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ABSTRACT 


A solution of the Vinti dynamical problem is derived in a 
form that is a clear generalization of the standard form of solu­
tion of the Kepler problem. Some geometrical results on the 
orbits are given together with a physical model for the potential. 
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THE VINTI DYNAMICAL PROBLEM AND THE GEOPOTENTIAL 


By Diarmuid O'Mathuna 

Electronics Research Center 


SUMMARY 


A new form of the solution of the Vinti dynamical problem

is derived wherein all three coordinates are expressed in terms 

of one independent variable corresponding to the true anomaly of 

the Kepler problem. 


The relation of the Vinti potential to the geopotential is 

discussed together with the implied inference on the density

distribution in the geoid. 


INTRODUCTION 


In this report we are primarily concerned with the solution 

of the Vinti dynamical problem, namely, the motion of a particle

in the field of the Vinti potential. A second concern is the 

implication for geodesy of the close relationship between the 

latter potential and the geopotential. The relevance of the 

dynamical problem to the prediction of orbits of artifical satel­

lites, first pointed out by Vint'i, is now well recognized. It is 

also of interest that the potential itself suggests a geodetic

inference on the density distribution in the geoid. 


If the constant c in the Vinti problem is set to zero, it 

reduces to the Kepler problem. Accordingly, motion in the Vinti 

field must be expressible in a form which is a generalization of 

the corresponding form for the Kepler problem. This will be a 

feature of the representation we obtain for the solution, and the 

motivation serves as a guide to our method of obtaining it. 


In the case of the Kepler problem the motion is given in 

terms of the true anomaly (f) by the three formulas for the three 

spherical coordinates, as follows:* 


1 - u = q1 + e cos f)r P 

cos 8 = sin i-sin (f + w )  ( B )  

tan(@ - Q )  = cos i-tan (f + w )  (C) 

*An index of symbols appears on pages 82 and 8 3 .  



in which e denotes the eccentricity, i the angle of inclination, 
and p the semilatus rectum. The angles w and R represent the 
argument of perigee and the angle of the ascending node, respec­

tively. The above system is completed by inclusion of the time-

angle relationship between time (t) and true anomaly (f), namely: 


M = n(t - to) 


= arctan 
[ - e d i 7 - 2  sin f 
1 + e cos f 

(D) 


In formula (D), to denotes the time of perigee passage and n, 

the mean motion, is related to the semi-major axis a by the 

relation 


where p is the normalized gravitational constant. The quantities 
p ,  a, and e are related by the formula 

p = a(1 - e2) . 


Our aim here is the derivation of appropriate generalizations of 

the above formulas for the Vinti problem. 


Solutions of the Vinti dynamical problem have already been 

proposed by Vinti and Izsak (refs. 1-6) in which are derived the 

appropriate generalizations of formulas (A) and ( B ) .  A related 
analysis by Aksenov, Gribenikov and Demin has appeared in the 
Russian literature (ref. 7). In our derivation of the analogues
of formulas (A) and (B), we follow a procedure which is substan­

tially equivalent to that of Izsak; however, the preliminary

algebraic manipulation is made explicit here and we feel that the 

algebraic relations between the various constants are exhibited 

more clearly. Anticipating the approximation procedure intro­

duced at a later stage, we note here that from these algebraic

formulas it is a straightforward matter to make systematic approx­

imations. 


Corresponding to formula (C), the third coordinate gives

rise to an elliptic integral of the third kind and here we have 
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recourse to an approximation procedure in order to get the de­
sired representation of the solution. We note that the Vinti 
potential approximates the geopotential only to second order in 
the small parameter; therefore, from the viewpoint of using the 
Vinti model as a basis for Earth-satellite orbit prediction,
there is nothing lost in making a second-order approximation in 
the solution of the dynamical problem. In deriving the formula 
for the third coordinate such an approximation scheme is adopted 
to give the analog of formula ( C ) .  The same procedure is 
appropriate in deriving the time-angle relationship corresponding 
to formula (D). It is therefore also permissible to make second-
order approximations from the algebraic formulas mentioned above 
since doing so is consistent with the overall method. 

It is in dealing with the latter features of the problem--

namely, in deriving approximate formulas for the third coordinate 

and for the time-angle relationship--that the present treatment 

differs substantially from that of Izsak. In the latter treat­

ment, besides defining the independent variable f corresponding 

to true anomaly, Iszak further introduces three new auxiliary

"independent" variables which we here call $1, $2, and I'. The 

last variable corresponds to eccentric anomaly and the first pair 

are the am-functions associated with the Jacobian elliptic func­

tions which appear in the representations of the first two 

coordinates in terms of f. The third coordinate is then expressed

in terms of $1 and $2, involving both secular and trigonometric 

terms, and the time-angle relationship is a generalization of 

Kepler's equation which now involves both $1 and $2 as well as I'. 

Both secular and periodic terms appear. The system must then be 

supplemented by an equation giving the relation between $1 and 

$ 2  

In the present treatment we do not introduce any auxiliary
variables. We derive the formula relating $I to f in a form that 
is a clear generalization of formula ( C ) .  To complete the 
solution we need the relation between f and t; this is derived 
by similar techniques and appears as a generalization of the 
time-angle relation (D). Both relations are approximate, valid 
to second order. 

The above considerations occupy the first six sections of 
this report. In Section 1 the problem is formulated. The first 
integrals are derived in Section 2. In Sections 3 and 4 we go
through the algebraic manipulation leading to the analogue of 
relations (A) and (B) for the first two coordinates. In Section 
5 we derive the formula for the third coordinate corresponding 
to relation (C). The time-angle relationship corresponding to 
relation (D) is derived in Section 6. 

All the relations involve the Jacobian elliptic functions--

a fact which helps us write the relations in relatively compact 
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form. However, it is both consistent with the approximations

already made and expedient as a preparation for numerical cal­

culations to replace these elliptic functions by their second-

order approximate truncated trigonometric series representations;

this is done in Section 7. In Section 8 we include a geometrical

result which gives some qualitative insight on the orbits. 


As far as we know there has not been proposed a real physi­

cal situation giving rise to the Vinti potential field. However, 

if we consider how closely the Vinti field can be matched to the 

geopotential, we are led to the construction of a hypothetical

geoid which would give rise to an external potential field of the 

Vinti type. In Section 9 we take up this question and derive the 

density distribution inside a sphere, which induces an external 

Vinti potential field. More generally, we derive the density

distribution consistent with an arbitrary rotationally symmetric

geopotential, the coefficients of which are empirically deter­

mined. This suggests an acceptable "first-order" hypothesis for 

the density distribution within the Earth. Such an inference on 

the mass distribution suggests a starting point from which further 

refinement may be possible. 


1. FORMULATION OF THE PROBLEM 


We define spheroidal coordinates R, 5 ,  and @ by the rela­
tions: 

x = ( R ~+ c 2)1/2 sin 5 cos cp (l.la) 

y = (R2 + c 
2
)
1/2 sin 5 sin 4 (l.lb) 

z = R COS 5 (1.IC) 

from which we note the relations with the spherical coordinates 
r, 8 ,  and c p ,  namely: 

r2 = R2 + c2 sin2 5 (1.2a) 


r cos 8 = R cos 5 = z (1.2b) 

The metric coefficients gij, for the coordinate system (l.l), 
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are given by 


- R2 + c2 -cos2CT 

911 - R2 + c2 


922 = R2 + c2 cos2 0 (1.3) 

933 = ( R ~+ c2) sin2 0 

with 


gij = 0 for i # j .  

In this coordinate system the Vinti potential has the 

form (ref. 1): 


v1 = -1-I 
(R - c1 c COS 0 )  

(R2 + c2 cos2 0 )  

in which 1-1 is the gravitational constant, c is the constant of 
the spheroidal system, and c1 is arbitrary. Note that when c = 0 
the coordinate system becomes spherical and the potential becomes 
the Kepler potential. When the potential [ E q .  (1.4)] is expressed
in terms of spherical harmonics, the constants c and cl can be so 
chosen that it matches the geopotential up to the second zonal 
harmonic; in fact, by a further modification (ref. 4) cl can be 
adjusted so that E q .  (1.4) matches the geopotential up to the 
third zonal harmonic. The deviation of E q .  (1.4) from the geo­
potential is then in the higher harmonics and of higher order in 
the small (oblateness)parameter. 

We shall confine our attention to the dominant perturbation

due to the even zonal harmonics. Since we can then set c1 = 0, 

the computations are reduced considerably; however, this is not 

necessary for our procedure. Accordingly, we have 


v = - I-IR 
R2 + c2 cos2 0 

5 
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The kinetic energy T is given by 

+ s ( ~1 2  + c2)(sin2 o)$2 


so that the Lagrangian L = T - V is given by 

1 R2 + c2 cos2 0 fi2 + &(R2 + c2 cos2 0);2 
~ ­


2
1 = -[ R2 + C2 1 2 

+ L(R2 + c2)(sin2 a ) $ 2  + I-IR - (1.7)
2 R2 + c2 cos' 0 

When c in Eq. (1.5) is chosen to fit the second-zonal 

harmonic in the geopotential, then the coefficient of the fourth 

zonal harmonic in roughly two-thirds of the corresponding co­

efficient of the geopotential, and all other harmonics have 

coefficients of smaller order than the corresponding coefficients 

in the geopotential. In fact, the coefficient of P2n is of order 

c2n, whereas none of the known coefficients of the zonal harmonics 

in the geopotential are of smaller order than c4. We shall return 
to this question in Section 9 .  

2. SEPARATION: THE FIRST INTEGRALS 


Since @ does not appear explicitly in the Lagrangian, we 

first utilize the fact that it is an ignorable coordinate. The 

third Lagrangian equation reads: 


which immediately yields the integral: 


( R ~+ c2)(sin2 o ) $  = x3 , 

6 




where A3 is a constant representing the polar component of angu­
lar momentum. 

