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AN INVESTIGATION OF ABLATION BEHAVIOR OF AVCOAT 5026-39/M 

OVER A WIDE RANGE OF THERMAL ENVIRONMENTS 

By Roger K. Crouch and Gerald D. Walberg 

Langley Research Center 

SUMMARY 

Ablation studies have been carried out on the ablation material Avcoat 5026-39/M 

over a wide range of pressures, heat-transfer coefficients, and oxygen fluxes. The abla­

tion behavior of the material was found to be strongly dependent on the level of heat­

transfer coefficient. At values of heat-transfer coefficient less than 0.17 Ibm/ft2 - sec 

(0.83 kg/m2-sec), measured char recession rates were comparable to those predicted 

for diffusion-controlled char oxidation. At high values of heat-transfer coefficient, the 

ablation rate increased rapidly with increasing heat-transfer coefficient and severe 

mechanical char failure was observed. The structure, composition, and removal rate of 

the char were Significantly influenced by stream oxygen content at low heat-transfer coef­

ficients but not at high heat-transfer coefficients. 

Empirical correlations have been found between the mass-loss rate and the heat­

transfer coefficient and between the mass-loss rate and a parameter related to the prod­

uct of oxygen flow to the surface and a reference shear. 

INTRODUCTION 

The ablation material which comprises the reentry heat shield of the Apollo 

command module is a low-density glass-filled epoxy-novolac system designated 

Avcoat 5026-39/ HC-G. Numerous investigations of this material have shown that at 

environmental conditions within the Apollo flight envelope, the material provides effi­

cient thermal protection. Recently, however, ground- and flight-test results have indi­

cated that the material ablates at unexpectedly high rates when exposed to severe reentry 

environments which produce high pressures (higher than those expected during an Apollo 

reentry) on the char surface. (See ref. 1.) 

In an attempt to achieve an improved understanding of the ablation behavior of this 

material, a series of studies were carried out in three high-enthalpy wind tunnels at the 

Langley Research Center on a molded ablator which had the same composition as the 

Apollo material but which was not fabricated with a honeycomb matrix. These studies 



covered ranges of stagnation enthalpy from 900 to 4000 Btu/ Ibm (2.09 to 9.28 MJ/ kg), 

pressure on the model nose from 0.06 to 14.0 atm, and heating rates from 150 to 

1500 Btu/ft2-sec (1.7 to 17.0 MW/m2). 

SYMBOLS 

The units used for the physical quantities defined in this paper are given both in 

the U.S. Customary Units and in the International System of Units (SI). Factors relating 

the two systems are given in reference 2. 

A,N 

Ho 

hs 

K 

l 

M 

Pt 2 , 

s 

2 

constants (see eq. (3)) 

q 
heat-transfer coefficient, ~,s, Ibm/ ft2-sec (kg/ m2-sec) 

s 

stagnation enthalpy, Btu/ Ibm (J / kg) 

free-stream oxygen mass fraction 

liquid phase 

Mach number 

diffusion-controlled mass flux of oxygen to char surface, Ibm/ ft2-sec 

(kg/ m2-sec) 

steady-state mass-loss rate of virgin plastic , Ibm/ ft2-sec (kg/ m 2-sec) 

stagnation pressure behind a normal shock wave, atm (1 atm equals 

1.013 x 10 5 N/ m 2) 

local cold-wall (5400 R) aerodynamic heating rate, no blowing, Btu/ft2-sec 

(W/ m2) 

stagnation-point cold-wall (540 0 R) aerodynamic heating rate, no blowing, 

Btu/ ft2- sec (W / m2) 

effective nose radius of model, ft (m) 

solid phase 



TW char surface temperature, degrees Rankine (degrees Kelvin) 

t time of model exposure to test stream, sec 

ue local flow velocity parallel to char surface at outer edge of boundary layer, 

ft/ sec (m/ sec) 

U oo free-stream velocity ahead of shock, ft/sec (m/sec) 

Pvp density of undegraded material (virgin plastic), Ibm/ft3 (kg/m3) 

T aerodynamic shear stress, Ibf/ft2 (N/m2) 

T r reference shear (see eq. (8»), Ibf/ft2 (N/m2) 

FACILITIES, MODELS, AND TEST PROCEDURES 

Facilities and Test Conditions 

The investigation was carried out over a wide range of conditions which were 

obtained by using three environmental test facilities. A brief description of the facilities 

and the test environments obtained in each is outlined in the following paragraphs. The 

specific environmental conditions of each test run are listed in table I. 

Langley 20-inch hypersonic arc-heated. tunnel.- The Langley 20-inch hypersonic 

arc-heated tunnel consists of a magnetically rotated dc electric arc which heats a test 

stream of either air or nitrogen. The heated gas is then expanded through a conical 
nozzle to a nominal Mach number of 5.0. (See ref. 3.) When an air stream was utilized, 

the arc chamber pressure was set at a value of either 90 psia (6.1 x 10 5 N/m2) or 
200 psia (1.3 x 106 N/m2), and these pressures result in stagnation pressures on the 

model nose of approximately 0.06 atm or 0.14 atm, respectively. The enthalpy of the 

stream was approximately 4000 Btu/Ibm (9.28 MJ/kg) for the lower pressure and 

approximately 3000 Btu/Ibm (6.96 MJ/kg) for the higher pressure. The resultant 

heating rate, as measured by a 1-inch-diameter (2.5-cm) flat-faced calorimeter, was 
about 120 Btu/ft2- sec (1. 36 MW / m2) for both pressures. However, when a nitrogen 

stream was utilized, the arc was stable only at the chamber-pressure setting of 200 psia 

(1.3 x 106 N/m2). At this chamber pressure, the stagnation pressure on the model was 

about 0.15 atm and the enthalpy was about 3800 Btu/Ibm (8.8 MJ/kg). These values 
resulted in a heating rate, as measured by the calorimeter, of approximately 

160 Btu/ft2-sec (1.8 MW/m2). 
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Langley ll-inch ceramic-heated tunnel.- The Langley 11-inch ceramic-heated 

tunnel described in reference 4 consists of a large bed (approximately 20 feet or 

