz)dxl
@(x- _r,r,@r)= -I f .....2_i2__)J-/2 (x - _ - x_)1/2 (so)

--00

The distribution S'(x ,@r) is the area distribution of an

equivalent body of revolutlon on the x axis, as seen by an
The distri-

observer a large distance away in the direction _s_"
bution S'(x I) is the sum of two terms. The fir is A' + A_ ,
the x derivative of the projected cross-sectional area cut by

i _(_ )
the planes x = const. The second is proportional to i ,
the equivalen_ force distribution formed by the sum over planes

x I - const, of force components in the direction opposite to @r "
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With (x,y,z) fixed, the surface R = 0 is an upstream-
facing Hach cone in t.he space (Xo,Yo,Zo) . This represents a
surface of "coincident signals" for the point (x,y,z). When such

points are far from the aircraft, these surfaces are approximately
the planes x I = comet. (see fig. 9).

In an actual computation, the determination of the function
S' (x l,@r) may _be fairly complicated. The force distributions must

be obtained, of course. Interference contributions generally must
be computed (ref. II). If the slender-body approximation is

inappropriate for any line distribution, additional analysis is

needed to obtain the appropriate singularity distribution. The
inlet captured area and the exit jet area must be included with the

engine nacelle. Finally, the contributions from all line distri-

butions and all surface distributions are combined.

With S' assumed known, we differentiate equation (30) with

respect to x . The perturbation pressure Sp is given by
-pV2_ x . The result of the differentiation is

__ I C _ I Ap I q_ I

x = 7 P - H2 pa2 - H2 a - (2_r)I/2 Fi(x - _r,_r) (31)

where
X -_P YT

1 J S (Xl,@r) dx 1_i(x - @r,@r) = 7£ (3s)

Here we have introduced the magnitude of the perturbation velocity
q and the perturbation pressure Ap- paq , variables which are
appropriate for geometric acoustics. Equation (31) gives a solution

which fits geo_tiric acoustic theory. The r which aopears in the

factor (2___)- 2 is a ray-tube area_ x - _r is a phase, and _r
and x + _ are ray parameters. In this case of steady flight,

the solution is essentially independent of t.he second ray parameter
_hich will correspond to ta). Figure 9 shows the wave front

x- ¢3r- const, which are essentially t.he same family of planes as

those determined by constant values of the dummy variable x I .

Equation (32) defines an F-function in the way in which it is

usually defined. For the purpose of this analysis, a somewhat

different definition is used. In place of equation (31) we write

Ap q I

pa 2 - a - ri/2 F (33)
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Not important in our sonic boom analysis but basic to the

linearized theoretical aerodynamics of the aircraft is the relation

between the F-function and wave drag. The inviscid drag of the

aircraft may be divided into two parts - the wave drag represented

by energy in the wave system and the vortex drag represented by

energy in the trailing vortex system. The wave drag may be

.... represented by 2w

CD =f CD _ de r (36)
r

0

where oo

_ 1 j Fi(n,¢r) 2 anCD_ -r Sref
--OO

in terms of the F i defined in equation (32). A transformation

leads to the alternative expression

oo x

....lffo
CD_ - $ 2Srefr -oo --oo

- x ) dx ax (37)s"(_o)S"(_) _(_o _ _ o

Thus there is a direct relation between the F-function and the drag

of the aircraft.

The F-function_ as we have described it_ is a function of the

local phase L/L a (or x - _r ) and of the azimuth angle _r •
It is also dependent upon the aerodynamic state of the aircraft (in

dimensionless terms). This state is determined by the values of M

and C L , the center of gravity location and the engine operating
state_ with some minor dependence upon other parameters (in a

maneuver, for example). We include the dependence upon M and CL

in our notation, and write

, ,M c L) (38)s = s(n/n_ _r '

The quantities M and CL are known functions of time ta_ as is

the angle of bank _a = _ - _r - Thus, in the remainder of the

analysis, F is considered a function F(L/La,ta_) of phase and

the two ray parameters.

The linear theory described in this section does not give the

only method for obtaining F-functions. Any local aerodynamic
analysis carried out to a large enough distance from the aircraft
in the wave system will yield the F-functions. They may also be
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obtained from wind tunnel tests or from flight tests_ with perhaps
minor modifications in the consequent analysis because of nonlinear
effects.

For example_ let us consider that pressure measurements are
made with a microphone mounted under a balloon in an atmosphere
_ithout winds. The aircraft flies by at a distance r in level
flight. The pressure perturbation Ap is measured as a function
of the time _ from the appearance of the signal. The function F
is then obtained from equation (33). The phase argument of F in
terms of L is obtained from L = V_ . The nonlinear correction_
if needed_ may be carried out in two ways. One straightforward
approach would be to consider the measured F-function to correspond
to an acoustic signal that has already been distorted_ to assign an
initial value To of the age (defined below in eq. (_6)) to account
for this initial d-_stortion_ and to proceed as in the next three

- This approach would entail
sections with T replaced by T To A simpler method is to applyadditional analysis to compute To
the procedure of the next three secti°ns to the experimental case
in reverse_ starting with the pressure signature and going to an
F-function. In this reverse procedure_ segments of the phase may
appear in which F is undefined_ or rather is not uniquely
defined. This nonuniqueness does not matter in applications for
which the distortion is sufficiently great (T - To _ 0). One
correct way of filling the empty phase segments for the purpose of
this analysis would be by connecting the known portions of the
curve with straight line segments (with F then continuous).

Application in the program.- The F-function must be specified

as an input function Fi(L/La,t_a_%) The conversion factor Ff
is specified or calculated as a functi°n of ta . The function F

is then obtained from equation (3%) for use in the subsequent
arialys is.

Historical note.- The theory of this section was given by
Hayes in 19_7 (ref. 12)_ primarily as the basis of a method of com-

puting wave drag by means of equations (36) and (37). An alterna-

tive approach was given by Lomax in 19_ (ref. 13; see also ref.

14). An exposition of sonic boom theory in a uniform atmosphere by
Walkden in 1955 (ref. I_)_ based on an earlier paper of Whitham

(ref. 16), also uses an F-function dependent upon _r as a para-

meter. The term F-function stems from a basic paper by Whitham
(ref. 17).

Geometric Acoustics and Blokhintsev Invariance

The purpose of this section is to define an appropriate invar-

iant measure of the acoustic signal along each ray, one that is

valid globally. This measure of the signal will be expressed in
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terms of the F-function for the aircraft.

Geometric Acoustics is a linear acoustic theory based upon
the assumption that the solution at every point in the field
appears locally as it would in a plane-wave system. The wave
fronts are actually gently curved surfaces_ but locally they
appear to be planar. The local solution, therefore, takes the
form appropriate to a plane-wave system, with the perturbation
velocity q_ normal to the wave fronts and the perturbation
pressure Ap given by

Ap = _aq (39)

As in a plane wave system_ the quantity q is a function of phase.

When the undisturbed flow field is steady in a specific

inertial coordinate system: as in the case we are considering, the

time required for a signal to be propagated between two fixed

points is a constant. The pressure perturbation experienced at
each of these points is a function of time measured from the

passage of a reference signal. The function at the second point is

proportional to the same function at the first point. This
observation indicates that the time measured from the passage of

a reference wave front is a suitable choice for phase. The refer-

ence wave front is then the wave front of zero phase. The signal

phase measured from this zero reference is termed _ _ and in the
following paragraphs will be related to the variable L/L a in
terms of which F-functions are specified. An alternative demonstra-

tion that the time _ here defined is a suitable phase may be

found in reference _.

The fact that a directly defined, useful_ physical entity

is a suitable phase in this case is fortuitous and depends upon the

restriction to steady atmospheric properties. This convenient

element would not appear in an acoustic calculation in an unsteady

atmosphere, where a phase variable with no direct physical inter-

pretation would have to be used.

The ratio q/a is used as a measure of the signal intensity.

In a plane-wave system in a uniform atmosphere_ this quantity would
be a function only of phase_ constant on each wave front and thus

constant on each kinematic ray. With the atmosphere non-uniform

and with the wave fronts curved_ q/a is no longer constant on
each kinematic ray. In one approach to this intensity problem_

the intensity is expressed as an integral along the ray (refs. 18

and 19). In this approach the integrand always includes a term

proportional to the wave-front curvature_ which must then be
obtained from some other computation. The alternative approach
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which we follow depends upon theoretically established invariant
measures of the intensity. This approach requires the concept ofray-tube area.

In an atmosphere at rest, with no winds, volume integrals of
the Rayleigh acoustic ene_.gy density (ref. 6, Sects 245 and 29_)
are conserved. This acoustic energy density is pq2/2+ Ap2/2pa
Within geometric acoustics with equation (39) valid_ this energy"
density is simply pq . Half the energy is kinetic and half
potential. The energy flow down a ray-tube is pq2aAn _ where An
is the normal ray-tube area_ and is constant on a _inematic ray.
Thus, if q/a is known as a function of phase at one point on a
geometric ray, it can be predicted at another. Rayleigh (ref. 6,
Sects. 266 and 284) used essentially this approach to predict the
effect of density _and ray-tube area changes.

In an atmosphere with steady winds, an analogous invariance
result was found by Blokhintsev in 1946 (Sect. 7 of ref. 20_ or
ref. 21)_ valid only within geometric acoustics. A straightfor-
ward derivation may be found in reference 22, Sect. i. The invar-
iant density is pq2ca/a and the quantity that is constant along
a kinematic ray is tnls density times the volume flow c • A . We
express this constant quantity as c o times the square of a
variable VE with the sign of VE the same as that of q . We
have already defined A as A times the unit vector in the -z
direction. The invariant is thus

c V2 = q__ Ac a sin _
o a n

or, using the relation c = c cos @ (eq 14),n 0

VE(_ ta ¢)- q (pa2A, - _ sin _ cos _)
I/2

(4o)

The purpose of the c o factor in the definition of V 2 is to

make the subsequent analysis simpler and also to make V E gall-
lean invariant. Once VE(_) is known for a particular geometric

ray, we can solve directly for the pressure perturbation Ap(_) as
a function of the actual time t + _ using equations (39) and
(40). Here t is the time obtained in the ray tracing computa-
tion for the kinematic rays of zero phase.

