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ABSTRACT

In order to scale models of devices (ships, space capsules,
integrated circuits, etc.) and phenomena (nuclear detonations,
space-charge widening, sloshing in fuel tanks, etc.), it is
necessary to determine nondimensional groupings of variables. A
computer program establishes sets of invariant or nondimensional
sets of variables and searches for an optimum set under specified
optimization criteria. This Fortran IV program is based on
algorithms of integer programming. Typical running times are
2 minutes for 104 sets of equations.



COMPUTER PROGRAM FOR DIMENSIONAL ANALYSIS

By A, D. Sloan and W. W. Happ
Electronics Research Center

SUMMARY

Documentation, illustrative examples, running time, and
failure diagnostics are presented for a program useful in scaling
models by dimensional analysis. The program, written in FORTRAN
IV, performs exclusively integer operations and calculates a
basis for the null space of the matrix of a transformation in
terms of a given basis. Application to the calculation of B-
numbers is made. The program further optimizes a matrix of
integers under specified constraints. "Tearing" (or diakoptics)
of large systems, defined as minimal under specified constraints,
is performed.

The program is available either from the authors or from the
Project COSMIC Library of computer programs at the University of
Georgia, at Athens.

INTRODUCTION

A Fortran IV program has been developed for the calculation
of Buckingham numbers from physical laws. Buckingham numbers are
defined as follows. Given a set of variables [(Ak) k=1,...,n],
dimensionally expressed in terms of some fixed reference dimen-
sions, a Buckingham number or "B" number is an n-tuple of numbers
[(mk) k =1,...,n], such that the product:

m

T (2y) 8
k=1

is dimensionless. For example, let the reference dimensions be
length, mass, and time (£,m,t), and the variables be E-energy,
m-mass, and c-speed of light. Then, these variables dimensionally
expressed in terms of the reference dimensions by:

E = me2/t?
m=m
c =L/t



A "B" number for these variables is (-1,1,2) for (E)_l(m)l(c)
is dimensionless. Thus, "B" numbers express formulas and may be
used to find dimensional relationships between variables.

In a system with a large number of variables, more than one
"B" number may result. By finding all "B" numbers, it is possible
to determine all the ways of decomposing the large system into
smaller ones. For instance, if along with the variables E,m,c,
we included £ and t, in the foregoing example, we could have
three "B" numbers (-1,1,2,00) as before; expre351ng E = mc2,
(-1,1,0,2,-2), since the unlts of E are m£2/t2 and (0,0,-1, l,—l)
since the units of ¢ are £/t.

SCOPE

It is assumed that (L) and [(mk) k = 1,...,n] are two "B"
numbers for the variables (Ax) and t is a real number. Scalar
multiplication and addition among "B" numbers are defined by

t x (Zk) + (m) = (tﬂk + mk) k=1,...,n

Observe that:

t
n t£, +m n £ n m
(TT (Ax) k k> = (TT(Ak) k> x (TT (Ax) k)

k=1 k=1 k=1

is dimensionless since (£y) and (m ) are "B" numbers. This shows
that the "B" numbers form a vector space, with addition and scalar
multiplication defined as before.

The program has the following functions.

(1) It determines a basis for the vector space of "B" num-
bers; that is, it determines a set of "B" numbers such that they
are linearly independent, and such that, any other "B" number can
be written as a finite combination of the elements of the ba51s.
Such a basis is called a complete set of "B" numbers.

(2) According to criteria previously defined (refs. 1,2,3),
the program examines other complete sets of "B" numbers and de-

termines a set in which:



(a) The minimal sum of the absolute values of the
entries

(b) The maximal number of zero entries

relative to all other complete sets examined,

PROBLEM FORMULATION

Coding the Problem
The input of the problem consists of:
(1) NREFDM = the number of reference dimensions
(2) NVARIB = the number of variables

(3) IVAR = an (NREFDM) by (NVARIB) matrix, which acts as a
list (indexed by the second variable) of (NREFDM) by 1 matrices.
The J'th entry in this list, or equivalently the J'th column of
IVAR, defines the J'th variable in terms of the reference dimen-
sions. For example, if the J'th variable was the Boltzmann con-
stant, which has dimensions (length) (length) (mass)/(time)/(time)
(temperature), and if the reference dimensions were (length, mass,
time, charge, temperature), then:

IVAR(1,J) = 2
IVAR(2,J) = 1
IVAR(3,J) = =2
IVAR(4,J) = 0
IVAR(5,J) = -1

(4) M = NREFDM
(5) N = the number of variables in the formula of interest

(6) IFORM = a list of N numbers which indicate which wvariables
are in the formula of interest. The numbers refer to the second
subscript of IVAR.

(7) IOPT = 1 or 2. It indicates which optimization procedure
will be followed. 1 means that zeros will be maximized first and
the sum of the absolute value of entries will be minimized next,
while 2 means that the procedure occurs in the reverse order.