6.1 meters thick) of ceramic pebbles which were preheated to a temperature of either 

30000 R (16700 K) or 40000 R (22200 K). An air stream passes through the bed and 

exits through a nozzle affixed to the vessel containing the ceramic pebbles. At a 

Mach number of 6, the test stream has an enthalpy of approximately 1100 Btu/Ibm 

(2.55 MJ/kg) for a 40000 R (22200 K) bed temperature and a stagnation pressure on the 

model of 1.1 atm for a bed pressure of 900 psia (6.2 x 106 N/m2) and 1.7 atm for a bed 

pressure of 1100 psia (7.6 x 106 N/m2). The cold-wall heating rate for the lower pres­

sure case, as measured by a 1-inch-diameter (2.5-cm) thin-wall hemispherical calorim­

eter, is approximately 170 Btu/ft2-sec (1.93 MW/m2). 

Modification of the facility for use with a Mach number 2 nozzle gives a stream 

with an enthalpy of approximately 1150 Btu/Ibm (2.67 MJ/kg) for a 40000 R (22200 K) 

bed temperature and about 850 Btu/Ibm (1.97 MJ/kg) for a 30000 R (16700 K) bed tem­

perature. The stagnation pressure on the model can be varied from about 5 atm to 

14 atm by changing the stagnation pressures of the bed. Heating rates calculated by the 

method of Fay and Riddell (ref. 5) are within 10 percent of calorimeter measurements 

from previous tests and are about 500 Btu/ft2-sec (5.7 MW /m2) for 1-inch-diameter 

(2.5-cm) hemispheres in the higher enthalpy and the lowest pressure environment. 

Arc-heated materials jet.- The arc-heated materials jet at the Langley Research 

Center (ref. 6) like the hypersonic tunnel has a magnetically rotated dc electric arc 

which heats the test stream before expansion through a conical nozzle with an exit diam­

eter of 0.75 inch (1. 9 cm). This facility provides a stream at a Mach number of 2 with 

an enthalpy which can be varied from 1000 to 2000 Btu/Ibm (2.3 to 4.6 MJ/kg) by varying 

the power input to the arc. The stagnation pressure on the model is held virtually con­

stant at about 5 atm. The heating rates calculated by the method of Fay and Riddell 

(ref. 5) again are within 10 percent of calorimeter measurements from previous tests at 

various enthalpies. The gas composition of the stream in this facility can be varied by 

any increment from a pure nitrogen stream to a pure air stream by premixing of the gas 

supply. 

Models 

The ablation material used for the reentry heat shield of the Apollo command 

module is an epoxy-novolac resin system which is 25-percent (by weight) fibrous filler 

and 30-percent (by weight) phenolic Microballoons. The fibrous filler consists of equal 

parts of chopped silica fibers (nominal length of 1/4 inch or 0.6 cm) and milled E-glass. 

This material is gunned into a honeycomb matrix (cell diameter of 3/8 inch or 0.95 cm) 

which is a fiber· glass impregnated with a basic nylon-phenolic resin and dip coated with 
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polyester. The material has an average density of about 33 Ibm/ft3 (5.3 x 102 kg/m3) 

and is designated Avcoat 5026-39/HC-G. 

The models used in this investigation had a maximum diameter of 1 inch (2.5 cm) 
which precluded the use of the honeycomb-matrix material. All models were made from 

two blocks of molded material (Avcoat 5026-39!M). The molded material has the same 
composition as Avcoat 5026-39/HC-G, but it does not contain the honeycomb matrix. 

This difference in material could be significant; however, data trends should be the same 
for both materials. Models for the tests in the hypersonic tunnel and the ceramic-heated 

tunnel were made from the same block of material with a measured density of 39 Ibm/ft3 

(6.2 x 102 kg/m3). Models for the tests in the arc jet were made from a different block 
of material with a density of 30 lbm/ft3 (4.8 x 102 kg/m3). Density variations in models 

from the same block were small. 

Photographs of typical models before being tested in the hypersonic tunnel, the 

ceramic-heated tunnel at a Mach number of 6, and the arc jet are shown in figure l(a). 

These hemisphere-cylinder models of Avcoat 5026-39/M were bonded to a mild-steel 

sting by a high-temperature bonding resin. Models were made with nose radii of 1/2, 

3/8, 1/4, 3/16, and 1/8 inch (1.3, 0.9, 0.6, 0.4, and 0.3 cm). Models used for a limited 
number of tests in the ceramic-heated tunnel at a Mach number of 2 were 1/2-inch­

diameter (1.3-cm) cylinders with 450 half-angle cones. These models were threaded on 

the back for bonding to a mild-steel sting. (See fig. l{b).) 

Procedures 

Such parameters as pressure, enthalpy and heating rate, and oxygen content of the 
stream were varied in an attempt to separate the effects of these parameters on the 

behavior of the material. Models of different nose radii were run in the three facilities 
(ceramic-heated tunnel at a Mach number of 6) at a given pressure and enthalpy. Also 

models were run in the ceramic-heated tunnel at a Mach number of 2 over a wide range 

of pressures. Information on the influence of oxygen content of the stream on the models 
was obtained in the arc jet and the hypersonic tunnel. 

The general procedure for tunnel operation was first to activate the tunnel and allow 

it to reach a steady-state flow situation. Any loose dust in the ceramic-heated tunnel was 

thus removed. The model was inserted into the stream for a predetermined length of 

time and withdrawn. The tunnel was then shut down in a normal fashion. The test runs 

in the hypersonic tunnel were slightly different in that a calorimeter was inserted into the 

stream and then retracted 2 seconds before and after the model was in the stream. This 

action bracketed the heating rate on the model during the run. No calorimeters were used 

in the arc jet and the ceramic-heated tunnel during a model test run. Repeatability of the 
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test conditions were approximately ±5 percent for the ceramic-heated tunnel and the 

hypersonic tunnel and approximately ±10 percent for the arc jet. 

