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A PARAMETRIC ANALYSIS OF SURFACE TEMPERATURES OF 

PARABOLOIDAL SOLAR CONCENTRATORS IN SPACE 

By Robert J. Platt, Jr. 
Langley Research Center 

SUMMARY 

A parametr ic  analysis has been made of the surface temperatures of a paraboloidal 
mi r ro r  in space and aimed at the sun. 
steady-state conditions, the paraboloidal mi r ro r  (solar concentrator) being located 
directly between the ear th  and the sun. 
the important parameters  for  altitudes up to 3 5  000 kilometers. 
plots are presented for  the case of a solar concentrator approaching the sun. 

The problem is simplified by the assumption of 

Surface temperatures are plotted for  a range of 
Additional temperature 

The resul ts  indicate that at an irradiance of one solar constant, a concentrator of 
very low thermal conductance may experience a front surface temperature of 600' K in 
space, unless a front surface coating is used to increase the emittance. 
difference between the front and rear surfaces, which causes thermal distortion of the 
mir ror ,  may be greatly reduced by proper selection of thermal control surfaces if the 
concentrator is near the earth. 
of a concentrator used with a solar  probe, metal construction and high emittance coatings 
appear to be needed to reduce the front-surface temperature and to minimize thermal 
distortion. 

The temperature 

At irradiances of many solar  constants, as in the case 

INTRODUCTION 

Several types of proposed space solar-power systems require elevated tempera- 
tu res  for efficient operation. The solar  energy must be concentrated by some form of 
lens o r  mi r ro r  in order  to obtain the needed high temperature at the heat-absorber loca- 
tion. An efficient way of obtaining this high temperature is with a paraboloidal mir ror ,  
which may be constructed of materials ranging from thin metals to much thicker plastic 
foams. (See ref. 1.) Of interest  to the designer of such a space power system is the 
temperature of the paraboloidal concentrator itself, for  the temperature limit of the 
structural  material  used may possibly be exceeded. Even if the physical properties of 
the material  are not seriously affected, temperature gradients tend to distort  the shape 
of the mi r ro r  and degrade its concentrating ability. A method for  computing this thermal 



distortion of a paraboloidal shell  is given in reference 2. However, it is necessary to 
know the concentrator front and rear surface temperatures before the distortion can be 
computed. 

A parametr ic  analysis of the surface temperatures of paraboloidal m i r r o r s  has  
been undertaken in order  to indicate the role of the various parameters  involved, and as 
an  aid in the design of such concentrators. Two space environments have been con- 
sidered: the f i r s t  representing a so lar  concentrator in ear th  orbit and the second, pa r t  
of a solar  probe. The first case is complicated by the fact that the heat inputs f rom both 
the sun and the ear th  change with time. Although it is possible to compute the concen- 
t ra tor  temperatures as a function of t ime (see refs. 3 and 4), the labor required makes i t  
impractical for a parametr ic  analysis. The near-earth case has therefore been simpli- 
fied by considering only steady-state conditions, with the paraboloidal shell, which forms 
the concentrator, aimed at the sun and located on a line between the center of the sun and 
the earth. This chosen orbital position resul ts  in the maximum overall heat input to the 
concentrator because, in this position, the rear surface intercepts the maximum amount 
of heat f rom the earth.  Therefore, the temperatures presented herein will approximate 
the highest to be expected on a solar  concentrator in earth orbit, but will underestimate 
the maximum temperature difference between the front and r e a r  surfaces.  

For the near-earth case, the parameters  which are varied a r e  the emittances and 
absorptances of the front and rear surfaces,  the thermal conductance of the mi r ro r ,  and 
the altitude. 
of the front surface, the emittances of both surfaces, the thermal conductance of the 
mi r ro r ,  and the irradiance on the mi r ro r  expressed in solar  constants. 