At this point, we come to the critical step mentioned in the
General Description of the analysis_ in which a consideration of

a galilean transformation is inescapable. The local solution isg.
raven as a function F of L/L a and two ray parameters in a
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coordinate system moving with the velocity of the aircraft. The
global solution is of the form of a function VE of _ and the
two ray parameters t a and @ in a coordinate system fixed rela-
tive to the ground. In order to express the solution in terms of
VE(_) , we must relate both the dependent and _independent variables
in the two coordinate systems. Although what has technically to
be accomplished is the galilean transformation, much of the job has
already been done by the identification of ray parameters and phase.

The ray parameters give us no trouble, as the galilean trams-
formation has already been accomplished in the details of calcula-
ting the initial wave normals and of the ray tracing. The

is identified locally through the functions M(ta),parameter t a
CL(t a) , and @a(t_) . The local and global azimuth angles areconnected through e relation _ = _a + _r •

To relate the two phase variables, we use the stratagem of
introducing a third, local, phase variable which is readily inter-
pretable in either the local or ground-fixed coordinate system and
has the property that it is galilean invariant. Such a variable is
the distance s normal to the wave fronts, measured from the
reference wave front at a given instant. In the local coordinate
system, we have

s = L/M = L sin

The quantity L is distance from the reference wave front in a
direction ½_-b from the normal. In terms of the phase
introduced in this section, the distance s is

s = o o cos 0o

We equate the two expressions for s and obtain the basic phase

relation

La sin
co 0

0 0

The presence of the factor co in this relation indicates that

is not a galilean invariant quantity.

To relate the dependent variables V E and F , we follow an

analogous course. The dimensionless measure q/a of the signal is

clearly galilean invariant and may be expressed in terms of either

F or V E We equate the two expressions for q/a . This relates
the dependent variables, of course, but the connection is incom-

plete. The ray-tube area is singular at the aircraft_ is repres-

ented by the variable r in the local coordinates and by A in
the ground-fixed coordinates. We must then also relate the two

53



corresponding ray-tube area measures to a measure which is clearly
galilean invariant. Such a galilean invariant measure is time
(t - to) elapsed from emission of a signal from the aircraft axis.
In the local coordinates of the previous section_ the quantity r
is related to this time by

r - ao cos b (t - t )o

The definition (33) of the function F leads to

q F

= [a cos b (t - t )]I/2 (_2)
o o

For the function A we must carry out a local calculation of
equation (26) near the aircraft. To lowest order we have

' sin 7 o Sv V sin @ cos b cos 7A = - I + --- +
sin _ sin @ sin @ _@ cos @

o o o

cos3e / _c _v/_]× a'2' _o o _ ut ___ (z - z)sin3@ < _ o _ o
o o

The quantity (Zo- z ) is approximately equal to a sin 8o(t - t_!.The other terms may be re-expressed with the aid of equations (I
(27), and (29). After some calculation_ we obtain

2
f-- \

a cos _ cos _ - t )
A = o o o

sin sin o
0

From equation (40) we obtain

a

i/2
(sin _) V E

a3 c os 2 2[Po o b cos 0 (t - t )]I/2
o o

Equating the two expressions (%2) and (%%) fo_ q/a gives
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2 s2 eo_ /2& cos _ co
Po o : F

V E -- sin

This is the desired relation_ giving V E in terms of the F-
func ti on.

Application in the program.- For each ray investigated j the
....function V is computed from equation (45). This is expressed
in terms of Ethe independent variable _ obtained from equation

Historical note.- The invariance result of Blokhintsev was

found independently by Chernov in 19_6 (ref. 23)_ but only in the

special case of irrotational flow. Garrett (ref. 2_) noted that

Blokhintsev's result was equivalent to conservation of volume
integrals of pq2/_ where pq is the Rayleigh acoustic energy
and _ a frequency, both measured by an observer moving with the

fluid. Hayes (ref. 25, 1965) showed that Garrett's result remains
valid when the undisturbed flow field is unsteady_ and that the

quantity pq2aAn/_2 = pq2cnc • A/m2a is constant on a kinematic
ray in this case, where An is a ray-tube area cut by wave fronts
and m is a frequency measured by a fixed observer. Bretherton

and Garrett (ref. 26_ 1968) present a general theory governing wave

motion in moving media.

Signal Distortion and Age Variable

The purpose of this section is to define an "age" variable and

to apply it in the calculation of the nonlinear distortion of the

acoustic signal. This distortion appears in the propagation of

acoustic signals over large distances. The distortion is caused by

a weak_ nonlinear effect resulting from small changes in propaga-

tion speed which are proportional to the strength of the signal.

Although the nonlinear effect is locally weak_ it is cumulative and,
as a consequence, the total distortion of a sonic boom signal is

far from negligibly small. Shock waves may appear in the signal
or two shocks (or more) may merge into one. The process of distor-

tion is governed by an age variable which is defined and applied in
this section. The study of the location and motion of shock waves

is to be covered in the following section.

We make here a simplifying assumption_ one made by all invest-

igators of sonic boom. We assume that in a lowest-order approxi-
mation the phase shift due to the change in propagation speed is
the only nonlinear effect that needs to be considered. Thus, any
nonlinear effect on the rays, the ray-tube areas_ or the Blokhint-
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sev invariance is assumed negligible. Although no comprehensive

theory is available to fully justify this assumption_ it is not

made blindly. The neglected effects may be shown to correspond to

higher-order terms in a small parameter for level flight in a

uniform atmosphere (re'f. 27_ section on Finite Systems). In
general_ it appears likely that this assumption fails to be valid

only when the assumptions of geometric acoustics fail or when the

perturbations are no longer weak. Nonlinear effects on rays are

discussed by Whitham in reference 16 and form an essential part of _

his method for predicting the trajectories of finite strength
shocks (refs. 28 and 29).

The propagation velocity_ equal to c = an + u in the undis-

turbed fluid, is changed by (Aa + q)n _ where Aa is the pertur-

bation in the speed of sound. This quantity is given by

Aa -
7e - i £p 7e - I

2 pa - 2
q

so that the change in propagation velocity is simply (7 e + l)qn/2 .

If the phase were expressed as distance s measured back-

wards normal to the wave fronts, the signal would experience a

phase shift arising from the change in propagation velocity given
by

ds 7e + I

dt - - 2 q

where t is time along the ray, that given by equation (I$).

In treating the phase_ we must distinguish between the actual

phase variable and the phase variable according to linear theory.
The nonlinear effect is basically the difference between the two.

We term the actual phase _I _ defined in the same way as before,
and term the linear phase _ . The local distance phase s is

The expression for the change
related with _i by ds = cn d_l _ _Iin propagation velocity in terms o becomes

d_ I 7e + I q 7e + I

dt 2 c - 2
q

c cos
o

This equation describes the phase shift for a particular point on

the signal_ and thus with the linear phase _ fixed. The point

on the signal found at _ according to the linear theory is

actually found at _i , which is a function of _ and t .

We express q in terms of VE using equation (_0), and
obtain
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dt
7e + I VE

2Co cos 0 (pA sin 0 cos 0)1/2

The variable t may be replaced by -z through equation (I$). We

wish to transform the equation for the phase shift to a canonical

form. We introduce the age variable _c defined by

7e + I/ d(-z) -- (46)
2Co a sin @ cos O (pA sin O cos 0) 1/2

-Z

The phase shift is them governed by

d_i___ VE (% _)
d_ _-- i _

in the canonical form desired.

With our basic assumption that the linear results for the

ray-tube area amd Blokhimtsev imvariamce still hold with only

the phase shifted_ we must have

VE( _, _) _ VE(_) ( _8 )

where _(_) is the linear solution (independent of t or
because of the invariance). Here the actual phase

satisfies equation (_7) at constant _ and also the _nitial

condition _i : _ at T : 0 . The solution of equation (67)
is then

_1 = _ - TVE( _ )

The linear phase _ is a fun.ction of _1 and T which ma_
become multivaiued in _ . In this case the solution (_ )

(_9) must be modifie_ to take into account the presence ofa_id

shock waves. This modification is explained in the following

section.

The solution (_$) and (69) is the general solution to the

first-order partial differential equation

(_9)

_v _v
E = V E (5o)
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This equation may be considered a canonical one for inviscid wave
propagation in one direction. One approach to the problem of

calculating the nonlinear distortion lies in first deriving an

equation of the form of equation (_0). Equation (_7) or its

integral (J49) gives t.he characteristics for equation (50) and its
solution by standard methods is that of equation (_8).

If V E is set equal to the _I derivative of a function
in equation (50) and the resulting equation is integrated with
respect to _I _ the result is

(51)

We have here assumed that the function _ is zero for sufficiently
large negative _1 with the consequence t.hat the additive arbi-

trary function of T from the integration is identically zero. In

the following section, we define the function _ as an integral
over _ and use its properties to locate shocks. Equation (51)

may be considered as an equivalent of equation (50). Actually_:because of its properties when there are shocks, the function

contains more information than does VE .

If the F-functions are obtained experimentally from wind-
tunnel or flight test results at distances from the aircraft at

which T would not be negligible_ a correction may be needed.

This could involve a correction transforming F to an equivalent
F as mentioned in the section_ Flow Near the Aircraft. An alter-

native method would require calculating an initial value of T in
equation (4.6) which is not equal to zero.

If T o_ets very large_ the signal shape approaches that of

an N-wave. With the shocks properly taken into account, the

asymptotic behavior includes a maximum to IVEI which is propor-
tional to T -I/2 and a total phase difference between head and

TIT2tail shocks whic,h As proportional to The presence of t.he
-1/2

factor p in the integral of equation (_.6) indicates that for

downward propagating rays in a real atmosphere the integral will

be convergent; thus T approaches a limiting value TI as z
approaches -_ . The signal in terms of V E approachesimthe

limiting shape VE(_I_Tlim) . Thus the signal shape "freezes"
and does not become the ever-thickening N-wave of common farfield

theory. This freezing effect is discussed in reference I.

To illustrate the freezing effect a simple example is
instructive. With level flight in a constant temperature atmos-

i
phere the asymptotic value of the age in a downward (-½_> _ >g_)
direction is proportional to
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OO

f (z - z)-1/2 exp[-½_(z - z)] d(-z) :0 0

-Z
0

where B-I is the scale height of the atmosphere.

is

The corresponding finite integral in a homogeneous atmosphere

Z

f _ : - z)I/2(z - d(z) 2(zo
-Z

0

and the two integrals are equal if z o - z = _/2_ . The asymptotic

signal shape in the real atmosphere is_ therefore, the same as it
would be in a homogeneous atmosphere at an altitude _/2 scale

heights below the aircraft.