Input Format

The first input card contains NREFDM and NVARIB in 2I5 for-
mat. The next NVARIB cards contain NREFDM numbers on each in
14I5 format and form the columns of IVAR. If Q formulas are to
be analyzed, then there should be Q sequences of cards in the
following form:

IOPT in I5 format
M and N in 2I5 format
IForm (=N numbers) in 14I5 format.

Note that all input data must be in integer form.

Example of Problem Statement (Fig. 1)
The.reference dimensions are:

(1) Length
(2) Mass
(3) Time
(4) Charge

The variables are:

(1) Surface area

(2) Mass of electrons
(3) Charge of electrons
(4) Current density

(5) Current

(6) Velocity

(7) Energy

(8) Electric potential.

The 12 input data cards for this problem are shown in
Figure 1. The card at the bottom of the page is the first, while
the one at the top of the page is the last. The resultant print-
out is shown in Figure 2. The program listing is given in the
appendix.

The first card indicates that NREFDM = 4, while NVARIB = 8.
Each of the next eight cards forms a column of IVAR. The second
card, for example, indicated that the dimensions of variable
number 1 (= surface area) are (1ength)2, while the ninth card
indicates that the dimegsions of variable No. 8 (= electric
potential) are (length)“ (mass) (time)~2(charge)~l. The tenth card
indicates that IOPT = 1, and the eleventh card that M = 4, N = 8.
The last card is IFORM. This card shows which of the variables
are to be considered; presently all eight variables are included.
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Figure 1.- Input data cards



THERE ARE FOUR REFERENCE DIMENSIONS AND EIGHT VARIABLES.
THE ROWS BELOW ARE THE VARIABLES.

2 0 0 0
0 1 0 0
0 0 0 1
-2 0 -1 1
0 0 -1 1
1 0 -1 0
2 1 -2 0
2 1 -2 -1

THE FORMULA NOW BEING CONSIDERED IS DEFINED IN TERMS OF THE
FOLLOWING EIGHT VARIABLES.

1 2 3 4 5 6 7 8

THE COLUMNS OF THE MATRIX BELOW ARE THE VARIABLES IN TERMS OF
THE REFERENCE DIMENSIONS.

0 -2 0 1 2 2
0 0 0 0 1 1
0 -1 -1 -1 -2 -2
1

0
1
0
0 1 1 0 0 -1

oo or

THERE ARE FOUR LINEARLY INDEPENDENT B VECTORS.
WE HAVE OPTIMIZED ZEROS FIRST, THEN THE SUM.

THE ROWS OF THE MATRIX BELOW FORM A COMPLETE SET OF B VECTORS.
THE SUM OF THE ABSOLUTE VALUES OF THE ENTIRES IS 19 AND THE

NUMBER OF ZERO ENTRIES IS 19.

-1 0 -0 -1 1 -0 -0 -0
0 0 1 0 -0 -0 -1 1
0 -1 -0 0 -0 -2 1 -0

-3 0 2 -2 0 2 -0 -0

Figure 2.- Computer Print-out for data given by Figure 1.



COMPUTER APPROACH

Complete Sets of "B" Numbers
The program proceeds as follows. Suppose IVAR is a p-by-k
matrix, so that each of the k columns of IVAR expresses a variable

in terms of the p reference dimension. A k-tuple (njy,...,ng) of
numbers is a "B" number if and only if

and this equals the matrix product of IVAR and the column vector

ny

D e

If we consider IVAR as a linear transformation, then the vector
space of "B" numbers is exactly equal to the null space of IVAR,
and in order to find a complete set of "B" numbers, it suffices
to find a basis for this null space. This is accomplished next.

Let e; = (0,...,0,1,0,...,0) be a k-tuple where the 1 occurs
in the i~-th spot, i = 1,...,k. Form the matrix whose i-th row
consists of IVAR (ej). The matrix is k by p. Row reduce this
matrix. As a by-product of the row reduction process one obtains
a permutation m of (1,...,k) and number ajg such that ajj # 0 and
such that the rows of the row reduced matrix are given by

1VAR[eq (1) ]
aleVAR[eW(l)] + aZZIVAR[eﬂ(z)]

ayIVAR[en(1)] + aj,IVAR[eq (2)] + a;;IVAR[eq (3) ]

a, ;IVAR[eq (1)1 + ... + ay IVARLeq (k) ]



where the first s rows are non-zero and the last k-s rows are
zero. Let

Y1 T (D)

and let i

w, = E aiyew(y)‘ i=12z,...,k.
y=1

Since the ej's are linearly independent and since ajj # 0, it
follows that the wi's are linearly independent. Let W; be the
space spanned by wj,...,Wg and let Wy be the space spanned by
Wg4lreeesWk. IVAN (W3®Wp) = IVAR (W3) so that W2 is the null-
space of IVAR. Let 6 be the inverse permutation to m. Then

[ai e(y)J i=1+1,...,k

expresses a basis of W, in terms of the original one. (Note that
the ej could have been chosen to be any k linearly independent
k~tuples.)