For the solar-probe case, the parameters  varied a r e  the solar  absorptance 

SYMBOLS 

A surface area of concentrator, meter2 

a average albedo of ear th  

dA elementary area a t  center of concentrator, meter2 

Ea irradiance on concentrator due to ear th  albedo, watts/meter2 

Ee irradiance on concentrator due to earth reradiation, watts/meter2 

Em irradiance on concentrator due to reradiation from mir ror  surface, 
watts/meter2 
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ES irradiance on concentrator due to direct  solar  radiation, watts/meter2 

FA1-dA configuration factor f rom A1 to  dA 

F ~ A - A ~  configuration factor from dA to  A1 

FdA-DR configuration factor f rom dA to disk DR circumscribed by r im  of 
paraboloid 

FDe-dA configuration factor f rom disk which represents  the ear th  to dA 

FdA--D, configuration factor from dA to  disk De which represents  the earth 

h altitude, kilometers 

k thermal conductivity, watts/meter-degree Kelvin 

re  radius of earth, kilometers 

'd 

T absolute temperature, degrees Kelvin 

radius of disk (see fig. 23), meters  

t thickness of paraboloidal concentrator, meters  

(Y solar  absorptance 

PR 

E total hemispherical emittance 

angle of paraboloid indicated in figure 22, degrees 

r im angle of paraboloidal concentrator, degrees (fig. 22) 

Stefan-Boltzmann constant, 5.6697 x 10-8 watt/meter2-degree Kelvin4 

angle indicated in figure 23, degrees 

OR 

0 

cp 
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Subscripts : 

1 

2 

front surface of concentrator 

rear surface of concentrator 

METHOD OF ANALYSIS 

Near-Earth Environment 

A paraboloidal m i r r o r  in space, aimed at the sun, will receive direct  radiation 

For  an orbiting mir ror ,  these heat inputs vary with time. A further 
f rom the sun on its front surface and may receive additional radiation from the earth on 
either surface. 
complication is that a radial  temperature gradient may exist  because, for  instance, of 
the radially changing angle of incidence between the so la r  radiation and the paraboloidal 
surface. In the present analysis the problem has been simplified to treat the steady- 
state condition of a paraboloidal mi r ro r  aimed at the sun and located between the sun and 
the earth. (See fig. 1.) The surface temperatures are computed for  an elementary area 
of the concentrator, of thickness t, located near the axis of the concentrator. Further  
simplifying assumptions are: 

(1) The concentrator is unshadowed 

(2) The earth reflects diffusely 35 percent of the intercepted solar  radiation without 
changing its spectral  distribution. The remaining 6 5 percent is reemitted uniformly, as 
would occur if the earth were  replaced by a black body at a uniform temperature 

(3) Absorptance of a concentrator surface for  thermal radiation emitted from either 
the concentrator o r  the ear th  is equal to the hemispherical emittance of the surface 

(4) Heat conduction through the paraboloidal concentrator is one-dimensional (from 
one surface to the opposite surface with no radial  flow) 

(5) Reflection from the front surface is completely specular 

(6) For  the purpose of computing the reradiation from the front surface to the cen- 
tral element, the temperature of the front surface is assumed to be uniform. 

Consider a mi r ro r  located between the earth and the sun and aimed at  the sun 
(fig. 1). For  the assumed steady-state condition, the heat absorbed by the front surface, 
made up of the absorption of direct  solar  energy plus the absorption of heat reradiated 
f rom the mi r ro r  itself, is equal to the heat emitted f rom the front surface plus the heat 
conducted to the rear surface. Fo r  a centrally located elementary a rea  of the mir ror ,  
this heat balance may be expressed as 
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An expression for  Em, derived in appendix A for  a paraboloidal mir ror ,  is 

By substitution, 

The heat absorbed by the rear surface, made up of both reradiated energy and 
albedo from the earth plus the heat conducted from the front surface to the r e a r  surface, 
is equal to the heat emitted from the rear surface. Fo r  a centrally located elementary 
area of the rear surface, this heat balance may be expressed as 

An expression for  E,, derived in appendix B, is 

An approximate expression for Ea, derived in appendix C, is 

By substitution, 

4 e2( l  - a)E, a2aEs 
+ k(T1 - T2) = e20T2 

2 t  
+ 

5 



The surface temperatures T i  and T2 may be  found from equations (1) and (2) 
if values of the parameters  a r e  known or assumed. These temperatures were obtained 
by means of a digital computer for a range of values of al, a2, el, e2, k/t, and h. 