We now follow the standard procedure for ignorable coordi­

nates (ref. 8), that is, we form a new Lagrangian by setting 


k 

a i  

r=l 


where the qr (r = 1,...,k) are the ignorable coordinates. We 

find that: 


i2+ *(R2 + c2 cos2 o)G2 

+ m - - . - 1 (2.3)

“ 3  

R2 + c2 cos2 cT 2 ( R ~+ c2> sin2 0 ‘ 

that is, we have a modified Lagrangian with two degrees of free­

dom. The modified kinetic and potential energies are 


2
T = -[ 2 +2 
c2 c0s2 “Ik2 + k ( R 2  + c2 cos2 o)G2 (2.4a)

R + c  


v = -
2 

?JR 1 (2.4b) 
R + c2 cos2 o (R’ + c2) sin2 o 

and 


To achieve separability, we first write the Lagrangian in 

the form: 
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L = (R2 + C2 COS 2 


which, if we set 


R = c sinh 5 

takes the form: 

L = c2(sinh2 5 + cos2 0 ) [ $1'2 + g2] 
r 1 

This is now in standard Liouville form. 

subsequent manipulations, we set: 


Ql(S) = c2 sinh2 5 , 

A:sinh 5 + -
cosh2 5 

, 

so that 


T = Q($1.2 + s2) v = '(v

I Q 1  

For convenience, in 


~ ~ ( 0 )= c2 cos2 0 (2.9a) 

A: 1
V2(d = - (2.9b)

2 cos2 0 

+ v2) (2.10) 
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and 


(2.lla) 


(2.llb) 


The Lagrangian equations are: 


(2.12a,b) 


Before integrating these equations, wf! first derive the 
energy integral. Multiply Eq. (2.12a) by �, and Eq. (2.12b) by 5 
and add to get 

(2.13) 


which, after rearrangement, gives: 


which integrates to give 

i;-aL + 5 
- aL - L = constant) . (2.14)

ai; a5 

This is the energy integral. However, when the Lagrangian has 

the form (2.11), we have: 


9 




T ( - c  av 

and t h e  energy i n t e g r a l  t a k e s  t h e  form 

T + V = E .  (2.15) 

W e  now i n t r o d u c e  t h e  form ( 2 . 1 1 a )  i n t o  E q s .  ( 2 . 1 2 )  and g e t :  

-(Q;) = dQ2 1 - 2  + $2) - ­d a 0  
d t  a 2  

If w e  m u l t i p l y  Eq .  ( 2 . 1 6 a )  by Qi,w e  f i n d  

Q 

= [(E - V)- dQ1- Q 

= [ E - - ­dQ1 a 6' ( Q V ) ] i  

= [ ~ ~ - 5 ] i = E - - ­dQ1 dS dQl dV1 
d t  d t  ' 

which i n t e g r a t e s  t o  g ive :  

2 * 2  = EQ1 - V1 +- z a c  

( 2 . 1 6 a )  

(2.16b) 

(2.17) 


wher? A 1  i s  a c o n s t a n t  of i n t e g r a t i o n .  I f  w e  m u l t i p l y  Eq.  (2.16b) 
by Qa and proceed i n  a s i m i l a r  manner, w e  o b t a i n :  
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- - - -  

2 ' 2  = EQ2 - V2 + X 2  ( 2 . 1 8 )z Q a  

where A2 is a second constant of integration. Adding E q s .  ( 2 . 1 7 )
and ( 2 . 1 8 ) ,  we have: 

QT = Q ( E  - V )  + X1 + X 2  , ( 2 . 1 9 )  

which, in view of the energy integral of Eq.  ( 2 . 1 5 1 ,  implies that 

X1 + X 2  = 0 . ( 2 . 2 0 )  

We shall be primarily concerned with cases with negative energy,

that is: 


E = - a  2 , ( 2 . 2 1 )  

and as a consequence A2 must be positive. This fact will be 
evident from Eq.  (2.2533) below. Accordingly, we set 

( 2 . 2 2 )  

and now writing E q s .  ( 2 . 1 7 )  and ( 2 . 1 8 )  in terms of a2  and X2 , we 
have: 

1 2 - 2  - X2 V1 - a 2Q, ( 2 . 2 3 a )- 2 Q E  2 

1 2 * 2  X 2  2= - ­
$ 0  2 V2 - a Q2 (2.2333) 

If E q s .  ( 2 . 2 3 )  are added, we obtain 

T + V = - a  2 , ( 2 . 2 4 )  

11 




-- 

so that the energy relation is implied by E q s .  ( 2 . 2 3 )  and so can 
henceforth be ignored. 

We now use relations (2.9) to write E q s .  ( 2 . 2 3 )  explicitly
and reintroduce the variable R from ( 2 . 7 )  to get 

A2 + p R + -
2 R 2 + c2 

2 2  (2.25a) 
-1 (R2 + C 2 
COS

2 
(Szf A2 = - __ C

2 - a R  
2 R2 + C  2 2 

The pair of E q s .  (2.251, together with Eq.  (2.2), constitutes 
the set of equations, the solution of which is the complete solu­
tion of the dynamical problem. They are the first integrals 
or action integrals -- with constants a2, X3, and A. The first 
two represent the energy and polar component of angular momentum, 
respectively. The constant A, which also has the dimension of 
angular momentum, does not have an obvious physical interpretation, 

except when c = 0, in which case it is the magnitude of the angu­

lar momentum vector. 


We next introduce a true anomaly f defined by 


(2.26) 


where A is a constant, having the dimension of angular momentum, 
which will be defined later; in the Kepler case (c = 0), the 
angle f has a simple geometrical interpretation. If we let ' 
denote differentiation with respect to f, then E q s .  (2.25) take 
the form 


A2RI2 = -(R2 + C2) [h2- 2pR 4- 2a 2 2  (2.27a) 


(2.27b) 
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and Eq. (2 .2 )  becomes: 


$ 1  = - R2 
4- c2 cos2 (3'3 

A (R' + c2) sin2 0 

or 


(2.28) 


We now proceed to a consideration of the above equations

individually. 


3 .  ADJUSTMENT OF EQUATIONS (2.27) 

In this section, we go through a lengthy procedure of 

algebraic manipulations in order to write Eqs. (2.27) in a form 

which immediately yields the solution we seek. 


The constants appearing in Eq. (2.27) arose naturally in 

the mathematical separation, and are determined readily from 

initial conditions. The constants that will appear in the final 

form are more "natural" in the physical-geometrical sense. To 

determine them in terms of initial conditions, it is necessary 

to determine them in terms of the constants appearing in 

Eq. (2.27). This is the aim of this section. 


The Equation for R 


We first write Eq. (2.27a) in the form: 


1-I + -1x 2  - -2 2 * - }x32 (3.1)A2Ri2 = -2a2{(R2 + c2) [R2 -	-R c x  
ci 2a2 2a2 x 2  

We now associate with the energy and angular momentum constants 

two length scales a, and po (corresponding to the semi-major axis 

and semi-latus rectum, respectively) by setting 


( 3 . 2 )  
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and Eq. (3.1) then reads: 


-A 2  R1*= -[(R2 + c2)(R2 - 2aoR + aoPo) - V C a P 3 (3.3) 
2a2 0 0  

where the dimensionless parameter v is defined by 

We shall find it convenient for the subsequent analysis to 

have Eq. (3.3) written in dimensionless form. To do so we intro­

duce dimensionless parameters !Lo and n by the relations 


(3.5) 


and define the dimensionless independent variable y by the rela­

tion 


R = a y . 

0 

Then, in these terms, Eq. (3.3) reads: 


A 2  y 12 = -[(y' + Rol l4 2) (y2 - 2 q  + 2 ; )  - n2v22;] 
2 22a a. 

- 2rl 2 4  Ro(l-v2)] (3.6)Roy + rl 2 6  

Note that in the Kepler case the parameters v and Ro have a 
geometric interpretation. The ratio of polar angular momentum 
to "total" angular momentum is measured by v which corresponds,
therefore, to cos i where i is the inclination in the Kepler case. 
The parameter Ro measures the ratio of "latus rectum" to "major 

14 
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2
axis" and so corresponds to (1-ek) where ek is the Kepler
eccentricity. The small parameter rl measures the "oblateness" 
(or, alternatively, the inhomogeneity, c.f. Section 9 )  against
the characteristic dimension of the orbit. We shall ultimately
approximate the solution in terms of this small parameter. We 
first aim at a form of the solution suitable for making systematic
approximations. 

Once the initial conditions have been specified, the 
quantities A3, A and ct2 are known from Eqs. ( 2 . 2 )  and ( 2 . 5 )  and 
so the length scales a. and po are immediately determined. We 
therefore refer to a. and po as the fundamental length scales. 
Similarly, we shall refer to v, Ro, and rl as the fundamental 
parameters. Most of the subsequent algebraic manipulation is aimed 
at expressing the constants which shall appear in the representa­
tion of the solution in terms of these fundamental quantities. 

We start by decomposing the quartic on the right side of 

Eq. (3.6) into two quadratic factors such that each factor is a 

"perturbation" of the corresponding factor in the Kepler case: 

we set 


2 4  2 6
Y 

4 - 2Y 
3 

+ R;(1  + rl 
2 2  2 - 2rl Roy + rl R o ( l  - 2)R o ) Y  

2 4  
- 2 n R h y + -

rl go [so - ho(l - rl 
~~ 

2 2h )"I2 2  R 
0 0  S 1 - 2 2  

0 Roho O 0  1 
2 


Y 2  - 2 ( 1  - rl Roho)y + ~ ( - 1rl R 0 0  
2 2  2 2h ,'] . (3 7 )  

0 

With this choice the identity requirements on the first, second, 

and fourth coefficients are automatically satisfied. The identi­

fication of the third and fifth coefficients gives the pair of 

equations for the determination of ho and so, namely: 


2 2  2 2  [so - ho(l - rl 2 2h ,'3
(1 - rl Roho)2 rl Ro 0 0  

+ - e
S S 2 2  
0 0 1 - rl Roho 

+ 4rl 
2 
ho(l - rl 

2 2  2 2  (3.8a)Roho) = 1 + go 
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and 


(3.8b) 


which after some rearrangement may be written: 


) 2  - s0(1 + 2 2  

go)] 


+ r) 2so[4ho(l - r) 2 2Iloho)2 + a 2 ( 1  - V 2 ) S o ]  = 0 (3.9a)

0 

ho(l - rl 
2 2h )3 = s0(1 - r) R 0 0R 0 0  

2 2h ) - s:(l - v2) (3.9b) 

This pair of algebraic equations can be uncoupled if we associate 
with so the related quantity q, defined by 

2 2  
s0 = (1 - rl Roho)2 q, . (3.10) 

Inserting Eq.  (3.10) into E q .  (3.9b) and rearranging, we get h, 
in terms of q, in the form 

- qo[l - qo(l - .",I 
ho - [1 - rl 2 2R o ( l  - V2)q:] (3.lla) 

and hence 


(3.11b) 
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2 2  2 2  

2 2  

Substituting so and ho from Eqs. (3.10) and (3.11) into 
Eq. (3.9a), we get the equation for q,, namely: 

[I + rl Ro(l - .")q;][1 - rl R o ( l  - v2)q;I2 

2 2  

+ 4rl qo(l - rl Roqo)[1 - qo(l - v )I

2 ­= q o ( l  + rl2 2R o ) [ l  - rl R o ( l  - v')q:] (3.12) 

This sixth-order equation cannot be solved algebraically. How­
ever, if we note that the root we seek is that which tends to l 
as n tends to zero so that 

90 = 1 + 0(n2) I (3.13) 

then we see that the determination of the root as a power series 

in q2 is a straightforward matter. In fact, if we anticipate the 

later approximations when effects of order q6 are neglected, it 

would be consistent to replace Eq. (3.12) by the cubic equation: 


4 4  2 2  2 2
[l - rl Ro(l - v ) ][1 - rl R o ( l  - .2)q;] 

+ 4r12(1 - rl 2 2Lo)q;[l - q o ( l  -41 
2 2  4 4  2 2  

= qo(l + rl R o ) [ l  + rl L o ( l  - v2) - 2rl R o ( l  - ?).;I 
(3.12*) 


which can be solved algebraically. However, it is probably more 

economical to determine the root as a power series in 02. 