In this way the program determines a complete set of "B"
numbers. The input entries of IVAR must be integers, and as a
result, the entries of the "B" vectors forming a complete set are
integer.

Optimization

Next, it is determined if there are any common factors among
the entries of the "B" numbers, and whether there is only one
"B" number in the complete set. If there is, there is no need to
go through the optimizing procedure. But if there is more than
one "B" number, then an attempt to find a more optimal complete
set is made. The procedure is as follows.

Suppose Vi,...,Vk is the complete set of "B" numbers which
we have. If

Wy = AjVy + ... + Aka where Ajs...,Ap are integers and

Al # 0, then Wl’VZ""’V

" is also a complete set.



In this program, Ay,...,Ax takes on the values —2,—1,0f1,2 and .
the different W;'s so obtained are compared and an optimal one is
chosen. Then, V; = Vi, V2 = W1, V3 =V2,..., Vkx = Vix_1 are set.
This process is repeated k-times. There are at present two choices
of the optimizing procedure. The first choice is to maximize the
number of zero entries and then minimize the sum of the absolute
value, while the second is just the reverse. The two procedures

do not appear to be equivalent.

After performing the foregoing operations on one formula,
the program goes on and reads another formula.

Performance

The program has been tested on an IBM 7094. The running
time for 28 formulas, each with 1,2,3, or 4 "B" numbers in its
complete set, was about 2 minutes. The time for a formula with
5 "B" numbers in its complete set was slightly more than 4 min-
utes. This time includes an assembly listing and the punching of
a binary deck. Without the listing and deck, a Univac 1108 took
42 seconds to do the same 28 formulas.

Electronics Research Center
National Aeronautics and Space Administration
Cambridge, Massachusetts, September 1968
129-06-02-75
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APPENDIX

PROGRAM LISTING

07

MALN - EFM SOURCE STATEMEMT = IFN(S) =

THIS PROGRANM PERFORMS ThnE FOLLOWING FUMCTION. GIVEN A
SET OF REFERENCE DIMENSIONS, A SET OF VARIABLES EXPRESSED
Iil TeRYs OF THOSE DIMENSIONS AND A FORMULA IN TERMS OF SOME -
CF THE VARIAULESes THE PROGRaM FIRST DETERMINES A COMPLEIF
(IeterMaXxIMAL LITEARLY INDEREMDENT) 'SFT OF B=VFCTORS. "THEN™
IT EAAMIMES OTHER COMPLETE SETS OF B=VECTORS AND DETERMINES
HICH HAS THE “INIMAL SUM OF THE ARSNLUTE VALUES OF THE
EWTRIES AMD WHICH HAS THE MAXIMAL NUMRER OF ZEPOS IN THE
EUTRILS OF THE b=VECTORS. N T T
) THE TNPUT CUNSISTS OF ) oo T
1. NREFIT = THE NU'IRER OF REFERENCE NIMEMSIONS,
2e  WARTR = THLE NUYRER OF vARIAPLES
3. IVAR = Al (IKEFD™) BY (NVARIB) MATRIX WHICH ACTS AS A
LIST(IMDEXED =Y THE SECOND vARIAPLE) nF (HREFD) RY 1
PATRICES. THE J'TH ENTRY IN THIS LIST ¢ OR EQUTVALFMTLY
THE J*TH COLL'MI OF IVAR DEFINES THE J'TH VARIARLE IN TERMS
UF Tht REFERL. ICe DI EMNSIONS, FOP EXA™PLF IF THE J'TH
VARIALLE WAS THC BOLTZMALN (OMNSTANT WHICH HYAS PIMENSIONS
(LENOGTH) (LEHGTH) (MASS) Z/(TIM) (TIME) (TEMPERATURF)
AjD IF THE REFERENCE DIMENSICONS WERE
(LENOGTHMASS» TIWME » CHARGE » TE; PERATURE)
Th=}

IVAR(1,J) =2

IVAR(2,J) =1

IVAR(3rJ)z==2

IVAR(»J) =0

IVAR(Srd)==1,
4o MSHREFDM
Se W= THE TULRER OF VARIABL.S IN THE FOPNULA OF IMTEREST.
Se LFOPM= A LIST OF N NUMSBERS WHICH Ti'DICATE WHICH
VARIAGLES ARL Iw THE FORMUL: OF INTERFST. THE MUMRFERS REFER
TO THE SECOIIL SU=SCRIPT OF VAR,
7o 1IULPT= 1 OR 2. IT INDICATLS WHICH OPTI”I7ATION PROCEDURE
W1LL GE FOLLOWEU. 1 MEANS THAT ZFROS WILL BE MAXIMIZED
FIRST AnD THE SU™ OF THE ARLOLUTE VALUE OF THE ENTRIES WILL
e MINIWMIZED NEXT»WHILE 2 MZAMS THAT THE PPOCEDURE OCCURS
Ii¢ THie REVERSE ORDER.