Each model was photographed during the test runs by high-speed Milliken cameras 

operating at 400 frames per second. A photographic pyrometer similar to that described 
in reference 7 recorded the surface temperature of each model during the test runs. 

DISCUSSION AND ANALYSIS OF RESULTS 

Presentation of Results 

The data obtained for each test run are presented in table 1. Runs 1 to 8 were in 

the hypersonic tunnel, runs 9 to 12 were in the ceramic-heated tunnel at a Mach number 

of 6, runs 13 to 16 were in the ceramic-heated tunnel at a Mach number of 2, and runs 17 
to 30 were in the arc jet. The values for stagnation enthalpy hs are considered to be 

accurate to within 10 percent. For the hypersonic tunnel, the stagnation-point cold-wall 
heating rates qc s are the measured values, but for the ceramic-heated tunnel and the , 
arc jet, they are calculated values corrected to correspond to the nose radius of the model 

being tested. The heat-transfer coefficients Ho were calculated for the corresponding 
nose radii by the method of Fay and Riddell (ref. 5): 

q 
H ==~ 0 -

hs 
(1) 

In table I, the values of nose radii r n for runs 1 to 12 and runs 17 to 30 are the 

nose radii of the hemisphere-cylinder models before the test runs. Study of the high­

speed motion pictures taken of runs 13 to 16 indicated that these models, which were ini­

tially cone-cylinders, assumed a relatively constant blunt-body shape soon after entering 

the stream (less than 0.125 second). The nose radii were measured from the motion 

pictures, were corrected for bluntness (see ref. 8), and are listed in table 1. 

As previously mentioned, a photographic pyrometer was used to monitor the surface 
temperature Tw of each model. The surface temperatures of most of these models had 

an irregular distribution because of spallation, which is discussed in greater detail in a 
later section. Variations of up to 6000 R (3300 K) in small adjacent areas were often 

seen. Therefore, it was very difficult to define wall temperatures for the models. Each 

value listed in table I is an average of several values read from the surface of the model. 

In some cases, the wall temperatures exceeded the range of the photographic pyrometer, 

and these values are indicated as having been greater than the maximum value that could 

have been read from that film. 

The values for mass-loss rate of virgin plastic mvp were obtained by measuring 
the recession rate of the stagnation region of the models from the high-speed motion 
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pictures. This linear recession per unit time was then multiplied by the appropriate 

density factor to obtain the mass-loss rate of the virgin material. This procedure is 
based upon the assumption of steady-state ablation which implies a constant char thick­

ness throughout the run. The assumption of steady-state ablation is acceptable for most 

of the present test runs, because the models exhibited large recession rates and thin char 

layers. However, the models run in the hypersonic tunnel did not recede rapidly, and 

hence, the assumption is questionable. Therefore, in table I the values of mvp for the 

hypersonic tunnel should be treated as relative indications of recession rate rather than 

as accurate measures of virgin-plastic ablation rate. 

Analysis of Visual Observations 

Study of the model appearance during and after the tunnel tests led to a cursory con­

clusion that three parameters seem to effect the biggest changes in material behavior. 

They are (1) the heat-transfer coefficient, (2) the stagnation pressure on the" model, and 

(3) the oxygen mass fraction of the stream (and correspondingly the oxygen flux to the 
surface of the model). 

Effect of heat- transfer coefficient and stagnation pressure on material behavior.­
The heat-transfer coefficients during this investigation were varied from about 0.04 to 

0.96 lbm/ft2-sec (0.20 to 4.7 kg/m2-sec) by varying the model nose radius and test con­

ditions. Over this range, many variations in material behavior were apparent. In fig­
ure 2, photographs are presented of three models which were tested at the same low pres­

sure and oxygen mass fraction but at different heat-transfer coefficients. Since these 

models had the same initial length, the difference in the amount of material lost during 

the runs is immediately apparent from the photographs. Study of the high-speed motion 
pictures taken of these models during the test runs indicates that the model of largest 

diameter (fig. 2(c)) lost no pieces of solid char, but both the other models (figs. 2(a) and 

(b)) lost small pieces (spallation) sporadically, the smaller model doing so more fre­
quently (a piece about every 0.0025 second). The temperature in the stagnation region of 

these models was very uniform. Also, a significant amount of glass accumulation on each 

model was apparent. When the models were cross sectioned, the char thickness of each 

was found to be on the order of 0.1 inch (0.3 cm). 

Photographs of three models tested at a higher pressure of about 1 atm are pre­

sented in figure 3. Again the recession rates increased with increasing heat-transfer 

coefficient. No change in the spallation frequency was observed, and the frequency 

appeared to be essentially the same as that for the smallest model shown in figure 2. 

The amount of glass accumulation on the models appeared to decrease as the heat-transfer 

coefficient increased. The char thickness of each model also tended to decrease with 
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increasing Ho, the thickness being on the order of 0.02 inch (0.05 cm) for the largest 

model (fig. 3{a)) and practically zero for the smallest model (fig. 3{c)). 

High-speed motion pictures of the two smaller models in this environment and all 

models tested in the more severe environments (Ho > 0.3 Ibm/ ft2-sec or 1.5 kg/m 2-sec) 

showed regions on the model surface which were much cooler than the rest of the surface. 

These cooler areas appeared where spallation had just occurred and disappeared rapidly. 

For the models in the more severe environments, these cool areas sometimes covered 

more than half of the total surface of the models. Study of the surface temperatures of 

these models, as recorded on the film of the photographic pyrometer, seems to indicate 

that these apparently cooler areas were lower in temperature than the rest of the surface 

by about 400 0 to 8000 R (2200 to 4400 K) but were still around 30000 R (16700 K). It is 

believed that these areas were the cooler regions of the char exposed by the spallation. 

The spallation seemed to be random with respect to both location on the model surface 

and time. 

Figure 4 shows two models tested at a pressure of about 14 atm. It should be noted 

that even though these models had about the same heat-transfer coefficient, the model with 

the higher qc s receded at a higher rate. This difference in recession rate indicates a , 
dependency of recession on qc s' These models exhibited the cool areas on the surface, , 
the lower amounts of glass accumulation, and the extremely thin char layers characteris-

tic of these more severe environments. The spallation frequency of the models in these 

environments was very high, several pieces coming off during each motion-picture frame 

(2.5 x 10-3 second). This rapid spallation is illustrated by the photograph presented in 

figure 5. 