With q, determined from Eq. (3.12), ho and sQ follow 
immediately from Eqs. (3.11a) and (3.101, respectively, and so 
the coefficients in the quadratic on the right of Eq. (3.7) are 
all determined. From now on we shall consider so,  q,, and ho 
known in terms of the fundamental parameters. We add the remark 
that taking Eqs. (3.13) with (3.10) and (3.11) shows that 
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90 = 1 + O(V2)  , hO = v2[1 + .(?)I. (3.14) 

We now combine Eqs. (3.6) and (3.7) and factor out the con­

stant term in the second factor. If we note from Eq. (3.10) that 


S
0 2 2  
2 2  = qo(l - rl (3.15) 

1 - n Roho 

and substitute for a2 from Eq. (3.21, we get: 

(3.16) 


where we have interchanged the order of the factors. Written in 

terms of the original variable R and again noting Eqs. (3.2) and 

(3.5), Eq. (3.16) becomes 


(3.17) 


At this point, still following the procedure for the Kepler

problem, we introduce a new independent variable u, defined by 


R'u = - so that u' = - - (3.18)
R R2 
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and E q .  (3.17) takes the form: 

A *  qoso R2-- - [ - (1 - e) -(u -
6%90 PO ,'I 

This suggests defining the quantity eo (corresponding to the 

eccentricity) by the relation 


e2 = l - s0 
0 

0 

and Eq. (3.19) then reads: 


2 


A2uI2 = '[qoso m
90 2 - (. - p, f] 

The next step is to set 


(3.19) 


(3.20) 


(3.22) 
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-(1 

which, when introduced into Eq. (3.21), gives as the equation 

for w: 


A2wV2 = A 2  - w2)[1 - 2n2,/= ho(l + eow) 
90 

(3.23) 


To facilitate subsequent manipulation, we set: 


1 (3.24) 


20 




so that the above equation for w reads: 


*[1 - 2rl2hleOw + rl (3.25) 

To set this equation up for a straightforward solution, we 

make a final adjustment to the quadratics on the right of 

Eq. (3.25). We write: 


1 - w2 E J2 [(I - 6 ~ ) ~ 
- (W - 6)2] 


= J2(1 - 62)(1 - W2) , (3.26) 


so that 


J2(1 - 62) = 1 . (3.27) 


Seeking a similar decomposition for the second quadratic, we 

write: 


1 - 2q2h e w + q2g:eiw2 z J2 1 - 6 ~ ) ~1 0  + B(w - 6)2] (3.28) 


which yields the following relations 


J~(A + ~ 6 =~1 ) 


2 2 2 
J~(B + ~ 6 ~ ) 
= rl eOgl (3.29) 

J26(A + B) = rl 2eOhl I 
from which, together, with Eq. (3.271, we derive the following: 
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4 2  

4 2 2  

(3.30a) 


(1 + 62)  eOgl

(1 - s2)  (A + B) = 1 + rl 2 2 2  (3.30b) 


6 B > = n2e0 1  (3.30~)
h 
1 - 62 ( A  + 

Combining Eqs. 3.30a) and 3.30 we ..ave the equation for 

6, namely: 


2 
6 - eOhl 

2 2 2  ' (3.31) 
1 + 6 2 - 1 + eog1 


so that 6 = 0(n2). We set 


2 h,
I6 = n e d  h =  2 2 2  ' (3.32)
0 0 '  1 + n eog1 

and then Eq. (3.31) is equivalent to the quadratic equation for 

do : 


r) eohd: - d + h = 0 (3.33)
0 


with solution 


+ q4e;h2 + O(r) eo) ] . (3.34) 
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If we substitute for 6 f r o m  Eq. (3.32) and use Eq. (3.31) in 
Eq. (3.30b), we obtain: 

4 2A + B = 1 + q eOgl - 2q eOhd0 (3.35) 

eO(gl2 - 2n 2 22 1 + q2 2  h ) (3.35*) 

If we now combine Eq. (3.30a) with Eq. (3.351, we obtain f o r  A 
and B: 

A = 1 - q4eohdo, B = rl 2 2eo(gl2 - q2hdo) (3.36) 


Returning to Eq. (3.25) and using Eqs. (3.26) and (3.28), we 

have: 


' J4 [(I - 6 ~ - )(W~- 6 ) 2 ]  

(3.37) 

or dividing across by J4(1 - SW)~,we have 

(3.38) 


2 3  




-- 

W e  t h e r e f o r e  w r i t e :  

w - 6 v +  6 v =  1 - 6w or  w =  1 + 6 v  (3.39a)  

so t h a t ,  aga in  u s i n g  Eq. (3.271, w e  have: 

v ’  = W‘ 

J2(1 - 6 W )  
2 (3.39b) 

and Eq. (3.38) t a k e s  t h e  form: 

(3.40) 

i n t r o d u c i n g  (A + B )  and B from Eqs. (3 .25)  and ( 3 . 3 6 ) ,  respec­
t i v e l y ,  i n t o  Eq .  ( 3 . 4 0 )  g i v e s :  

[1 + n2ei(g: - 2n2hdo)][1 - v2] 

2 (g21 - 2q2hd0)(1 - v2) 
[I - [1 + rl 2 2eo(g: - 2n2hdo)] 1 (3.41)  

2 4  




- 

where, by Eqs. (3.241, (3.321, and (3.341, the constants gl, h,

and do are determined in terms of the initial parameters. 


Next we do a corresponding analysis on the equation for 0 .  

The Equation for 0 

Rewriting Eq. (2.27b), we have 


- x 2  [sin’ a - v2 - Roo2 2sin2 0 cos2 01 

sin2 0 

(3.42) 


where we have substituted from Eqs. (3.2), (3.4), and (3.5). 


We now define a parameter mo in terms of the fundamental 
parameters R

0’ 
v, and n by the relation: 

(3.43) 


so that 


If we consider the quantity on the right side of Eq. (3.42) as a 
quadratic in cos2 0 ,  its roots are neatly expressed in terms of 
mo. In fact, it can be readily checked that we can write 
Eq. (3.42) in the form: 
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- 

A 2 2
CT' = 

sin2 0 
0 

1 - v  2 


-
sin2 0 

1 - v  2 


0 

We now make the substitution: 


cos cs = dy.
(1 + rl )m 

so that 

-sin C T - O '  = 


and Eq. (3.44) takes the form: 


where we have reversed the order of the factors. 
is what suggests our choice f o r  A .  

cos2 .] 

(3.44) 


(3.45) 


(3.46) 


Equation (3.47) 
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Definition of A 

The only requirement on the quantity A is that it have the 
dimension of angular momentum. As suggested by Eq. (3.471, we 
define A by making the identification: 

n2 = x2 (1 + n 2 2go)mo (3.48) 

and the pair of equations for v and 5 [(3.41) and (3.47)] take 

the form: 


(3.50) 


The next step is to obtain explicit representations for the 

solutions of the above equations. 


4. EXPLICIT SOLUTION FOR R AND 0 

Considering Eqs. (3.49) and (3.501, we set 


eo’(g: - 2q2hd0)

k: = 2 2  2 2 , k; = 2 2 2m2 (4.2a,b) 


1 + n eo(gl - 2n hdo) (1 + rl go) 0 
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and the pair of equations takes the form: 


v' = j,*[1 - v2][1 - k;(l - v')] (4.3a) 


e l 2  = [l - c2][1 - k;c2] (4.3b) 

with solutions: 


v = cn[jl(f + wl),kl] (4.4a) 


1 (4.4b) 


respectively, where w 1 and w 2  are arbitrary constants introduced 

by the integration. 


If we define "perigee" as the points at which v' = 0 and 

v" > 0, and if we make the "angle" f have origin at perigee, then 

it follows immediately from Eqs. (4.3a) and (4.4a) that 


w l = o .  (4.5) 


If we define the "angle of perigee" w as minus the value of f at 

the first equatorial crossing ( 5  = 0), then from Eq. (4.4b) we 

have 


and the solution [Eq. (4.411 is now 


(4.7a) 


It remains to express R and a in terms of f. 


For the R expression we first take Eq. (4.7a) and insert it 

into Eq. (3.39a). Then the resulting expression for w is sub­

stituted into Eq. (3.22) to give: 
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1 1 + 6 cn[jlf,k 11 J 
In a similar manner, if we insert Eq. (4.7b) into Eq. (3.45), we 

have 


cos 0 = d / isn[f + w,k21 . ( 4 . 9 )
l + r l R o  

We now see how to define the final constants of the problem,

namely those appearing in the solutions [Eqs. (4.8) and (4.9)]. 

We shall refer to these constants as the semilatus rectum p, the 

eccentricity e, and the inclination parameter N, defined by 


e + 6  e ( l + n d o ) 
2 

0 0
-
e =  1 + 6eo 2 2  


(4.loa) 


(4.lob) 

(1 + eodo) 


The solutions [Eqs. (4.8) and (4.911 in terms of these read: 

+ e cn[jlf,kl] 

R + 6 cn[jlf,kl] 1 (4.lla) 
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cos 0 = 4- sn[f + u,k2] (4.11b) 

We shall find useful the following alternative expressions 

for kl, k2, and 6, namely: 


ki = q2(1 - N2) = n2(1 - N2)R2 (4.12b) 


(4.12~) 


where the quantities g, 2 ,  and d are defined by the above rela­
tions. 

Note the phenomenon of perigee precession is here indicated 

by the fact that the right-hand side of Eq. (4.11b) has period 

4K2 # IT where 


ki 9kl 

2K2
- = I + - + -4 64 + O(kz) . (4.13)

IT 


The deviation of the right-hand side from unity measures the 

perigee precession rate. 