INPJT FORMAT

THE FIRST IPUT CAR.. COMTAINS NREFN' AtD NVARIR IN
245 FURMATS  THeE NEXT KMVARIL CARCS COMTATH NREFDY NUMBERS
ON EACH IM 1415 FORWAT AND FOPM THE COLUMNS OF IVAR,

11



A ’ 07/

. MAIN - EFN  SOURCE STLTEMENT = IFN(S) = _

,C IF Q@ FORMULAS ARE TO BE ANALYZED» THEM THERE §HOULD BE

C "§ SEQUENCES OF CARDS IN THE FOLLOWING FORM, ..

c N
G e e s e _

c _IOPT IM IS FORMAT. o
T "M AND NTINM 215 FORMAT

c IFORM (=N NUMBERS) IN 1415 FORMAT

c AP ORMAEN NUSBERS T A S PR e
<

TOIWENSION MULT(30) fNULSAV(30,307 yMATSZ2 U307 307» INMAT (30,30
DIMENSION IV(15¢15) s14ULL(30030)»IVAR(S,40)+IFORM(15) ¢ MATSS(30,30)
TTIOT FORMATT215) ’
102 FORMAT(14I5)
~~7000 FORMATCIOHA TAERE ARE: IZ+2SH REFERELCE DIMENSIONS ANDY Y2, 1TH VARTAS 7
1LES.)
7001 FORMAT(34H THE ROWS BELOW ARE THE VARTIABLES.)
7002 FORMAT(////70H THE FORMULA NOW BEI|NG CONSIDERED IS DEFINED IN TERM

B et

1S 0F THE FOLLOWING»12,11H VARTABLES./)
7004 FORMAT(/88H THE COLUMNS OF THE MATKIX BELOW ARE THE VARIABLES INT

7T TTUTERMS OF THE T REFERENCE DIMENSIONS,) —
READ (5r101) NREFDM/,)NVARIB
T WRITE (6,70007 NREFDM,NVARIB T -
WRITE (6,7001)
T 7T T 00 1900 J=1,KNVARIB T T
READ (5¢102) (IVAR(I+J)+»I=1+NREFDM)
TG00 WRITE (671027 TIVAR{T P JT P IZ1vNREFDMT - —
130 FORMAT(IS)
— 7100 READ (51307 TI0PT -
READ (5¢101) MeN
T T TWRITE T&y7002T N - T - T
. READ (59102) (IFORM(J)eJ=1¢N)
TTTTTTTUWRITE 1671027 TUTIFORMUITPIELIYRY T
DO 111 J=1/,N
TTGRNEIFORMCIY T T T T T T T -
0O 111 I=1epm
TIT INMATIIZITSIVARTTIGNY — T T T T T
WRITE (6,7004)
ST DOTTO003 ISLM T - . ——
7003 WRITE (69102) (INMAT(IrJ) eJd=1¢N)
TTTTTTTDOLT TIETON T
DO 1 J1=1/,N
TIVUIIZ I =TT T . T - T o
DO 2 I2=1/sN
2 IV(I2sI2)= T T T —

FIND A BASIS FOR THE NULL SPACE

e
!

|
I

3 CALL NULSPA(M»N» INMAT, IVeNULL, K)

THE ROWS OF NULL ARE B VECTQRS AND FORM A COMPLETE SET.

_K IS THE NUMBER OF B VECTORS IN A COMPLETE SET.

nnon&nd Ao
|

T ISUNS™ IS THE 'SUM OF THE ABSOLUTE VALUE OF THE ENTRIES IN

e
N



_MAIN = EFN  SOURCE STATEMENT = IFN(S) =

| < THE FINAL OPTIMIZED MATRIXsAND IZERS IS THE NUMBER OF ZERO!
¢’ T A -
' ISUMS=0 ) e
- 1ZERS=0 T T T T ’
¢
T " ARE THERE ANY NON=2ER0 § VECTORS ™~~~ ~ ~ 7
I c
‘ ST T IFUK=1)2009620,801° T T T TS - T i
200 WRITE (6+103) |
" I03 FORMAT (38H THE OMLY B VETTOR IS THE ZERO VECTOR.T E—
G0 TO 100 B , !
g AR e - I
C IF THERE IS ONLY ONE B VECTOR THERE IS NO NEED TO GO ‘
c o "THROUGH THE OPTIMIZATION ROUTINE, =~ ™" "~ =" —
C
TR0 TZERS=0T T T T T T ' S
. IsumMS=0
= . o
c CHECK TO SEE IF ANY OF THE WUMBERS 2+3s5,7,11 DIVIDES
TTCUTTT TS TTEVERY ENTRY OF A B VECTOR.
c

902 DO 622 J lvH
T ISUMSSTSUMSHIABS (NULL(1,d)) ' T
MATSZ(1»J)=NULL{(1,J)
TIF(NULLTL I eZ2y 621622 T T T
621 IZERS=IZERS+1
622 CONTINUE" ' T T T T

60 _TO 307
- S S -
o c_ SAVE ORIGINAL COMPLETE SET OF B VECTORS IN MATRIX NULSAV.
¢ - _ORIGINAL LETE SET OF B VECTORS IN MATRIX
_ 801 KK=K=1 -
DO 960 IXDELK Tt o
DO 9000 JXD=1/N .

