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ABSTRACT 

, Performance was studied in  t e r m s  of voltage-current data for temperatures ranging 
from 300' to 460' F (422 to 511 K), KOH concentrations ranging f rom 70 to 82 wt, %, and 
reactant pressures  of 22.4 psia ( 1 . 5 4 ~ 1 0 ~  N/m ). The effect of increased concentration 
appeared as an upward displacement of the voltage-current curve and was two or more  
t imes  that calculated from thermodynamic considerations. 
appeared to  be consistent with rate-process principles, in that i t  increased with current 
and decreased as equilibrium conditions were approached. 
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The effect of temperature 
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ABSTRACT 

Performance was studied in terms of voltage-current data for temperatures ranging 

from 3000 to 4600 F (422 to 511 K), KOH concentrations ranging from 70 to 82 wt.%, and 

reactant pressures of 22. 4 psia (1. 54X105 N/m2). The effect of increased concentration 
appeared as an upward displacement of the voltage-current curve and was two or more 

times that calculated from thermodynamic considerations. The effect of temperature 
appeared to be consistent with rate-process principles, in that it increased with current 
and decreased as equilibrium conditions were approached. 
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EFFECTS OF TEMPERATURE AND ELECTROLYTE CONCENTRATION 
ON PERFORMANCE OF A FUEL CELL OF THE BACON TYPE 

by Robert E. Post 
Lewis Research Center 

SUMMARY 

An empirical study was  conducted on a cell without a reference electrode to deter- 
mine the effects of temperature and aqueous potassium hydroxide (KOH) electrolyte 
concentration on cell performance. Performance was  studied in terms of voltage- 
current data for temperatures ranging from 300' to 460' F (422 to 5 1 1  K) and concen- 
trations ranging from 70 to 82 weight percent of KOH. Reactant pressure was 22.4 psia 
(1.54X10 N/m abs). The experimental design consisted of variations of temperature 
and concentration about mean values. Four sets of mean values of both variables were 
established on the basis of minimal variation of electrolyte vapor pressure. Since 
concurrent increases of temperature and concentration were required in order to main- 
tain uniform vapor pressure, and this resulted in increased performance, the concept 
of performance level was introduced as a parameter. 

The effects of temperature T and concentration W on voltage V a r e  represented 
as coefficients, designated (aV/ aT)W and (aV/ L ~ W ) ~ ,  which were  determined at three 
levels of current density for each performance level. Coefficients were not determined 
for zero current density because the open-circuit voltages exhibited a strong time de- 
pendence. These coefficients and their standard e r ro r s  were estimated by regression 
analysis. Values of (aV/i3T)W ranged from 0.9 to 23 volts per O F  (1.6 to 42 V/K), in- 
creasing with current density and decreasing with performance level. 
aW), were considered constant at 1.0 volt per percent, within experimental e r ror ,  for 
all conditions of current density and performance level. This value is two or more times 
that calculated according to thermodynamic principles. 

occurrence, the behavior of the coefficients was found to be consistent with rate-process 
considerations and data from other sources, except for the behavior of the concentration 
coefficient with respect to performance level. 
formance levels has only borderline significance and, if anything, increases with per- 
formance level, which is not to be anticipated if kinetic considerations are applied. In 
the light of this behavior and the results of other work, it is concluded that the oxygen 
electrode is characterized generally by a fixed or  current-independent loss  and that the 
effect of concentration is associated with an unresolved mechanism that is responsible 
for this loss. 

5 2 

Values of (aV/ 

With the use of statistical significance tes ts  at a liberal level of 20 percent chance 

The variation of (aV/aW), between per- 
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An empirical study was conducted on a cell without a reference electrode to deter
mine the effects of temperature and aqueous potassium hydroxide (KOH) electrolyte 
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current data for temperatures ranging from 3000 to 4600 F (422 to 511 K) and concen
trations ranging from 70 to 82 weight percent of KOH. Reactant pressure was 22.4 psia 
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concurrent increases of temperature and concentration were required in order to main
tain uniform vapor pressure, and this resulted in increased performance, the concept 
of performance level was introduced as a parameter. 

The effects of temperature T and concentration W on voltage V are represented 
as coeffiCients, designated (aV/aT)w and (av/aW)T' which were determined at three 
levels of current density for each performance level. Coefficients were not determined 
for zero current density because the open-circuit voltages exhibited a strong time de
pendence. These coefficients and their standard errors were estimated by regression 
analysis. Values of (aV / aT)W ranged from 0.9 to 23 volts per OF (1. 6 to 42 V /K), in
creasing with current density and decreasing with performance level. Values of (aV / 
aW)T were considered constant at 1. 0 volt per percent, within experimental error, for 
all conditions of current density and performance level. This value is two or more times 
that calculated according to thermodynamic principles. 

With the use of statistical Significance tests at a liberal level of 20 percent chance 
occurrence, the behavior of the coefficients was found to be consistent with rate-process 
considerations and data from other sources, except for the behavior of the concentration 
coefficient with respect to performance level. The variation of (av/ aW)T between per
formance levels has only borderline Significance and, if anything, increases with per
formance level, which is not to be anticipated if kinetic considerations are applied. In 

the light of this behavior and the results of other work, it is concluded that the oxygen 
electrode is characterized generally by a fixed or current-independent loss and that the 
effect of concentration is associated with an unresolved mechanism that is responsible 

for this loss. 



INTRODUCTION 

The selection of the hydrogen-oxygen fuel cell to supply auxiliary power for 
intermediate-duration space missions was based on the lowest practical overall system 
weight which resulted from the efficient use of high-energy-density reactants. The fuel 
cell subcontractor for the NASA Apollo mission, Prat t  & Whitney Aircraft Division 
of United Aircraft Corporation (P&WA), adopted a modification of a fuel cell developed by 
Bacon (ref. 1, ch. 5 and ref. 2, ch. 3) as the basic unit in their system. The distin- 
guishing feature of the Bacon cell is that it is designed for operation at temperatures 
sufficiently high that the need for noble-metal catalysts is avoided. The electrodes are 
made of porous nickel sinter. Whatever catalytic activity exists resides in metallic 
nickel at the anode and in semiconductive nickel oxide at the cathode. 

tures,  one cannot have an electrolyte composition that is liquid at room temperature with- 
out having to deal with a rather high vapor pressure of water at the operating temperature 
(ref. 3). Bacon preferred low-concentration - high-vapor pressure conditions (ref. 1, 
ch. 5 and ref. 2,  ch. 4) and compensated for high vapor pressure by employing a high 
operating pressure. The subcontractor chose to work with higher electrolyte concen- 
tration in spite of the necessity for  preheating the cell to liquefy the electrolyte before 
startup (ref. 4). A comparison of conditions is shown in table I. 

The electrolyte employed is aqueous KOH. At typical Bacon cell operating tempera- 

TABLE I. - COMPARISON OF OPERATING CONDITIONS FOR BACON 
CELL WITH THOSE FOR MODIFIED BACON CELL 

Temperature, T, O F ;  K 
Potassium hydroxide concentration, 

Reactant pressure,  psia; N/m abs 
Estimated vapor pressure, psia; 

w, wt. % 
2 

N/m2 abs 

Bacon cella 

392; 413 
37 

400; 2 7 . 5 ~ 1 0 ~  
‘120; 8.2X1O5 

Modified cellb 

500; 533 
85 

~~ 

20; 1 . 4 ~ 1 0 ~  
d2. 45; 1 . 7 ~ 1 0 ~  

Ref. 1. a 

bRef. 4. 
Ref. 12. 

dunpublished data obtained from Pratt  & Whitney Aircraft Division of 

C 

United Aircraft Corporation 
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Voltage-current density data, as reported by Bacon (ref. 1, p. 62) and as determined 
in this laboratory (unpublished data obtained by J. McKee and N. Hagedorn of Lewis) for 
typical Apollo prototype test  cells at slightly different conditions from those of table I, 
are shown in figure 1 as "Bacon (1)" and llTest cells, l t  respectively. 
evident the fact that the theoretical open-circuit voltage for the reaction 

This figure makes 

H2 + -02 1 = H20 
2 

(see appendix A) is approached much more closely by the test cell curve and that superior 
performance is indicated up to and beyond current densities of 200 amperes per square 
foot (2150 A/m ). 