5. THE INTEGRATION OF THE @ EQUATION 


Turning to Eq. (2.28), we substitute for A from Eq. (3.48) 
and noting Eq. (3.4), we obtain (setting R = l/u): 
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(5.1) 


Using relations (3.5) and (4.101, we rewrite the above equation

in the form: 


It is now convenient to introduce the symbols: 


(5.3a) 


s = qoso(l + r) 2 2eodo)2 = 1 + O(q2) (5.3b)
1 


so that Eq. (5.2) reads: 


2 

ql$' = 
N - N. 

n Sl(PUI2 
sin2 0 1 + n 2s,(pu) 2 

(5.4) 

or, anticipating the approximation procedure, we write 


ql$l = 
sin2 0 

- Ns1[n2(pu)2 - ~ ~ ( p u ) ~ ]N + O(r16) . (5.5) 
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In the subsequent computation, the evaluation of each term must 
be done separately. We therefore introduce the auxiliary
quantities $1' $2, and $ 3  as follows: 

(5.6a) 


4; = (pu)2 I $; = (pu)4 (5.6b,c) 

so that Eq. (5.5) reads: 

q $ '  = $; - NS (5.7) 

which integrates as 


(5.7*) 


where L?: is the constant introduced by the integration. 


We now consider Eqs. (5.6) individually. Starting with 
Eq. (5.6a), we introduce cos o from Eq. (4.11b). If we write: 

F 2 = f + w ,  


we have 


d@l - N 
dF2 1 - (1 - N2j-sn2 (F2,k2) 

-
-
1 + N2 sc 2 (F2,k2) 

(5.9) 

3 2  




- -  

- 

and so 


d% - - ~~ 

dF2 1 + N 2 sc2 (F2,k2) 

1 + N L  scL F2,k2 

N nc2 (F2,k2)dn(F2,k2) 
- ._ ­- ­

1 + N 2 sc2 (F2,k2) 

N sc2 (F2,k2)
2 _ - -

~~ 

-k k2[1 + N2 sc2(F2,<)][l+ dn(F2,k2)] 

2 
k:N nc (F2rk2) 1 

+ l - N  1 + N 2  sc2(F2,k2) -'I* 1 + dn(F2,k2) 

- -~ 
1 + N2 sc2 (F2,k2) 

f 	 dh - N]. 1 (5.10)
dF2 

where we have substituted from relation (4.12b) and utilized 

Eq. (5.9). 
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For the integration of Eq. (5.10), we first make some 

observations. In connection with the second term on the right, 

we note that 


(5.lla) 


= :[.+ k: sn 
2 
(F2rk2) 


+ dn(F2,kZfi2 I (5.11b) 


while for the first term on the right we note that 


2
N nc (F2,k2)dn(F2,k2>

d
dF2 [.an-' [.s c  (F2,k2)]] = 1 + N2 sc2 (F2,k2) (5.12) 

so that E q .  (5.10) may be written in the form: 

e[%-tan-' [N sc(F2,k2)]] 

Again, with a view to integrating the right-hand side, we note: 


d% 2 N s c  2(F2,k2) 
k: 	 sn2(F2,k2)- -­


dF2 - k2 1 + N2 sc2(F,,k,) 


2
k:N -
- nc (F2fk2) = q2E2(? d% - N) (5.14) 

1 - N  2 1 + N2 sc2(F2,k2) 
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5k2 

q4R4 - 

where we have again used E q .  (5.9) and the trick used in arriving 
at E q .  (5.10). Inserting E q .  (5.14) into E q .  (5.13), we obtain: 

2 2  


dF2 -q)tan-’ [N sc(F2,k2)]] + %N 
2 2  


-
d[~$~(l 

N - N(1-N2)sn2(F2,k2)]. (5.15) 

.dF2 


The procedure separates out the dominant contribution and it 

appears that it can be continued indefinitely. However, in our 

a proximation, we do not seek accuracy beyond the second power of 

q 3  a2d so we terminate the manipulation at this point. We note 

that 


dn(F2,k2) = 1 + O ( n 2 )  (5.16a) 

sn(F2,k2) = sin G2 + 0(q2) (5.16b) 

where 
4 

G, = -Tr F2 = F2[1 - 4‘’ - ­64 + O(kz)l (5.16~)
L 2K2 I 

If we now car:y the approximation to the second power in q 
2 , it 

is consistent to replace E q .  (5.15) by 

n 2 R 2  - -)d il(.-7n4R4 - tan-’ [N sc(F2,k2)]]-
dF2 8 

- - -N(1- N2) (1 -COS 2G2)  (5.17)16 

*Approximations such as these used in sections 5 and 6 are derived 

in section 7. 
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2 

-N(1 

or, on rearrangement: 


n4*4)&[h(l - q 2 E 2  - -8 - tan-l[N sc(F2,k2)]] 

which integrates to give: 


n2'2 82
e, ( l - --- n4Q4) = tan-'[N 

- " [ 
'2' 

+ n 4 R 432 

2G2 , ( 5 . 1 8 )  

sc(F2,k2)] 


N 1+ @(3-N2)]F2
8 

- N2)sin 2G2 . ( 5 . 1 9 )  

In Eq.  ( 5 . 1 9 )  we have not included the arbitrary additive constant 
since we can consider it already absorbed in the constant Q t
appearing in Eq.  (3.7*). 

We next consider Eq.  ( 5 . 6 b ) .  If we introduce u from 
Eq.  (4.11a) and set 

F1 = j,f ( 5 . 2 0 )  

we have: 


1 + e cn(F1, 
( 5 . 2 1 )  

Since in Eq.  ( 5 . 7 * )  the factor $ 2  is multiplied by n 2 ,  it is 
sufficient for our approximation to compute $2  up to the first 
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power in rl 2. Accordingly, using relation (4.12~1,we note that 

1 + e cn(F1, 

= 1 + e(l - q2d)cn(Fl,kl) 


2 2  2
- rl de cn (Fl,kl) + O(r14) 

and so, inserting in Eq.  (5.21), we have: 

d@2 - 1 + 2e(1- .I'd) cn(Fl,kl) + e2(1- 4rl2d)cn 2(Flfkl)
jl q­

- 2r12de3 cn3(Fl,kl) + O(r14) 

r 

= 1 + 2e(l - r12d)Icn(Fl,kl)dn(Fl,kl) 


where we have now omitted terms of order rl 
4. The first bracket 

in E q .  (5.22) was obtained by a manipulation similar to that done 
below E q .  (5.9), while the second bracket was obtained by
expressing cn2 in terms of the elliptic functions of the double 
argument. 
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In the first bracket in Eq. (5.22) we set 


1 (5.23a) 


and in the second bracket we set: 


2 

1 = $[..(2Fl,kl) + -4 sn2(2Fl,kl) + O(n4)] (5.23b)
3k1 


1 +  dn(2Fl,kl) 


and we can replace Eq. (5.22) by 


jl q­ 
d42 - 1 + 2e(1 - n2d)[cn(Fl,kl)dn(Fl,kl) 


e(l - 4n2d) 

2 


- 11 + cn(2F1,k )dn(2Fl,kl)- kf sn2(2Fl,kl) 


[l - a(cn(2Fl,kl) + dn(2Fl,kl))]] 


- 2n2de3 cn3(Fl,kl) (5.24a) 


= 1 + $(l - 4n2d) + d k e ( 1  - n2d)sn(Fl,kl)

dF1 


(5.24b) 
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-(1 

In the latter terms of the above expansion (namely, the terms 

with k: as a factor) we now take: 


dn(Fl,kl) 


sn(Fl,kl) 


sn(2F1,kl) 


cn(F1,kl) 


cn(2F1,kl) 


where 


= dn(2Fl,kl) = 1 + O ( n 2 )  (5.25a) 

= sin GI + O ( n 2 )  , 

= sin 2G1 + O ( n 2 )  1 (5.25b) 
= cos G1 + 0( n 2 )  , 1 (5.25~) = cos 2G1 + O ( n 2 )  

(5.25d) 


and also, noting relations (4.121, it is consistent with the 

approximation to replace Eq. (5.24) by 


d’2 d
J l  q -- 1 + s(1- 4n2d) + q[2e(1 - n2d)sn(Fl,kl) 

+ “(1 - 4n2d)sn(2Fl,kl)] - rl 2 3e 

4 


-(g2[sin 2 G1 cos G1 -	-3 sin2 2G1 cos 2G1 

8 


+ 1 - cos 4G1)] - 4[3cos G1 + cos 3Gl]l
16 
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and 

j, d4)2 = [ 1 + ~ - 2 ~ 1 ~ e ( d - ~ ) ] + & - ~ e ( l - ~ 12d)sn(Fl,kl) 


+ '(1 - 4q2d)sn(2Fl,kl)] - T-I 2 3e 

4 


sin3 2G1 sin 4G1 
- ­

3 16 64 


sin 3G1 

3 + 3sin Gl)] (5.26) 


d = 2N2 - 1 + O(n2) , g2 = 1 - N2 + O ( n 2 )  , (5.27) 

so that integrating Eq.  (5.26) and rearranging, we get: 

+ 2e [l + n2 (1 ­

jl 


+ e  [l + 4n2(1-­
jl 

2 


2 

2N2(1 + $)]IF2 


2N2)] 

1kl) 


2N2)] 
sn(2F1I kl) 

2 
2 3['7 -413N sin G1 - 3(1 -4 sin 2G1
- n e  

+ -123N 
2 
sin 3G1 - -64 

2 
sin 4G1 + 

1 - N2 sin 6G1164 

(5.28) 
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- -  

where we have used the additive constant to replace f by F2 in 
the secular term. The reason for doing this will appear later. 