T 9000 NULSAVIIXD» IXDISNULLTIXDUXDY ~ — 7 T T
C
O T UNOW B0 TTHROUGH TOPTIMIZATION, T T T T T

C

c

C _ WE HAVE A COMPLETE(I.E, MAXIMAL LINEARLY INDEPENDENT)
"SET OF B VECTORS,SAY VL) »VI{Z2YTsaserVIKI, 7~ 77

g . IF W(L)=A%V (1) +B*xV(2)+e 0o +CkV(K) ¢ WHERE ArBreserC ARE

C

TTTTTINTEGERS VAND A IS NOT ZEROPTHEN W(LT/V(ZV 7o eer VIKY TS
AGAIN A COMPLETE SET OF B8 VECTORS. IN THIS PROGRAM

¢ T A8y eeerC TARE ON THE VALUES =2y=1,0s1¢2 AND THE

C  W(1)'S ARE OBTAINED IN THIS WAY. THEY ARE COMPARED AND
< 77 "TUANTOPTIMAL ONE IS CHOSEN. THEN WE SET V(1)=V(KT»V(ZI=WCIT,

c V(3)=V(2)reeerV(KIZVIK=1). THIS PROCESS IS REPEATED K '

T T TIMES T T T T T T !
_.—.C ‘- e

c ———— R o .

c MAJROw INDICATES HOW MANY TIMES WE HAVE GONE THROUGH THE
”‘E ~ T ABOVE PROCESS. B—

" DOTIOLW T MAIROWSLYK ™ T T T T - o - -

13



077
MAIN - EFN  SOURCE STATEMENT = IFN(S) -~ o
c E g v 4
g TTTTTTTTTISOMSA IS THE SUM OF THE ABSOLUTE VALUES OF THF ENTRIES IN ©
c THE MOST OPTIMAL B VECTOR YET EXAMINED/AND IZERSA IS THE _
C NUMBER OF ZEROS.
c
ISUMSA=9999" ) T o B
IZERSA=-1 . ) B
T TTUPE2%%KKT
c
c T NOW WE ARE DETERMINING THE AsBreserCoWHICH WE CALL JZEROX»
¢ MULT (1) s oo MULT (K=1) »RESPECTIVELY,
< - LT{1)ve oo MULTIKR=1) PRESPECTIVELY. - .

DO 670 IZEROX=1:5
6850 JZEROX=IZEROX-3 B
DO 3006 INUMB1=1,IUP
INUMBI=INUMB1-1
DO 3006 INUNMB2=1,1UP
INUMB2=INUMB2=-1
D0 3006 INUMB3=1,IUP
INUMB3=INUMB3~1
DO 350 JNUMB=1,KK
ITEST=2%% (UNUMB=-1)
MULT {INUMBI =0
IF(AND(INUMB1/+ITEST) +NE.O.) GO TO 612
GO TO 350 ' - -
612 MULT (JNUMB)=1
T T IF(ANDU(INUMB2+ITEST) «NE.Q«F MULT(JNUMB) Z=MULT {JNUMB)
IF (AND{ INUMB3+ ITEST) oNE«Os) MULT CUNUMB) =2xMULT (UNUMB)
350 CONTINUE I
DO 351 J=1sN
T 351 NULCIMAJROW Y JTSJZEROX*NULSAV (I » JJ

C
C NULLTMAJROWr« ) IS THE NEW B VECTOR WHICH WE WILL EXAMINE.
c .
DO 354 I=ZyK T T - T
I1=1-1

" 352 DO 353 J=1
353 NULL(MAJROW:J)'NULL(MAJROW J)+(MULT(I1)*NULSAV( I.d))