The fact that at higher current densities the test cell voltage falls more rapidly than 
that for Bacon's data is expected because of the lower pressure and higher concentration. 
Any process involving the diffusion or the reaction kinetics of gaseous reactants should 
be promoted by high pressure. As to concentration, electrolyte conductance falls with 

2 

Data Operating conditions 
Temperature, Reactant KOH concen- 

T. pressure. t ration, 

Test cells 450 (505) 22.4 (1 .54~10~) 85 
_----- Bacon (1) 392 (473) 400 (27 .5~10~)  37 
__- Bacon (2) 392 (473) 420 (28 .9~10~)  45 

Theoretical open-circuit voltage, E,, 
-Test cells and Bacon (2 )  

1.k n(11 

> 

Current density, i, Alfl' 

I I I I 
1075 1612 2148 0 537 

Current density, i, A h 2  

Figure 1. - Comparison of performances of Bacon 
cells and test cells. 
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increasing concentration between 37 and 85 weight percent (ref. 2), which would increase 
the internal resistance. 

At lower current densities, if adverse effects occur from lower pressure and higher 
concentration, they are evidently overshadowed by some unknown factor. This factor 
apparently reduces a fixed loss that prevents attainment of the theoretical voltage, even 
at open circuit. 

The source of these differences in performance characteristics might lie in the 
somewhat higher temperatures employed with test cells, in the higher KOH concentration, 
o r  in some property of the electrodes themselves. Since temperature and concentration 
are readily varied, it was decided to examine their effect on fuel cell performance using 
available hardware and employing an essentially empirical approach. 

Later data reported by Bacon (ref. 3, p. 176) and taken at a somewhat higher KOH 
concentration of 45 percent support a hypothesis that concentration has an intrinsic 
importance. These data are plotted as Bacon (2) in figure 1. However there are also 
present factors of improved electrode construction and a slightly higher reactant pres- 
sure  of 420 psia (28. 9x105 N/m abs). 

For the present investigation, the KOH concentration was varied from 70 to 82 
weight percent and the temperature from 300' to 460' F (422 to 511 K). All data were 

5 2 obtained on the same cell with the pressure held constant at 22.4 psia (1 .54~10 N/m 
abs). 

2 

APPARATUS AND PROCEDURE 

The fuel cells were prototype Apollo hardware available from a system evaluation 
program. The electrode construction is shown in figure 2. The porous nickel electrode 
is 5 inches (0. 127 m)  in diameter (fig. 2(a)). 
f t 2  ( 1 . 2 6 ~ 1 0 - ~  m2). ) Gas passages a r e  formed between the support plate and the elec- 
trode (fig. 2(b)). Two similar electrodes a r e  clamped together to form a single cell. 
A polytetrafluoroethylene O-ring, held in grooves near the edges of the support plates, 
seals the electrolyte and provides electrical insulation. 

A cross  section of the electrode construction is shown schematically in figure 2(c). 
This construction uses capillary forces to maintain the electrolyte-gas interface within 
the electrode. A differential pressure is applied that is greater than the bubble pressure 
of the coarse-pore layer but less than that of the fine-pore layer. 

The electrochemical process at the oxygen electrode is generally believed to involve 
a wetted film extending from the meniscus toward the gas side and along the walls of the 
coarse-pore layer (ref. 5). Performance is sensitive to the geometry of this interface. 
A temporary application of a differential pressure across  the oxygen electrode, some- 

(The projected geometrical area is 0. 136 
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rElectrolyte-gas interface 
/ 

(c) Cross-sectional view of dual-porosity electrode. 

Figure 2. - Concluded. 

what higher than the operating pressure differential but not s o  high a s  to exceed the bubble 
pressure of the fine-pore layer, has been found to be effective in promoting uniform 
performance. This procedure was applied each day after the cell was filled and pre- 

5 liminary to taking the data. The operating pressure differential was 8 .0  psi (0 .55~10 
N/m ). The temporary differential pressure was 9.0 psi (0 .62~10 N/m ). The total 
operating pressure of the reactants was 22.4 psia (1 .54~10 N/m ). 

A view of a cell in its holder as arranged inside an oven is shown in figure 3. The 
outside of the hydrogen electrode is visible inside the upper clamp ring. The four tabs 
connected to black wires a r e  voltage taps. Affixed to the exterior of the electrode a r e  
three thermocouple probes connected to white wires. The four heavy, stranded, unin- 
sulated cables a r e  current leads. The current path is radial from the electrodes through 
the diaphragm region and into the clamp ring from which it passes to the two cables 
diametrically attached to each ring. 

The fuel cell voltage w a s  read to k0. 001 volt on a high-impedance digital voltmeter 
using the taps in the center of the electrodes. (Voltages at the taps nearest the current 
take-off connection were about 0.001 V less  per each 10-A load. ) The current was also 
read from a digital voltmeter to *O. 1 ampere using a 0.001-ohm shunt. Temperatures 
were continuously recorded on a multipoint recorder using an ice bath (32' F or  273 K) 
reference junction. Pressures  were read to *O. 1 psig (69 N/m gage) with precision 
bourdon tube gages. Pressure taps were located in the vent lines. 

The cell was  filled in an inclined position through the nearer of the two f i l l  cups. 
A 1/8-inch (-3.2-mm) tube connected the cup to the lowest point on the cell. Another 

2 5 2 
5 2 
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operating pressure of the reactants was 22.4 psia (1. 54X105 N/m2). 

A view of a cell in its holder as arranged inside an oven is shown in figure 3. The 

outside of the hydrogen electrode is visible inside the upper clamp ring. The four tabs 

connected to black wires are voltage taps. Affixed to the exterior of the electrode are 

three thermocouple probes connected to white wires. The four heavy, stranded, unin
sulated cables are current leads. The current path is radial from the electrodes through 

the diaphragm region and into the clamp ring from which it passes to the two cables 
diametrically attached to each ring. 

The fuel cell voltage was read to ±O. 001 volt on a high-impedance digital voltmeter 
using the taps in the center of the electrodes. (Voltages at the taps nearest the current 
take-off connection were about 0.001 V less per each 10-A load.) The current was also 

read from a digital voltmeter to ±O. 1 ampere using a O. 001-ohm shunt. Temperatures 
were continuously recorded on a multipoint recorder using an ice bath (320 F or 273 K) 

reference junction. Pressures were read to ±O. 1 psig (69 N/m2 gage) with precision 
bourdon tube gages. Pressure taps were located in the vent lines. 

The cell was filled in an inclined position through the nearer of the two fill cups. 

A l/B-inch ("'3. 2-mm) tube connected the cup to the lowest point on the cell. Another 
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1, Hydrogen electrode 
(exterior) 

2, Upper clamp ring 
3, Voltage taps (4) 
4, Thermocouple probe (3) '. ' 
5, Cu rrent leads 
6, Diaph ragm 
7, Fill cups (2) 

Fill-cup connecting 
tube 

Figure 3. - Fuel cell test rig. 

cup served as an overflow reservoir and was accordingly connected to the highest point. 

The cups held enough electrolyte to compensate for the volume change corresponding to 

somewhat more than a 500 F (28 K) temperature change . For taking samples of the 

electrolyte, the cups were removed, a pressure line was connected to the tube on the 

high side, and a sampling tube was attached to the low side. Tests were made with the 

cell in a horizontal position. 

Electrolyte solutions were made up from reagent grade KOH containing about 0.7 

percent potassium carbonate (K
2
C03). The concentration was determined as KOH by 

titration with standard acid to the phenolphthalein end point. At this end point (pH 8), 

carbonate is converted to bicarbonate so that values are slightly higher than the actual 

KOH content by about 0.2 percent. Three samples were collected while the cell was 

being drained to obtain an indication of any concentration gradient that might exist. 
Samples of about 3 grams were drained into vials assembled from capped stainless

steel tube fittings. The variation between samples never exceeded 0.3 percent with no 
consistent trend as to sequence. If any gradient developed during operation, it must 
have dissipated before the samples were taken. 

Commercial reactant gases were used. Hydrogen (H2) had a minimum purity level 

of 99.9 percent by volume and oxygen (02)' 99.6 percent by volume. Flow rates of H2 

and 02 were measured by float flowmeters. Hydrogen was vented continuously to main

tain water balance in the cell by removing water evaporated into the gas cavity (ref. 4). 

When the rate was established, based on the assumption of equilibration of the gas with 

bulk electrolyte, the concentration was found to increase {i. e., excess water was re-
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moved) while the cell was running. Since some oxygen was  also vented to purge impuri- 
ties, some water could have been removed thereby, although none was ever found in 
the room-temperature t rap  in the oxygen vent line, while an appreciable amount collected 
in the t rap  on the hydrogen side. A more likely explanation is that water tends to accu- 
mulate at the hydrogen electrode, where it is formed, thereby decreasing the electrolyte 
concentration and increasing the water vapor pressure. An empirical adjustment to 
70 percent of the calculated vent rate eliminated this problem as far as could be deter- 
mined. 

