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HEAVE RESPONSE OF A PLENUM AIR CUSHION INCLUDING

PASSIVE AND ACTIVE CONTROL CONCEPTS

By Jack D. Leatherwood, Grayson V. Dixon,
and David G. Stephens

Langley Research Center

SUMMARY

An analytical and experimental investigation was conducted to determine the heave

(vertical) response characteristics of an open-plenum air-cushion suspension to simu-

lated guideway inputs. In addition, passive and active control concepts for attenuating
undesirable heave responses were considered. Analog-computer solutions of the linear
and nonlinear equations of motion were obtained and compared with experimental data.
Results of analysis and experiment defined cushion resonant response conditions at which
guideway inputs may be greatly amplified in the absence of cushion control. With control,
however, the analysis suggests that heave responses may be significantly attenuated for
a relatively wide range of guideway inputs.

INTRODUCTION

The tracked air-cushion vehicle (TACV) appears to be a promising mode of ground
transportation where speeds up to 300 miles per hour (482.7 km/hr) or more are desired.

During operation, such a vehicle is supported vertically and guided laterally along a suit-

able guideway (track) by means of an air-cushion suspension system. The performance,
operating economy, and ride quality of the TACV is highly dependent upon interactions

between the vehicle, the air cushions, and the guideway which is a primary source of har-
monic or random dynamic disturbances. Since an air cushion is essentially a mass sup-
ported by an air spring (generally nonlinear), the TACV has characteristic resonant fre-
quencies which, depending upon operating conditions, can be well within the range of
expected guideway disturbance frequencies and human comfort sensitivities. A detailed
understanding of the nonlinear air-cushion dynamics is essential for the design and/or
control of the cushions to achieve acceptable levels of vehicle response.

The French aerotrain system (ref. 1) has demonstrated the operational feasibility
of using air cushions to support a high-speed vehicle moving along a relatively rigid track.
Both theoretical and experimental research (refs. 2 to 6, for example) have been per-
formed to study the heave (vertical) motion and/or stability of various air-cushion



configurations. The theoretical studies (refs. 2, 3, 4, and 6) have been based primarily

upon approaches which employ linear analyses to predict air-cushion heave responses.

Since air cushions are inherently nonlinear, the use of linear analyses may be insuffi-

cient to predict fully the air-cushion dynamic-response behavior. Furthermore, any

nonlinearities in air-cushion response will have a direct bearing upon the design of active

or passive control systems to minimize the cushion response.

This paper presents the results of an analytical and experimental investigation to

determine the dynamic behavior (in heave) of a simple plenum air-cushion suspension

system in response to steady-state and transient-input disturbances. The linear and

nonlinear behavior of the system is examined and the feasibility of employing active and

passive control techniques to reduce undesirable responses is explored.

SYMBOLS

The units used for the physical quantities in this report are given both in the U.S.

Customary Units and in the International System of Units (SI). Any consistent system of

units may be used in the analysis.

A effective cushion support area

AI plate area of passive control device

a-i magnitude of overshoot to applied step

Cd plenum discharge coefficient

Ci damping coefficient of passive control device

d plenum base diameter

G(; total feedback gain of active control system

Go valve gain of passive control device

g acceleration due to gravity

h distance between air-cushion base and guideway
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K(a>) linearized air-cushion spring stiffness

&WQ
Ki, linearized mass flow coefficient,n Qh p=p

_h=h

8Wo
Kn linearized mass flow coefficient,P 8p p=p

_h=h

KI spring stiffness of passive control device

m plate mass of passive control device

mp plenum mass

p absolute cushion pressure

? atmospheric pressure

R universal gas constant

s Laplace transform variable

T absolute temperature

t time

Ta acceleration response ratio

Tx displacement response ratio

u plate displacement of passive control device

V total cushion volume

VQ dead volume of air cushion

W weight of air in air cushion

Wg active control weight flow
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Wpp passive control weight flow

w^ supply weight flow rate to cushion

Wg weight flow rate out of air cushion

x absolute displacement of plenum mass

z amplitude of input disturbance

ZQ maximum input disturbance (single amplitude)

y polytropic gas constant

6 log decrement

^ equivalent viscous damping ratio

e linear viscous damping ratio

p mass density of air

X(u)) air-cushion damping factor

T^ spring time delay

Tn parameter defined by equation (All)

Ti active control time constant

w excitation frequency

o^ undamped natural frequency

A A before a symbol denotes a perturbation about equilibrium, a bar over a sym-
bol denotes an average (equilibrium) value, and a dot denotes differentiation with respect
to time.
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EXPERIMENTAL APPARATUS AND PROCEDURE

The experimental apparatus is shown schematically in figure 1 and photographically

in figure 2. This apparatus consists of a 12.25 pound (54.5 newtons) simple plenum-type
air cushion supplied by a constant-pressure air source through a number of flexible

hoses. The air cushion is restrained to move only vertically as it rides over a flat

ground plate which serves as a guideway. Guideway irregularities are reproduced by
means of a hydraulic vibration exciter attached to the underside of the ground plate as
shown in figure 1. A linear-displacement transducer mounted to a rigid framework was

used to monitor continuously the absolute cushion displacement. Pertinent dimensions

of the plenum are given in figure 3.