Application in the program.- For each ray, the variable
is calculated from equation (_6) at the same time the ray and ray-

tube areas are calculated. At the ground the original phase _ is

transformed to the actual phase _i by equation (_9)_ giving

thereby the function VE(_I_ T) at the ground. No provision is
made for the correction required if the F-function is obtained

from a measurement made a large distance from the aircraft flight

axis.

Historical note.- The solution (_$) and (59) was obtained by

Poisson in 1_307 _ (ref. 30) for plane waves in a constant-temperature

gas (Te = I). He obtained also equation (51) corresponding to this
solution_ with _ a velocity potential. In 1560_ Earnshaw (ref.

31) showed that with a polytropic gas the factor ½(Te + I) which

appears in equation (4-6) must be included in the analysis. An
equation of the form of equation (50), although equivalent to
Poisson's integral (51), seems not to have appeared before the
issuance of a report of Chandrasekhar in 19_3 (ref. 32).

With planar waves in a uniform gas, the age variable is simply

proportional to the distance coordinate. The simplest cases with
variable ray-tube area are those with cylindrical, spherical, or

conical symmetry. In these cases, for N-waves in a uniform atmos-

phere, Landau (ref. 33) obtained the correct laws. The solution
with a general signal_ corresponding to that of this and the
following section, was obtained by Landau and Lifshitz in 19_

(ref 3ll- t with cylindrical and spherical symmetry and by l_ithamin 1952 ref. 17) with axial conical symmetry (flow about a body

of revolution). The application to flows with general conical
symmetry_ with the azimuth qb as an independent parameter, was
made by Hayes in 195_ (ref. 27, section on Finite Systems). The

arbitrary dependence of the solution of q_ here involves the
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principle that nonlinear effects on the rays are negligible. Ray-

tube areas not based upon solution symmetry appeared in the age
variable used by Rao (ref. 35, 1956) for maneuveri_g flight in a

uniform atmosphere with strai,_ght line rays. Here t.he assumption
that nonlinear effects on rays are negligible is implicit.

Variable atmospheric properties appear in the age variable _

used by Whit.ham (ref. 36, 1953) with spherical symmetry in a study
of weak shocks in stars. Arbitrary area and fluid properties were

combined by Hayes in 1957 (ref. 37) without consideration of winds. _
Several incorrect age definitions appeared in the Russian litera-

ture for the case wit.h steady winds. In 1962 Ryzhov and Shefter

ref. 22) used the correct one but applied only to N-waves. Hayes
ref. 38_ 1963) presented an analysis with winds similar to that of

this section but made an error in the definition of the age (a
factor a/c n is required under the integral)i this paper includes

an algorithm for ray-tube area with winds. Ouiraud (ref. 19, 1965)
uses an age variable_ but one defined somewhat differently because
he does not use Blokhintsev invariance or ray-tube areas.

The freezing effect_ although inherent in the age variables
appropriate with varying atmospheric density, appears not to have
been discussed before reference I. The integral involved with
level flight in a constant temperature atmosphere is an error

function and appears in a related form in the appendix to a 1955
paper of Busemann (ref. 39).

Shock Location

The purpose of this section is to show how shock waves which

appear in the distorted si.gnal may be located. In the algorithm
this is done at the same time the distorted signal is calculated.
In general, with the age _c sufficiently large, t.he distorted

signal VE(_I,T) is multivalued in _I and, thus, physically

meaningless. The actual signal contains one or more s.hock waves,
and a proper treatment of the shocks eliminates the multivaluedness.

A shock wave moves faster than t.he acoustic propagation speed in
front of it and slower than the propagation speed behind it.

Thereby, parts of the signal are propagated into the shocks (are
"eaten up" by the shocks) and this phenomenon permits the remaining
part of t.he signal to be single-valued.

The procedure for locating the shocks utilizes the function

_(_I_T) introduced in the preceding section. We drop the T in

the notation and write simply _(_I) • In order to have

defined over the entire range of _ _ it is defined as an integral

over _ _ or_ equivalently_ as a Stieltjes integral over _i(_)
Thus we write
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(52)

This function satisfies equation (51) over the entire range of _ .

The lower limit -_ simply means sufficiently negative to begin

before the signal commences. The portions of the original signal

VE(_ ) which appear in the actual signal correspond to segments or

branches of the multivalued function _(_I) , chosen in such a way
as to make up a single-valued function.

The bisector law for a weak shock states that it moves with a

normal speed midway between the acoustic propagation speed in front

of and behind the shock. This law may readily be proved, and

requires only that the curvature of the fluid isentrope be contin-

_ous. In terms of our notation, the law states that

- (vE + ) (53)
_ _\d-4 /shoc k - _ -_ +

where + and - indicate the two sides of the shock. We use [ ]

to denote jump in a quantity; thus [_] = _ -__ . The
derivative along the shock of [_] is calculated using equations

(51) and (53)_ and is

1 ( 2 2 d_l (V E -VE ): 0
: -ff VE - VE ) + \d -/shock +

The function _ is continuous in the original signal at _ : 0 ,

so that [_] is initially zero at the point of formation of any

shock. Thus, ] remains continuous across any shock. It is clear
that this property is preserved when two shocks merge into one,

and that the property thus holds in general.

We conclude then that the single-valued function of _I made

up of segments of :_(_1) is a continuous function. This result
we may term the equal-area law. In its simplest form the law states

that a shock_ which appears when the final curve jumps from one
segment of (_I) to another, is located where it cuts off equal
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Two important properties of _(_ I) are not evident from the

analysis above, and we state them without proof. One property is
that there is only one continuous function made out of segments

of _(_I) for which d_i/d _ > 0 . The principal consequence of
this property is that we do not have to trace the trajectories of
the shocks from _ = 0 but may locate them at a fixed value of

without considering their history. The second property is that the

desired function is precisely sup_(_l) , the superior limit of

_(_I) , defined to be the function obtained by taking the largest
value of _ available for each value of _ . This property sim-

plifies significantly the process of locatmng the shocks in a com-

plicated case.

The equal-area law may be established in other ways than that

of using the bisector law. one alternative approach invokes the

principle of conservation of mass, identifying _ with a Lagrangian
variable or with a particle displacement variable. Another approach

involves establishing equations with viscosity and using the limit-

ing process _-_ 0 . In the second of these alternative approaches,
the property that the desired function is sup_(_l ) appears

naturally.

The process of locating the shocks may now be described. The

function :rJ(_ 1) is obtained, and the single-valued function
sup _(_i) is identified° The function VE(_I, _) is then plotted,
retaining only those segments of _1 which appear in sup_. The

corresponding function AP(_I,_) is calculated and gives the desired

pressure signature. The parts of the original signal corresponding
to segments of _1 not represented in sup_ are the parts eaten
up by the shocks° Where there is a jump from one segment of _I to
another in sup_ , there is a corresponding jump in VE and Ap ,

and such a jump represents the shock.

The function _(_I) may be obtained by direct integration,
but a somewhat different construction is advantageous. Together

with the original function VE(_) , we require its integral

From equation (_9) we have

I dvE( )
i -

at constant T • Applying these relations to the integral (52),

we obtain
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I 2

with equation (_9) giving the relation between _
Equations (_9) and (55) may be combined to give t_e

and _ .
relation

(55)

_
J( z) - So - 1' ' -2_ _ _- (56)

The graphical method of Burgers (ref. #0) is a method of finding
sup _(_i) from a given "summation curve So , using equation (56).

The pressure signature Ap is to be calculated from VE using
equation (_0) and the relation Ap- paq (equation (39)). We are

usually interested in the pressure at the ground, and must take
into account the reflection of the wave system from the ground.

This reflection may be visualized as coming from the mirror image
w±_h respect to the ground of the impinging wave system, and the

reflected pressure signature appears superimposed on the incoming
one. Very near the ground, say at a height h , the reflected

pressure is the same as the incident pressure, with a phase delay
(in _I) equal to 2h/a sin 0 . If we assume that h is small

enough that the phase delay may be neglected, the effect of the
ground is simply to double the pressure. This factor appears as a
reflection factor equal to 2 .

, !

In practice, an empirical reflection factor K R other than
2 is often used. The final expression for the pressure signature,
from equation (#0), is then

Ap( 1) - KR q:-)(pa2/A sin e cos e) 1/2 (57)

The pressure signature far from the ground, with no reflection taken

into account, is obtained from equatiom (57) simply by setting the
factor KR equal to I . Our analysis and algorithm for cal-

culating sonic boom signatures are completed by equation (57). The
ray tracing and ground intersection calculations discussed earlier

tell us where and when the pressure signatures occur.

The pressure on the ground at any instant is approximately

constant along the ground intersections of the wave fronts ( the
Y i direction), and has its main variations in the direction normal

to- these ground intersections (the x 1 direction). Distance in a
plane z- c onst. normal to the wave front intersections (in the
x 1 direction) from the zero phase wave front may be used as a phase
for describing the pressure on that plane at a given instant. This

distance phase variable is equal to Co_ 1 . This phase is galilean
invariant_ it was not used in the analysis as the basic variable

because _1 appeared to be a more useful quantity.



Applicationp o ramForeac ray,thefunctio 
is obtained f'rom equatio_n " (54-), and the multivalued function_(

from equations (55) and (_9)- The branches corresponding to

sup<(_l) are identified, and Ap(_l) is calculated from equation(57

Historical note.- Shock waves remained ill understood through

almos_ all 'd5 t_e: nineteenth century. The bisector law was given

by Crussard in 1913 (ref. _I), who described what we would term a
half N-wave in a constant-area duct. This law was used by Landau

and Lifshitz (ref. 3_, 194_) to obtain the equal-area law (see also

ref. 17). In 1950, E. Hopf (ref. _2) gave a thorough study of

Burgers equation with particular attention to the limiting process
-_ 0 . This study establishes the equal-area law through this

limiting process and serves as the basis for Burgers' graphical

method (ref. _0). Landau (ref. _3, 19_5)mentioned conservation of
mass as the basis for the equal-area law, but without giving

details. Lighthill (ref. 4_, 1956)noted that the equal-area law

is equivalent to continuity of a Lagrangian variable. Middleton

a,. areatical calculations obtaining ) through direct integrations°

A Note on Viscous Effects

Although they are not properly part of this analysis, this

exposition would be incomplete without some mention of viscous

effects. In sonic boom problems of practical interest, viscous

effects are sufficiently weak so that their only effect is to

give finite thickness to shock waves. This thickness, though

finite, is generally several orders of magnitude smaller than any
of the other characteristic scales of the problem. Hence the

treatment of shocks as strict discontinuities is completely sound.