A minimum oxygen vent rate was necessary at currents of 20 amperes (147 A/ft o r  
1580 A/m2) and higher. The excess amounted to the rate of consumption at a current of 
12 amperes. With this rather substantial amount of venting, the voltage would level off 
to a steady value after 5 minutes of operation at a given current setting. Otherwise a 
further decline in voltage would be observed. No attempt was made to determine a level- 
off voltage as a function of vent rate. This procedure was  accepted as an expedient to 
counteract the expected effect of pore blocking by the accumulation of impurities carried 
in with the oxygen (ref. 6). 
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(3) In the event of cell deterioration with time, obtaining at least the relative effects 

(4) Only two runs could be made a day at two temperature levels and at a single 

In view of these considerations, the experimental design grid shown in figure 4 was 
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Figure 4. - Experimental design grid for values of  temperature and concentra- 
tion. 

temperature range of each block was  40' F (22 K). Concentration ranges varied from 
2.2 to 3 . 3  percent by weight. 

Each block of experimental points is associated with a mean temperature, a mean 
concentration, and a mean level of cell performance. Since concurrent increases of 
temperature and concentration result in increased performance, the term performance 
level (denoted by Roman numerals) has been applied to designate the blocks. 

RESULTS 

The effects of concentration and temperature on cell performance at four perform- 
ance levels, as defined in the Experimental Design section, are listed in table 11 as 
partial derivatives estimated by regression analysis (see appendix B for statistical 
analysis and table III for complete temperature-concentration raw data). These partial 
derivatives are the temperature and concentration coefficients in a linearized expression 
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temperature range of each block was 400 F (22 K). Concentration ranges varied from 

2.2 to 3.3 percent by weight. 
Each block of experimental points is associated with a mean temperature, a mean 

concentration, and a mean level of cell performance. Since concurrent increases of 

temperature and concentration result in increased performance, the term performance 

level (denoted by Roman numerals) has been applied to designate the blocks. 

RESULTS 

The effects of concentration and temperature on cell performance at four perform

ance levels, as defined in the Experimental Design section, are listed in table II as 

partial derivatives estimated by regression analysis (see appendix B for statistical 

analysis and table m for complete temperature-concentration raw data). These partial 

derivatives are the temperature and concentration coefficients in a linearized expression 
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for the variation of voltage with temperature and concentration at a given current 
density : 

v - vm = (E)w (T - Tm) + 8, w - Wm) 

(All symbols are defined in appendix C. ) The coefficients are presented graphically as 
functions of current density for the four performance level parameters in figures 5 and 6. 
Typical plots of voltage against current density are shown in figure 7. In this figure, a 
set of curves for one performance level is shown along with individual curves for the 
best and poorest performance obtained in the entire experiment. 

The data in table II a r e  presented as variations of voltage at current densities of 
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for the variation of voltage with temperature and concentration at a given current 
density: 

v - V = (av) (T _ T ) + [av.\ (W - w ) 
m aT m '-awl m W T 

(All symbols are defined in appendix C.) The coefficients are presented graphically as 
functions of current density for the four performance level parameters in figures 5 and 6. 
Typical plots of voltage against current density are shown in figure 7. In this figure, a 
set of curves for one performance level is shown along with individual curves for the 
best and poorest performance obtained in the entire experiment. 
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TABLE II. - EFFECT O F  TEMPERATURE AND CONCENTRATION ON VOLTAGE AT CONSTANT CURRENT DENSITY 

I 

KOH KOH 
--. current density, 

v/wt.% psia 
'm' VI0F V/K V/OY V/K KOH 

V 1. 
~. 

29.4 316 0.915 0.001 12. l X i O - 4  ~ . 2 x l O - ~  o .m10-~  l ~ l O - ~  0 . 9 ~ 1 0 - ~  0. lx lO- '  -5. Z X ~ O - ~  - 0 . 4 ~ 1 0 - ~  0 . 3 6 ~ 1 0 - ~  1.40 

29.4 316 1.008 0.001 3 . 6 ~ 1 0 ' ~  6 . 5 ~ 1 0 - ~  0. 0 . 7 ~ 1 0 ' ~  ' 1 . 0 & 1 0 - ~  0 . 0 b 1 0 - ~  -5. 5 x N 4  -9. ~ x I O - ~  0 . 3 8 ~ 1 0 - ~  1.95 
88.2 950 ,889 ,002 10 18 1 2 . 9  .2 
41 1580 ,787 ,005 16 30 2 4 . I  . 4  

29.4 316 1.044 0.001 1 . 9 ~ 1 0 - ~  3 . 4 ~ 1 0 - ~  o . l ~ l O - ~  1. 1. l x l O - '  0. l x l O - '  -5. ~ ~ l o - ~  - 9 . 2 ~ 1 0 - ~  0. &lo-' 2.52 
88.2 950 ,943 ,002 5.6 10.1 .8 1.4 . 9  .14 
41 1580 ,859 ,002 9.5 17 1.1 2 . 8  .2 

29.4 316 1. M2 0,001 0 . 9 ~ 1 0 ' ~  1 . 6 ~ 1 0 - ~  0.%10-4 o.W10-4 1 . 2 b 1 0 - 2  0.0E40-2 -5.(Dt10-4 - 9 . 0 ~ 1 0 - ~  0 . 4 ? ~ d O - ~  2.38 
88.2 950 ,974 ,002 3.9 I. 1 .8 1.4 1.2 
47 1580 .894 . 0 0 3 7 . 3  13.2 1.4 2 . 5  1.2 

88.2 950 ,737 ,004 2 3 ~ 1 0 - ~  & ! x ~ O - ~  2 4 1. 1 . 4  

-- 

Performance Mean Mean 
level temperature concentration 

in given ingiven 
performance performance 
level block, level block, 

Tm wm 

i 
N/m2 abs 

9 640 

13 400 

11 400 

16 400 

m 417 

N 440 

487 18 .3  

500 80.6 

TABLE II. - EFFECT OF TEMPERATURE AND CONCENTRATION ON VOLTAGE AT CONSTANT CURRENT DENSITY 

Performance Mean Mean Current Mean value Standard Temperature Standa d r Concentration standard Thermodynamic Thermodynamic Vapor 
level temperature concentration density, of voltage error of coefficient of error of coefficient of error of temperature concentration pressure 

in given in given i in given Vm ' voltage at (av/aT)w, voltage, (av/aW)T' coefficient of coefficient of at mean 
performance performance 

A!ft2 A/m2 
performance 

s. given current 
s (Iv/aW)T' s. 

open-circuit open-circuit tern perature 
level block, level block, level block V density, 

V/wt.% V/wt.% 
voltage, voltage, and mean 

Too Wm' at given (av/aTlw V/oF V/K KOH KOH (aEJaTlw (aEJaW)T' concentration 
current density, ---~----. ------r-- wt.% V/wt.% psi. N/m2 aba of K Vrn ' V/OF V/K V/OF V/K KOH 

V I I 
I 320 434 71.1 29.4 316 0.915 0.001 12.1XI0-4 22xl0-4 O. exl0-4 lX10-4 0.9XIO-2 0.1><10-2 _5.2XIO- 4 -0.4XIO-4 0.36xl0-2 1. 40 9640 

BB.2 950 .737 .004 23xl0-4 42XI0-4 
2 4 1.1 .4 

II 3BO 466 75.B 29.4 316 1. OOB 0.001 3.6XIO- 4 6.5XIO-4 
I 

0.4xl0-4 0.7><10-4 1.0BxIO-2 0.OexlO-2 _5.5xlO-4 _9.9xlO-4 0.3exlO-2 1.95 13400 
BB.2 950 · BB9 .002 10 IB 1 2 .9 .2 

147 15BO .7B7 .005 16 30 2 4 .7 .4 

ill 417 4B7 7B.3 29.4 316 1.044 0.001 1.9XI0-4 3.4xlO- 4 0.7><10-4 1. 3XIO-4 1.1><10-2 0.1><10-2 -5. lxlO-4 _9.2xlO-4 0.46><10-2 2.52 17400 
BB.2 950 .943 .002 5.6 10.1 .B 1.4 .9 .14 

147 15BO · B59 .002 9.5 17 1.1 2 . B .2 

IV 440 500 BO.6 29.4 316 1. 072 0.001 0.9XIO-4 1. 6xl0-4 0.5><10-4 0.9XIO-4 1.2exI0-2 0.OexlO-2 -5. (x1O-4 _9.0XIO-4 0.47><10-2 2.3B 16400 
BB.2 950 .974 .002 3.9 7.1 .B 1.4 1.2 

147 15BO • B94 .003 7.3 13.2 1.4 2.5 1.2 



2 29.4, 88.2, and 147 amperes per square foot (313, 950, and 1580 A/m , respectively). 
These points represent total currents of 4, 12, and 20 amperes through the test cells. 
The standard e r ror  values s are shown beneath the tabular entries. Based on the 
test for confidence limits (appendix B), the probability of exceeding io. 9 s by chance 
is 40 percent and for 4.9 s is 10 percent. The manner in which experimental e r ror  
affects interpretation of the data is considered in appendix B. The probabilities for 
chance occurrence of differences in values of the coefficients are indicated between 
corresponding points in figures 5 and 6. 