It remains to calculate $3. If we substitute for u from 

Eq. (4.11a) into Eq. (5.6~)we have: 


1 + e cn(jlf,kl)I4 

'p; = 

1 + 6 cn(jlf,kl) 
(5.29) 


We note that in Eq. (5 .7*)  $3 has a factor n4. Accordingly, in 
the calculation of $3, we may neglect terms of order n 2 .  For our 
approximation, therefore, it is consistent to replace Eq. (5.29) 

by 


d$3
-= (1 + e cos G ~ ) ~  (5.30)
.
dF7 

If we multiply out the right-hand side of the above equation and 
then express the powers of the cosine in terms of cosines of the 
multiple angles, and neglect term of order ? 1 2 ,  we have: 

2 

d'3 3 4  

dF1 

- (1+3e2 +%e) + e(4+3e 2 ) cos G
1
+e2(3+%)cos 2G1 

4
e
+ e3 cos 3G1 + -8 cos 4G1 (5.31) 


which, on integrating, gives: 


2 
$3 = (1+ 3e2 +$e4) F2 + e (4 + 3e2) sin G1+ "(64 + e2) sin 2G1 

3 4
e
+ -e 3 sin 3G1 + 32 sin 4G1 (5.32) 


where, as in Eq. (5.28), we have used the additive constant to 
replace f by F2 in the secular term. 
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Again noting Eq. (5.7*), we next evaluate the combination 

($2 - n243). Combining Eqs. (5.28) and (5.32) in this manner 

we have: 


+ 4N2e(1 + $)IF2 

+ [1+ 4n2(1 - 2N21 


jl 


+ -(7
- n2e[[4 + 3e2 e2 - 13N2)] sin G1 

4 


+ 2[6 + e2 -g(1-N’)] sin 2G1+ 3 4 

2 2 
= sin 3G1+-e4 (e + N2 - 1)sin 4G1+ l - N  sin 6G1164 

(5.33) 


which, using an obvious notation, we may write as 


2 6 

42 - n  43 = boF2+e[xb nsn(nFl,kl) - q2 zBnsin nG11. (5.34)

n=l n=l 

We now multiply Eq. (5.7*) by the factor 


and then substitute from Eqs. (5.19) and (5.34). After combining

the secular terms we have: 
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- - 

-(1 

4 4  
-	 c ) q l ( $  - no) = tan-I[N sc(F2,k2)]

8 

2 2 
- q2~[[$(l + c ( 3  - N2))+ slbO(1 - *)IF2 

8 


+ sl(l - +)e[ 2 2  &n(Sn(nFl,kl) - Sn(njl%kl))j
2

n=l 


+ Q ~ ~ J \ S(1 - *)e[ 6 Bn(sin nG1 - sin ­
1 n=l 


+ ~
R 4  ( - 1N2) sin 2G2 (5.35)i 

where we have replaced L?; by Ro - an adjustment to compensate for 

the constant terms introduced on the right. The angle Ro can now 

be interpreted as the angle of the "first" nodal crossing, that 

is, when f = -w, we have $ = Go. 


We now introduce the final notation for the expression of the 
formula for 4 .  We set* 

j 3 =  q 2 R 2  Tl4R4)
8 '1 (5.36a) 

j3ms -- R 2  + ~ 32 T12R2 ( - N2))+ slbo(l - q) (5.36b) 

2 2  

j3mpl = (1 - (5.36~) 


(5.36d) 


so that E q .  (5.35) may be rewritten: 

*In fact, by making the necessary series expansions we find 
at least to second order that j3 = 1. 
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I1 I 1 1 1 1 1  I I I I  ,11111111" .I, .I,,.,,,,. I ..--­

- R o )  = tan-l[N sc(F2,k2)]- n 2Nj3 
j3 (4 

+ m (1 - N2) sin 2G2 . (5.37) 


P2 I 

If we define the angle R by the relation 


+ m (1 - N2)sin 2G2 (5.38)
P2 

then the relation [Eq.  (5.37)] takes the compact form: 

which is a clear generalization of the corresponding relation in 

the Kepler problem. 


Note from E q .  (4.11b) that the crossing of the equatorial 
plane (cos 0 = 0) corresponds to the vanishing of sn(F2,k2) and 
so ,  from Eq. (5.391, to the vanishing of tan [j3(4 - R)], so 
that R represents the angle of the ascending node and the secular 
and periodic variations of R can be read off directly from 
E q .  (5.38). 
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6.  THE TIME-ANGLE RELATIONSHIP 

To i n t e g r a t e  r e l a t i o n  ( 2 . 2 6 1 ,  w e  f i r s t  w r i t e  it i n  t h e  
form : 

A-	d t  = -
2 + c2 cos2  cl ( 6 . 1 )  

df u 

where w e  have r e p l a c e d  R by l/u i n  accordance wi th  E q .  ( 3 . 1 8 ) .  
W e  now i n t r o d u c e  u and cos  5 from E q .  ( 4 . 1 1 )  and,  n o t i n g  t h e  
r e l a t i o n s  ( 4 . 1 0 a )  and (3.51, w e  g e t :  

A d t  1 + 6 cn(Fl,kl)  

P e cn(Fl ,kl)  I’ 
+ n 2 qoso(l  + n 2 2eOdO)2(1- N2)sn2 (F2 ,k2) .  ( 6 . 2 )  

I f  w e  i n t e g r a t e  E q .  ( 6 . 2 )  w e  have: 

where jl i s  g iven  by r e l a t i o n  ( 4 . 1 )  and to i s  t h e  c o n s t a n t  i n t r o ­
duced by t h e  i n t e g r a t i o n .  H1 and H2 a re  g iven  by 

1 + 6 cn(Fl,  
Hl=[[- 1 + -e cn(Fl ,kl)  )I2dF1 ( 6 . 4 a )  

H2 = I s n 2 ( F 2 , k 2 )  dF2 ( 6 . 4 b )  

w e  must e v a l u a t e  H1 and H2 i n d i v i d u a l l y .  
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In considering H1 we first note from straightforward decom­

position that 


+ 2r12d(l-r12d) 4 2- - + n d  (6.5)

1 + e cn(Fl,kl) 


where we use relation (4.12a) for 6. Also it can be readily

checked that 


1 - 1 - 1
-

[1 + e cn(Fl,kl)I2 1 - e2(1 + e cn(F1,kl) dn(Fl,kl) 


. L[e Sn(F1'kl) ]( (6.6) 

dF1 1+ e cn(Fl,kl) 


so that, combining relations (6.5) and (6.6), we have 


- 1 - 2rl2de2 - ,,4d2(1 - 2e2)
-

1 - e2 


1 - (1 - n2d)2 1 


1 + e cn(F1,kl) 1 - e2 dn(F1,kl) 


. L[e sn(F1,kl) 

+ n4d2 . (6.7)


dF1 1 + e cn(Fl,kl) 


Accordingly we set: 
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i 

(6.8a) 

1 + e cn(F1, k )  


and, therefore, from relations (6.4a), (6.71, and (6.8) we have: 


-

H1 - l - e  

2 1[1- 2n2de2 - n4d2(l - 2e2)] L~ 


(6.9) 


so that the determination of H 1  is reduced to the evaluation of 
L1 and L2. 

To proceed with the calculation we first observe that if 

we set: 


1 

arctan 


e + cn(F1, I (6.10) 

it can be immediately verified that 

(6.11) 


If we also introduce the notation 


(6.12) 
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then, from relation (6.8a), it follows that 


dF1 

=1 = 1 + e cn(F1,kl) 


-

1 + e cn(F1,kl) 1 + e cn(F1, 


2 = I1 + klI12 . (6.13) 

Also we set: 


1 e sn(Fl,kl)
-
 - .  

I2 - dn(F1,kl) 1 f e cn(F1,k ,  
(6.14a) 

and 


(6.14b) 


Then an integration by parts on relation (6.8b) gives: 


2 
L2 = I2 - kl121 . (6.15) 

If we introduce relations (6.13) and (6.15) into relation (6.9) 

and neglect terms of order q6, we have: 


4 2  2-
H1 - l - e2 - 2q2de2- q d (1 - 2e2)]Il - (1- q2d) I2 

+ k; [(1 - 2n2de2)I12 + (1- 2r12d)121] i-rl 4 2d F1 
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- -  

and so 


-
H1- 1- e 

1[1- 2q2de2- n4d2(1- 2e2)] I1- (1- q2d)2 I2 

4 2+ n d F 1  ( 6 . 1 6 )  

For consistency, we need to calculate ( I 1 2  + 1-21) up to first 
order in q2, but it will suffice to calculate 112 to zero-th 
order in n2. 

From relations ( 6 . 1 2 )  and (6.14b), we have 

2 

~ 


11 + e cn(Fl,kl)I[ dn2 (Fl,kl) - l+dn(F1,kl) ] 
(6.17) 
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7 

Next we note that 


= dn(Fl,kl) + + o ( ~ ~ )  

and, alternatively, 

= 1 + k; sn 2 (Flfkl)+ O(q4)  


From a similar calculation we note that 


2 


= i[.n(Fl,kl) + 3k1 sn2(Flfkl) + O(q4)] 


and, alternatively, 
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(6.18a) 


(6.18b) 


(6.19a) 




4 

- 

By combining relation (6.18a) with relation (6.19a) and relation 

(6.18b) with relation (6.19b) and omitting terms of order q4, we 

get, respectively: 


1 - 1 +T 
9k: 

sn2(Fl,kl) 3 (6.20a) 


4-- 21[1 + 5
2 

sn2(Fl,kl)] . (6.20b) 


In the second integral in relation (6.17), we now use relation 

(6.20). With the first term in the first bracket we use rela­

tion (6.20b), and with the second and third terms we use rela­

tion (6.20a). If we also use relation (6.18b) in the first 

integral and neglect terms of order n 4 ,  we get: 

P P 

112+I21 =)sn2(Fl,kl)dF1 + kl sn (Fl,kl)dF1
’I
Ll[. + 2 sn2(F1,kl)]dF1

- 2e2 


+ +/[lFe
2e 


.[dn(F1,kl) 


2 


1-e2 


cn(F1,kl) 


+ 9k: 


- (1 - q2g2)\sr12(Fl,kl)dF1 


+ k:/sn4(F1,kl)dF1 - -
F1 + Sn(F1’kl) 

2e2 2e 


(6.21) 
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8g 

- 

I111 111 1 1 1 1 1 111-.1 1.11111=-I 111 I I ~11111111111111111111 1 1 1 ~ 1 1 1  

If we observe from relation (6.12) that, except for terms of 

order n2, we may write: 


sn2( ~ ~ , k ~ ) d ~ ~  

(6.22) 


I12 1 + e cn(Fl,kl) 


then it follows that 


(1 - 2n2d)(I12 + 121) + 2n2d (1- .')Il2 = [l- q2 (2d+ 7 2)] 


sn (Fl,kl)dF1+ (1- 2q 2e 


2 

+ k~Isn4(Fl,kl)dFl+ ~'(1- e2)(d+&12)/ sn (Fl,kl)dF1 ­


1 + e cn(Fl,kl) 


+ 9n2g2e/sn2(Fl,kl)cn(Fl,kl)dF1 (6.23)
8 

We next note that except for terms of order q 2  we may write 


jsn4(Fl,kl)dF1 = G1 dF1 = j[i - cos 2G1 
+ 
cos 

8 

4G1 

sin 2G1 sin 4G13 
8 1  

- 4 + 32 (6.24a)= - E '  

sn2(Fl,kl)dF1 - .il[.- e cn(Fl,kl) - 1 - e2 


1 + e cn(Fl,kl) e 
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Rg 

sn (F1,kl) cn(F1,kl) dF1 = G1 cos G1 dG1
I’ 

sin3 G1 sin G1 sin 3G1 
- - ­
-


3 - 4 12 (6.24~) 


where G1 above is that given by relation (5.25d). If we substi­

tute relations (6.24) into relation (6.23) and rearrange, we see 

that 


(1-2r12d)(112+121) + 2rl 2d(1-e 2)Il2 = [1-n2(2d+Tig7 2)] 