In certain other problems, as for example of acoustic propagation

at ionospheric heights_ viscous effects are important. Here we

indicate briefly the governing equation, and describe a few of

its properties.

As in much of our development, we take advantage here of the

fact that the wave system is approximately a plane wave system.

The viscous effects are considered to comprise only viscosity
and heat conduction. They appear, in a coordinate system (s,t)

moving with the undisturbed inviscid propagation speed, in a.

diffusion term of the form

_V E I _ (re , (58)

-- y _ + _' + .... c'p /_2
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Here s is the distance coordinate which serves as the phase!

variable, _ and b are the shear and dilatational viscosity

coefficients, Te is the ratio of specific heats of the gas_
is the specific heat capacity at constant pressure_ and k is t_e

heat conduction coefficient. The variable VE in equation (58)

may be any intensity measure_ but it is identified here as the VE
defined earlier. The nonlinear term corresponding to that in
equation (50) has been omitted.

We next change the variables t and s to the corresponding
variables T and _I and include the nonlinear term The
result is

whe re

(59)

N : I_--<3b + b' + (T e - 1)k) d___9 _I_2
Cp d-rk_Z- /

is a positive reduced kinematic viscosity. The quantity ds/d_l
As simply cn = c o cos @ , while

dt 2c cos @(pA sin e cos e) I/2O

(re'+'1 ....

from equation (%6). We obtain thereby

N : 2(pA sin _ cos @)I/2 (_ (7e _ l)k _-- (7e + l)pc cos (_ _ + _' +
o Cp

(60)

Equation (59) is a generalized Burgers equation, generalized in
that the quantity N may be a general function of T .

Lighthill (ref. 44) introduced the concept of the Reynolds

number of a lobe of a solution of Burgers, equation. As applied

to equation (59), we identify a lobe as that part of the signal
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between two consecutive zeros of VE , at _I - a and _I - b .
Lobes can disappear with increasing • , but no new lobes can
appear. The first moment _I of the lobe is

b
f
a

The Reynolds number of the lobe is

Re(T) : N

If the Reynolds numbers of all the main lobes of a signal are very

large_ viscous effects are unimportant and only determine shock
thicknesses. If the Reynolds number of the largest lobe is small,

nonlinear .effects are unimportant.

The first moment of a lobe obeys the equation

"ST- = -_NLk-y_I./b ]

From this result it may be shown that I_iI cannot increase. It

is constant for N : 0 only if there are no shocks in the lobe for

which V E changes sign. The Reynolds number can increase, but

only if N decreases sufficiently fast with T .

The second moment of a lobe is defined

=Ja 1

and represents the wave energy in the lobe. It satisfies the

equation

(63)
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This moment cannot increase. It is constant for N = 0 only if

there are no shocks in the lobe. These results were given in the
paper for which reference 37 is the abstract.

Application in the program.- Viscous effects are not included
in this program.

Historical note.- The combination of coefficients which

appears in equation (58) and which governs viscous weak wave propa-
gation appeared in a 1910 paper of G.I. Taylor (ref. 46) on the

structure of weak shock waves (with _' = 0). Lighthill (ref. 44_
1956) showed that Burgers, equation was the appropriate one for

general planar weak wave propagation for a calorically perfect gas.
A generalized Burgers equation of the form (59) was obtained by

Hayes (ref. 37_ 1957)without winds. Hayes (ref. _7, 19_8)also

showed that the combination of coefficients in equation (58) was
appropriate with a general equation of state as well as for a

perfect gas. The inclusion of winds in a derivation of equation

(59) was done by Hayes (ref. 38, 1963) but with an error coming
from the error made in the definition of T An equation of the
form (59) was obtained by Guiraud (ref. 19, i965) in terms of his

equivalent of the variable VE . Further details and discussion

of viscous effects may be found in references _ and _7.

Summarizing Statement

At this point, the analysis is complete and ready to be used

for computing sonic boom. Here we briefly summarize the algorithm
for obtaining pressure signatures in the form realized in the
computer program.

To compute sonic boom pressure signatures in a stratified
atmosphere-

I. Specify input data.

a. The thermodynamic properties of the atmosphere and the

horizontal wind velocities are needed as functions of the

altitude z and are used throughout the calculation.

b. The aircraft Mach number M _ its heading angle _ _ its

climb angle 7 , and its bank angle @a are needed as
functions of the time ta The initial location of the

aircraft is needed to start the trajectory calculation.

As an option_ aircraft load factors may be specified as
functions of time t

a •

c. F-functions for the aircraft are needed in sufficient

number to serwe over the range of aircraft Mach number
covered in the trajectory.
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• Calculate aircraft maneuver functions using lb.

a. The aircraft trajectory_ xa(t a) _ ya(ta)_

calculated.

and za(ta) _ is

b • The derivatives of heading_ climb_ and Mach angles_ d_/dta_

dT/dt a _ and d_/dt are calculated_ either directly from
the input data or _aptionally)from aircraft load factors.

These derivatives are needed in the ray-tube area calcu-

lation 4b.

•
Calculate the initial wave normals using lb.

The orientations of the initial wave normals_ parametrized

by their azimuth angle @ , are needed to determine the

invariants c o and v used in the ray calculations _.

Calculate rays and functions along rays using 3.

a • The rays_ described by functions x(ta_@_z)_ y(ta,@_z)_

and t(ta_@_z), determine where and when the sonic boom

signal hits the ground.

b • The ray-tube area A is calculated along each ray using

2b. This ray-tube area is used in calculating both the

age _c and the final pressure signature 6c.

C • The age • is calculated along each ray.
in calculating the signal distortion 6.

This is used

Calculate the linear acoustic signal on each ray.

The function VE(_) is obtained from an F-function by a
transformation of both dependent and independent variables.

The integral So(_) of VE is also calculated.

• Calculate the distorted pressure signature.

a •

b •

For the age at the ground_

VE(_I,T) and its integral

calculate the distorted signal
.

Locate the shock waves using _ .

C • Calculate the final pressure signature Ap(_I) using a
selected reflection factor. This is the desired output.

The logical order of the algorithm follows closely that of the
theoretical analysis_ with one exception. The age is computed at

the same times as are the rays and ray-tube area rather than later

with the distorted signal.
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COMPUTERPROGRAM

General Description

The computer program for solving the preceding sonic boom
equations has been Written in FORTRANwith the aim of obtaining a
versatile computational technique adaptable to a variety of
computers. This program was developed on an IBM-II30 and has also
been run on a CDC-6600. A complete program listing for the CDC-
6600 is given in Appendix A, and a sample printout appears in
Appendix B. This printout will be discussed in detail in the next
chapter, COMPUTATIONRESULTS.

The organization of the program is shown in figure 12. The
input processor reads input data and converts them to appropriate
units and format for use in the subroutines. The input data are
then listed on the output sheets (Appendix B) for identification
and checking purposes. The program next computes and lists out
pertinent maneuver data at the selected initial time t a . These
outputs include aircraft location, Mach number, direction angles,
and derivatives. The program then proceeds to the ray path and
ray-tube area calculations beginning with the ray parameters @ = 0
and t a . The program computes the ray trajectory, angle with the
horizontal (cos @) of the wave normal, the ray-tube area, and the
age variable. These outputs are listed as functions of altitude
z ; the time and (x,y) coordinates are cumulative from the first
maneuver point. When a stopping condition for the ray trajectory
is reached, such as z- 0 , the program computes phase variables
and the _-function, and utilizes the F-function to determine the

distorted pressure signature. These output quantities are then

listed in the order of increasing values of L/LA . At each ray
intersection with the ground, the program stores parameters which

give the location, time_ and maximum pressure of the calculated

signal. The program then returns to the same maneuver point (ta) ,
increments the ray azimuth angle @ , and proceeds again through
the ray tracing and pressure calculations. When calculations for

the set of rays are completed corresponding to the maneuver point

ta , the program proceeds to the next maneuver point ta+ I and
the ray tracings are repeated. In the event the ray-tube area

diminishes to zero during its traverse, or if the ray becomes

horizontal, the calculation along that ray stops. After completing
all of the maneuver, ray tracing, and pressure sequences, the
summary data which have been saved for each ray are used. Linear

interpolations are made to determine the locations of the rays and
maximum pressures at the same elapsed time t . Thus, ground shock

intersection coordinates are made available, together with indica-
tors of boom intensity there.
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Subroutines and Operations

The program consists of a master program_ SONIC_ and nine-
teen subroutines. Figure 13 gives a representation of the re-
lationships among these subroutines. A brief description of
their functions is given in the following paragraphs. Numbers
correspond to those shown on the flow diagram.

I. SONIC This is the master program which initializes and
calls the subroutines. It also serves as the main program for
the maneuver calculation.

2. INPU This subroutine reads in all input data_ checks them
for self-consistency and validity_ and prints out a copy of the
data for comparison and problem identification.

3. ATM0 This program calculates atmospheric data when using
the standard atmosphere option. For a given altitude z , the
corresponding temperature_ pressure_ density_ and speed of sound
are found. The altitude above sea level must be less than
170 600 ft (_2 km).

4. ANGLE This routine corrects input data so that no two con-
secutive angles are more than 180 ° apoart ; for example_ 25 ° and
-190 ° would be changed to 25 ° and 170 , respectively.

5. DERM2 This routine calculates the integrands used in

solving for the maneuver path.

6. 0UTM2 This program controls printing of the maneuver out-

put. When a printout point is reached_ subsidiary variables such

as q_ and _ are calculated.

7. iNPOL This is a routine to perform linear interpolation

for a siY_gle variable.

$. LAGRA This program carries out quadratic interpolation for
nonequispaced points. The function value and/or its first deri-

vative is produced.

9. AREA This program controls the calculation of the rays,

area_ and pressure. It saves the ground intersection points and

provides for the calculation of all @'s .

i0. DERIZ The calculation of the integrands for the ray and

area integrals is carried out by this routine.

ii. 0UTPU This program calculates the age function using

Simpson's rule for integration. It provides for printing ray,

area_ and age data at printout points.
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12. DERPR This program calculates the integrand required by
the pressure calculation.

13. OUTPR Evaluation of phase distortions _ _ _-functions,
and pressure data_ and printing of them_ are carried out by this
routine.

14. NODE This routine provides for the solution of a set of

n first-order ordinary differential equations or integrals. A

Runge-Kutta-Gill (RKG) starting procedure and a highly stable
Adams-type predictor-corrector method are used.