An interpretation of these results, which were  obtained without the benefit of a 
reference electrode, would be ambiguous if it were not for other published work on 
cells of this type by Bacon (ref. 2, p. 144) and by Rockett and Brown (refs. 5 and 7). 
These investigators found that at the current densities employed in this work, the oxygen 
electrode is responsible for more than half the overall polarization and for all the fixed 
loss and nonlinear character. Since the reversibility of hydrogen electrodes and the 
irreversibility of oxygen electrodes is well recognized (ref. 8, pp. 544 and 615), it was 
assumed for the present investigation that the observed effects are largely attributable 
to the oxygen electrode. at least for current densities of 88.2 amperes per square foot 

2 (950 A/m ) or  less. 
One manifestation of the irreversibility of the oxygen electrode that became apparent 

in the course of this investigation was a marked time dependence of the open-circuit 
voltage. For  example, it was observed that when the current was increased or decreased 
to a nonzero value, a stable voltage (to within fl mV) was obtained within 5 minutes. On 
the other hand, at the highest temperature studied (460' F or 511 K), a stable open- 
circuit voltage was not obtained for at least 10 minutes. while at 300' F (422 K), the 
open-circuit voltage continued to rise slowly after 6 hours. That the effect is peculiar 
to the oxygen electrode is confirmed by similar behavior observed in the attainment of 
open-circuit voltage when oxygen was applied to the electrode at startup, 
electrode response was stabilized at all temperatures within 5 min. ) 

opening the circuit are listed in table 111 as Vo min. The estimated polarization based 
on Eo, the theoretical value (appendix A ) ,  is listed as 

(Hydrogen 

In lieu of stabilized open-circuit voltages, the voltages recorded 1 minute after 

min = Eo - Vo 1 min 
770 

These data permit some estimate to be made of IR-free losses. 
The variability of the results, as shown by the magnitude of the standard e r r o r  s, 

may also be attributed to the oxygen electrode in view of the sensitivity of cell per- 
formance to interface location (discussed in connection with experimental procedure). 
Dislocations and redistributions may be induced by filling and emptying the cell, changes 
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TABLE III. - TEMPERATURE-CONCENTRATION DATA (RAW) 

Run 

57 
53 
58 
52 

56 
54 
59 
5 1  

22 
15 
17 
20 

2 1  
16 
18 
19 

11 
39 
38 
13 

12 
40 
37 
14 

23 
30 
28 
25 

24  
29 
27 
26 

Temperature, 
T 

Concentration, 

w, 
wt. % 

69. I 
I O .  2 
72.1 
12.3 

69. I 
I O .  2 
1 2 . 1  
12.3 

14. 5 
14 .6  
1 7 . 1  
17 .1  

14. 5 
14.6 
1 7 . 1  
17 .1  

77 .1  
77.3 
19.4 
19.5 

71.1 
11.3 
1 9 . 4  
79.5 

18.9 
79.0 
82. 1 
82.4 

78.9 
79.0 
82.1 
82.4 

Voltage at current 
density i ,  

vi, 
V 

Voltage 
1 minute 

after 
circuit is 
opened, 

v: 
V 

Open -circuit 
voltage 

calculated 
according 
to thermo- 

dynamic 
principle, 

Eo, 
V 

Polarization 
1 minute 

after circuit 
i s  opened, 

1 min, 

V 
TO 

OF 

300 

I 
1 
J 
1 
I 
I 
1 
1 

340 

360 

400 

391 

437 

420 

46 0 

K 

422 

I 
I 
I 
1 
I 
I 

J 

444 

455 

41 I 

41 6 

49 8 

‘i 
511 

Current density, 

A/ft2 (A/m2) 
i ,  

29.4(316) 

0.882 
.880 
.go2 
.898 

0.928 
.928 
.950  
.950  

0.988 
.990  

1.013 
1.014 

0.999 
1.002 
1.032 
1.030 

1.030 
1.028 
1.050 
1.054 

1.038 
1.032 
1.057 
1.065 

1.050 
1.053 
1.090 
1.090 

1.054 
1.050 
1.093 
1.100 

18.2(950) 

0.688 
.664 
. I 0 2  
. IO8 

~ 

147(1580) 

1.063 
1.068 
1.080 
1.080 

1.212 
1.214 
1.221 
1 .221  

0.149 
.146 
. 141  
. 141 

0.718 
. I 6 3  
. I 9 7  
. I 9 8  

0.854 
.865 
.884 
.814 

0.894 
.goo 
.926 
.911 

0.924 
.920 
.939 
.943 

0.945 
.940  
.960 
. S I 1  

~ _ _ _ _  

- - _ _ _  
- -__ -  
- - _ _ _  
_ _ - - -  

0.134 
. I 5 9  
. I 7 4  
. I 4 8  

0.804 
.814 
. 8 4 1  
.820  

0.834 
.832 
.843 
.853 

1.072 
1. M 5  
1.093 
1.095 

1.115 
1.115 
1.133 
1. 136 

1.191 
1.193 
1.200 
1.201 

0.119 
. 118 
. l M  
.106 

1.200 
1.200 
1.210 
1.210 

0.085 
.085 
.077 
. 074  

1.118 
1.121 
1.144 
1.144 

1.140 
1.140 
_ _ _ _ _  
1.160 

1. 118 
1.178 
1.188 
1.188 

0. 060 
. 0 5 1  
.044 
.044  

1.191 
1.191 
1.200 
1.200 

0.051 
. 0 5 1  

_ _ _ _ _  
. 040  

0 .810  
.866 
. 8 8 1  
.897 

1.141 
1. 138 
1.158 
1.163 

1.169 
1.169 
1. 181 
1 .181  

0.028 
. 0 3 1  
.023 
.018 

0.944 
.953 
.985 
.982 

0.958 
. 9 6 1  

1.002 
1.006 

0 .854  
.810 
.goo 
.892 

0.819 
. 8 9 1  
.932 
. 9 3 1  

1.158 
1. 160 
1.186 
1.187 

1.150 
1.148 
1.113 
1.114 

1.181 
1.181 
1 .201  
1.201 

0.029 
.027 
.015 
.014 

1. 166 
1. 166 
1.182 
1.183 

0.016 
.018 
.ow 
.ow 
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Temperature, 

T 
Run I 

1---.--------1 

57 300 422 
53 

t t 58 
52 

56 340 444 

54 

I I 59 

51 

22 360 455 
15 

I I 17 

20 

21 400 477 

16 I I 18 

19 

11 397 476 
39 I I 38 
13 

12 437 498 

40 

j I 37 
14 

23 420 488 
30 I j 28 
25 

24 460 511 

29 

j I 27 

26 

TABLE m. - TEMPERATURE-CONCENTRATION DATA (RAW) 

Concentration, 

W, 
wt.% 

69.7 
70.2 

72.1 
72.3 

69.7 
70.2 
72.1 

72.3 

74.5 

74.6 

77.1 
77.1 

74.5 

74.6 

77.1 

77.1 

77.1 
77.3 

79.4 
79.5 

77.1 

77.3 
79.4 
79.5 

78.9 

79.0 
82. 1 

82.4 

78.9 

79.0 
82.1 
82.4 

I 

Voltage at current 
density i, 

Vi' 

V 

Current density, 

i, 

A/ft2 (A/m2) 

29.4(316) 88.2(950) 147(1580) 

0.882 0.688 -----
.880 .664 -----
.902 .702 -----

.898 .708 -----

0.928 0.778 -- ---

.928 .763 -----

.950 .797 -- ---

.950 .798 -- - --

0.988 0.854 0.734 
.990 .865 .759 

1. 013 .884 .774 
1. 014 .874 .748 

0.999 0.894 0.804 

1. 002 .900 .814 
1. 032 .926 .841 
1. 030 .917 .820 

1. 030 0.924 0.834 
1. 028 .920 .832 
1. 050 .939 .843 
1. 054 .943 .853 

1. 038 0.945 0.870 
1. 032 .940 .866 
1. 057 .960 .881 
1. 065 .971 .897 

1. 050 0.944 0.854 
1. 053 .953 .870 
1. 090 .985 .900 
1. 090 .982 .892 

1. 054 0.958 0.879 
1. 050 .961 .891 
1. 093 1. 002 .932 
1.100 1.006 .931 

Voltage 

1 minute 

after 

circuit is 

opened, 

V1 min, 
0 

V 

1. 063 
1. 068 

1. 080 
1. 080 

I. 072 
1. 075 

I. 093 
1. 095 

-

1. 115 

1. 115 
1. 133 

1. 136 

1. 118 

1. 121 

1. 144 

1. 144 

1. 140 
1. 140 
-----

1. 160 

1. 141 

1. 138 

1. 158 
1.163 

1. 158 
1. 160 

1.186 
1. 187 

1. 150 

1.148 
1.173 

1.174 

Open-circuit Polarization 

voltage 1 minute 

calculated after Circuit 

according is opened, 
to thermo- 1 min, 

dynamic 
110 

principle, V 

Eo' 