It should be noted that at a given pressure, the heat- t ransfer coefficient was varied 

by changing the model nose radius. However, in the facilities used for these tests, it was 

impossible to change the pressure ·without changing the heat-transfer coefficient. There­

fore, in this section no comparisons are made for models tested at different stagnation 

pressures, even though the heat-transfer coefficients were different. 

In summary, a strong relationship appears to exist between the mass-loss rate and 

the heat-transfer coefficient. However, at a given heat-transfer coefficient, the heating 

rate also appears to have a marked influence upon the mass-loss rate. This result 

implies the possibility that mass-loss rate is dependent upon the product of these two 

parameters . This possibility is discussed subsequently. 

Effect of oxygen mass fraction of the stream on material behavior.- Models tested 

in a stream held at a constant low-pressure level are shown in figure 6. The model in 

figure 6{a) was tested in a pure nitrogen stream, and the model in figure 6(b) was tested 

in an air stream. The difference in length is immediately apparent as well as a difference 
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in appearance. The model in figure 6(a) did not spall during the run and lost a negligible 

amount of material; however, the model in figure 6(b) spalled sporadically during the run 

and lost about 0.4 inch (1 cm) of material. Also, there was a large amount of glass 

accumulation on the model tested in air, but practically no glass accumulation on the 
model tested in nitrogen; however, microscopic study of the chars revealed the presence 
of small beads of glass on or near the surface of the model tested in nitrogen. 

Figure 7 shows the comparative char thickness for two models tested at this low­

pressure condition in an air stream and a nitrogen stream. As an aid in interpreting 

figure 7, dashed white lines have been drawn along the interface between the virgin plastic 

and the pyrolysis zone. It is pointed out that the model run in air, aside from having a 
much thinner char than the one run in nitrogen, also appears to have a slightly different 

char structure. The model run in air has a pyrolysis zone where the char consists of 

mostly glass fibers and a very soft carbon structure. Above this region, the char is 

lighter in color and seems to be relatively firm. The outer region is black and firm. 

The models run in nitrogen have essentially the same char built-up pattern (that is, the 

soft carbonaceous region with its glass fibers; the lighter, firmer region where the glass 

fibers are not so prevalent; and the black, firm region), but in addition, they have an outer 

region which is a lighter gray, not as dense or thick as the previous region, and not as 

strong. Also, referring back to figure 6(a), a dark circular zone is seen on the nose of 

the model. 

Several investigators have studied the chemistry of chars containing silicon dioxide 

(Si02) and have shown that at the temperatures existing near the char surface, a reaction 
producing silicon carbide (SiC) is possible. (See refs. 9 and 10.) On the basis of the con­

clusions of these investigators and the appearance of the models tested in the present 

investigation, the following char structure for models run in nitrogen is postulated: 

Char 

Pyrolysis zone 

Virgin plastic 

Reg ion 4.-Groy I less dense 

Region 3.-Firm I black, dense 

Region 2 .-Relatively firm 
co rbon structure 

Region I.-Soft carbon structure, 
gloss fibers 
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The virgin material pyrolyzes to form a carbon char which contains Si02 fibers 

(regions 1, 2, and 3). The silica fibers subsequently melt and react with the carbon to 

produce SiC. On the basis of the data presented in reference 10 and the amount of Si02 

present in the 5026-39/ M material, the preferred reaction could be 

Si02 + 3C - SiC + 2CO 

The CO is given off with the pyrolysis gases, and, as a result, the char is less dense. 

The gray SiC is distributed throughout the basically carbon char to give a grayish tint 

such as was observed in the test models. 

(2) 

Although this postulated mechanism seems to account for the char structure in the 

nitrogen runs, it does not describe the chars produced in air . The models tested in air 

produced chars that contained regions 1, 2, and 3 but did not contain region 4. The data 

presented in reference 10 show that at typical char surface temperatures, the rates of 

the SiC reactions are relatively slow. The models tested in air have thinner char layers 

and faster recession rates than the models tested in nitrogen. Hence, the possibility 

exists that during the test runs in air, the Si02 and C do not react Significantly because of 

the shorter time that they are in contact at high temperatures. The relatively slow rates 

of these reactions could also account for the fact that there is practically no difference in 

the char structures produced in the more severe flow environments where the recession 

rates are high regardless of the stream oxygen content. 

Figure 8 shows the effects of oxygen mass fraction at a high-pressure level of about 

5 atm. All the models were very similar in behavior during the runs; they spalled con­

tinuously throughout the run and receded about the same amount in spite of the large dif­

ferences in oxygen flux. The appearances of the models seem to be the same with the 

exception of the presence of a glass accumulation on the model tested in air (fig. 8 (c)). 

The model tested in nitrogen (fig. 8(a)) has what appear to be glass fibers visible on the 

surface, and a microscopiC examination of the surface showed small globules of glass to 

be present. The model tested in a stream conSisting of equal parts of nitrogen and air 

(fig. 8(b)) also, has visible glass fibers with a few relatively large drops of glass scat­

tered over the surface. The glass fibers do not seem as prominent on the surface of the 

model tested in air. The char thickness on these runs is very thin «0.01 inch or 0.03 cm) 

and could not be measured. Therefore, other than the difference in the glass accumula­

tion, no indications of a chemical reaction between the glass fibers and the char are pres­

ent in these environments. 

In summary, the following observations are made with respect to the effect of the 

stream oxygen mass fraction upon the material behavior: 
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(1) At high heat-transfer coefficients (Ho > 0.3 Ibm/ft2-sec or 1.5 kg/m2-sec) and 

correspondingly high pressures, the stream composition has very little effect on the 

recession rate. (Compare with section "Empirical Correlations of the Data. ") 

(2) At low heat-transfer coefficients (Ho < 0.3 Ibm/ft2-sec or 1.5 kg/m2-sec) and 

correspondingly low pressures, the oxygen mass fraction has a great effect on the reces­

sion rate, an increase in oxygen resulting in an increase in the recession rate. 