15. PASS This is an auxiliary routine used by NODE when
evaluating integrals.

16. GROUN This program retrieves the ground intersection data

and reshuffles it to provide tables of ray location and maximum

pressure in order of increasing time for each maneuver point. It

then determines the ground intersection contours for equal time
on the ground.

17. INTEP This program provides for the simultaneous linear

interpolation of x _ y , and pressure for a given value of time.

18. Mow
location K .

This routine moves tabular data from location J to

19. RESTA This is a routine used to save data for restarting
the problem at a later time.

20. iNITAL This routine provides for starting a problem from
previously saved data.

Three sense switches (SS) may be used as follows-

Sense Switch Function

SS-I

SS-5

Restart solution from data saved on Tape 9.

Print out during all integrations if trouble
is suspected.

SS-6 Stop calculations at end of next ray trace

and pressure calculation. Save data on Tape 9
for future re start.

The names of variables (FORTRAN symbols) which are used in
the program are identified in Table i. Comments which will be

listed by the program when appropriate are shown in Table 2, in-
cluding suggestions for correcting errors.
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Program Utilization and Instructions

This section describes how to set-up the inputs for utili-
zation of the digital program and explains applications of the
equations presented in THEORETICAL ANALYSIS. Details which are
needed for setting up a card input deck are presented in Tables
3_ 4_ and 5 and explained in the following paragraphs. Table 3
shows how input data are arranged on punched cards_ giving the
data formats and notes relating to their set up. Table 4 pre-
sents definitions of the input nomenclature and option numbers_
whereas Table 5 lists the units used in the three choices of in-
put units. The following subsections are labeled to correspond
to related sections of THEORETICAL ANALYSIS.

The Atmosphere.- The inputs of tabular atmospheric data are
made on the sets of cards labeled Cards 5, 6, and 7 in Table 3.

The temperature and either the pressure or the density are tabu-
lated for various arbitrary altitudes in ascending order. Either

the pressure or the density table is used, not both. A separate
card is used for each altitude. The units are selected according

to Table 5_ choosing a number for IUN!T according to Table 4. If

the 1962 U.S. standard atmosphere is desired_ ISTAN = i_ and

Cards 5 and 6 are omitted from the deck. The wind magnitude and
wind direction are listed for various altitudes on Cards 7 The
altitude on Cards 5_ 6_ and 7 may be geopotenti&l or geometric_

selecting a corresponding digit for IALT (Table 4).

These temperature, pressure, and density tables are interpo-

lated linearly, whereas the wind table is interpolated quadratically.

The number of altitudes is limited to 25 and should be selected

carefully depend" _ their change in gradients to avoid unaccept-in 6 on

able errors in the interpolation.

Aircraft Maneuvers. - Physical data regarding the aircraft

are placed on Card 3. The altitude HG is the height of the

ground above sea level whereas H0 is the initial altitude of the
aircraft above sea level. The initial values of the x_y coordi-

nates of the aircraft are set to zero within the program. Its

position and altitude at later times are calculated using equa-

tions (2) based on the maneuver inputs of Cards 8. The wing
loading WS is used only in an auxiliary calculation of force co-
efficients CL and CT - CD (eqs. 3 and 4)_ and does not enter

into the sonic boom calculation here (except indirectly through

the F-function values). The aircraft length LA is used as a

reference length_ whereas the radius of the earth is used in con-

versions between geopotential and geometric altitudes in the at-

mospheric functions.

The maneuver information is placed on Cards 8 as functions

of increasing flight time. For Option i (IH = i) the axial and

75



lifting load factors, Mach number, flight path angle, heading
angle, and bank angle are input using a separate card for each
flight time. The inputs should, of course, be made consistent]
that is, the Mach number and angles should be values which corres-
pond to the load factors nT and nT, . Equations (5) and (7 1
are used to obtain the time derivatives For Option 2 (IM = 2),
the load factors are not required. These tables are interpolated
quadratically_ so that at least three maneuver cards are needed.
The time derivatives are obtained by calculating slopes of quad-
ratic curves fitting the data. On Card 9 are given the initial
time and subsequent time intervals along the flight path for
which rays are to be initiated.

The force coefficients are determined using equations (3) and
(g) wit.h the dynamic pressure qoo calculated in t.he program. In
Option 2_ the load factors used in these equations are given by

n_ = cos V and nT - sin 7 to provide approximations to com-
p ete the digital program output listing. This substitution is

exact only for nonaccelerating, straight flight.

Initial Wave Normals. - The ray parameters are specified by
the time t a (Card 9) and the azimuth angle qb . This angle is
first set to zero within the program, and then incremented by an

amount Aq5 (DELFI) after each ray-path integration until _MAX
(FIMAX) is exceeded, as input on Card i0. The negative incre-

ments -Aq5 are then taken until _M.&X is exceeded. For a prob-
lem which is symmetric in _ , the mnput DELFI can be negative
to avoid, duplicate calculations of the pressure signatures at
+_ and -_ . The values of v and sin 0 are evaluated

using equations (9) and (i0). o

Mach Conoids and Ground Intersections. - Each time a ray

trajectory intersects the ground_ its location, arrival time, and

peak pressure are saved in a special table. This peak pressure
is selected from the array of pressures (Ap as functions of

phase _) which are determined_ but not saved in other parts of
the program.l After all maneuver_ ray tracing and pressure

calculations have been completed_ these saved data are interpo-
lated to obtain intersection data at specific arrival times at
the ground_ as follows.

i) These pressure values may be useful indicators of the

actual pressure increment at each l ocation_ but they are not

accurate. The peak values have not yet been adjusted, at this

point of the procedures_ for the distortion of the signature and

the development of shock-wave structure. The user must judge the

value of these interpolated peak pressure listings and, for

accurate values_ properly process the signature data given in
the detailed tables for each ray-tube calculation.
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The program selects from the table the minimum arrival time
t for the set of rays which left the aircraft at the second
maneuver time (ta+l) Then the program proceeds to the previous
ray set corresponding to t a and interpolates linearly to find
the ray locations and peak pressures for the same arrival time t .
There are generally two of these_ corresponding to starboard apd
port ray azimuths. The program then finds a new minimum arrival
time for the set of rays corresponding to ta+ 2 and interpolates
the preceding sets (t a and ta+ I) . This process continues
through each set of rays corresponding to subsequent aircraft
maneuver times.

An example of output for this ground intersection table is
shown in figure I_. These data were obtained for large ray azi-
muth increments of 20 ° and_ therefore_ yield somewhat crude inter-
polations. The maneuver flight times at which ray calculations
were initiated were at one-second increments. The solid-line
curves show ground intersection locations for sets of rays for
these maneuver times. The dashed-line curves show ground inter-
section interpolations for the fixed arrival times of 37.6_ 38._
39.3, and _0.I seconds.

Shell's Law and. Ray Tracing. - The ray tracing initial inte-

gration step IZSTEP) and print intervals (ZPRN) for the solution
of equations _IS) are specified on Card i0. Equation 16 is cal-

culated for Co@ A quantity co co + Uno is also obtainedThe values of _ v _ Coo and _o are listed, at the head of

each ray tracing table (Appendix B). The wind components un
and u t are obtained using equations (15) and. cos e is ob-

tained using equation (17). The ray trajectory integration step
is halved or doubled as the calculations proceed from the air-

craft to the ground_ according to predictor-corrector error

limits and comparisons made in sub-routine NODE. Listings of ray_

area and age variables are made at descending altitude increments

specified by ZPRN. These listings are also given at the altitude
corresponding to the next integration interval below the selected

altitude called PRIN input on Card i0o

The calculations along a given ray are stopped at the ground

(z- 0)_ or if the ray-tube area converges to zero_ or if the ray
angle decreases to within 2° of horizontal (cos @ -0.9994). The
additional displacement during the final 2° to the true horizon-

tal point is approximately

2°

57.3°/rad d(a- Un)/d(-z )

with the quantities evaluated at the horizontal point. In cer-

tain special problems_ more than one A_ contribution may be
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needed. For standard atmosphere at sea level without winds, the

correction is

IAgl = 1.93 stat mi (3.1 km)

Ray-tube Area. - The partial derivatives of Co and v

with ta and. qb are calculated in subroutine AREA using equa-

tions (27), (28) and (29} Variables dependent on altitude zand the integrals (eqs. _4)) are evaluated using subroutines

DERIZ and NODE_ and the various terms of the area equation (26)
are combined in subroutine 0UTPU. The values of the ray-tube

area are listed in the output table as a function of altitude z .

Flow Near the Aircraft. - The program input of the aircraft

F-function is made of C_ar'dls ' 11-. Fi is tabulated as a function

of length parameter L/LA . The input format permits specifying

the Fi vs. L/LA function for several azimuth angles @r (PHI)
relative to the aircraft vertical (butt-line). The program se-

o

lects that P i vs. L/LA curve given in the mnput table which has

_5r closest to the current computed value qbr- qb -qba _ where
is the ray parameter and _a is the bank angle of the air-

craft. The factor Ff is input on Card 10_ and multiplies F i
before it is listed in the output tables (eqs.(34)).

This format for imputing the aircraft's signal requires that

the dependency of F on %r , CL _ weight and Mach number is
determined independently of this sonic boom program. Other sub-
routines for calculating variations in F i may be substituted_

however_ by a programmer. Also_ the dimension specifications in

this program may need to be changed to allow for larger input

tables.

This program calculates pressure signature parameters at

each given value of L/LA and at three additional intermediate

stations_ using linear interpolation to determine the intermediate

values of the F-function. These extra data are useful for de-

termining the pressure curve and the _-curve which yields the

shock locations.

Geometric Acoustics and Blokhintsev invariance.- The quantity

_eE (eq. (_5)) is evaluated in subroutine DERPR. The phaseq. (11-1)) is determined in OUTPR. These are listed in the output
tables (Appendix B) for corresponding values of L/LA .

Signal Distortion and Ase Variable.- Equation (4-6) for the

age variable must be rewritten for the digital computations in
order to properly handle its initial singularity. This -1/2 power

singularity occurs because the initial ray-tube area is zero. Its

evaluation is as follows"
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The age variable is

T
a

z I

: 1"......-227 ...... d.( ,.Z ) ..........

Co jQZo 50 v'A('z_')_

where z o is the airplane altitude where the ray begins and z I
is any lower altitude. G through GI represent combinations
of terms in the area equation (26) whic_ are used in the program
and defined in Table I.