The value of Es was taken as 1 solar  constant or  1400 watts/meter2. The computa- 
tions were carr ied out only for a paraboloid with a r i m  angle 
angle is representative of present solar  concentrators and because the temperature of 
the concentrator is not strongly influenced by the r i m  angle. 

OR of 60° since this 

Solar- Probe Environment 

The analysis of the surface temperatures of a paraboloidal mi r ro r  approaching the 
sun is s imilar  to that of the near-earth case except that the direct  irradiance on the front 
surface due to the sun becomes a variable and the r e a r  surface receives negligible 
irradiance. 
tion (1). 

The front-surface heat-balance equation is unchanged and is given by equa- 
The rear-surface heat-balance equation, a simplified form of equation (2), is 

k C(T1 - T2) = e20T2 4 
(3) 

By use of equations (1) and (3), the front- and rear-surface temperatures have been 
computed for a range of values of Es, al, el, e2, and k/t. A r im angle OR of 60° 
was assumed for  the paraboloidal mir ror .  

RESULTS AND DISCUSSION 

Near- Earth Environment 

The computed surface temperatures for paraboloidal solar  concentrators have been 
plotted for  the near-earth case in a se r i e s  of figures. 
variables which a r e  plotted as ordinate and abscissa, as well as the values of the param- 
e t e r s  held constant. 
each plot. Those chosen to be constant a r e  the solar  absorptances of the surfaces 
and a2 and the altitude h. To see  the effect of these parameters  on the temperature, 
several  plots must be compared. 
fo r  values of al from 0.125 to 0.2, a2 from 0.1 to 0.9, and h from 500 kilometers 
to 35 000 kilometers. 

For each plot, table I gives the 

Because of the many variables, several  must be held constant for 

a1 

As indicated in table I, temperature plots a r e  presented 

Figures 2 to 6 show the computed front-surface temperature T i  plotted against 
the thermal conductance of the concentrator k/t, with the front- and rear-surface emit- 
tances el and e2 as parameters.  The front-surface emittance el is varied from 
0.02 to 0.5 and the rear-surface emittance e2, from 0.05 to 0.9. 
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The range of thermal-conductance values for  each temperature plot extends from 
0.01 to 1000 W/mz-OK. A concentrator of poor conductance, such as a plastic-foam 
structure,  might be represented by a k/t value of less than 1, whereas a metal con- 
centrator might be represented by a k/t value well above 1000. The curves are not 
carr ied beyond a k/t value of 1000 since they are nearly isothermal beyond this point. 

Figures 2 to 6 indicate that the highest front-surface temperatures are experienced 
by a concentrator of low thermal conductance which has a front mi r ro r  surface of low 
emittance, such as evaporated aluminum ( E  = 0.02). 
may exceed 600° K on the front surface. This  temperature may be greatly reduced by 
increasing the emittance of the front surface el, as by coating the reflective surface with 
a transparent dielectric such as silicon monoxide. The temperature of the front surface 
may also be  reduced by constructing the concentrator of a material  of good conductivity 
so that the rear surface may share  in radiating the heat absorbed by the front surface. 