V 

1. 212 0.149 
1. 214 .146 
1. 221 .141 
1. 221 .141 

1. 191 0.119 
1. 193 .118 
1. 200 .107 

1. 201 .106 

1. 200 0.085 
1. 200 .085 
1. 210 .077 

1. 210 .074 

1. 178 0.060 

1. 178 .057 

1. 188 .044 

1. 188 .044 

1. 191 0.051 
1. 191 .051 

1. 200 - -- --

1. 200 .040 

1. 169 0.028 

1.169 .031 
1. 181 .023 

1. 181 .018 

1. 187 0.029 
1.187 .027 
1. 201 .015 
1. 201 .014 

1. 166 0.016 
1. 166 .018 
1. 182 .009 

1.183 .009 
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in temperature and concentration, and evaporation of water during the period of over- 
night stand. This suggestion of an adjustment process is reinforced by experience with 
freshly prepared cells, which usually perform relatively poorly at first. The effects 
of incomplete wetting o r  of interface dislocation would be manifested as changes in the 
effective area or  the internal resistance, and therefore, the magnitude of the interface 
effect would vary with current. The standard e r r o r s  shown in table 11 conform to this 
reasoning. 

DISCUS SlON 

Because of the scatter in the data, rigorous conclusions cannot be drawn regarding 
the effects of temperature and concentration on cell performance. However, certain 
qualitative trends merit consideration. In assessing the significance of these trends, 
a rather liberal test of 20 percent probability of chance occurrence was applied. 

In brief, the temperature coefficient (aV/aT) 
ance level and increases with increasing current. The behavior of the concentration 
coefficient (aV/aW), is not consistent, and differences with respect to performance 
level and current are attended with high probabilities of chance occurrence. (See figs. 
5 and 6. ) As a whole, values of the concentration coefficient are about double the 
values calculated from theory (aEo/aW)T (appendix A) based on the effect of concentra- 
tion on water vapor pressure (see table II). 

Some variation of the coefficients with current can be expected to result from the 
effects of temperature and concentration on electrolyte conductivity. Qualitatively, 
this variation is apparent in figure 7, where vertical differences between appropriate 
curves are proportional to the coefficients. Thus, for example, in figure 7. curves 16 
and 18 measure the concentration coefficient (aV/aW), at 400' F and curves 17 and 18 
measure the temperature coefficient (i3V/aT)W at 77.1 weight percent KOH. The 
divergence of curves 17 and 18 with increasing current is obvious. This is expected 
because the curve for higher temperature (18) lies generally above the one for lower 
temperature (17) and has a smaller slope because of a greater electrolyte conductivity 
at the higher temperature. On the other hand, when curves 16 and 18 a r e  inspected 
closely, they a r e  seen to converge. In this case, the curve for higher concentration (18) 
lies generally above that for the lower concentration (16) but has a larger slope because 
of a lower electrolyte conductivity at the higher concentration. 

Inasmuch as these qualitative considerations of the conductivity effect have a 
bearing on interpretation of the data, a quantitative estimate of the expected variation 
of the coefficients with current is in order. The following derivation provides expres- 
sions that can be used with data from table II and conductivity data from reference 3 to 

decreases with increasing perform - 
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make a convenient comparison of estimated and observed current density effects on the 
coefficients 

Two linear polarization curves designated 1 and 2 are considered. These curves 
correspond to temperatures T1 and T2 or  to concentrations W1 and W2. For these 
curves, effects from sources other than conductivity are assumed not to vary with 
current. For the temperature relations, by definition, 

The estimate desired is 

av - - v2 - v1 
(%)w,i T2 - T1 

Since 

AV 1 
A i  K 
-a- 

where K is the conductivity, 

Avl K2 

7 Thus, by subtraction of 1 from both sides, 

AV2 - AV1 K1 - K2 - - 
Avl K2 

and by addition of 1 to both sides, 

make a convenient comparison of estimated and observed current density effects on the 
coefficients. 

Two linear polarization curves designated 1 and 2 are considered. These curves 
correspond to temperatures T 1 and T 2 or to concentrations W 1 and W 2. For these 
curves, effects from sources other than conductivity are assumed not to vary with 
current. For the temperature relations, by definition, 

The estimate desired is 

---,---A~_: ~ ~:~) " 1 (_~ V 2 __ ~ V 1\ = ( 1 \(_1) (~V _ ~ V ) 

~i T2 - T1 ~i M7 \T2 - T 1) ~i 2 1 

Since 

~V 1 -cx:_ 
M K 

where K is the conductivity, 

Thus, by subtraction of 1 from both sides, 

(1) 

(2) 

(3) 

(4a) 

and by addition of 1 to both sides, 

(4b) 
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Substituting equation (4a) in equation (2) after transposing AV1 to the right side yields 

A ("2 - "1) 

. ,  
A i  A i  \T2 - T J  K2 

The term AV1/K2 can be replaced by a form containing mean values AVm and Km. 
Since 

AV2 + A V l  

2 
- = A V m  

and from equation (4b), 

A V 2 +  AV1 AV1 - -- 
K1 + K2 K2 

Note that the mean values of K and AV for the two temperatures at the mean con- 
centration become the mean values of K and AV for the block. Therefore, 

1 - "m - - 
A i  A i  \AT / Km 

16 

Substituting equation (4a) in equation (2) after transposing AV 1 to the right side yields 

(5) 

The term A V 1/K2 can be replaced by a form containing mean values A V m and Km. 
Since 

and fr:om equation (4b), 

AV2 + AV1 = AV1 

Kl + K2 K2 

AV1 _ AVm -----
K2 Km 

Note that the mean values of K and A V for the two temperatures at the mean con
centration become the mean values of K and AV for the block. Therefore, 
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Similarly, for the concentration coefficient, 

A f"2 - "1) 

A i  A i  \ A w l  Km 

where Km and Vm, the mean values of K and AV for the block, are the same in 
both the expression for temperature and for concentration. 1 

These expressions can be used in conjunction with the data of table 11 and the con- 

density on the coefficients. For a given performance level and two specified values of 
current density i, values of Vm can be found and used to determine AV,. From 
conductivity data at the mean condition (Tm, Wm), Km can be determined. Similarly, 
AK/AT or AK/AW can be determined over a range of T or  W including the mean 
condition. For purposes of comparison, the denominator A i  can be eliminated. This 
procedure was  carried out, and the results a r e  listed in table IV. 

perature coefficient and less than that predicted for the concentration coefficient. 
However, although the observed effect of current density on the temperature coefficient 
is significant (less than 10 percent probability of chance occurrence), the significance of 
current-density-related differences in the concentration coefficient is highly doubtful 
(greater than 30 percent probability of chance occurrence) (figs. 5 and 6). The principal 
reason for the loss of significance in this case is that the differences in question a re  
relatively small. Thus, while the concentration coefficients a r e  generally significant 
(at a 20-percent level of chance occurrence), their variation is not, and the suggestion 
of current independence is not refuted. On the other hand, neither is the possible 
existence of a real conductivity effect refuted. 

The appearance of compensation for a conductivity effect in the case of the concen- 
tration coefficient and for enhancement in the case of the temperature coefficient is 
consistent with known and theoretically predictable behavior of the hydrogen electrode. 
In their paper on the hydrogen electrode, Rockett and Brown (ref. 7) included polarization 
curves for the hydrogen electrode against a reference electrode at various temperature 
parameters. The relative slopes of these nearly linear curves a re  consistently greater 
than the ratios of corresponding reciprocal conductivities, thus indicating an effect of 
temperature that is supplementary to the conductivity effect. Rockett and Brown's paper 
did not include concentration parameters that would furnish information comparable to 
that relating to temperature. However, other effects related to concentration should 
operate in a direction opposed to the conductivity effect because the half-cell reaction 

1 ductivity data of reference 3 to compare estimated and observed effects of current 

The observed effect of current density is greater than that predicted for the tem- 
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Similarly, for the concentration coefficient, 

where Km and V m' the mean values of K and !:::.. V for the block, are the same in 
both the expression for temperature and for concentration. 