T 354 CONTINUE 7 o
C
C " 'CHECK TO SEE IF ANY OF THE NWUMBERS 2+3¢5,7,11 DIVIDES )
C ~EVERY ENTRY OF A B VECTOR.
P - Y
7 CALL DIVCHK (MAJUROWeNeNULL)
T e T e T e e e —— — -
c CHECK OPTIMIZING CONDITIONS, DEPENDING ON IOPT(EITHER
C T FIRST DETERMINE -THE NUMBER CF ZERO ENTIRES AND THEN SUM THE
C ABSOLUTE VALUES OF THE EMTRIES OR VICE VERSA.
—¢ OO el A S i i il I
802 IZERO=0
- ooIseM=0 ¢ vttt/ o T T T T
DO 9 J5=1'N
i ISUM-’ISUI\HTABS(NUELWURUWTJS_)T' s e -
IF (NULL(MAJROW,J5))98
8 TZERO=IZERO+1 T T -
14
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MAIN - EFN__SOURCE STATEMENT <= IFN(S) =
9 CONTINUE
GO TO (723,724) 7 TOPT 77 T TS T TmmTos s mmemiem o STt o
723 IF(IZERO-IZERSA)3006,6001,3003
TTTe(61 IF(ISUM-TSUMSA)3003,3006.3006 T T A
724 IF (ISUM=ISUMSA)3003,6002+3006
6002 TFUI1ZERO~IZERSA) 3006+3006,3003° ~—~ ——~— ~~~= 7 oo
3003 IZERSA=IZERO _
- T UISUMSAZISUM T TTTTTTTT T T e e T T e e
DO 3004 IK4=1sN
7T 300G MATSZUMAJROW Y IKE)ENULLTMAJROW, IKy) "7 77 o o e s
c
T T T T MATSZ ISTTHE TMOST OPTIMAL NEW BT VECTOR YET EXAMINED. T T
c ,
T TTT3006TCONTINUET T T T T T T T T e
670 CONTINVE . .
TTTTTTTTDO 780 JSLNTT T T T T e s s
760 NULSAV (1+J)SNULSAV(Krd)
I » [ iy £5% W E-X7 § -
DO 761 J=1/N
7761 MATSETIH U SNOCSAV(TZ I e o —
DO 762 1=2,KK
o 762 JELINTT T ' S
o I2=1+1
762 NULSAV(I2+J)=MATSS(IyJ)
DO 763 J=1/N
TS NULSAVI 2T JTEMATS ZIMAIROW JT T o

o]

ISUMS=ISUMS+ISUMSA
T IZERSSIZERS+IZERSA T
3014 CONTINUE

— - ST : -

C
T " WETARE DONE TESTING: TANSWER T T T T T

C
T 307 WRITE (6r10%) K- 0 T ’ S

104 FORMAT(10H THERE ARE»I3,32H LINEARLY INDEPENDENT B VECTORS., )
TGO IO (13191327 .I0PT T
131 WRITE (6:133)
T TI33 FORMAT TGN WE THAVE OPTIMIZED ZERUS FIRSTY THEN THE SUMST
G0 TO 4006
T I32 WRITE (6,134) T ) S T T - T
134 FORMAT(44H WE HAVE OPTIMIZED THE SUM FIRST THEN ZEROS )
4006 WRITE (6+107) ’ T -
107 FORMAT(63H -THE ROWS OF THE MATRIX BELOW FORM A COMPLETE SET OF B V
T T LECTOREYY T
WRITE (69,120) ISUMS,»IZERS
120 FORMATU49H THE SUM OF THE ABSOLUTE VALUES OF THE ENTRIES ISy I3v34H
1 _AND THE NUMBER OF ZERO ENTRIES IS.I3)
00 315 19=1.K0 T
315 WRITE (60106) (MATSZ(I9,J9)»JS=1,N)
TTI06 FORMATUISISY 777 -
GO TO 100
T END ’ ' o T . )
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e - o
- sl - EFN SOURCE STAIFMENT"_: IFN(S) - '

WKy T T

SUBROUTINE BASE (M»N¢e INMAT»MATOUT
DIMENSION INMAT(30930) #MATOUT(30¢30) s ICONS2(15) MATSAV(30s30)
¢ 77 7 T TSUBROUTINE BASE HAS THE FOLLOwING FUNCTION, GIVEM A VECTOR
SPACE V WITH BASIS(V1rV2rees?VN) AND A SET OF VECTORS IN V (WleW2»
T Ve e rWM) FBASE DETERMINES-IKETHE DIMENSION OF WyWHERE W IS THE
_SUBSPACE GENERATED BY THE WI'SeAND
- T T rEE R VECTORS IN W+ IN TERMS OF THE ORIGINAL
WI'S, wHICH ARE A BASIS FOR W,
© TTHETINPUT CONSISTS OF- ~I.N=THE DIMENSION OF V.~
2.M=THE NUMBER OF VECTORS IN THE GIVEN

'
1
!

TTGETYANGTTT T
3.INMAT=THE M BY N MATRIX WHICH
TTEXPRESSES  TRE WIS IN TERMS OF THE VJ'S,. 7
_THE OUTPUT CONSISTS OF= 1.K=THE DIMENSION OF WsAND
T T Z.MATOUT=THE M BY ™M MATRIX WHOSE
FIRST K ROWS DETERMINES THE BASIS CF W IN TERMS OF THE VECTORS IN
THRE GIVEN SET.
__NOTE-THE INPUT MATRIX MUST HAVE INTEGRAL ENTRIES.
DO 61 I=1.M
0O 61 J=1'M
MATSAV(I+J)SINMAT(I P J)
IF(I=-J71/60,1 _
1 MATOUT(I,J)=0 ;
I cTo e Ko=) § - 1
60 MATOUT(I,J)=1 ;
61 TONTINUE ;
IROW=1 i
T "IROW INDICATES WHICH ROW WE ARE NOW AT IN THE ROW REDUCTION|
PROCESS. IT ALSO INDICATES HOW MANY VECTORS IN THE BASIS ;
T HAVE "ALREADY BEEN CONSTRUCTEG.