F1 jl - q2 [2d (2 - e2) + 9 2(1- e2+
-\sn2 (F1,kl)dF1 -7 $.‘)]I

2e 


+ 11- q2[2d(2 - e2) + 9 2 
g (1- e2)]I[?. 2 
I1 + 


2e e 

G - -sin 2G 
1 
- -sin 3G 

1 
+ -sin 4G11 (6.25)e 3 e 

1 4  32  32 

Finally we evaluate the first integral on the right of relation 

(6.25). Noting that 


1 - cn(2F1,kl)

sn 
2
(Fl,k ) = --_--- (6.26)


I 1 + dn(2Fl,kl) I 


we have 


/sn2(Fl,kl)dF1 =j-dF1 (6.27)

1 + dn(2F1,kl) 


Using formulas corresponding to relation (6.19b) in the first in­

tegral and the analog of relation (6.19a) in the second integral, 
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1 -  

we see, a f t e r  neglec t ing  t e r m s  of order  n 4 ,  t h a t  

2G1 cos 2G1 dG1 1 

s i n  4G1 

32  G1 - s i n  3G1 + 2 1 ( 6 . 2 8 )  

I f  w e  s u b s t i t u t e  f r o m  r e l a t i o n  ( 6 . 2 8 )  i n t o  r e l a t i o n  ( 6 . 2 5 ) ,  w e  
ge t :  

(1 - 2n2d) ( I12  + 121
) + 2 n 2 d ( 1  - e2 )Il2 

= [.- n2[2d (2 - e2)  + &2 (1 - e2)]]b 2 e  
2 
I1 + 

sn( F l f k l )  
e 

9 - 7 e  2 

2- 2 ee 2 b - 4 4 d  + 8 

- [1 - n 2  (2d + i g 2 ) ] s n ( 2 F l , k l )  

2 2  
+ %[3(3- e ) s i n  G1 - 8e s i n  2G1 

e- ( 3  - @ ) s i n  3G1 + 7 s i n  4G1 1 , ( 6 . 2 9 )  

54 




which we now insert into relation (6.16). To make the resulting 

formula more compact we set: 


2 2D = [de2 - %(l-e2)]+ s[d2(1-2e2) + g2(1-e2) 


2 
*[d(2- e2) + &(I- e2)]] , (6.30) 


and insertion of relation (6.29) into relation (6.16) yields: 


-

H1 - 1 - e  

2[(l - 2q2D)11 - (1- q2d)212] 


[.' - q2[d2 + 2g 2 d +-
F1 2 16 

2 2  9 2  
1 - e2 - q2[2d(2 - e2) + gg (1 - e')]] sn(Fl,kl)+ E{[. 

- e[L - q2(2d + ig2)] sn(2Fl,kl)l 


4 4 3  

+ 	 e 2)[3(3 -e) sin G1 - 8e sin 2G1 

32(1- e 


- (3- e) sin 3G1 + e sin 4G11 . (6.31) 

Before we evaluate H 2  we first note that in E q .  (6.3) we 
wish to interpret to as the time of first perigee passage. With 
this in mind we have kept H1 free of any constant term, that is, 
H1 satisfies the condition: 

f = O  3 H 1 = 0 .  (6.32) 
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W e  s h a l l  t h e r e f o r e  a l s o  r e q u i r e  t h a t  

f = O  3 H 2 = 0  

o r  i n  t e r m s  of F2 '  t h i s  means 

I n  t h e  e v a l u a t i o n  of H 2 ,  w e  proceed as w e  d i d  i n  
r e l a t i o n  ( 6 . 2 7 )  t o  r e l a t i o n  ( 6 . 2 8 )  and i n t r o d u c e  
t o  s a t i s f y  r e l a t i o n  ( 6 . 3 3 ) .  On n e g l e c t i n g  t e r m s  
g e t :  

H2 = j s n 2 ( F Z , k 2 )  dF2 

k2 
= (1 + -$)5 - ;[sn(2F2,k2) - sn(2w,k2)] 

s i n  4G2  ­

(6.33a) 

(6.33b) 

going from 
c o n s t a n t  t e r m s  
of o r d e r  q 4 ,  w e  

s i n  4y2]1. (6 .34)  

where G 2  i s  as g iven  by r e l a t i o n  ( 5 . 1 6 ~ )and y2 i s  a s  g iven  by 

5k; 

y2 = - -&- - -)6 4  w . (6.35) 

I f  w e  now d i v i d e  E q .  (6 .3)  by j l  and i n t r o d u c e  H i  and H2 
from r e l a t i o n s  (6.31) and ( 6 . 3 4 ) ,  r e s p e c t i v e l y ,  w e  g e t ,  a f t e r  
combining t h e  s e c u l a r  t e r m s :  
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(1- n2d)2 

2
R(t-to)= 1 - e  I1 - jlP 

+ y[qoso(l-N2) - g2 + 2q2[d2+2g 2d +  9 - 7 e 2 4 
2 16 g 


2 2 1-n2(2d + g g7 2) 
- n  

1- e2 jl 
sn(2F1,kl) 

qoso + 2 n  2 2- -(1 e d ) (1-N2) [sn(2F2,k2)- sn(2w.k2)] 
2 0 0  

+ - 	n 4  1 g4e3 [3 ( 3  - e)sin G1 - �!e sin 2G1 
32 \ ~ - e ~  

- (3-e)sin 3G1 + -e sin 4G]- R 2 ( 1  - N')
2 1 

-
 (sin G2 - sin y 2 ) - (sin 3G2 - sin 3y2) 

sin 4G2 - sin 4y2)] i (6.36) 

where we have substituted for k2 from relation (4.12). Before 

attempting to simplify the above, we first consider the multi­

plying factor on the left. 


We observe that 


x (6.37) 
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I 


We use relation (4.10a) to substitute for the first factor on the 

right and relations (3.48) and (3.2) to substitute for the second 

and third factors, respectively, to get 


_ _qoso(1 + q2e2d
A2 - 0 0)2 {m& (6.38) 
P 

which, if we substitute for p, from relation ( 3 . 5 1 ,  reads: 

We note from relation (4.10b) that 


2

l + n d o  


e = e0 2 2-­

l + n  eodo 


and so, after some manipulation, 


and hence 

(1 + rl 2 2eodo)2 

l - e 2 =  4 2 2  (1 - e2)

0 1 - n eodo 

and so, from relation (4.201, we have: 


2 2  
2 s 0(1+ rl eodo)* 

go = s0(1 - e:) = 4 2 2  (1 - e2) f 

1 - rl eodo 

(6.40) 


(6.41) 


(6.42) 


(6.43) 
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- 90 4 2 2  

1
Di which, with relation (6.39), gives: 
I 

(6.44) 


If we write: 


j, - 2 2  d ? ( l + n  2 2Ro)(l- n eodo) (6.45) 
1 + n  eodo 

and define a "mean motion" n by setting 

n E f i  I 
(6.46) 


then Eq. (6.44) reads: 


A j T- =  
2 3/2 ' (6.47) 

P2 ( 1 - e )  

If we further define a mean anomaly M by the relation: 


M = n(t - to) , (6.48) 


then, by multiplying Eq. (6.36) by the factor 


(1 - e2) 3 1 2  

we obtain the following relation between the two anomalies M and 

f, namely: 
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89 

2 
+ +(I- e2) - + 2n2[d2 + (2g2 + e2)d2 

\ 


1 - n2[2d(2 - e2) + 9 2(1- e2] 

j,j, - Sn(Fl‘kl 


2 2
3/2 q o s o ( l +  2rl cod,) 

- (1- N ~ )(1 -e2) 2 j T  

e[3 (3 - e)sin G1 - 8e sin 2G1- (3- e)sin 3G1 + 2 sin 4G11 

1
-(sin 3G1- sin 3y1)+ T(sin 4G2 - sin 4y2)]) . (6.48*) 


This formula can be made a little simpler by using the algebraic

formulas for the constants as developed in sections 3 and 4 and 

by exploiting the fact that we neglect terms of order q6. We 

also set: 
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( 6 . 4 9 )  

and w r i t e  11 and I 2  e x p l i c i t l y .  A f t e r  s o m e  manipula t ion  wi th  t h e  
above c o e f f i c i e n t s ,  w e  f i n a l l y  o b t a i n :  

4 3/2
+ &(l- e2) [ 2  - 84N2 + 130N4 + (1- e 2 ) N 2  (21  - 37N2)] f 

2 
+ q2e(1- e2)

1 / 2  
[(I - N 2 )  - %[41- 93N2+ 6 9 N  4 

- e2(1+ 58N2 - 75N4)]] s n  (j,f ,k l )  + rl 2 (1- e2)1 / 2  

- 2 
{e2[(l - N 2 )  - %[39 - 1 2 2 N 2  + 9 9 N 4  + e2 (8 - 7 6 N 2  + 68N4)]] 

- s n ( 2 j l f , k l )  - - e 2 )2 - N 2 )  [1+ v 2  [5N2 + 3e2 (3N2 - l)]] 

1 / 2
[ s n [ Z ( f + w ) k 2 ]  - sn(2w,k2)]}+ g ( 1 - N 2 ) ( 1 - e 2 )4 

“I((1- N2)e3[3 (3 - e )  s i n  G1- 8e s i n  2G1- ( 3 - e )  s i n  3G1 

+ -e s i n  4G1] - (1- e2)2 [3(Sin G 2  - s i n  Y 2 )  
2 

- ( s i n  3G2 - s i n  3y2)  + 1 ( s i n  4G2 - s i n  4y2)]  ( 6 . 5 0 )  

When rl = 0 ,  on ly  t h e  f i r s t  two t e r m s  s u r v i v e  i n  which case t h e  
above r e l a t i o n  r educes  t o  t h e  w e l l  known t ime-angle  r e l a t i o n  of 
t h e  Kepler  problem. 
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7. APPROXIMATE FORMULAS 


Equations (4.11) and (5.391, with R given by Eq. (5.38),
give the formulas for the three coordinates in terms of f. These 
are complemented by the time-angle relationship (6.50). 

In arriving at relations (5.381, (5.39) and (6.50), we have 

made second-order approximations. It is therefore consistent to 

introduce such approximations into all the relations. Though this 

means that the formulas will, to a certain extent, lose their 

compact form, they will become simpler in that they will no 

longer involve elliptic functions. The latter will be replaced

by their second-order approximations in terms of truncated 

trigonometric series. For clarification we list the sequence

of steps leading to these approximate formulas; the analysis and 

derivation are available in the standard treatises, e.g., Whit-

taker and Watson (ref. 9) or Davis (ref. 10). 