(10) 

These expressions can be used in conjunction with the data of table II and the con
ductivity data of reference 3 to compare estimated and observed effects of current 
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The observed effect of current density is greater than that predicted for the tem
perature coefficient and less than that predicted for the concentration coefficient. 
However, although the observed effect of current density on the temperature coefficient 
is significant (less than 10 percent probability of chance occurrence), the significance of 
current-density -related differences in the concentration coefficient is highly doubtful 
(greater than 30 percent probability of chance occurrence) (figs. 5 and 6). The principal 
reason for the loss of significance in this case is that the differences in question are 
relatively small. Thus, while the concentration coefficients are generally significant 
(at a 20-percent level of chance occurrence), their variation is not, and the suggestion 
of current independence is not refuted. On the other hand, neither is the possible 

existence of a real conductivity effect refuted. 
The appearance of compensation for a conductivity effect in the case of the concen

tration coefficient and for enhancement in the case of the temperature coefficient is 
consistent with known and theoretically predictable behavior of the hydrogen electrode. 

In their paper on the hydrogen electrode, Rockett and Brown (ref. 7) included polarization 
curves for the hydrogen electrode against a reference electrode at various temperature 
parameters. The relative slopes of these nearly linear curves are consistently greater 
than the ratios o~ corresponding reciprocal conductivities, thus indicating an effect of 
temperature that is supplementary to the conductivity effect. Rockett and Brown's paper 
did not include concentration parameters that would furnish information comparable to 
that relating to temperature. However, other effects related to concentration should 
operate in a direction opposed to the conductivity effect because the half-cell reaction 
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I Performance 

V f F  

level 

V/K 

TABLE IV. - CALCULATED AND OBSERVED EFFECTS OF ELECTROLYTE CONDUCTIVITY ON VARIATION OF TEMPERATURE 

AND CONCENTRATION COEFFICIENTS OF VOLTAGE WITH CURRENT DENSIT? 

Variation in 
mean 

voltage in 
given 

performance 
level block 
between 

given 
current 

densities, a 
AVm, 

V 

Mean value 
of conductivity 

for performance 
level block, 

Km' 
1 (ohm -em)' 

Temperature 
coefficient of 
conductivity, 

[ohm-cm(K)]-l 
AK/AT, 

Calculated 
effect of 

current density 
on temperature 

coefficient of 
voltage, 

A(V2 -Vl /TZ-TI  

Observed Concentration Calculated 
variation in coefficient of effect of 
temperature conductivity, current density 
coefficient on concentration 
of voltage, coefficient, 
A(aV/aT)W [(ohm-cm)(wt'%)l- 'A(v2 -v1/w2 -wl) ,  

V/&. % 

Observed 
variation in 

concentration 
coefficient 
of voltage, 

A(av/aw),, 

V/&. % 

~ X I O - ~  I ~ X I O - ~  1 1 ~ 1 0 - ~  21x10-~  -0.038 -0. 4X10-2 +o. 2x10-2 
I 8  6.5 12 -. 045 -.3 -. 15 

I -0.178 1.66 0.012 71 
II -. 102 1.84 .014 

m -. 084 2.03 . 013 3 5 4 7 -. 052 -.2 -. 1 
IV -. 080 2.05 .013 3 5 3.,4 6 - .052 - . 2  0 

aValues of current density for performance level I, 29.4 and 88.2 A/ft  2 (316 and 950 A/m2); for  performance levels 11 to IV, 88.2 and 147 A/ft2 (950 and 1580 A/m2). 

Performance 

level 

I 

II 

III 

IV 

TABLE IV. - CALCULATED AND OBSERVED EFFECTS OF ELECTROLYTE CONDUCTIVITY ON VARIATION OF TEMPERATURE 

AND CONCENTRATION COEFFICIENTS OF VOLTAGE WITH CURRENT DENSITy3-

Variation in 

mean 

voltage in 

given 

performance 

level block 

between 

given 

current 
densities, a 

6.Vm , 

-

V 

0.178 

-.102 

-.084 

-.080 

Mean value 

of conductivity 

for performance 

level block, 

Km , 

(ohm-emf 1 

1.66 

1.84 

2.03 

2.05 

Temperature 

coefficient of 

conductivity , 

6.K/6.T, 

[ohm-cm(K)r 1 

0.012 

.014 

.013 

.013 

Calculated 

effect of 

current density 

on temperature 

coefficient of 

voltage, 

'6.(V2 -V/T2 -T1) 

V,PF 

7x10 

4 

3 

3 

-4 

V/K 

, 13x10 

,I 8 
5 

5 

-4 

Observed 

variation in 

temperature 

coefficient 

of voltage, 

6.(av/ aTlw 
V,PF 

llx10 

6.5 
4 
3,'4 

-4 

V/K 

21x10 

12 

7 

6 

-4 

Concentration 

coefficient of 

conductivity , 

6.K/6.W, 

[(ohm-cm)(wt. %)r 1 

- 0.038 

-.045 

-.052 

-.052 

Calculated 

effect of 

current density 

on concentration 

coefficient, 

:'~(V2 - V 1/W2 - W1), :1 

-

V/wt.% 

0.4X10 

-.3 
-.2 
-.2 

-2 

Observed 
variation in 

concentration 

coefficient 

of voltage, 

6. (av/aW)T' 

V/wt.% 

+0.2x10 

-.15 

-2 

-.1 

o 
aValues of current density for performance level I, 29.4 and 88.2 A/ft2 (316 and 950 A/m2); for performance levels II to IV, 88.2 and 147 A/ft2 (950 and 1580 A/m2). 
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suggests that both mass action and transport benefits a r e  derived from increased 
hydroxyl ion activity and decreased water activity: 

H2 + 20H- = 2H20 + 2e 

(Mass action effects, of course, require that reaction orders be nonzero with respect 
to the reactants. ) 

An increase in performance from an increase in temperature is not surprising 
because of the relation of temperature to rate processes in general. However, for the 
reaction H2 + 1/2 O2 = H20, the thermodynamic temperature coefficient of voltage 
(aEo/aT)W is negative and is in fact of the same order of magnitude as the observed 
coefficients (aV/ aT>, (table 11). Conceivably, polarization curves for two different 
temperatures could cross with the curve for the higher temperature starting lower but 
falling less rapidly than that for the lower temperature. However, the voltages ob- 
served 1 minute after opening the circuit VA min (table III) indicate that an appreciable 
temperature-dependent fixed loss exists in the system so that even at open circuit, the 
actual temperature coefficient is positive. A similar effect was  reported by Bacon 
(ref. 3, p. 149). 

With an increase in performance level, a closer approach to equilibrium open- 
circuit conditions is attained, as shown by the values of qo ' min (table III). It follows 
that the temperature coefficient should decrease with an increase in performance level, 
since all kinetic contributions must converge to zero at the equilibrium condition. 

From inspection of figure 7, the current-independent aspect of the effect of increased 
concentration can be seen as a general upward shifting of the polarization curve. Table II 
shows that the magnitude of this shift at all performance levels is two o r  more times 
that attributable to the depression of water vapor pressure (i. e. ,  (aEo/aW)T), except 
for some cases at the highest current level where the conductivity effect is important. 
A comparison of the concentration coefficient for the conditions of Bacon's work can be 

of 0 .1  volt for  an 8 percent concentration change is found. The resulting value of 
1. 25X10-2 volt per percent for (aV/aW)T is consistent with the results of this work. 

tendency to decrease with increasing performance level as would be expected for a 
kinetic mechanism a s  equilibrium is approached. Actually, in most cases the concentra- 
tion coefficient increases with performance level (fig. 6), although the differences have 
at best only borderline significance. If the scheme of the experimental design is 
followed, voltages in excess of theoretical would be indicated at still higher perform- 
ance levels than those investigated, since the concentration coefficient tends to be at 

7: 

obtained from figure 1, where at 50 amperes per square foot (540 A/m 2 ) an increase 

Unlike the temperature coefficient, the concentration coefficient does not show a 
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Figure 7. - Effect of temperature and concentration on performance. 

least twice the theoretical rate of increase of open-circuit voltage with concentration. 
Clearly, if a conflict with the laws of thermodynamics is to be avoided, the concentra- 
tion coefficient must ultimately decrease with increasing performance level. However, 
the voltage data from which the coefficients were estimated have values less  than the 
theoretical open-circuit voltage by at least 80 millivolts, so that there is an ample 
reserve of polarization to be overcome. 

level lends weight to the hypothesis that current-related effects from reaction kinetics, 
mass  transport, and internal resistance are superimposed on an open-circuit value 
established by the magnitude of the characteristic fixed loss found at the oxygen electrode 
and that the effect of concentration is manifested as a variation in this fixed loss. 