The temperature of such a mi r ro r  

The foregoing points are illustrated by figure 7, which is a crossplot of the data of 
figures 4 to 6 for  fixed values of k/t chosen to represent a low conductance plastic- 
foam concentrator and a high-conductance metal concentrator. Fo r  the plastic concen- 
trator,  the front-surface temperature T i  
surface emittance el. F o r  the metal concentrator, the temperature is not high even at 
low values of el. 

rear surfaces of a concentrator T 1  - T2 for  the same ranges of parameters  used for  
figures 2 to 6. 
concentrator of high conductance, such as metal - > 1000 , is negligible, but for  a con- 
centrator of very low conductance the temperature difference may approach 500° K. 
temperature difference would result  in marked distortion of the concentrator. 
also indicate that for certain combinations of parameters ,  the thermal gradient through 
the concentrator thickness can be reversed. Between these extremes, there  are values 
of absorptance and emittance which minimize the temperature differences and limit 
thermal distortions arising from this source. 

drops rapidly with increasing values of front- 

Figures 8 to 12 present the computed temperature difference between the front and 

It is apparent from these curves that the temperature difference for  a 

(: ) 
This 

The curves 

Equations (1) and (2) may be used to derive an expression which yields the required 
values of absorptance and emittance of the surfaces  to satisfy the special condition that 
T1 = T2. Substituting T i  for  T2 in equation (1) and solving for  temperature yields 
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Substituting T2 f o r  T i  in  equation (2) and solving for  temperature yields 

Equating equations (4) and (5) and solving for  a2/E2 yields 

€2 

Equation (6) has been used to  compute the rat ios  of 

4a  

absorptance to emittance 
required on the front and rear surfaces  to satisfy the condition that T i  = T2 when 
a = 0.35 and OR = 60°. 
to r  temperature as a function of alpl. 
the front- and rear-surface temperatures are equal, no heat is conducted and the thermal 
conductance of the concentrator is no longer a parameter.  
important parameters  are the rat ios  of solar absorptance to thermal emittance for the 
two surfaces, and the altitude. 
curves as a result  of reradiation from the concentrator front surface on to itself. 

Equation (4) has been used to compute the resulting concentra- 
These resul ts  are shown in figure 13. Since 

F o r  this special case the 

The absolute value of does have a small  effect on the 

The curves of figure 13 indicate that the higher the altitude the more difficult it  
would be to obtain the required values of CY/€. At the highest altitude considered, 
35 000 kilometers, it does not appear practicable to eliminate the temperature difference 
completely. 

Solar- Probe Environment 

The computed surface temperatures for paraboloidal solar concentrators fo r  which 
the planetary heat contribution is negligible have been plotted in a series of figures. 
Table I1 gives the variables plotted in each figure and the values of the fixed parameters.  

Figures 14 to 16 show the computed front-surface temperature plotted against the 
irradiance on the concentrator, expressed in solar  constants, with the front- and rear -  
surface emittances E and e2 as parameters .  In figure 14 temperature plots a r e  pre-  
sented for  thermal conductance values k/t of 10, 100, 1000, and 10 000. Lower values 
of k/t were not considered fo r  this  solar-probe case because the temperatures would be 
unnecessarily high. 

1 

Figures  15 and 16 show the front-surface temperatures fo r  a k/t 
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value of 10 000, but with the front-surface solar  absorptance a1 increased to  values of 
0.15 and 0.20, respectively. This increase in a1 could represent possible degradation 
of the mi r ro r  surface.  
concentrator front and rear surfaces  for  the same conditions used for  figures 14 to 16. 

Figures 17 to  19 show the temperature difference between the 

The curves of figures 14 t o  16 indicate that a paraboloidal concentrator, used as 
par t  of a solar probe, may reach high temperatures even if high emittance coatings are 
employed. A rear surface of high emittance tends to decrease the front-surface tempera- 
tu re  by increasing the heat conducted from front to back but, as shown by figures 17 to  19, 
this condition also increases  the temperature difference between the surfaces and thus 
tends to produce more distortion of the paraboloid. These effects may more easily be 
seen in the crossplots presented as figures 20 and 21, which i l lustrate the effects of 
varying the surface emittances on the surface temperatures for  a concentrator of low 

and one of high conductivity - = 10 000 ~ ) when sub- conductivity - = 10 - 

jected to a solar  irradiance of 20 solar  constants. Figure 20 indicates that the front- 
surface temperature T i  may be reduced several  hundred degrees  with the application 
of high emittance coatings, but the lowest temperature computed is still in excess of 
450° K. Figure 2 1  indicates that the distortion-causing temperature difference T1 - T2 
will be increased by the use  of a high emittance coating, such as paint, on the rear sur -  
face. However, this temperature difference is drastically reduced by an increase in con- 
ductance from k/t = 10 to  k/t = 10 000. A metal concentrator would probably exceed 
a conductance of F = 10 000 - . Such a metal concentrator, as well as having 

reduced distortion from this thermal gradient, would be better able to withstand the high 
temperature at which a so lar  probe must operate. 