For the modulus k of the elliptic functions appearing in 

either Eqs. (4.11a) or (4.11b), we note that 


k2 = O ( q 2 )  , (7.1) 

and, if we define the complementary modulus k' by 


k' = (1 - I 

then we have that 


k2 34@ =  (1-k2)1/4 = l - - - - k  32  4 + 0(v6) 

2 3 2  + E k  + 0(q6)]1 -m= $j-[l + gk 7 4  (7 3 )  

1 + Jkli- = 2 
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2 -k 

ii Defining E by the relation: 
'h 

( 7 . 4 )  

then, after expanding, we find that 


k2E = -[. + k2  + 2 1  4 + 0(q6)]  = O ( q 2 )  . ( 7 . 5 )1 6  6 4  

When the modulus q of the associated Theta functions is written 

in terms of E, we have 


and so we have: 


q 
= k[l + 2 + -k17 4 + 0(q6)] 

4 4 1 2 8  

( 7 . 7 )  
17q1 / 2  = ;[l + k2 + 128k 4 + 0(n6)]

k 

The period 4K is related to IT as follows: 

= 1+ 2 q  + o ( q 6 )  

= l + -
8 (7.8) 


6 3  




-F= 5k4 

and so we have: 


2K
- = I + - k2  + -gk4  + o ( 2 )
IT 4 6 4  

(7 .9 )  

If the angle G is then defined in terms of F by the relation 


Tr k2
G = 2K ( l - T - -6 4  + ...)F I (7.10) 

then the trigonometric series representations of the Jacobian 

elliptic functions take the form: 


a3 


qn
= (1 - k4 + ...) 
1 - p + l  

sin (2n+ 1 ) G  (7.11a) 
n=O 

a3 


qn cos (2n+ 1 ) G  (7.11b)cn(F,k) = + ...)
n=0 

1 - q2n+l 


dn(F,k) = +...)F+4 00 

qn 


n=O 1+- q2n+1 


6 4  


... 




k4 

am(F,k) = G + cos 2nG . (7.lld) 

n=1 n(1 + q2n) 


We also include the trigonometric series representation of 

sc(F,k), namely: 


sc(F,k) = + - 64 + ... 


n=l 
sin 2nG1 . (7.11e) 


In a second-order approximation the above series can be 

truncated. The approximate forms we shall use are: 


sn(F,k) = 


+ d(1+ $) sin 3G + - sin 5G (7.12a)k4 

16 256 


k2 9k4) COS G
en(F,k) = (1 -	- - ­
16 256 


+ c(1+ $) COS 3G + -k4 
16 256 cos 5G (7.12b) 

64
dn(F,k) = 5k4] + $(l + $)COS 2G 


k4
+ - COS 4G (7.12~)
64 


k2 64 tan G - ­sc(F,k) = (1 + 4 + d) 64 sin 2G (7.12d) 
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with 


(7.12e) 


We shall now introduce these approximations into the formulas for 

the three coordinates. 


We first note that, in accordance with relation (7.12e), we 

have: 


(7.13a) 


5kl
G2 = (. - - ­
64)F2 = (1 - 64 (f + 4 (7.13b) 


These relations have already been anticipated in sections 5 and 6. 
We next introduce the above approximations into Eq. (4.11). 1 f . h  
Eq. (4.11a) we also substitute for  6 from relation (4.12c), we 
obtain 

(7.14a) 


and 


cos 0 = {3[(1+ 


sin 5G21 . (7.14b) 
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If we also introduce the approximation into E q .  (5.38) for R, we 
have: 

R = a - n 2msN(f + w )  - n 2  (1 + $)mPlNe 
0 

G1 - sin - + b2(sin 2G2 - sin ­

2K1 


+ n4N[mple[ 	 LBn(sin nG1 - sin ­

n=1 


1 


in which the coefficients Bn are given by 


e2(l - N2)b1 e2(l - N2)b2 
B3 = 8, - 16 

B6 = 86 -
16 

. (7.16) 


Bn -- 'n for n = 1, 2, 4, 5 


The approximate formula for the third coordinate is obtained by
introducing relation (7.12d) into E q .  (5.39). We get: 

k2 llk2
2 4 
tan[j3($-Rj= N[(~+T+-) 64 tan G 2 - - 64 sin 2G21. (7.17) 

With a as given by E q .  (7.15) and relations (7.16), then 
relations (7.14) and (7.17) are the second-order approximate
formulae for the three coordinates in terms of the "true anomaly''
f. We can get a corresponding form for the time-angle relation­

ship by introducing the approximate forms into Eq. (6.50). Be­

cause of the unwieldy length of the resulting formula, we do not 

exhibit it at this time. 
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8. A GEOMETRICAL RESULT 


In the case of the Kepler problem, the conservation of 

angular momentum implies that the motion of the particle is 

planar, and it can be immediately shown that for negative energy

the particle moves between two concentric circles in the plane

of motion. In this section, we seek the analog for the Vinti 

problem of the above geometrical result. 


Here the motion is no longer planar and, in general, is 
quite complex. However, if we assume that the exact formulas 
(4.11) and the approximate formulas ( 5 . 3 8 )  and ( 5 . 3 9 )  for the 
three coordinates indeed give an exact discription of the motion, 

we can get some geometrical insight. 


To describe this, it is again useful to think of the Vinti 

problem as a perturbation of the Kepler problem. If we give the 

plane of the corresponding Kepler problem an appropriate deforma­
tion and then allow this surface to rotate with the angular
velocity of the instantaneous nodal line (R') derived from E q .  
( 5 . 3 8 ) ,  we can show that the particle remains on this surface. 

More precisely, we shall show that the motion takes place
in a torsidal region defined by two ellipsoids of revolution and 
a hyperboloid of revolution. In this region the particle remains 
on a surface S rotating with the angular velocity of the instan­
taneous node, the surface S being a "small" deformation of a 
plane. The remainder of this section is devoted mainly to the 
explicit derivation of this result. 

We first derive a relation between 0 and 4 .  If we set: 

then Eq. ( 5 . 3 9 )  takes the form: 

tan = N sc(F2,k2) (8.2) 


It follows that 


tan2 + = N sc2(F2,k2) I ( 8 . 3 )  

6 8  




and so 


sec2 I$ = 1 + N2 sc2(F2,k2) 


cn2(F2,k2)+ N sn2(F2,k2)
-
-	 _ ­ 

cn2(F2,k2) 


A l s o ,  from Eq. (4.11b), it follows that 

sin2 0 = 1 - (1-N2) sn2(F2,k2) 

= cn2(F2,k2) + N2 sn2(F2,k2) 


Combining Eqs. (8.4) and (8.5), we see that 


sin2 0 I (8.6)sec2 I$ = 2 
cn (F2.Q 

and hence 


cos j ( @ - a )  = COS I$ = (8.7)
3 sin cr 

We introduce a system of rotating Cartesian axes by the 

relations: 


Y = (2+ c sin a sin ( ( I - R )  (8.8) 

Z = R cos 0 ! 
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I111 I1111 I I1 1111 1 - 1 1  1.11 1 1 1 1 .  =-I I 1.11 .,, ,..---.. . ....., 

where we note that X = 0 corresponds to @ = R. In relation to 
the fixed x-y-z system of Eq.  ( l . 1 l f  the Z-axis of Eq.  (8.8)
coincides with the z-axis of Eq.  ( l . l ) fwhile the X-Y system 
rotates at the angular velocity R' [obtainable from Eq.  ( 5 . 3 8 ) ]  
relative to the x-y system. Thus the X-axis always coincides 
with the instantaneous nodal line. 

We further introduce an auxiliary system of variables (61,
C 2 '  5,) defined by 

5, = R sin IS cos j3(@ - a )  = R sin (5 cos $ 

6, = R sin IS sin j3(@ - a )  = R sin (5 sin I/J ( 8  9) 

5, = R cos IS 

and it immediately follows that 


52
-= tan $ = N sc(F2,k2) (8.10)

51 


where we have used E q .  ( 8 . 2 ) .  From Eq.  (8.10), we have 

which, if we use E q .  (4.11b) in the numerator and Eq.  ( 8 . 7 )  in 
the denominator, gives: 

(8.11) 
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the latter following directly from Eq. (8.9). If we define an 

"aspptotic" angle of inclination I by the relation
-


cos I = N , (8.12) 

then Eq. (8.11) takes the form: 


5 ,  = G2=tanI . (8.13) 

Using the above with Eqs. (8.8) and (8.9), we have that 


Z = 5 3 = C2-tanI 

= Rosin o=sin j 3 ( 4  -R)-tan I 

sin j 3 ( @ ­a )  
tan I 


sin ( @ ­ 


(8.14) 


If we set j = 1 + , so that = O ( q 2 ) *  and use the addition 

formula for th sine term in the numerator of Eq. (8.14), we get: 


2 = Yetan I- R 


(R2 + c2) 1/2 


*As remarked in the footnote on page 43, we have, to second 
order, j3 = 1, i.e., B = O ( q 6 ) .  
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Again using Eq. (8.8) to substitute for cot ( @ - R )  , we have: 

R - R )  -I- X sin F ( @- R )  . (8.16)Z = tan I*(R 2 + c2 
Y cos r ( @  

y 

When q = 0, we also have R '  = 0 [see Eq. (5.38)] and the 
above equation takes the form 

Z = Y-tan I , (8.16*) 


which is the equation of the plane of the Kepler motion. For 

# 0, Eq. (8.16) represents a surface, clearly a deformed plane,


moving with angular velocity R' relative to fixed x-y-z axes. 

We let S denote this surface. 


As a description of S, Eq. (8.16) is incomplete since we 
have not expressed the quantities R and ( @  - R )  in terms of X, Y 
and Z. This involves the solution of the following set of trans­

cendental equations, obtained directly from Eq. (8.8), namely: 


R 2 + c2 sin2 0 = x 2  + y2  + z 2 (8.17a) 

R cos 0 = z (8.17b) 

and 


tan ( G - Q )  = Y/X . (8.18) 

An adequate approximate solution of the pair of Eqs. (8.17) 

can be obtained by expanding in powers of (c/R) to second order. 

However, since there is little to be gained, we do not include 

this calculation here. We only note that Eqs. (8.17) and (8.18)

together complement Eq. (8.16) to give a complete description of 

the surface S. 