The time dependence of the open-circuit voltage raises the question of just what 
mechanism the fixed loss is related to. There may be parallel reaction paths, one of 
which is so highly polarized that it contributes a negligible amount of the total current 
but has  little o r  no fixed loss. The other path, which contributes substantially all the 
current, is then associated with the fixed loss and has polarization characteristics 
typically related to temperature and the catalytic activity of the reaction surface. With 

The uniformity of the effect of concentration with respect to current and performance 
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Clearly, if a conflict with the laws of thermodynamics is to be avoided, the concentra
tion coefficient must ultimately decrease with increasing performance level. However, 
the voltage data from which the coefficients were estimated have values less than the 

theoretical open-circuit voltage by at least 80 millivolts, so that there is an ample 
reserve of polarization to be overcome. 
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level lends weight to the hypothesis that current-related effects from reaction kinetiCS, 
mass transport, and internal resistance are superimposed on an open-circuit value 
established by the magnitude of the characteristic fixed loss found at the oxygen electrode 
and that the effect of concentration is manifested as a variation in this fixed loss. 

The time dependence of the open-circuit voltage raises the question of just what 
mechanism the fixed loss is related to. There may be parallel reaction paths, one of 
which is so highly polarized that it contributes a negligible amount of the total current 
but has little or no fixed loss. The other path, which contributes substantially all the 
current, is then associated with the fixed loss and has polarization characteristics 
typically related to temperature and the catalytic activity of the reaction surface. With 
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respect to this activity, it is of interest to note that platinum-catalyzed electrodes show 
no such time dependence of the open-circuit voltage as was encountered herein with the 
porous nickel electrodes. Other work done in this laboratory (unpublished data obtained 
by N. Hagedorn of Lewis) on cells operating at 150' F (339 K) in a solution of 35 percent 
by weight KOH revealed that, with platinum -catalyzed electrodes, stable open-circuit 
voltages were attained in less than 1 minute. These open-circuit voltages are substan- 
tially below theoretical with fixed losses of about 100 millivolts. 

The behavior of both temperature and concentration coefficients with a variation in 
current density and the behavior of the temperature coefficient with a variation in the 
performance level parameter can be related qualitatively to mass  action effects, con- 
ductance variations, and kinetic principles. The seemingly anomalous behavior of the 
concentration coefficient with respect to the performance level parameter invites further 
exploration of the mechanism of the oxygen electrode in KOH concentrations above 
35 percent by weight. 

CONCLUDING REMARKS 

From the results of the experimental work reported herein, the effect of tempera- 
ture appears to be a typical rate-process phenomenon, whereas the effect of concentra- 
tion appears to be associated with an unresolved mechanism that is responsible for the 
fixed (current-independent) loss  at the oxygen electrode. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, December 26, 1968, 
120-34- 02 -24-22. 
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by weight KOH revealed that, with platinum-catalyzed electrodes, stable open-circuit 
voltages were attained in less than 1 minute. These open-circuit voltages are substan
tially below theoretical with fixed losses of about 100 millivolts. 

The behavior of both tern perature and concentration coefficients with a variation in 
current density and the behavior of the temperature coefficient with a variation in the 
performance level parameter can be related qualitatively to mass action effects, con
ductance variations, and kinetic principles. The seemingly anomalous behavior of the 
concentration coefficient with respect to the performance level parameter invites further 
exploration of the mechanism of the oxygen electrode in KOH concentrations above 
35 percent by weight. 

CONCLUDING REMARKS 

From the results of the experimental work reported herein, the effect of tempera
ture appears to be a typical rate-process phenomenon, whereas the effect of concentra

tion appears to be associated with an unresolved mechanism that is responsible for the 
fixed (current-independent) loss at the oxygen electrode. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, OhiO, December 26, 1968, 
120-34-02-24-22. 
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APPENDIX A 

THEORETICAL VOLTAGES FOR HYDROGEN -OXYGEN-WATER 

SYSTEM ESTIMATED FROM THERMODYNAMIC DATA 

formation, 

kcal/ (g)(mole) 
AH;, 

For the reaction 

H O  1 
H 2 + Z 0 2 =  

at the standard state (hypothetical) of unit fugacity and enthalpy of the real gas at zero 
pressure and a temperature of 25' C (298 K), the following thermodynamic values apply 
(ref. 9, p. 1576): 

TABLE V. - THERMAL PROPERTIES OF HYDROGEN, 

OXYGEN, AND WATER AT THE STANDARD STATE 

. - ~  . - - 

31.21 
49.00 
45.11 

F r e e  energy of 
formation, 

kcal/ (g)(mole) 
q, 

0 
0 

-54.64 

The electromotive force of a reversible cell for which the net reaction applies is 

For this reaction as written, n = 2. 
The variation of Eo with fugacity (with pressure for gases behaving ideally) is 

RT 

nF f H 2 0  
AEo = - In 
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APPENDIX A 

THEORETICAL VOLTAGES FOR HYDROGEN-OXYGEN-WATER 

SYSTEM ESTIMATED FROM THERMODYNAMIC DATA 

For the reaction 

at the standard state (hypothetical) of unit fugacity and enthalpy of the real gas at zero 
pressure and a temperature of 250 C (298 K), the following thermodynamic values apply 

(ref. 9, p. 1576): 

TABLE V. - THERMAL PROPERTIES OF HYDROGEN, 

OXYGEN, AND WATER AT THE STANDARD STATE 

Substance 

Hydrogen 
Oxygen 

Water 

Enthalpy of 

formation, 
0 AH f , 

kcal/ (g )(mole) 

0 
0 

-57.80 

Entropy, Free energy of 
SO , formation, 

call (g )(mole )(K) 0 AGf , 

kcal/ (g)(mole) 

31. 21 0 
49.00 0 
45.11 -54.64 

The electromotive force of a reversible cell for which the net reaction applies is 

.6.G 
E =--

o nF 

For this reaction as written, n = 2. 

22 

The variation of Eo with fugacity (with pressure for gases behaving ideally) is 

f f1/2 
H 0 

.6.E = R T In 2 2 
o nF fH 0 

2 



where the difference is referred to the standard state. 
The best available reference data on the thermodynamic properties of Ha, 02, and 

H 0 (refs. 10 and 11) were used to study the behavior of the hydrogen-oxygen-water 
system. These data were particularly useful for  the purpose of determining whether or 
not nonideality of the gases under real conditions of temperature and pressure is enough 
to cause e r ro r s  of 1 millivolt in the estimation of Eo when fugacity is assumed equal to 
partial pressure. (Corrections for nonideality due to mixing were not accounted for. ) 
Up to 620' F (600 K) and 600 psi (41~10~ N/m2), the nonidealities of H2 and O2 together 
contribute less than the equivalent of *to. 5 millivolt error .  For H20 under Bacon's 
condition, where the vapor pressure was  about 150 psia (10x10 N/m ) and the tempera- 
ture was 392' F (473 K), an e r ror  of 1 millivolt is contributed by nonideality. However, 
at all conditions of this work, the e r ro r  in the estimation of Eo was negligible. 

(where AEo is in mV, constants are lumped, and pressure in atmospheres is substi- 
tuted for fugacity): 

2 

5 2 

Corrections for pressure can therefore be made according to the following formula 

= 0.0551 
P P1i2 
H2 O2 

'H20 

P 
O2 = 0.0431 T(K) In 

'H20 

P P1/2 
O2 

= 0.02394 T e R )  In 
'H20 
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where the difference is referred to the standard state. 

The best available reference data on the thermodynamic properties of H
2

, 02' and 
H

2
0 (refs. 10 and 11) were used to study the behavior of the hydrogen-oxygen-water 

system. These data were particularly useful for the purpose of determining whether or 
not nonideality of the gases under real conditions of temperature and pressure is enough 
to cause errors of 1 millivolt in the estimation of Eo when fugacity is assumed equal to 

partial pressure. (Corrections for nonideality due to mixing were not accounted for. ) 
Up to 6200 F (600 K) and 600 psi (41X105 N/m2), the nonidealities of H2 and 02 together 
contribute less than the equivalent of ±O. 5 millivolt error. For H20 under Bacon's 
condition, where the vapor pressure was about 150 psia (10x105 N/m2) and the tempera
ture was 3920 F (473 K), an error of 1 millivolt is contributed by nonideality. However, 
at all conditions of this work, the error in the estimation of Eo was negligible. 

Corrections for pressure can therefore be made according to the following formula 
(where ~Eo is in mY, constants are lumped, and pressure in atmospheres is substi
tuted for fugacity): 

P p1/2 

H ° ~Eo = O. 0992 T(K) log 2 2 

PH ° 2 

P p 1/ 2 

H ° = O. 0551 T~R) log 2 2 

= 0.0431 T(K) In 

= O. 02394 T~R) In 

PH ° 2 

23 



The water vapor pressure over KOH solutions was estimated from the data of ref- 

The relation of standard-state reversible electromotive force to temperature over 
erence 12 (and private communication with Prat t  & Whitney Aircraft). 

the normal operating range of aqueous fuel cells is nearly linear so that it may be repre- 
sented by two straight lines, as shown in figure 8. 