During operation, air is delivered by the flexible hoses to the upper chamber of the

plenum and passes to the lower chamber through a perforated circular plate and a fine

mesh wire screen which smooths the flow delivered to the lower chamber. Air-cushion

operating (or hover) height is set by opening the input flow valve and monitoring the out-
put of the position transducer. Once the desired hover height is reached, the hydraulic
vibration exciter is actuated to oscillate the ground plate; these oscillations correspond
to simulated periodic displacements of the guideway. By maintaining a constant-
amplitude input displacement, varying the input frequency, and monitoring plenum dis-

placement response, the ratio of output to input displacement of the system was deter-

mined for the particular hover height under consideration. Displacement responses for
other operating heights were obtained in a similar manner.

MATHEMATICAL ANALYSIS

This section develops the equations governing the heave (vertical) response of a

simple plenum-type air cushion to simulated guideway irregularities and describes the

method of solution. In addition, the concept of using active and passive control techniques

to minimize undesirable plenum response is introduced and discussed.

Development of System Equations

The coordinate system and nomenclature used in the development of the nonlinear

equation of motion is shown in figure 4. Summing the forces acting on the plenum mass

gives

mpx A(p p^ mpg (1)

where m? is the mass of the plenum device, A is the plenum support area, x is the

absolute displacement of the plenum mass, pa. is ambient pressure, p is the absolute
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cushion support pressure, and g is the acceleration due to gravity. An equation for

cushion pressure p can be developed by applying the law of conservation of mass flow

rate to the air-cushion volume; that is,

^(pV) (Wi wo)| (2)

where w^ is the supply weight flow rate and WQ is the weight flow rate out of the

cushion volume. Performing the differentiation indicated in equation (2) gives

pV + pV (wi Wo)g

or equivalently

^ pV + pV (Wi Wo)j (3)

It is assumed that the thermodynamic processes occur sufficiently rapid to obviate any

significant dissipation of heat. Thus, the isentropic gas law is used to calculate the par-

tial derivative in equation (3). The isentropic gas law states that

-p- Constant (4)
P7

where y is the polytropic exponent (y 1.4 for isentropic process). By utilizing equa-

tion (4), the following partial derivative is obtained:

^ 1 P (5)
8p Y P

Substituting equation (5) into equation (3) yields the following pressure equation:

P W -o)^ ^ (6)

By applying the perfect gas law (p/pg RT), equation (6) becomes

V(Wi Wo)RT ^pv /.
D 11)p v v

For this analysis the supply flow rate is assumed to be constant or

w- Constant (8)

The equation for weight flow rate out of the periphery of the air cushion is

Wo Cd7rdhgV2p(p pa) (9)

6
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where C^ is the discharge coefficient, d is the outside diameter of the plenum base,
and p is the mass density of the air contained in the cushion volume.

The cushion volume V can be divided into two parts: a "dead" volume VQ
which is independent of hover height h and a "live" volume which is a function of hover

height; that is,
V Vo + Ah (10)

The final equation necessary to describe completely the motion of the system is

the constraint relationship between coordinates. By referring to figure 4, this relation-

ship can be written as

h x z (11)

where z ZQ sin ait for harmonic disturbances and z ZQ6(t to) for step
disturbances.

Solution of System Equations

Because of the nonlinear nature of the system equations, analog computer tech-

niques were utilized to obtain solutions. The analog computer block diagram repre-

senting equations (1), (7), (8), (9), (10), and (11) is presented in figure 5. By using this

analog diagram, properly scaled, the heave motions of the fluid suspension system can

be determined for a broad range of input and air-cushion operating parameters. The

numerical data used in this analysis are based upon the physical properties of the experi-

mental model and are listed in table I.

Very good estimates of air-cushion response for small input disturbances can be

obtained by linearizing the system equations and then deriving the linearized transfer

functions describing the system behavior. The actual linearizing process and resulting

equations are discussed in detail in the appendix.

Passive Control of Plenum Response

In general, the fluid-suspension heave responses are characterized by large

response amplitudes occurring at the resonant frequency. The accelerations of the

plenum mass associated with these responses will usually have an adverse effect on

overall system ride quality and economy. Two promising approaches to the problem of

alleviating the resonant response condition are considered analytically in this paper.
The first approach involves the use of a passive control device shown schematically in

figure 6. The passive device is basically a spring-loaded plate (with damper) whose

motion in response to positive increases in cushion pressure will open an orifice and

allow additional air to escape from the cushion volume. In reality, this device is equiv-

alent to a spring-loaded relief valve. For the air cushion, the dynamic characteristics
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of the escape valve (both natural frequency and damping) are very important. To behave

as a damper in the region of cushion resonance, the spring rate and damping coefficient

must be tuned so that the phase shift between plate displacement and cushion pressure is

90 at cushion resonance. The equation describing plate motion is

mu + CiU + K^u Aip(t) (12)

or in transfer function form

ujgl, ^Al (13)
P(s) m ,2 , l , , i

KI KI
The flow out of the air cushion (plenum) through the orifice area is assumed to be propor-

tional to positive displacements of the plate; that is,

Wen ^ (u > )1cp
\ (14)

Wcp 0 (u ^ 0)J
where Go is the constant relating flow rate to plate displacement. The operational

block diagram representing equations (13) and (14) is shown in figure 7 (a) and the corre-

sponding analog computer circuit diagram is presented in figure 7(b).