(3) At low heat-transfer coeffiCients, the char structure of models tested in a 

nitrogen stream differs Significantly from that of models tested in an air stream and sug­

gests the possibility of chemical reactions between the C(s) char and Si02(l) to produce 
SiC(s). 

(4) At low heat-transfer coefficients, models tested in a nitrogen stream never have 

a glass accumulation on the surface, whereas models tested in an air stream always have 

a relatively large amount of glass on the surface. 

Spallation.- As stated previously, almost all the models tested in this series spalled. 

This spallation generally occurred in the form of small pieces leaving the model surface 

in a random fashion with varying frequencies depending upon the severity of the environ­

ment. The surface temperature was cooler in the vicinity of the spallation by about 
600 0 R (330 0 K). 

This type of spallation appears to be different from that described by Scala and 

Gilbert (ref. 11). According to Scala and Gilbert, the entire char layer is periodically 

removed when failure occurs at the pyrolysis interface as a result of internal-pressure 

buildup and thermal stress. However, one apparent instance of this type of failure was 

observed. The model being tested was a 0.75-inch-diameter (1.9-cm) hemisphere­

cylinder of the lower denSity material. The test was carried out in the arc jet which has 

a nozzle with an exit diameter of only 0.75 inch (1. 9 cm), and the model was initially 

0.25 inch (0.6 cm) from the nozzle. The repeatability of the tests in this facility was 

rather poor, and the possibility exists that some size effect caused by the relatively large 

model may have given anomolous results. The apparent internal-pressure failure 

occurred during run 23. The environment was one of the least severe attainable in the 

arc jet with respect to the heat-transfer coefficient. The model appeared to behave in 

much the same fashion as other models tested in this facility except that the frequency 

for the loss of small pieces was much lower. After the model had been in the stream 

for about 1 second, the entire char layer was removed from the surface in less than 

0.0025 second. The model surface temperature dropped from about 37000 R (20500 K) 
to less than 25000 R (1390 0 K), and the model length was shortened by about 0.1 inch 

(0.25 cm). The model reheated quickly and exhibited the same behavior again about 

1 second later, except the length change was slightly less. At the end of the run, another 
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large piece of char was removed, but this occurrence took place as the model was being 

withdrawn from the stream and quite possibly was not spontaneous. Since this behavior 

was exhibited only by one model and since the test conditions were far from ideal, it 

must be stated again that whether this behavior is characteristic of the material in this 

particular environment or was a spurious behavior caused by undesirable test conditions 

is not known. 

Empirical Correlations of the Dat a 

The generally accepted mechanisms of char removal are oxidation of the char, 

erosion of the char by aerodynamic force, failure due to an internal-pressure buildup, or 

various combinations of these mechanisms. The present data are not capable of defining 

the basic mechanisms responsible for the ablation behavior of Avcoat 5026-39/M; how­

ever, they can be used to formulate empirical ablation-rate correlations. Several such 

correlations are discussed in this section. 

Since solid pieces of char were lost from almost every model the data were not 

expected to correlate with the oxygen flux to the surface. However, because the model 
behavior showed a relatively strong dependency on oxygen mass fraction at the low heat­

transfer coeffiCients, a check for a correlation of mass-loss rate with the oxygen mass 

flux to the surface of the model was advisable. Figure 9 shows a plot of the mass-loss 

rate as a function of the diffusion-controlled oxygen mass flux to the surface of the model. 

The solid line in figure 9 corresponds to the predicted mass·-loss rate as calculated by 

using the theory of reference 12 for a pure air stream. It is seen that at values of heat­

transfer coefficient less than 0.17 lbm/ft2-sec (0.83 kg/m2-sec) and rno less than 

0.04 lbm/ft2-sec (0.20 kg/m2-sec), the test results obtained in air agree fairly well with 

predicted rate; however, for the higher heat-transfer coeffiCients, the mass-loss rates 

are much higher than the predicted oxidation rates. 

Since the oxidation mechanism is obviously not the only important char-removal 

mechanism in these tests at the higher heat-transfer coefficients and since an analysis of 

the data in terms of the other char-removal mechanisms would require assumptions that 

would make the results doubtful anyway, the decision was made to attempt an empirical 

correlation of the data. 

Previously, it has been hypothesized that some mechanism directly dependent upon 

the stagnation pressure may be predominant in the removal of the char from the honey­

comb version of this material. (See ref. 1.) In reference 13, a pressure effect is pro­

posed in which the external pressure field around a charring ablator causes the pyrolysis 

gases to flow laterally in the char. It is pointed out in reference 13 that this effect would 

become more pronounced as the external pressure is increased and as the model size is 
decreased and, under severe conditions, could result in a flow of boundary-layer gases 
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into the char with an associated increase in heating rate and oxygen flux to the char sur­

face. Therefore, in figure 10, the mass-loss rate for the series of test runs is plotted 

as a function of stagnation pressure. Some correlation seems to exist between these two 

parameters. However, at a given pressure, a significant variation is seen in rnvp, and 
this variation indicates that some of the other char-removal mechanisms are acting on 
the models. At pressures near 5 atm, models tested in nitrogen and in air receded at 

comparable rates. Hence, at these high pressures, the char-removal rates seem to 

depend more on some mechanical failure mechanism than on the oxygen flux to the char 
surface. This conclusion is also illustrated by the data in figure 9. It should be noted, 

however, that a pressure effect such as that proposed in reference 13 could have influ­

enced the conditions under which the char recession rates measured in air in the present 

tests initially deviated from those predictable by one-dimensional steady-state ablation 
theory (rno > 0.04 Ibm/ft2-sec or 0.20 kg/m2-sec in fig. 9). 

Attempts to correlate the data as a function of wall temperature were completely 

unsuccessful. 