Le t

Q(z) I

J o#
j Z - Z0

(64)

(65)

so that

-1.2
C

O

Z

Z
O

Q(zo) d_.
_/ Z - Z-

0

z 1

+f
Z

0

Q(z) - Q(z )
0

_,/ Z - Z
0

-z 2 [_2Q(z
C O

o)VZ - z0

Z

+f
Z

0

Q(z) - Q(_o)

Z - Z
0

dz] (66)

This correctly yields Ta = 0 at

mined. In the vicinity of z
O

equation (26) and Table I,

Z -_- Z
O

let A =

when

Al(Z o

Q(Za)
z) 2)

is de ter-

Then from

A l(z ) : a G1G3GsG0 0 12 V + G0G2G6G 7 (67)

Then
Q(z o ) can be evaluated as

Q(z ) :
0 (68)

2)The area A is linear in z for a uniform atmosphere.
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In the digital program_ the age is calculated in subroutine OUTPU
from equation (66) using equations (65)_ (67)_ and (68) and a
Simpson integration procedure for the integral. It is listed with
the ray-tube area and ray coordinates as a function of altitude z .

The phase variable _i is calculated at the ground (z = 0)
in subroutine 0UTPR and is listed in the output table.

Shock Location.- The integral So(_) (eq.(5_)) and the

functi°n" _(_'i) (eq. (55)) are obtained in subroutine 0UTPR. Values
of these variables are listed in the output table at corresponding

values of _ and _I _ where SINT is So(_) and S ms _(_I) •

The reflection factor K R , input on Card I0_ is used to multiply

the pressure_ als0 in subroutine OUTPR. The resulting pressure

increment ap (eq. 157)) and pressure ratio Pl = ap/p (where pis ambient pressure are listed as DELP and PI, respectively_ in

this output table.

As described in THEORETICAL ANALYSIS_ Shock Location i the user
must locate the shocks and the shock jumps by plotting _ _I) and

Ap versus _I given in this output table.

Conversion to Other Computers

The program listing of Appendix B is the program used for

computations on the CDC-6600. The following remarks are pertinent

to conversion to other computers"

i. Input and output units are standard FORTRAN units 5 and
6. For other units_ change KUNIT = 6 and LUNIT = 6 in

subroutine INPU. If a different working tape than tape

unit $ is used (saves ground intersection data)_ change

MUNIT - $ in INPU.

2. Some computers use FORMAT statements requiring the holli-
rith notation ' whereas the symbol _ is used here for

the CDC-6600.

3. To fit within the core storage limitations of the IBM-
i130_ links_ locals and socals have been required°

4. Monitor control cards must be added to be compatible

with the compiler.

5. The sense switch subroutine SSWTCH should be checked for

acceptability.

6. The dimension statements pertaining to the tabular input

data may need to be changed to accommodate larger tables.
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COMPUTATIONRESULTS

Sample Printout

Appendix B presents a reproduction of a complete printout
for a typical solution. Various sections of the printout are
delineated on the right-hand side by letters A through E.

Section A is the input data which is listed for identifica-
tion and verification. The number of significant figures in the
listing might be less than those on the input data cards and
stored within the computer. These inputs represent an airplane
flying in an easterly direction (_ = 90°.) at 30 000 ft (9.1 km)
in a climbing turn near Mach 1.5. The ground altitude is 1500
ft (_57 m). An F-function is tabulated for two ray azimuth
angles_ @ = 0 and _5°_ and for 19 stations along the length of
the aircraft. The F-function table differs for the two @'s
only at station L/LA = 0 60 The wind direction is from the west= 27o° • .

a tail wind.)_ but with zero speed. The inputs are in
Special units (IUNIT = i)_ and the atmosphere is the 19612 U.S.
Standard (ISTAN : I). Rays are to be initiated at the aircraft

at one-second intervals of flight time (DELTA T PRINT). Data are
to be computed for rays initiated at azimuth angle intervals of

20 ° (DPH!) to a maximum value of _+ 60 ° (MAXIMUM PHI) using an

initial integration interval of approximately 300 ft (91 m)

(DELTA Z). Ray-tube information is requested at 2000 ft (610 m)

intervals of altitude (PRINT INTERVAL I and at the next integra-
tion interval below 3500 ft (i.i km) PRINT OUT POINT). The
ground reflection factor KB which multiplies the pressure incre-

ment is i.$ whereas the F-_unction multiplier Ff is 3 754
(eq. (3_)).

Section B illustrates Maneuver Data output. These include

the state variables of the aircraft at the time t a when the ray
tracing is started. Force coefficients_ wind components_ and

dynamic pressure are also listed. Maneuver ODtion i was selected
(IM = i)_ so the derivatives V _ V _ and _ were calculated

making use of the load factor data in the input section (n T nL) "

Section C represents the data listed during propagation of
the signal from the aircraft to the ground. The first line iden-

tifies the particular azimuth angle @ and the values of v,

Coo and c o at the aircraft altitude. Below this is a table of

ray location_ time_ ray-tube area_ age_ and. cos e as functions
of altitude z.

Section D is the pressure signal data at the ground. Data

are given for each integration interval of the_-curve. It is

mportant to have a large set of points so that the pressure and
-curves can be plotted accurately. In this table, F is the
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Typical Results

Various solutions have been calculated to check the equations

which were programmed and to compare a few sample results with

previous analyses. Two characteristics which can be evaluated

analytically to provide checks on many factors and terms in the
equations_ but excluding effects of winds_ are

a) Rays travel in a circular path (ref. 38) in an atmosphere
which has a speed of sound varying linearly in z .

b) Ray-tube area which is computed for an atmosphere with a

constant temperature will increase quadratically in the
lateral distance parameter (ax 2 + bx + c _ if the air-

craft is traveling south). Moreover_ if the aircraft is

in steady flight (time derivatives all zero)_ the area

will increase proportionately to the decrease in z .

The present program accurately gave these analytic results for
representative examples.

In addition_ solutions for typical practical situations have

been calculated to demonstrate the program using the F-function of

Appendix B_ Section A. Two examples are shown in figures 15 and

16 for steady flight at M = 1.2 and M- 3 _ respective ly_ at
50 000 ft (15.2 km) altitude and for the ground intersection

directly below the aircraft (@ = 0). In comparison with the data
for M- 1.2 _ both the_-curve and the pressure curve reflect

the greater age of the M = 3 signature_ as the pressure profile

has developed nearly to an N-wave solution. Indeed_ the two shocks

on the right for M- 1.2 have merged into only one at M = 3 .

Results using an atmosphere which has a larger lapse rate

than standard, with a temperature of 90°F at the ground and -75°F
at 30 000 ft (9.1 km), are shown in figure 17 for several Mach

numbers. This atmosphere is designated ATM A-3 in reference 48.
The pressure ratio here is the maximum pressure listed for the

nonstandard atmosphere divided by the maximum pressure in a
standard atmosphere.

Tailwind effects on signal strength are summarized in figure
18 for some initial calculations. The wind is the mean zonal of

figure 19 (see ref. 48). The pressure ratio here is the maximum

pressure listed for the tailwind solution divided by the corres-

ponding value in a standard no-wind atmosphere. A headwind would

give pressure ratios larger than 1.0 near Mac h 1.2 and represents
a more serious sonic boom environment.
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The preceding results were for rays

starting directly beneath the aircraft_

: 0 . For increasing _ , the maximum

lateral extent of ray intersections with

the ground is shown in figure 20 for a

standard atmosphere. The effect of wind

on lateral range is shown in figure 21. It

is seen that lateral range is considerably

reduced by a headwind. Results with a

nonstandard atmosphere are shown in figure
22 for atmosphere B-5 of reference _8

j (multiple temperature inversions in tropo-

sphe re ).

-_ 15
r-4

i0

- 5

The wind and temperature effects

brought out by these examples on sonic
boom intensity and maximum lateral range

are similar to those presented in more
detail in reference _8. Specifically_

only small differences from standard atmo-

sphere_ no wind solutions are indicated at

aircraft speeds larger than M - 1.3 •

0 50 lO0
Wind speed, ft/sec

I I
0 0.02

Wind speed, km/sec

Figure 19.
Mean zonal wind

The results of the sample problem

listed in Appendix B provide an example of

o a solution with an airplane maneuver. For

an axial acceleration of 0.2 g's and a
lift acceleration of 0.8 g's in a turn

I the maximum pressure is 61_ greate_ than

o.o4 for nonaccelerating straight flight at

Mach 1.5. Thus_ while atmospheric varia-
tions may be expected to be essentially

unimportant to sonic boom intensity at

speeds above M = 1.3 , maneuver effects

can continue to have a strong effect.

CONCLUDING REMARKS

This report has presented an analysis of sonic boom propaga-
tions in a stratified atmosphere with winds, and a computer program

based on the analysis. The analysis and the program take into

account maneuvers of the aircraft and yield actual pressure signa-

tures without the common N-wave approximations. Some additional
theoretical discussion and historical notes have been included to

make the report more useful as an exposition of the fundamental

theory. Sample computer input and output data are presented with

results of some preliminary calculations made using the program.
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The digital program was written to allow a number of input

options and to be readily adaptable to various computers. Complete
definitions and instructions for its use are presented.

Preliminary results have been shown which indicate the capa-
bilities of this new program. It can be applied to analyzing the

effects on sonic boom strength of changes in atmospheric conditions_

wind profiles, and aircraft maneuvers. It is_ therefore_ useful to

the aircraft designer to show effects of aircraft geometry and
initial signature_ to the environmental science services (meteorol-

ogists) to show significance to atmospheric variations for specific

aircraft_ and to the governmental aviation authorities and the

airlines operations analysts to provide a basis for specifying

permissible flight maneuvers and flight profiles within sonic boom

overpre ssure constraints.

It is possible and desirable_ of course_ to make certain
additions and alterations in the future to the program. One of
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these may be to provide equations at the beginning of the program

for directly calculating the aircraft F-function_ now required as
a known input. Another is to extend the automatic calculations to ....

provide directly the _-curve intersections (shock locations) and

shock strengths_ and to provide automatic plotting of the final

pressure signatures. These are now manual operations. The present _
program_ in common with other known techniques_ cannot provide

pressure information when a caustic develops_ nor can it account

for atmospheric turbulence. These are two important areas
requiring further research.
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COMMON

A

AO

ACC
ACCUR
PHSIG1
AGE

ALT

ARA

BETA

BYHAL

REDUC

CN

CONI

CON2

CON3

C0N_

COO

CO

CT

CTH

CU

D

TABLE i.