FIND A NON=ZERO VECTOR

|
i
|
!

qnqnmnonqnﬂo
: !

cooo

nqnqoq

DO 50 J=1rN
DO 50 I=1eM
TTTTTTIFTINMATII ) Y5T,50951
51 JSTART=J
IF(I-M)30+,33+33
30 ISTART=I
G0 10 31
50 CONTINUE
e D e N _
RETURN i
31 IPLUSZISTART+1I ~ ) -
DO 32 I=IPLUS'M
06732 J=1I+N
IF(INMAT(I01J))52¢32+52
TUEZTCEONTINUET T T T
33 K=1
RETURN
52 DO 15 JSJSTARTN
DO 3 I=IROW/M
IF (INMAT(IrJ))2+30¢2
2 ISWOPET

16



DO 66 I3=IROWLIM
ICONS2{I3)=INMAT(I3
IF (ICONS2(13))65/,66

T 765 D0 10 J3SIIN

rJ)
165

s1 - EFN  SOURCE STATEMENT = IFN(S) =
.80 TO 4
"3 CONTINUE 7~ -
60 TO 15
¢
c INTERCHANGE ROWS OF INMAT.
c
4 DO 5 J1=1sN
T T SAVESINMAT (YROW s J1)
INMAT (IROW»J1)SINMAT (ISWOP,J1)
"5 INMAT(ISWOP»J1)=SAVE
c
"C 77 7 INTERCHANGE CORRESPONDING ROWS OF MATOUT,
DO 6 I1=1sM N
- SAVEEMATOUT(IROW,I1)  —~
B MATOUT (IROW,I1)=MATOUT(ISWOPr11)
6 MATOUT (ISWOPsI1)=SAVE
. 9 IROWIZIROW+L ]
ICONS1=INMAT ( IROWsJ)
c
c ROW REDUCE INMAT,
€ CHANGE MATOUT ACCORDINGLY.
< _MATOUT ACCORD] ]

10 INMAT(I3»J3)=(ICONSI*INMAT(13,J3))=(ICONS2(I3)*INMAT (IROWrJ3))

66 CONTINUE ~
DO 68 I4=IROW1l:M

67 DO 13 J4=1,
—_EI3_MITGUTTTQ'JHIEMACON
68 CONTINUE
’ IF(J=NI40»19,19"
40 IF(IROW1-M)41,16+19
"H1 JONE=SJ+1 ~
DO 42 JTRY=JONE!N

T T TDOTGZ ITRYSIROWI«M —

IF(IEGN*i(IQ)) 67+/68:67 -

IxMATOUT(I4yJl) T~(IC

1F CINMAT(ITRY»JTRY) ) 14042, 14

T B2 CONTINUE — ~° 7 7
GO0 TO 19
T 1% IROWSIROWHFIT T T

15 CONTINUE
TG0 TO 197
16 DO 17 I5=1,N

T IFUINMAT(IROW1»IS51118917¢18

17 CONTINUE
~ 19 K=IROW ST
GO To 71
TTTIB K=IROWL i
71 DO 70 I6‘19M
~ D070 I7=10N

ONS2(1

70 INMAT(16v17)-MATSAV(I6vI7)

CTTTRETURN
END

[

}*MATOUTUIROW» JUTY)
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) 07/
52 _ - EFN  SOURCE STATEMENT = IFN(S) -

"““_’SUBRO‘TI " NULSPATMsNeL» IVINULL#K)

WE ARE GIVEN TWO VECTOR SPACES V AND W WITH BASIS V(1lress
VIN) AND W(1)reeerW(M) sRESPECTIVELYs AND A LINEAR TRANSFORMA=
TION L FROM V INTO W. SUBROUTINE NULSPA DETERMINES A BASIS FOR

THE NULL SPACE OF L IN TERMS OF A GIVEN BASIS V. _

V(1) reesrVINT IS THE USUAL BASISs» NAMELY V(IT=(Oreeer0Or
190rss090) WHERE THE 1 OCCURS IN THE I'TH LOCATION.

O o 00

~_THE INPUT CONSISTS OF=- o ]
1. TWO INTEGERS M AND No

2.AN N BY N MATRIX IV WHOSE COLUMNS ARE A BASIS OF Vr AND

3.AN M BY N MATRIX WHICH CONRRESPONDS TO L IN THE GIVEN BASIS.