Since the mass-loss rates varied greatly at a given pressure (see fig. 2) and since 

this variation was a function of the heat-transfer coefficient, the decision was made to 
attempt a correlation directly between the mass-loss rate and the heat-transfer coeffi­

cient. Of the equation forms tried (polynomials and power functions), an equation of the 

form 
. N 
mvp = AHo (3) 

was found to give the apparent best fit to the data. The values of A and N were 
found by applying a linear best-fit curve through the data on a log-log plot by the method 

of least squares. Equation (3) with the appropriate values of A and N is shown in 

figure 11. The data obtained in the stream with the lower concentration of oxygen and in 
the stream of pure nitrogen seemed generally to fall below the line; thus, an attempt was 

made to find the relationship between these two parameters rnvp and Ho for a given 
mass fraction of oxygen in the stream. The data for all the runs in an air stream 

(K = 0.232) are presented in figure 12 along with a plot of equation (3) with the appropri­

ate values of A and N. All these runs except run 30 were with the material having a 

density of 39 Ibm/ft3 (6.2 x 102 kg/m3). This curve appears to give a qualitative descrip­

tion of this series of test runs. When this type of fit was applied to the data from the 

other oxygen concentrations, N was found to be a function of oxygen concentration, but 

these data did not cover a wide enough range or enough pOints to bring about any 

conclusions. 

However, the study of the air data was carried one step further. The power depen­

dency of fnvp on Ho was relatively close to a value of 1.5. If Reynold's analogy for 

a relationship between heat-transfer coefficient and shear stress 
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was valid for these test runs and if the analogy between heat and mass transfer in a 

laminar boundary layer (ref. 14) 

(4) 

(5) 

also was valid, a cross product of the diffusion-controlled oxygen flux ino and a refer­

ence shear stress T r would be proportional to the square root of the cold-wall 

stagnation-point heating rate multiplied by the heat-transfer coefficient raised to a power 

of 1.5. That is, 
qc ue <Ic ~ s 

T ex; ue - = - -- U -=:..t.::. = kTr 
hs U oo q 00 hs 

c,s 

(6) 

where 

(7) 

and 

(8) 

Since 

h - 1 2 
S - -u 2 00 

(9) 

it follows that 

(10) 

Then by using equation (5) a relationship of the following form is obtained: 

(11) 

With this relationship (eq. (11)) in mind, the decision was made to plot mvp as a 

function of Vqc,s Ho 3/ 2 for all the test runs in an air stream. This plot is shown in 

figure 13 along with the best-fit line as determined by the method of least squares. This 

curve seems to give a relatively good qualitative representation of the data and seems to 

describe the behavior shown by the two models in figure 4 better than the relationship 

expressed in equation (3); that is, the curve includes the dependency of the heating rate 

in addition to the dependency of the heat-transfer coefficient. 

Since the correlation shown in figure 13 seems to describe the behavior shown in 

figure 4 and since it offers a possible clue to a physical explanation for the material 
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behavior, it is presented herein, even though it does not seem to give as good a fit overall 

as the correlation with heat-transfer coefficient. Figure 13 is based on data from the 

stagnation region where the actual aerodynamic shear stresses are very small; therefore, 

the mechanism of char removal may involve a weakening of the char by the oxygen to a 

point at which the small shear stresses can tear off the char. However, the fact that the 

mass-loss rates for the runs in the arc jet with the lower mass fractions of oxygen do not 
lie on the correlation parameter curve defined by equation (11) when modified for the 

changes in oxygen flux indicates that the mass-loss rate is more than just a linear func­

tion of the oxygen flux; that is, the values of mvp for the tests in a nitrogen stream are 

not significantly different from those in an air stream. However, for the runs in the 
hypersonic tunnel, a very distinct dependency exists between the recession and the free­
stream oxygen mass fraction. (See fig. 11.) 

Thus, from the data available, it seems as if no general equation can be written 

which will describe the behavior of this material for all types of environments, although 

two closely related correlations have been found which seem to describe the material 

behavior qualitatively over a wide range of environments. It must be specifically pointed 

out that the correlations are only good in a qualitative sense, and the curves are not 

accurate enough to be used in predicting quantitative results and are only meaningful in 

that they seem to predict trends. 

CONCLUDING REMARKS 

Ablation studies of the Avcoat 5026-39/M heat-shield material have been carried 

out over a wide range of pressures, heat-transfer coefficients, and oxygen fluxes. The 

data obtained from these studies have been analyzed, and empirical correlations of mate­

rial mass-loss rates have been obtained. It should be noted that the ground tests were 
carried out with a material which did not contain the honeycomb matrix found in 

Avcoat 5026-39/HC-G, the heat-shield material of the Apollo command module. This 

difference in material could be significant, and caution should be used in applying these 

correlations to flight data in order to get quantitative values. However, the trends should 

be the same for both materials. The results of this investigation can be summarized as 

follows: 

1. The ablation behavior of the Avcoat 5026-39/M material was found to be strongly 
dependent on the level of heat-transfer coefficient Ho. At values of Ho below approxi­

mately 0.3 Ibm/ft2-sec (1. 5 kg/m2-sec) (that is, low values of heating rate and pressure), 

the models exhibited moderate char recession rates which were Significantly influenced 
by the level of oxygen flux to the char surface. For Ho less than 0.17 Ibm/ft2-sec 
(0.83 kg/m2-sec), the char-removal rates for the models tested in air were comparable 

in magnitude to predictions made for diffusion-controlled char oxidation. At high values 
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of Ho (that is, high values of heating rate and pressure), the ablation rate of the mate ­

rial increased rapidly with increasing heat-transfer coefficient and severe mechanical 

char failure was observed. Under these severe test conditions, the effect of oxygen flux 

on char recession was small and, at the highest values of Ho, the measured values of 

char recession rate greatly exceeded diffusion- controlled oxidation predictions. 

2. The structure and composition of the Avcoat 5026-39/ M char were found to be 

significantly influenced by the stream oxygen content in the less severe environments. 