NAMES OF VARIABLES IN PROGRAM

Speed of sound

A at the initial point of ray

Accuracy criteria for integrals evaluated using NODE

Age variable

Altitudes in altitude/temperature input table

Area of ray tube

JM - i

Halving suppression switch for integration

Coefficients for Simpson's evaluation of AGE

cos
. - .......

_/rGS0.cos20 /tan _ 1

o also used as coefficients in

sin b/Co-COS 0 AGE calculation

AaE/2

(a50/_ • ARA) i/2

ao/C os eo

C - U
OO nO

cos @

cos @
o

cos

Atmospheric density for a given altitude z
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DADZ da/dz

DEL Current step in

DELFI Angle increment for

DELP Maximum and initial step size for ray-area calculation

DELPT Print interval for ray-area calculation

DELZI Maximum initial step size for ray-area calculation

DPMAX Maximum value of pressure for all F's at a specified

DSIM Step for Simpson's rule integration for AGE

DTPRN Print interval for maneuver calculation

EETA Wind direction for a given z

ENDNO Number of points in integration range

ENDVA }ENDVL Value of independent variable at end of integral

ETA Wind direction in input tabie

ETADZ dn/dz

F Two-dimensional array of F-function input

FA Bank angle at initial point of ray

FIA Bank angle in input table

FIMAX Maximum value of

FI Ray azimuth angle @ measured from vertical plane

FLAG Set to -I to terminate integration

GAMR Flight path angle 7 in input table

GDOT dT/dt a

GR Value of 7 for a given time

GO cos 0/sin @
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GI

G2

a3

G5

ao3/a 2

z + (sin V/sin b sin e )I
0

cos 7 cos b sin @/cos 8 o

sin _ cos e

2
pa

2
Poao

2@cos _/cos

cos _ sin 7 + sin b cos 7 cos

also used as temporaries

sin @ /cos 3 @
O

2
cos b sin e sin _/cos @

O

GI0 sin @ sin @
O

2@GII cos 7 sin @/cos

GI2

GI3

cos _ cos 7 sin

sin b cos 7 + cos _ sin 7 cos

H
HNODE

Step size used for integration

HG Height of ground above sea level

HW Height for input wind table

HO Initial value of aircraft height above sea level

HI, H2, H3_ H%, HS, H7" Variables representing terms and factors
in equation for ray-tube area"

d_ < GsG7 _ u GI ) d_HI : Uto dt a- ao to I dt a

GSG1 - ut G9 dt- ao 3 o a

( )(' , )sin 7 /sin b u - a /cos 8
- ao r i%o o o
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H2 _ d__ d_ !L
- dta+ GII dta+ G6GI0 dt a

H3 = -UtoG6G 7 - a GsG Io 2

H_ = - G6G 7

= G3V + UtoG2

H7 (H_>(H_> = (H2)(H3>

IALT

Counter for SAmpson's rule and various DO loops

Altitude geopotential/geometric switch

IM Maneuver option i or 2

10UT Switch for first z printout

IPRIN Switch for printing at a selected z

IRH Switch to indicate if ray is .horizontal or area is zero

IRH0 Altitude, temperature, pressure/density switch

ISTAN Standard/tabular atmosp.here switch

I TEHP Type of temperature units input

IUNIT English/metric/special units switch

KTIME Number of ground intersections stored

L

LAMDO

DO instruction parameter for steps in S-integral

Value of _ for a given value of time

LAMR

LA

Input table of heading angles (_)

Length of airplane



LUNIT Output unit number

M Mach number input table

ML Position in PHI table for. F-function

MM Mach number for a given time

MTIME Switch to indicate if first maneuver step
<

MUDOT db/dt a

MUNIT I/0 unit on which ground data are saved

MU Mach angle b

N _ Number of integrals to be evaluated simultaneously
NNODE J
NALTS Number of entries in the altitude/temp/density table

NEW Heading angle v of wave propagation vector

NIM Number of entries in maneuver table

NL Load factor input table, lift direction

NODUB Switch to suppress doubling step during integration

NODUM Switch to suppress printing of bad points during

integration

's for the F-function table
NPH I Numb er of _r

NSAVE Number of auxiliary variables calculated during

integration

NT Load factor input table, axial direction

NTAU Number of F-functi0ns for each

hF_IND Number of entries in wind table

PHI

PRESS

Pressure for a given z

's for which F-values are tabulatedInput __able of @r

Pressure input table
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PRIN Selected value of z at which additional printing
is desired

PSIDT d_/dt a

_E Radius of the earth

RF Reflection factor

RHO Atmospheric density input table

RHO0 Density at the initial point of ray

SN sin v

ST sin e

STH sin e
o

SU sin

SUM Used in collection of terms for AGE calculation

TNODE Used in integration step size determination for NODE

TAU Length ratio L/LA in input tab!e

TEMP Temperature input table

TIME Time at initial point of ray

TIND Time at current integration point in maneuver

TINIT Time at which maneuver is to be started

TLAS Last value of time at which interpolation was made

TPRIN Next value of time for a maneuver printout

TP Temporary location

TT Input table of times for maneuver table

UNO
Component of wind speed in direction of wave propagation

UTO Component of wind speed transverse to wave propagation
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V Speed of the airplane

VAR

VVW

Two-dimensional array used to save back points in

integrati on

Input table of wind speeds

VWX X-component of wind at maneuver point

In6XX X-component of wind

VWY Y-component of wind at maneuver point

IniYY Y-component of wind

VW Value of wind speed at a given z

WS

XM

Wing loading

x at initial point of ray (a maneuver point)

YM y at initial point of ray

z at current point of ray

ZINIT z at initial point of ray

ZPRIN Next value of z to be printed

ZSIMP Value of z for next Simpson's step

INPU

FF Factor to rescale F table

DO instruction parameter

DO instruction parameter

KUNIT I/0 unit for input

ATMO

D Density at height z
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H z plus height of ground

HGLTB

HGP

Array for base heights

H in table value units (geopotential meters )

DO instruction parameter

Layer number being used

KI

K23

P

Array of K I coefficients

Array of K23 coefficients

Pressure at height z

PB

RHOB

TB

TEMI

Array o f PB

Array of PB

Array of t
B

Difference between

coefficients

coefficients

coefficients

HGP and table value

TEH2 Quantity used in calculation of D

TH Temperature at height z

THDZ dTH/dz

VS Speed of sound at height z

Current height above ground

ANGLE

ARRAY Array to be checked

DO instruction parameter

MAX Number of entries in ARRAY table

MAXS MAX- I
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DERM2

BLANK Dummy var i ab I e f or LAGRA ca i i

COSGA cos

COSLA cos

Sense switch value

SINLA sin

TH Temperature from standard atmosphere program

TM Temperature at a given z

OUTM2

BLANK Dummy vat i abI e f or LAGRA c a,l I

CL Lift coefficient

cosDI cos (_ - n)

COSGA cos

COSMU cos

CI Axial force coefficient

NLZ Value of NL at point z

NTZ Value of NT at point z

Q Dynamic pressure

SINDI sin (, - _)

SINGA s in 7

TERMI Subterm in derivative calculations

TH Temperature at z from standard atmosphere program

THDZ dTH/dz by quadratic interpolation

TM Temperature for a given z value
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VDOT

VG

dr/tita

Velocity of aircraft relative to ground

INPOL

FT

K

T

X

Y

Interpolation value

DO instruction parameter

Place in table where found

Point at which interpolation value is needed

Table containing point at which interpolation occurs

Table to be interpolated in

LAGRA

ANSI

ANS2

Al}A2

A3

t32

t33

C2

c3
J

L

N

NN

NSWIT

Interpolated value

Interpolated derivative value

Differences between

in table TIME
input T and tabular values

Differences between three consecutive values of T
in table TIME

Terms used in evaluation formulas

DO instruction parameter

Number of entries in each table

N - I

-I only derivative, 0 both, I only function
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T Point at which interpolated value is to be found

TABLE Table to be interpolated in

TIME Table which contains values of T

AREA

COSET cos

CTH2 cos @2
o

IDEL Number of print steps - i

SINET s in

DERIZ

AST a • sin

J Setting of sense switch 5

W Value of wind velocity at given z

0UTPU

TAUA Integrand for AGE integral

DERPR

Setting of sense switch 5

0UTPR

P1 Ap/p

S SINT - 0.5 _age V2
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SINT

XI0

XII

Linear phase (time)

Actual phase (time) _i

NODE

A1BC Coefficients for RKG starting procedure

CK Subterm in RKG evaluation

COMPD Name of subroutine which calculates integrands

COMPE Name of subroutine accessed before doubling and halving

COMPT Name of subroutine to produce output

COMPY Used in differential equations

I,J,K DO range parameters

NN Number of integrals plus saved quantities

NSWHF Rehalving switch

PERR Maximum error at step

R Subterm in RKG evaluation

TEMP Predictor value of variable

th
TEMPA Error for n equation

XSAVE Value for independent variable when step was halved

GROUN

FI for given ground data

position in tables at which current data are stored
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IC Step for moving and for looking up in tables

IMIN Position in main table where current table starts

ISAVE Place in tables where values are stored during
permutation

J Place in current T-table which has minimum value of time

JMAX Place in tables where current table ends

K Place current value is stored in N-table

KERR

KI

Indicates when there is no TVAL in table

Next position in table and DO parameter

KK Table number

KMAX Last table used for current curve

KN Starting place of current table

LOOPS Place moved from

N Table of table lengths

NMNSW Switch to indicate first negative _ for maneuver point

NPHSW Switch to indicate first maneuver point

NREC DO range parameter

NRMAX Number of ground intersections saved

P

PVAL

Table of pressure values at the ground

Pressure value at time TVAL in KKth table

T Table of time values at the ground

TMIN Minimum value of time for the current table

TVAL Time along curve being plotted

X

XVAL

Table of x-values at the ground

KKthx-value at time TVAL in table
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Y

YVAL

Table of y-values at the ground

y-value at time TVAL in KK th table

INTEP

IN Place in T-table where current table starts

INF Place in T-table where current table ends

IS DO instruction parameter

KK Place in table N which gives position in table T

N Table of table lengths

NERR Set to i if no time TVAL in table, otherwise 0

Table of pressure values at the ground

PANS Pressure at time TVAL

PERCT Distance between table entries for values

Table of time values at the ground

TVAL Entry in time table at which interpolation is made

X Table of x-values at the ground

XANS x at time TVAL

Y Table of y-values at the ground

YANS y at time TVAL

MOVE

Position in tables moved from

K Position in tables moved to
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RESTA

COMMON block

INITAL

COMMON block
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i •

•

•

•

•

•

•

COMMENTS

Comment

ALTI TUDE VALUES

INCREASING

NOT

TIME IN TABLE NOT

INCREASING

DELTA PHI IS ZERO

PHIMAX NOT ZERO

WITH

TABLES TOO SHORT

ABSC ISSA VALUE

RANGE
OUTSIDE

AREA ZER0

RAY HORIZONTAL

NEGATIVE SQUARE
AGE

ALTITUDE LARGER

52 000 METERS

ROOT

THAN

TABLE 2.