It is clear from relation (3.17) of section 3 that the motion 
takes place between the two cenfocal ellipsoids of revolution 
defined by R = R1 and R = R 2  where R 1  and R 2  are the roots of the 
first quadratic on the right of Eq. (3.17). We note furthur from 
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-- Eq. (4.11b) -- and using Eq. (8.12) that 


]cos al L di7-Z = sin 1 (8.19) 

so that the trajectory is bounded by the hyperboloid of revolu­

tion: 


]cos a1 = sin I . (8.20) 

Hence the motion takes place in a toroidal region consisting of 
that portion of the "exterior" of the hyperboloid [Eq. (8.2011
lying between the ellipsoids of revolution defined by R = R 1  and 
R = R  2 '  

We can now give a geometrical interpretation to what we 
termed the asymptotic angle of inclination I. The bounding
hyperboloid [Eq. (8.20)] has an asymptotic cone: the angle I is 
the angle of inclination of the tangent plane to this asymptotic 
cone. 

9. THE POTENTIAL 


By an elegant device involving the introduction of complex
variables and the use of the generating function f o r  Legendr.e
polynomials, Vinti (ref. 1) has shown that when the potential
[Eq. (1.5)] is expressed in terms of spherical coordinates r, 8 ,  
and @ ,  we get: 

where the P2n term denotes the Legendre polynomials of even order. 
I f  ro denotes a length scale, which we shall later identify with 
the radius of the Earth, we can write Eq. (9.1) as 
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If we now make the identification 


2 


J2 =(e) 
then Eq. (9.3) becomes: 


n=O 


(9.3) 


(9.4a) 


(9.4b) 


The standard representation of the geopotential in spherical 

coordinates--referred to an origin at the center of mass--is 


n=2 m=l 1 


In Eq. (9.5) ro denotes the mean Earth radius and the Jm's are 

called the geopotential coefficients. 


Apart from the Kepler term the dominant term in the repre­

sentation [Eq. (9.5)] is that with coefficient J2, which exceeds 

by an order of magnitude the effect of any other term. If, for 

purposes of comparison, we restrict our attention to that part of 

the geopotential which is both rotationally symmetric and sym­

metric about the equatorial plane, then we include this dominant 
term. We denote this part of the geopotential by VGs and the 
residual ( V G  - V G S )  can be considered a perturbation which must 
be taken into account later. Then: 
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We now see that when c is chosen in accordance with the identi­

fication [Eq. (9.3)], then the Vinti potential [Eq. (9.411 agrees

with the symmetric geopotential [Eq. (9.611 up to the second 

(zonal) harmonic. Further identification would require that 


J2n = (-ln+'j2 for n > 2. 


This is not true for any n > 1 and is not even true in an order 

of magnitude sense for any n > 2. In fact: 


(9.7) 


so that if the Vinti problem is taken as the base solution, we 
must add as a perturbation the residual ( V G S  - V )  which starts 

2with a term in the fourth harmonic with coefficient of order J2. 

As far as we know, there has not been proposed a real physi­

cal situation giving rise to the Vinti potential field. Although

this question has no relevance for the dynamical problem and its 

relation to satellite orbit prediction, nevertheless it is of 

interest when we consider how closely the Vinti potential approxi­

mates the geopotential. The latter feature suggests that there 

is a hypothetical geoid whose potential matches the geopotential

exactly. This is indeed the case. We shall show that a solid 

sphere with an appropriate interior mass distribution induces an 

external potential of the Vinti type. 


We could start by posing the larger question, namely, what 
mass distribution in the geoid gives rise to the geopotential VG? 
Although the restriction is not necessary, we shall here restrict 
our consideration of this question to the simpler case of the 
symmetric geopotential V G S .  Our problem then is to determine the 
mass distribution inside a sphere consistent with an arbitrary
external field of the form V G S .  

Referred to a spherical coordinate system we let P ( r , 0 , $ )  
represent an arbitrary exterior point and Q(r',0',@') an arbitrary
interior point at which is situated the mass element dm. We 
denote the position vector of P and Q by z and g', respectively, 
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and let x denote the angle between r and r'. If we let T(r',e', 

@ ' )  denote the mass density at any Tnteri6r point, we see that 


If we let y denote the gravitational constant, then the 

potential at P due to the mass element dm at Q is given by 


dUQ = -y 
dm (9.8a) 


Ir - r'j 


(9.8b) 


where, in deriving Eq. (9.8b), we have used the cosine law. 

Noting that on the right of Eq. (9.8b) we have the generating 

function for Legendre polynomials, it follows that 


co 


dUQ = -Y 

n=O 


n+l r'"Pn(cos x) dm . (9.9)
1 

n=0 r 


We now use the addition theorem for Legendre functions (ref. 9),

namely, when 


COS x = COS 8 cos 0 '  + sin e sin 8' cos ( @ - @ ' )  (9.10) 

(as is the case here), we have the following relation for the 

Legendre polynomials: 
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(n-m)! Pn(cos B)Pn(cos el)cosm($ - $ I ) .m m 

(n+ m)! 


m=l 

(9.11) 


Introducing E q .  (9.11) into E q .  (9.9) and substituting for dm 
from E q .  (9.71, we get: 

duQ = -y\z
n=0 &[rVnPn(cos e)P,(cos el)1 

m 


-1
-TrI2 sin 8' dr' de' d$' + 2 n+l 

n=l r 


(9.12) 


To determine the potential at P due to the sphere we must 

perform the integration 


U = ldUQ 


when the integration is taken over the sphere, namely, r' ranges
from 0 to ro, 8' from 0 to T, and $ '  from 0 to IT. If we take T 
to be rotationally symmetric, i.e., independent of $ I ,  then the 
$'-integration in the first summation integrates to 27~,while the 
$'-dependence in the second summation integrates to zero. After 
performing the $-integration, we therefore have: 
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(9.13) 


In all the above manipulations we have interchanged the integra­

tion and summation operations. 


If we further assume that T is not dependent on r', then the 
r'-integration in Eq. (9.13) is immediate and we get 

If we now represent the dependence of T on 8' in the form: 

(9.15) 


so that -r0 denotes the (constant)mean density and the TQ'S 
(Q 2 1) are the dimensionless coefficients for the higher moments, 
then using the orthogonality of the Legendre polynomials we have: 

r 03 1 

for n=O 


(9.16) 

for n 2 1 
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- - 

and substituting Eq. (9.16) into Eq. (9.141, we get: 


If we now call the sphere with constant density T~ the mean 

sphere and denote its mass by vo, then clearly 


4aro
3 

-1.1, 3 T

0 ,  
(9.18) 

and setting p = yvo(the normalized gravitational constant), we 
see that Eq. (9.17) may be written: 

03 


3*n 
r 

n=l
(n+ 3)(2n+ 1)e)npn(cos e )I . (9.19) 

It is clear from Eq. (9.19) that the -rn can now be chosen to fit 

an arbitrary axisymmetric potential. We can make U symmetric

about the equatorial plane by requiring all odd coefficients to 

vanish, that is, by setting: 


T2k+l = 0 for all k. (9.20) 

We then get the symmetric part of U which we call Us in the form: 
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Then, comparing 

comes identical 


Eq. (9.6) with Eq. (9.21), we see that Us be-
with VGS if we take: 

(2n + 3 )
3
(4n + 1)-

J2n (9.22) 

and all odd coefficients zero. In particular, we can identify 
Us with the Vinti potential V given by Eq. (9.4b) if again we 
have the odd coefficients in the density distribution identically 
zero and the even ones as given by 


T 2n = 
(2n + 3 )  (4n + 1)

. ­

3 


We have thus produced a physical

tial field. 


(-J21n . (9.23) 

realization of the Vinti poten-

We have also produced a density distribution whose potential 

can be matched to the symmetric part of the geopotential. This 

suggests a procedure which, by successive refinement, may lead to 

an approximation for the density distribution of the Earth, which, 

except for layers of sharp discontinuity, should give some in­

sight into the actual distribution. The above analysis assumes 

continuity--and, in fact, analyticity--in the variables for the 

density distribution. 


1 0 .  CONCLUSION 

We have derived a solution of the Vinti dynamical problem in 

the relatively compact form given by relations (4.11), (5.38),

and (5.39). These relations are clear generalizations of the 

solution of the Kepler problem in terms of true anomaly. As an 

alternative we have the more elementary expanded form in relations 

(7.14) to (7.17). Each form is complemented by the time-angle 

relationship (6.50). 


We have also derived some qualitative results on the motion 

(section 8) and a physical interpretation of the Vinti potential

in terms of mass distribution (section 9). 


Electronics Research Center 

National Aeronautics and Space Administration 

Cambridge, Massachusetts, October 1968 

129-04-04-08 
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I N D E X  O F  SYMBOLS I N D I C A T I N G  PAGE ON WHICH FIRST INTRODUCED 


L a t i n  

Symbol Page S y m b o l  Paqe Symbol P a g e  

a 2 H 1 r H 2  4 5  1 3  

a 
0 

1 3  i 1 2 , 2 9  

A 2 1  I 7 1  1 6  

bn 4 2  + I 1 2  47  3 1  

Bn 6 7  I 2  I 2 1  4 8  6 3  

B 2 1  jl 2 7  8 

C 4 j 3  4 3  4 

1C 5 

2 2  
j T  

j,,j5 

59 

6 1  

r 
r’ 

1 , 4  
7 5  

d 3 0  J 2 1  S 
0 

1 5  

D 55 J2 7 4  3 1  

e 
0 

1 9  Jn J n m  7 4  S 6 8 , 7 2  

eK 1 5  kl 2 7  to 2‘45  

e 1 , 2 9  k 2  2 7  T 6 

E 1 0  k,k’ 6 2  T 7 

f 1 K1 3 9  U 1,18 

F 

F1 

6 4  

3 6  
K 2  
K 

3 0 , 3 5  

6 3  
uQ
U 

7 6 , 7 7  

7 7  

F2 3 2  1 4  V 2 4  

” i j  

91 

5 

20  

R 

1 
3 0  

6 

V 5 , 7 3  

5 

9 3 0  L 7 vG 7 4  

G 6 4  L1’L2 4 8  G SV 7 5  

G1 3 9  mO 
2 5  V 7 

G2 35 m S”P l”P2  4 3  f V 2  8 

hO 
15 M 2 , 5 9  W 1 9  

hl 20  n 2 , 5 9  x-y-2 4 

h 2 2  N 2 9  x-Y-2 6 9  

Y 1 4  

8 2  




Greek 


Symbol Paqe Symbol Page Symbol Page 

a 11 75 T 76,78 

'n 42 10 11 1,4 

y2 
Y 

56 
76 

6 
11 

75 
32 

r 3 12 76 

6 21 79 68 

E 63 2f5 3 
-
E 71 14 28 

5 26 8 28 

rl 14 70 43 

e 1,4 4 32 
44 

( 0 )  = differentiation w.r.t. time (t), p. 6 

( I )  = differentiation w.r.t. anomaly (f), p. 12 
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