The char produced in nitrogen exhibited a thin, gray surface layer; the char produced in 
air did not. The models tested in nitrogen did not exhibit the glassy surface or accumula­

tion found on the models tested in air. A chemical reaction between the glass fibers and 
the carbon char is postulated which seems to explain the char structure for the tes t runs 

in the nitrogen stream. In the more severe environments, the stream oxygen content had 
very little influence on the char which was very thin but seemed to show the same trend 

with respect to glass accumulation. 

3. Two empirical correlations of the material mass-loss rate have been obtained . 

The first correlation expresses mass- loss rate mvp in terms of the heat- transfer 

coefficient Ho. The second expresses mvp in terms of a correlating parameter which 
may be interpreted as the product of the diffusion-controlled oxygen flux and a reference 

aerodynamic shear. 

Langley Research Center, 
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TABLE 1.- TEST DATA 

(a) U.S. Customary Units 

Run hs' rn, iJ.c s' Ho, 
Pt,2' t, Tw' mvp' Rate of 

Btu/ Ibm in. 
, 

Ibm/ ft2-sec 
K sec Ibm/ ft2-sec 

mechanical Facility 
no. Btu/ ft2-sec atm oR char failure (a) 

1 4000 0.50 b147 0.0369 0.0613 0.232 30 3620 0 .00783 No failure HAHT 

2 4000 .25 b 282 .0705 .0606 .232 30 3830 .0372 Low HAHT 

3 4000 .125 b426 .106 .0600 .232 30 4050 .0725 Moderate HAHT 

4 3790 .125 b592 .156 .143 .000 30 4180 .0181 Very low HAHT 

5 3160 .375 b276 .0873 .136 .232 45 4120 .0285 Low HAHT 

6 3770 .375 b347 .0916 .150 .000 45 >4260 .00356 No failure HAHT 

7 3120 .25 b353 .115 .139 .232 30 No recordc .0388 Low HAHT 

8 3910 .25 b423 .108 .155 .000 30 No recordc .00767 No failure HAHT 

9 1160 .50 d 168 .145 1.09 .232 20 3410 .065 Moderate CHT, M = 6 

10 1140 .25 d328 .209 1.09 .232 10 3540 .104 Moderate CHT, M = 6 

11 1150 .125 d336 .291 1.13 .232 10 3650 .224 Moderate CHT, M = 6 

12 1150 .50 d210 .182 1.71 .232 15 3660 .151 Moderate CHT, M = 6 

13 1110 .278 d648 .584 5.17 .232 3 3963 .858 High CHT, M = 2 

14 1100 .313 d874 .794 10.8 .232 3 4015 1.15 High CHT, M = 2 

15 1110 .284 d1060 .960 14.3 .232 2 >3910 2.27 High CHT, M = 2 

16 848 .25 d813 .961 14.1 .232 2 3790 1. 71 High CHT, M = 2 

17 2110 .25 d1330 .632 5.02 .000 3 >4000 .681 High AHMJ 

18 2110 .375 dllOO .616 5.02 .000 2 >4000 .339 High AHMJ 

19 1910 .375 d996 .522 5.27 .118 2 >4000 .447 High AHMJ 

20 1910 .25 d1190 .622 5.27 .118 2 >4000 .915 High AHMJ 

21 1110 .188 d800 .718 5.20 .118 2 No r ecordc .576 High AHMJ 

22 1120 .25 d692 .624 5.24 .118 3 No recordc .777 High AHMJ 

23 1120 .375 d 567 .508 5.23 .118 3 3680 .492 High AHMJ 

24 1190 .375 d612 .512 5.27 .000 3 No recorde .621 High I AHMJ 

25 1300 .188 d938 .722 5.23 .000 2 3585 .525 High AHMJ 

26 1230 .25 d774 .628 5.24 .000 2 3690 .561 High AHMJ 

27 1620 .25 d1030 .636 5.24 .000 2 >4000 .597 High AHMJ 

28 1400 .25 d885 .632 No recordf .118 2 >4000 .714 High AHMJ 

29 1910 .188 d1400 .736 No recordf .118 2 >4000 .837 High 

I 
AHMJ 

30 1590 .25 dlOlO .634 No recordf .232 2 >4000 .792 High AHMJ 

aFacilities included the Langley 20- inch hypersonic arc-heated tunnel (HAHT) , the Langley 11-inch cera mic- heated 

tunnel at a Mach number of 6 or a Mach number of 2 (CHT, M = 6) or (CHT, M = 2), and the arc -heated mate rials jet at 

the Langley Research Center (AHMJ). 

bMeasured heating rate. 

cEstimated temperature greater than 40000 R. 

dCalculated heating rate . 

eEstlmated temperature greater than 36000 R. 

fpressure approximately 5 atm. 

I 
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TABLE 1.- TEST DATA - Concluded 

(b) Sl Units 

Run hs, r n, 'le,s' 2 Ho, Pt,2, t, Tw' mvp' Rate of 
K mechanical Facility no . MJ/kg cm MW/m kg/m2-sec atm sec oK kg/m2-sec char failure (a) 

1 9.28 1.27 b1.67 0.180 0.0613 0.232 30 2010 0.038 No failure HART 

2 9.28 .635 b3 .20 .345 .0606 .232 30 2130 .182 Low HAHT 

3 9.28 .318 b4 .83 .520 .0600 .232 30 2250 .355 Moderate HAHT 
4 8.81 .318 b6.71 .762 .143 .000 30 2320 .089 Very low HAHT 

5 7.33 .953 b3.13 .427 .136 .232 45 2290 .139 Low HAHT 

6 8.76 .953 b3.93 .448 .150 .000 45 >2370 .017 No failure HAHT 
7 7.25 .635 b4.01 .562 .139 .232 30 No recordc .190 Low HAHT 
8 9.09 .635 b4 .80 .529 .155 .000 30 No recordc .038 No failure HAHT 
9 2.69 1.27 d1.91 .710 1.09 .232 20 1890 .318 Moderate CHT, M = 6 