GENERATED IN PROGRAM

IN

Interpretation

Altitude in tables must

monotonically; correct
rerun the problem.

increase

data and

Time in maneuver table

increase monotonically;

data and rerun problem.

must

correct

Maximum

is zero ;

problem.

must
correct

be zero if $@
data and rerun

Tables should have at

entries. Revise data

problem.

least three

and rerun

Linear interpolation is attempted

outside the range of the table.
Execution continues but answers

will not be correct. Revise

table or the problem statements.

Area in ray tube diminishes to

zero. Current ray calculation

is terminated. Age may not be

exactly correct.

Ray has turned to become within
2° of horizontal. Current ray

calculation is terminated.

Current ray calculation is
terminated.

Altitude outside range of standard

atmosphere program; execution is
terminated.
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TABLE 3.

FORMATS FOR INPUT DATA

Card I Tit le card

Card 2 (All input is fixed point, right justified)

Cols 1-5 6-10 11-15 16-20 21-25 26-30 31-35

IUNIT ISTAN IALT ITEMP IRHO IM NPHi

Cols 36-4-0 4-1-4-5 _6-50 51-55

NTAU NALTS NWIND NIM

Card 3 (All input is floating point FI0.3,
is E20.7, right justified)

except last item

Cols 1-10 11-20 21-30 31-40 4-1-60

WS LA HG H0 RE

Cards 4- to (3 + NPHI H NTAU)(F10.3)

Cols I-I0 11-20 21-30

PHI L/LA F

List L/LA and F for a given @r,
and list corresponding L/LA and

then proceed to next
F .

larger

If loading nonstandard atmosphere, use Cards 5

omi t.

or 6; otherwise

Cards 5 to (4 + NALTS)(FI0.3)

Co Is I-i0 Ii-20 21-30

ALT TEMP PRESS

Cards 6 to (5 + NALTS)(F10.3)

Cols I-i0

ALT

11-20 21-30

TEMP RH0
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Cards 7 to (6 + NWIND)(F10.3)

Cols i-i0 11-20 21-30

HW VVW ETA

Cards $ to (7 + NIM)(FI0.3)

If IM : i

Cols i-i0 11-20 21-30 31-40 41-50 51-60 61-70

T NT NL M GR PSIR FIA

If IM = 2

Cols i-i0 11-20 21-30

T M GR

= LAMR

31-4o 51-6o

PSIR = LA_ FIA

Card 9 (F10.3)

Cols 1-10 11-20

TINIT TSTEP

Card 10 (F10.3)

Cols 1-10 11-20 21-30 31-40 41-50 51-60 61-70

ZSTEP ZPRN DELFI FIMAX PRIN RF FF

NOTES "

i. Altitude means geometric altitude except in input when

geopotential option is used.

2. Angles in input and output are in degrees.

3. Output listings are English units. The wind speed in output

listings has units ft/sec_ whereas in input the units are knots.

The unit for pressure is Ib/ft _ .

4. Pressure, density_ temperature and F-function tables are inter-

polated linearly_ whereas other input tables are interpreted

quadratically. Therefore the tables require a minimum of

three input cards. The inputs must be selected to avoid wrong

quadratic representation between the specified data.

5. The F-function used in the computation is the tabular data for

the @ nearest the @ being computed.
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6. For a steady-state flight, a minimum of three maneuver cards
must be used with arbitrary time T increasing from the first
card to the last. To avoid duplicate solutions, select TSTEP
so that TINIT + TSTEP is larger than the latest time T .

....7. If both A@ and @max are input as zero, only the @ = 0 ray

is computed. If Aqb is input as zero and qbma x is nonzero,
an error statement is given and no solution is made. If A_

is input as a negative number, only the rays for qb = 0 and

negative _'s are computed.
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TABLE 4.

INPUT DEFINITIONS

IUNIT" -1--ENGLISH

0--METRIC Input units; outputs are English units
+I--SPECIAL

ISTAN" 1--1962 US Standard Atmosphere

2--Tabular atmosphere

IALT- l--Geopotemtial altitude] input for tabular atmosphere
2--Geometric altitude J and wind data

ITEMP"

1--Fahrenheit

2--Centigrade
3- -Rankine

IRH0 - 1--Altitude, temperature, pressure table

2--Altitude, temperature, density table

IM - 1--Maneuver, option i

2--Maneuver option 2

NPHI " Number of PHI's (@) in F-function table

NTAU " Number of length parameters L/LA in F-function table

NALTS -

NWIND •

NIM •

WS •

LA •

Number of entries in IRH0 table (Cards 5 or 6)

Number of entries in wind table (Cards 7)

Number of entries in maneuver table (Cards $)

Wing loading_ W/S

Length of aircraft

HG - Altitude of ground above sea level

H0 -

RE •

PHI "

Altitude of aircraft above sea level

Radius of earth[e.g., 2. 089007 x 107 ft or

6. 367293 × i0

Ray azimuth angle relative to aircraft z-axis, @r
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FI "

L/L 

F •

ALT :

TEMP :

PRESS :

RHO •

w •

VWW "

ETA "

T •

NT •

NL "

M •

GR "

PSIR :

FIA :

TINIT :

TS TEP :

ZSTEP:

ZPRN :

DELFI :

FIMAX :

PRIN :

RE •

FF "

Ray azimuth angle relative to vertical plane,

Stations at which F-function is specified

Aircraft signature function

Atmospheric temperature and either pressure or
density as functions of altitude above sea level.
Altitude (ALT)may be geopote_tial or geometric.

Wind speed and direction from which wind is coming as
functions of_altitude (HN) above sea level. Direction
is the heading angle measured eastward from north.

Aircraft flight time

Axial load factor

Lift (normal) load factor

Mac h numb er

Flight path angle above horizontal] relative to the

atmosphere,
Heading angle measured clockwise including wind
from north (eastward)

Bank angle of aircraft,
a

Initial time at which first ray tracing is to be

calculated (must correspond to any T input)

Time interval along aircraft flight path at which

ray calculations will be initiated

Initial ray-area integration interval of time (DELZ1)

Altitude intervals at which ray data are to be listed

(DELPT)

Increments of FI (ray azimuth a_gles) at which
calculations are desired

Maximum FI desired

A selected altitude at which ray data are desired

Ground reflection factor (normally 1.8 to 2.0)

F-function factor to multiply input parameter Fi
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TABLE 5.

INPUT UNITS AND CONVERSION FACTORS

Atmospheric temper-

ature, T

Atmospheric pressure, p.

Atmospheric density,

Wind speed, V or u
w

Wind direction,

Length or altitude

Wino_ loading, W/S

OPTION (-i)

English
OPTION (O)

Metric

OF or Oc OF or Oc

or OR oor R

lb/f t 2 N/m 2

p • slug/ft 3 kg/m 3

OPTION (+I)
Special

F or °C
o

or R

mbars

kg/m 3

• knots m/sec knots

• deg deg deg

• ft

• lb/ft 2

m

kg/m 2

ft

lb/ft 2

ft to m

Ib/ft2 to mbars

N/m 2

kg/m 2

slugs/ft 3 to kg/m 3

knots to ft/sec

m/sec

OF to °C

OF to OR

C 0NVERSI ON FACTORS

: multiply by 0.30%8

: 0. l_7880258

: _7. 880258

: 4.88242

: 515.379

: I. 68781

: O. 5144-44

• °c = _ 32)

• °R = °F + 459.67
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SN =SIN(NEW)

C TP IS A TEMPORARY LOACATION

C

C TO FIND THE SPEED OF SOUND AT INITIAL Z

GO TO (I_,2),ISTAN

1 CALL ATMO(Z,TP,P,D,AO)

GO TO 3

2 CALL INPOL(ALT,TEMP,Z,TP)

A0=49 • 020576"$0RT ( TP )

C

C. TO FIND WIND SPEED AT INITIAL Z

C

3 SINET=SIN(EETA)

COSET=COS(EETA)

C TO FIND DU/DZ

TP =VWDZ* ( S I NET*SN+COSET*CN)-VW*ETADZ* (S I NET*CN-COSE T*SN )

UN0=VWX *SN+VWY *CN

UTO=-VWX *CN+VWY *SN

COO=AO/CTH

CO =C OO-IJN 0

G2=1 .+SG/( SU*STH )

G3 =CG*C_I*SF/CTH

G50=RHOO*AO*A0

CTH2=CTH*CTH

G6=CU/CTH2

GT=CU*SG+SU*CG*CF

G8 = STH/(CTH*CTH2)

G9=CI.J*STH*SF/CTH2

GIO=STH*SF

G11=CG*SF/CTH2

GI3=SU*CG+CU*SG*CF

HI =UTO*PS I DT-(G8*G7*A0-UT0*G1 I ) *MUDOT- (A0*GB*G13-UT0*G9) *GDOT

1 - (AO*SG/SUI*(TP -DADZ/CTH)

TP = CU*SF*CG

H2=PS I DT+G11*NIJDOT+G6*G IO*GDOT

H3=-UT0*G6*GT-A0*G8*TP

H4=-G6*G7

H5 =G3*V+UT0*G2

H7=H l*H4-H2*H3

CON1 = (V*TP*G3)/(STH*STH*AO) + (G6*G7*G2* CTH)/STH

CONI = 1./( STH*CTH *SQRT(CONI*G50*STH*CTH) )

CON2 = (2.4"CONI)/CO

SUM= 0.

IOIJT=I

AGE=O.

IPRI N = i

IRH = 2

ZSIMP=ZINIT

FIND ZPRIN THE FIRST PRINT OIJT POINT

DELP = ZINIT/DELPT

I DEL = DELP

TP = IDEL

IF (TP-DELP) 558,5..59t559

559 IDEL = IDEL -1

558 IF(IDEL) 5519552,553

551 IDEL = 0

552 IOUT = 2

ZPRIN = ,01

GO TO 183

553 ZPRIN= IDEL*DELPT

FIND DSIM FOR INITIAL INTEGRATION STEP

130
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