t m2-OK " )  (f m2-OK 

m2-OK 

CONCLUDING REMARKS 

Steady-state equations have been developed which yield the front- and rear-surface 
temperatures of a paraboloidal mi r ro r  in space aimed at the sun. These equations have 
been solved and the temperatures plotted for a range of the important parameters .  

The resul ts  indicate that at an irradiance of one solar  constant, a concentrator with 
very low thermal conductance may exceed a temperature of 600° K in space, unless a 
front-surface coating is used to increase the emittance. The temperature difference 
between the front and rear surface, which causes thermal distortion of the mir ror ,  may 
be greatly reduced by proper  selection of thermal control coatings if  the concentrator is 
near the earth. At i r radiances of many solar  constants, as in the case of a solar  probe, 
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high emittance surfaces and metal construction appear to be needed to reduce the front- 
surface temperature and to  minimize thermal distortion. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., February 10, 1969, 
120-33-06-08-23. 
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APPENDIX A 

DERIVATION OF EXPRESSION FOR Em 

The front surface of the paraboloidal mi r ro r  radiates heat due to its own tempera- 
ture, par t  of which is intercepted by its own surface. The  irradiance on an elementary 
area dA at the center of the front surface from this source is (fig. 22) 

where T1 is assumed t o  be constant over the front surface and FA dA is the con- 

figuration factor, defined as the fraction of the radiation from surface 1 which is incident 
on dA by direct  radiation. Additional radiation which may reach dA by subsequent 
reflection from surface 1 is neglected. 

1- 

From the reciprocity relation, 

AIFAl-dA = dAFdA-A1 

where A1 is the a r e a  of the front surface of the concentrator and FdA-A1 represents  
the fraction of the radiation leaving the front surface of dA which is incident on 
surface 1. 

The configuration factor for  diffuse radiation from an elementary area to a directly 
opposite parallel disk is derived in reference 5 and may be written as 

In this case the disk is that plane area enclosed by the r im of the paraboloid. (See 
fig. 22.) Since FdA-A1 + FdA-DR = 1, 

Substituting equation (A4) into equation (A2) yields 

(A 5) AIFAl+dA = dA(l - Sin 2 &) 
2 If Surface 1 is a paraboloid, s in  pR may be expressed in t e r m s  of r im  angle OR as 

s in  2 PR = 1 
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APPENDIX A 

Substituting equations (A5) and (A6) into equation (Al) yields 
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APPENDIX B 

' DERIVATION OF EXPRESSION FOR E, 

The ear th  absorbs, on the average, about 65 percent of the incident solar  energy 
and reemits  this energy as thermal radiation. Since the emitting area of the ear th  is 
four t imes that of its projected area, the energy emitted per  unit surface area of the 

~~ 

Es(1 - a) 
4 -  ear th pe r  unit t ime is, on the average, 

Fo r  the case of diffuse radiation between a sphere and an elementary area, the 
sphere may be thought of as replaced by a diffuse disk which radiates equal power per  
unit surface area, and which appears to have the same boundary when viewed from the 
elementary area. 
elementary area dA due to this emitted energy is then 

(See ref. 6 and fig. 23.) The irradiance on the rear surface of the 

.where rd is the radius of the substitute disk and FD dA is the configuration factor 
f rom the disk to dA. 

e' 