10 2.64 .635 d2 .70 1.02 1.09 .232 10 1970 .509 Moderate CHT, M = 6 
11 2.67 .318 d3.81 1.42 1.13 .232 10 2030 1.10 Moderate CRT, M = 6 
12 2.67 1.27 d2.38 .892 1. 71 .232 15 2030 .738 Moderate CHT, M = 6 
13 2.58 .706 d8.25 2.86 5.17 .232 3 2200 4.18 High CHT, M = 2 
14 2.56 .795 d ll .10 3.88 10.8 .232 3 2230 5.64 High CHT, M = 2 
15 2. 58 .721 d13 . 50 4.69 14.3 .232 2 >2170 11.9 High CHT, M = 2 
16 1.97 .635 dIO.OO 4.70 14.1 .232 2 2110 8.34 High CHT, M = 2 
17 4.90 .635 d 15.20 3.09 5.02 .000 3 >2220 3.33 High AHMJ 
18 4.90 .953 d 12 .40 2.52 5.02 .000 2 >2220 1.66 High AHMJ 
19 4.42 .953 d ll .30 2.55 5.27 .118 2 >2220 2.19 High AHMJ 
20 4.42 .635 d 13 . 50 3.04 5.27 .118 2 >2220 4.47 High AHMJ 
21 2 .58 .478 d9.08 3.51 5.20 .118 2 No recordc 2.81 High AHMJ 
22 2.59 .635 d7 .85 3.05 5.24 .118 3 No recordc 3.80 High AHMJ 
23 2.59 .953 d6.44 2.48 5.23 .118 3 2040 2.41 High AHMJ 
24 2.77 .953 d6.95 2.50 5.27 .000 3 No recorde 2.55 High AHMJ 

25 3.01 .478 dIO .76 3.53 5.23 .000 2 1990 2.57 High AHMJ 
26 2.86 .635 d8.87 3 .07 5.24 .000 2 2050 2.74 High AHMJ 
27 3.76 .635 dll.71 3.11 5.24 .000 2 >2220 2.92 High AHMJ 
28 3.25 .635 d IO .04 3.09 No recordf .118 2 >2220 3.49 High AHMJ 
29 4.42 .478 d 15.91 3.60 No recordf .118 2 >2220 4.09 High AHMJ 
30 3.70 .635 dll.54 3.10 No recordf .232 2 >2220 3.87 High ARMJ 

aFacilities included the Langley 20-inch hypersonic arc-heated tunnel (HART), the Langley ll-inch ceramic­

heated tunnel at a Mach number of 6 or a Mach number of 2 (CHT, M = 6) or (CHT, M = 2) , and the arc-heated 
materials jet at the Langley Research Center (AHMJ). 
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bMeasured heating rate. 

CEstimated temperature greater than 22200 K. 

dCalculated heating rate. 

eEstimated temperature greater than 20000 K. 

fpressure approximately 5 atm. 
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(a) Typical hemisphere-cylinder models. 
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(b) Typical cone-cylinder model for test runs in the ceramic-heated tunnel at a Mach number of 2. 

Figure 1.- Model configurations. L-69-1229 
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(al Run 3; Ho = 0.520 kg/m2-sec; 
run time 30 sec; r n = 0.3 cm. 

(bl Run 2; Ho = 0.345 kg/m2-sec; 
run ti me 30 sec; r n = 0.6 cm. 

Figu re 2.- Mode ls tested at Pt. 2 ::: 0.06 atm and K = 0.232. 

(cl Run 1; Ho = 0. 180 kg/m2-sec; 
run time 30 sec; r n = 1.3 cm. 

L -69- 1230 



(a) Run 9; Ho = 0.710 kg/m2-sec; run time 20 sec; rn = 1.3 cm. 

Figure 3.- Models tested at Pt.2 ::: 1 atm and K = 0.232. L -69- 1231 
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(b) Run 10; Ho = 1.02 kg/ m2- sec; 
run time 10 sec; rn = 0.6 cm. 

L ______ ____ . 

Figu re 3. - Concl uded. 

(c) Run 11; Ho = 1.42 kg/ m2- sec; 
run time 10 sec; r n = 0.3 cm. 

L-69-1232 



(a) Run 15; Ho = 4.69 kg/m2-sec; run time 2 sec; 

II 5 = 13.5 MW/m2; hs = 2.58 M.lIkg. c, 

(b) Run 16; Ho = 4.70 kg/ m2-sec; run time 2 sec; 

q 5 = 10.0 MW/m2; hs = 1.97 MJlkg. c, 

Figure 4.- Models tested at Pt,2 ::: 14 atm and K = 0.232. L-69-1233 
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(a) Run 8; K = 0.00; Pt,2 :::: 0.15 atm; Ho = 0.529 kg/m2-sec; run time 30 sec. 

Figure 6.- Effects of oxygen mass fraction on appearance of models at low stagnation pressures and low heat-transfer coefficients. L-69-1235 
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(a) Run 5; K = 0.232; Pt 2 = 0.136 atm; Ho = 0.427 kg/m2-sec; run time 45 sec. 

(b) Run 6; K = 0.00; Pt 2 = 0.15 atm; Ho = 0.448 kg/ m2-sec; run time 45 sec. 
L-69-1237 

Figu re 7.- Effects of oxygen mass f raction on formation of cha r layers at low stagnation pressu res and low heat-transfer coefficients. 
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(al Run 27; K = 0.00; Pt 2 ~ 5.2 aIm; run time 2 sec; 
Ho = 3.ll' kg/m2-sec. 

(bl Run 28; K = 0.1l8; Pt 2 ~ 5 atm; run time 2 sec; 

Ho = 3.09 kg/m2-sec. 

30 

(cl Run 30; K = 0.232; PI 2 ~ 5 atm; run lime 2 sec; 
Ho = 3.10 'kg/m2-sec. 

L -69-l238 
Figure 8.- Effects of oxygen mass fraction on appearance of models at high stagnation pressures and high heat-transfer coefficients. 
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Figure 9.- Mass-loss rate as a function of diffusion-controlled oxygen flux fo r all test runs. 
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Figure 12.- Mass-loss rate as a function of heat-transfer coefficient for test runs in air. 
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Figure 13.- Mass-loss rate as a function of oxygen-shear product for test runs in air. 
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