C ~ THE OUTPUT CONSISTS OF-
1.K = THE DIMENSION OF THE NULL SPACE OF L» AND

THE J'TH VECTOR = J1*V(1) +eee+JN*VI(N) OF THE BASIS OF THE |
T NULL SPACE. ~

THE METHOD. ]
LET V(T) BE THE I'TH COLUMN VECTOR OF IV. STEP 1 J
|

CONSISTS OF FORMING THE MATRIX IRANGE WHOSE I*TH ROW CONSIS
TS OF LTVI(IVT). STEP 2 CONSISTS OF CALLING SUBROUTINE BASE
WHICH ROW REDUCES IRANGE. IT ALSO DETERMINES THE ROWS OF
" THE ROW REDUCED MATRIX INTERMS OF THE INITIAL ROWS OF THE
MATRIX AND EXPRESSES THE RESULT IN THE MATRIX IBSRAN.
" IDMRAN IS THE DIMENSION OF THE RANGE OF L. THE

FIRST IDMRAN ROWS OF IBSRAN FORM A BASIS OF THE RANGE OF L
ASTFOLLOWS.

¢ WE HAVE V(1)resarVIN) AS A BASIS OF V AND WE FORMED
L{V(I}J FOR I=lreeerNe SUPPOSE IBSRAN={A{IrJ]]e THEN THE
I'TH ELEMENT OF A BASIS FOR THE RANGE OF L IS GIVEN BY
TATT 1T ALAVII) T ¥ 0o o #ATTI /NI *L{VINI T« SINCE L IS LINEAR IT
FOLLOWS THAT THE VECTORS AlT, 1)*L(V(1)+...+A(IvN)*V(N)r

|

OAqOOn

ISOMORPHIC’ UNDER THE RESTRICTION OF L TO THIS SUBSPACE» .
~TO THE RANGE OF L. THE LAST N=IDMRAN ROWS OF THE ROW -
REDUCED IRANGE MATRIX ARE ALL ZEROs SO A(Ie1)#L(V(1))+eq4e+
ACTYNI®C{V(N)YJ=SU+FOR IZIDMRAN+1reee?Ne THE LINEARITY OF L —
SHOWS THAT THE VECTORS A(I;1)*V(1)+,.,+A(I/NI*V(N)/FOR I=
IDMRAN*17 ..+ *N? ARE IN THE NULL SPACE OF L, THE ROW 7
REDUCTION PROCESS SHOWS THAT THESE VECTORS ARE LINEARLY
INDEPENDENT. HENCE THE LAST N=~IDMRAN ROWS OF IBSRAN ARE A
BASIS FOR THE NULL SPACE OF L.

qnﬁndnqnﬁnnannnan

3

DIMENSION L(30+30)sNULL(30/,30) ‘j
DIMENSTON TV(I5/ 157 o : i

18
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| s2 - EFN__ SOURCE STATEMENT = IFN(S) -
!
[

DIMENSION IRANGE(30'30)rIBSRAN(BOo&O)
“DO 1 TIZ1.M
DO 1 Ji=1sN

T T TRANGE TUIFIITE=0 T T oo T -

‘ C

e 1 - Rt
DO 7 I2=1,M e '

ST OTTDOTT T J2RaNTTT T
DO 7 J3=1/,N
T T IRANGE (U2 T2V IRANGETIZ Y IZT (L (IZ2» J3)¥IV(J3vJ2YT
C

T T T “STEP 2 - - /s e
CALL BASE(NrMrIRANGE» IBSRANs IDMRAN)

T s R RENSIDMRAN T T T T T e s T B
DO 6 I2=1,K

T T I3TIDMRANFIZ T
DO 6 J2=1¢N

6 NULL(12,J2)=I8SRAN(IZ,J2T 7 T
RETURN
ot Y e T e £ e e
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—c

C

e . o

S3 - EFN _ SOURCE STATEMENT - IFN(S) -~

SUBROUTINE DIVCHK(L2sNeNULLY = °
DIMENSION NULL (30, 30)

DIVCHK CHECKS TO SEE IF THE NUMBEKS 2¢3¢5,7,11 DIVIDE EVERY ENTRY

T OF Row L2 IR TRE MATRIX NULL WHICH HAS "N "COLUMNS,  IF SO THEN ~

C

THE_ DIV IS}(_)_N'__IS DONE.

e e e e e+
ICKT=1 .

TIT732760 TO (72697274728 7292730} YICNT T T T T T
' 726 L3=2

Y <o T o R . 3

! 727 L3=3

— e TO 73 O o

728 L3=5 o

TTTTTTGo To T3

729 L3=7 L

731700 720 LUETYN T

TG0 TO 731
730 L3=11

ICHECK=MOD (NULL(L2,L4) L 3)

T TIFUICRECKY 722, 7200 722

720 CONTINUE

TTTTEOTTO 732

Bo 721 L5=1/N
721 NULL{(L2/LS)=NULL(L2sL5)/L3

722 IF(ICNT~5)733,802,802

T 802 RETURN

20

733 ICNT=TCHNT+1
G0 TO 732
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