From the reciprocity relation and equation (Bl),  

Es(1 - a) 
E, = 4 FdA--De 

where the configuration factor FdA+De represents  the fraction of the emitted energy 
from dA which is incident on the disk. It may be expressed as 

Substituting equation (B3) into equation (B2) yields 
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APPENDIX C 

DERIVATION OF EXPRESSION FOR Ea 

As for most thermal balance calculations for satellites, the ear th  is assumed to 
have a diffuse surface which reflects 35 percent of the incident solar  radiation without 
changing its spectral  distribution. To simplify the calculation of E a  further, it is 
assumed that the ear th  may be replaced by a diffuse disk which appears to have the same 
boundary when viewed from dA (see fig. 23) and is of the same reflectance. This 
assumption introduces an e r r o r  because the disk is uniformly irradiated by the sun but 
the earth is not. The magnitude of this e r r o r  is discussed later.  

The irradiance on the rear surface of the elementary a r e a  dA due to reflected 
energy from the diffuse disk is 

where rd  is the radius of the disk and FD dA is the configuration factor, defined as 
the fraction of the radiation leaving the disk which is incident on dA. 
procity relation and equation (Cl), 

e' 
From the reci-  

Ea = ESaFdA+De (C2) 

where F is the configuration factor f rom dA to  the disk. An expression for 

this configuration factor is 
dA+De 

Substituting equation (C3) into equation (C2) yields 

This expression overestimates the irradiance on the concentrator because the 
assumed diffuse disk is uniformly irradiated by the sun but the ear th 's  surface is not. 
The e r r o r  in albedo irradiance of the concentrator appears to be negligible at low alti- 
tudes but would approach 50 percent at extreme altitudes. At the highest altitude con- 
sidered herein (35 000 kilometers), the e r r o r  is estimated at 33 percent. This e r r o r  
would have little effect on the temperature of a concentrator of good conductance since 
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APPENDIX C 

the albedo contribution at high altitudes is small  compared with that of the direct  sun, 
but for a concentrator of very poor conductance, this overestimation could result  in a 
calculated temperature which is too high by as much as 15' K on the r ea r  surface. 
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TABLE 1.- LIST OF FIGURES FOR NEAR-EARTH CASE 

Values of constant parameters  

0.125 
.125 
.125 
.125 
.125 
.125 
.125 
.125 
.125 
.15 
.15 
.15 
.20 
.20 
.20 

Various 
.125 
.125 
.125 
.125 
.125 
.125 
.125 
.125 
.125 
.15 
.15 
.15 
.20 
.20 
.20 

------- 

0.1 
.1 
.1 
.5 
.5 
.5 
.9 
.9 
.9 
.9 
.9 
.9 
.9 
.9 
.9 
.9 
.1 
-1 
.1 
.5 
.5 
.5 
.9 
.9 
.9 
.9 
.9 
.9 
.9 
.9 
.9 

-- 

h, km 

500 
5 000 

35 000 
500 

5 000 
35 000 

500 
5 000 

35 000 
500 

5 000 
35 000 

500 
5 000 

35 000 
500 
500 

5 000 
35 000 

500 
5 000 

35 000 
500 

5 000 
35 000 

500 
5 000 

35 000 
500 

5 000 
35 000 
----- 
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TABLE II.- LIST OF FIGURES FOR SOLAR.-PROBE CASE 

Abscissa 

__ _ _ _ ~  

Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 
Solar constant 

€1 
€1 

_. . 

-._ ~ 

Values of parameters  

a l  
__~-  

0.125 
.125 
.125 
.125 
.15 
.20 
.125 
.125 
.125 
.125 
.15 
.20 
.125 
.125 

I 

W 
k/t, m2_OK 

10 
100 

1000  
10 000 
10 000 
10 000 

10 
100 

1 000 
10 000 
10 000 
10 000 

10 and 10 000 
10 and 10 000 
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Figure  1.- Schematic of paraboloidal m i r r o r  w i t h  heat i npu ts  f rom s u n  and earth. 
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Figure 2.- Front-surface temperature of paraboloidal m i r r o r  for near-earth case. a1 = 0.125; ap = 0.1; 8R = 600. 
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Figure 3.- Front-surface temperature of paraboloidal m i r r o r  f o r  near-earth case. al = 0.125; a2 = 0.5; OR = 60' 
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Figure 5.- Continued. 