1.101 I I I I I I 
300 350 400 450 500 550 600 

Temperature, T. K 

Figure 8. - Standard-state voltage for reaction HZ + 102 = H20. 
2 
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The water vapor pressure over KOH solutions was estimated from the data of ref
erence 12 (and private communication with Pratt & Whitney Aircraft). 

The relation of standard-state reversible electromotive force to temperature over 
the normal operating range of aqueous fuel cells is nearly linear so that it may be repre
sented by two straight lines, as shown in figure 8. 
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APPENDIX B 

STAT1 STlCAL ANALYSIS OF DATA 

Data were obtained to determine the effects of concentration and temperature on 
cell performance at four performance levels. The resulting temperature and concen- 
tration coefficients are presented in table 11 as partial derivatives estimated by regres- 
sion analysis. These data were  treated according to methods outlined by Davies (ref. 13, 
chs. 3, 4, 7, and 8) and were fitted to the following linearized expression for the 
variation of voltage with temperature and concentration at a given current density: 

(The coefficient for a term in (T - Tm) (W - Wm) was also estimated but was not found 
to be significant. ) The residual standard e r ror  s was estimated from the data. This 
quantity measures the variability not accounted for by the direct effects of T and W. 
From s, the standard e r ro r s  of the coefficients a r e  obtained, and the probability of a 
given value occurring by chance is estimated from the t-test (Student's t) for confi- 
dence limits (see table II for probabilities). 

blocks (fig. 4) were semiorthogonal (only two values of T but distributed values of 
W). Let 

For the analysis, the calculations were simplified because the performance level 

T - Tm = X  

w - wm = y  

v - v m = z  

and 

= a 
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APPENDIX B 

STATISTICAL ANALYSIS OF DATA 

Data were obtained to determine the effects of concentration and temperature on 
cell performance at four performance levels. The resulting temperature and concen

tration coefficients are presented in table II as partial derivatives estimated by regres
sion analysis. These data were treated according to methods outlined by Davies (ref. 13, 

chs. 3, 4, 7, and 8) and were fitted to the following linearized expression for the 
variation of voltage with temperature and concentration at a given current denSity: 

v -V = ~V) (T - T ) + (av) (W - W ) m T maW m 
W T 

(The coefficient for a term in (T - T ) (W - W ) was also estimated but was not found m m 
to be significant.) The residual standard error s was estimated from the data. This 
quantity measures the variability not accounted for by the direct effects of T and W. 
From s, the standard errors of the coefficients are obtained, and the probability of a 
given value occurring by chance is estimated from the t-test (Student's t) for confi
dence limits (see table n for probabilities). 

For the analYSiS, the calculations were simplified because the performance level 
blocks (fig. 4) were semiorthogonal (only two values of T but distributed values of 

W). Let 

and 

T - T = x m 

W - W =y m 

V - V = z m 

(av) = a 
aTW 
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Then 

and 

i I n  
I/ ’ 

s =  (cz2 - a z x z  - b c  y”\ 

\ 5 

where 5 is the number of degrees of freedom, which, in this case, is the total number of 
data points (8) minus the number of quantities estimated (3), that is, Vm, a, and b. The 
standard e r ror  of a coefficient is estimated from 

The t-test for confidence limits is concerned with the distribution of a quantity t that 
is a function of a probability cy and the number of degrees of freedom of estimated 
quantity. The probability cy that the true value of the quantity differs from the esti- 
mated value by as much as (t) ( s )  is the basis for determining the precision of the data. 
The probability that the true value of a, for example, lies between a + ts and a - ts 
is (1 - 2cy). 

The standard e r ror  shown for the mean voltage Vm (table II) indicates the varia- 
bility of the mean of eight tests. The variability from test to test would be greater 
than that of the mean of eight tests by a factor of fl (about 3). 

Probabilities for the chance occurrence of the observed difference in any two 
coefficients a r e  determined in a less  straightforward manner than those for the occur- 
rence of differences in the true and estimated quantities (ref. 13, p. 164) because the 
degrees of freedom need to be adjusted for differences in standard errors .  Differences 
in coefficients to be tested for significance are those within performance levels for the 
effect of current and those between performance levels at the same current. 

The probabilities of chance occurrence for the variations with current within per- 
formance levels for the concentration coefficients (aV/ aW), are fairly high, greater 
than 30 percent in all cases (fig. 6). On the other hand, the probabilities of chance 
occurrence for variations with current for the temperature coefficients (aV/ aT)W within 
Performance levels are 8 percent o r  less. 
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Then 

and 

where 5 is the number of degrees of freedom, which, in this case, is the total number of 
data points (8) minus the number of quantities estimated (3), that is, V m' a, and b. The 
standard error of a coefficient is estimated from 

The t-test for confidence limits is concerned with the distribution of a quantity t that 
is a function of a probability 0' and the number of degrees of freedom of an estimated 

quantity. The probability 0' that the true value of the quantity differs from the esti

mated value by as much as (t) (s) is the basis for determining the precision of the data. 

The probability that the true value of a, for example, lies between a + ts and a - ts 

is (1 - 20'). 
The standard error shown for the mean voltage V m (table II) indicates the varia

bility of the mean of eight tests. The variability from test to test would be greater 
than that of the mean of eight tests by a factor of VB (about 3). 

Probabilities for the chance occurrence of the observed difference in any two 
coefficients are determined in a less straightforward manner than those for the occur

rence of differences in the true and estimated quantities (ref. 13, p. 164) because the 
degrees of freedom need to be adjusted for differences in standard errors. Differences 
in coefficients to be tested for significance are those within performance levels for the 
effect of current and those between performance levels at the same current. 

The probabilities of chance occurrence for the variations with current within per

formance levels for the concentration coefficients (av/aW)T are fairly high, greater 
than 30 percent in all cases (fig. 6). On the other hand, the probabilities of chance 

occurrence for variations with current for the temperature coefficients (aV/aT)w within: 

performance levels are 8 percent or less. 
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APPENDIX C 

SYMBOLS 

a 

b 

EO 

F 

f 
.- 

AG~" 

AH: 

i 

K 

Km 

n 

P 

R 

S 

S 

T 

Tm 

t 

V 

vi 

Vm 

(W aTX, 

(av/ 
open-circuit voltage calculated according to thermodynamic principles, V 

Faraday constant, 96 493 C/g-equivalent 

fugacity, atmos; N/m 

free energy of formation, kcal/g-mole 

enthalpy of formation, kcal/g-mole 

current density, A/ft2; A/m 
1 electrolytic conductivity, (ohm-cm)- 

mean value of K for performance level block, (ohm-cm)- 

number of electrons involved in given electrochemical reaction 

pressure, atmos; N/m 

gas constant, 8.314 J/(mole)(K) 

entropy, cal/ (g-mole)(K) 

standard e r ro r  in units of quantity for which it is estimated 

temperature, OF; K 

mean value of T in given performance level block, OF; K 

Student's t, dimensionless 

voltage, V 

value of V at current density i, V 

mean value of V in given performance level block at given current density, V 

2 

2 

1 

2 

V i  min value of V obtained 1 minute after circuit is opened, V 

W electrolyte concentration, wt. % 

wm 

X T - Tm 

mean value of W in given performance level block, wt. % 
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APPENDIX C 

SYMBOLS 

a (3V/3T>W 

b (av/aW)T 

Eo open-circuit voltage calculated according to thermodynamic principles, V 

F Faraday constant, 96 493 C/g-equivalent 

f fugacity, atmosj N/m2 

L\G~ free energy of formation, kcal/g-mole 

L\H~ enthalpy of formation, kcaI/g-mole 

i current density, A/ft2; A/m2 

K electrolytic conductivity, (ohm-cmr 1 

Km mean value of K for performance level block, (ohm_cm)-l 

n number of electrons involved in given electrochemical reaction 

P pressure, atmos; N/m2 

R gas constant, 8.314 J/ (mole)(K) 

S entropy, call (g -mole )(K) 

s standard error in units of quantity for which it is estimated 

T temperature, OF; K 

T m mean value of T in given performance level block, of; K 

t Student's t, dimensionless 

V voltage, V 

Vi value of V at current density i, V 

V m mean value of V in given performance level block at given current density, V 

V~ min value of V obtained 1 minute after circuit is opened, V 

W 

x 

electrolyte concentration, wt. % 

mean value of W in given performance level block, wt. % 

T-T m 
27 



Y w - w m  

Z v - vm 
ct! probability of occurrence of difference by chance 

1 min - v1 min polarization 1 minute after circuit is opened qo - E o -  0 
min 

70 

28 

y 

z 

O! 

28 

1 min 
770 

w-w m 

v-v m 

probability of occurrence of difference by chance 

polarization 1 minute after circuit is opened 77~ min = Eo - v~ min 
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