30 



75c 

70 C 

6 5 C  

6 oa 

55c 

*T , "1 

5 0 C  

450 

4 OC 

350 

30 0 

z 5 c  

2 00 
. t  100 

7 
I 
I 
t 
I 
I 

t 

I 

i 
I I 

1 

i- 

$ 7 
i 

i 

T 
f 
T 

I 
T 
I 

I 
T 
1 
f 

1 
1 
F 
b 
f 

c 

I 

t- 
i T 
I 

r 

F 
c 

1000 W 

(c) h = 35 000 km. 

Figure 5.- Concluded. 

31 



750 

700 

6 5 0  

600 

5sc 

.OK 

500 

4 50 

4 00 

350 

300 

250 

zoo 
- 01 I 

(a) h = 500 km. 

F igure  6.- Front-surface temperature of paraboloidal m i r r o r  fo r  near -ear th  case. a1 = 0.2; a2 = 0.9; OR = 60°. 

1 9 1  .I I I 
.I 1 .I 
I I I  1'1 I 
.I I ,I 
I iJ1 
I I , I  
'I f 'I I I i  
'I 1 .! 
I 4 1  

I l l  
I 1.d 
I ? k I  1.El 
11%1 
I I I  
I .1IJ 
II !..I I #,I 
,I 1 I 
I I I  

l.mI.lJ 
I I 1  
'I d . 1  

I i , !  

'I I I I. $,!I 

1U I 1.7 
.I {.'I 
1 I ,:I II 4 :I 
1 1 . 1  11 1.1 

)I J I ,I I 1  
1 I 1  
I l l  
,I 1 1  
I 'I I 
I I I  
I l l  1 1 1  

t W  
1 1 . 1  
.l.l I 1.1 I 
'I 1A 
'I 1 1  
I I I  
, ITS  
,I 11.1 
,I 1 .1  

11.1 
1.1'1 'I l..l 
I I 1  I (I I 
I 4 1  
I ! !  
I 'I I 
'I 1 I 
,I u I 
11 .I I 
I I 1  I ' I I  
I l l  
i u s  

)I il, I 
#I u I 
'I 0 I 
I ! , I  
II, R I 111 $ 1  

I SI 

IO00 

32 



7 5 G  

700 

650 

600 

5 5c 

T ,  % 

5 0 0  

4 50 

400 

350 

300 

250 

20 0 

. 01 I I O 0 0  

(b) h = 5000 kin .  

Figure 6.- Continued. 

33 



.Ol . I  I 

(c)  h = 35 000 km. 
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Figure 9.- Temperature difference between f r o n t  and  rear surfaces of paraboloidal mirror for near-earth case. a l  = 0.125; a2 = 0.5; BR = 60'. 
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F igu re  12.- Temperature difference between f r o n t  and  rear surfaces of paraboloidal m i r r o r  f o r  near-earth case. a1 = 0.2; a2 = 0.9; OR = 60'. 
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(a) t = 10. 

Figure 14.- Front-surface temperature of paraboloidal m i r r o r  f o r  solar-probe case. a1 = 0.125; OR = 60°. 
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Solar  C o h s t a n t s  

Figure 15.- Front-surface temperature of paraboloidal m i r r o r  for  solar-probe case. a1 = 0.15; k = 10 COO; OR = 60°. 
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S o l a r  c o n s t a n t s  

Figure 16.- Front-surface temperature of paraboloidal m i r r o r  for solar-probe case. a1 = 0.2; = 10 000; 0~ = 60°. t 
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Figure 17.- Temperature difference between f r o n t  and  rear surfaces of paraboloidal m i r r o r  f o r  solar-probe case. a l  = 0.125; OR = 60°. 
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