Active Control of Plenum Response

The active cushion control concept is illustrated schematically in figure 8. The

plenum acceleration response is monitored by a suitable accelerometer, the output of

which is applied to an acceleration controller for electronic compensation. The con-

troller output in turn activates a control valve that modulates the input flow in such a

manner as to oppose, or null, the plenum acceleration response. The block diagram of

the active control system is shown in figure 9 (a) and the corresponding analog computer

diagram in figure 9(b). The accelerometer and control-valve transfer functions are

assumed to be unity for the frequency range of interest. The transfer function relating

control flow to plenum acceleration is

Wc(s) c (15)
x(s) (i + r^s)2

where Gp is the total feedback gain (accelerometer, controller, and control valve) and

7-1 l/<^n- The denominator of equation (15) is the transfer function representing the

electronic compensation applied to the accelerometer signal. The denominator may be

rewritten as

8
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D(s) Ti2p^.,. ,2- s + s2\ (16)

By choosing T.. l/c^n, the compensation network represents a critically damped second-

order system tuned to have an undamped natural frequency of cin. Thus, at suspension

system resonance (a) o;n), the controller shifts the phase of the acceleration signal by

90, and thereby applies a signal to the control valve that is proportional to the velocity
of the plenum mass. The resultant modulation of supply flow results in a force applied

to the mass that is proportional to the velocity of the mass and is, therefore, a damping

force. Above resonance, the controller output will be greatly attenuated and will be 180
out of phase with the acceleration signal. In this region, the active control system is

relatively ineffective.

RESULTS AND DISCUSSION

Analytical and experimental studies were conducted to determine the steady-state

and transient response behavior of the plenum air cushion model over a broad range of

operating parameters and disturbance inputs. The disturbance inputs for both studies

were restricted to sinusoidal and step displacements of the guideway. The results are

presented and discussed in four sections. The first section discusses the static charac-

teristics of the air-cushion system and the second section describes the dynamic-response

behavior of the air-cushion suspension system to small disturbances with emphasis on

establishing the general nature of the response. The constraint of small disturbance

amplitudes is next relaxed and the resulting nonlinear dynamic behavior of the air-

cushion suspension system is qualitatively described. Finally, the results of applying

the passive and active control concepts to minimize or eliminate suspension-system

resonances are discussed.

The forced response of the fluid suspension system is defined in terms of two non-

dimensional parameters; one is a measure of the displacement response and the other,
a measure of the acceleration response of the plenum mass. The first parameter is

called the dynamic displacement response ratio and is defined as the ratio of maximum

upward displacement about the undisturbed hover height to the maximum input displace-

ment (see fig. 10); that is,

T^ x-^ (17)

where denotes the positive peak values only. The second parameter is the absolute
+

acceleration response ratio of the system and is defined as the ratio of the peak absolute

acceleration of the plenum mass to the peak input acceleration; that is,

9



To ^ (18)
z +

Figure 10 (a) shows a typical time history of the cushion absolute displacement as pre-

dicted by the linearized analysis given in the appendix. The absolute displacement

response is symmetrical about the undisturbed equilibrium height and maintains its sinus-

oidal wave shape. However, for large input disturbances, the cushion displacements are

highly unsymmetrical about the undisturbed equilibrium position as illustrated in fig-

ure 10 (b). The acceleration peaks corresponding to the displacement time history of fig-

ure 10(b) will obviously be much larger than the acceleration peaks corresponding to the

displacement time history of figure 10(a). For the linear analysis, the displacement and

acceleration transmissibilities are identical.

Static Characteristics

The important static properties of the air-cushion system were obtained from the

analog computer simulation and are presented in figures 11 and 12. The relationship

between input (or supply) flow rate and hover height as predicted by equation (9) is shown

in figure 11. The force-deflection characteristics of the fluid suspension system for

various values of supply flow rate are illustrated in figure 12. For an initial plenum

weight of 12.25 pounds (54.5 newtons), note the nonlinear nature of the force-deflection

curves and their dependence upon the value of initial supply flow rate. The slope of these

curves at any point corresponds to the spring stiffness of the system at that particular

point. Thus, the spring stiffness is nonlinear hardening considerably for downward

deflections about equilibrium and softening for upward displacements about equilibrium.

Air-Cushion Response to Small Disturbances

The analytical and experimental steady-state displacement response characteris-

tics of the air cushion to small disturbances are presented in figure 13. The displace-

ment response ratio is shown as a function of input frequency for several values of undis-

turbed hover height. The air-cushion suspension response is seen to be very similar to

that exhibited by a conventional, single-degree-of-freedom mechanical spring-mass-

damper system. The figure also shows that as the hover height is increased, there is a

marked decrease in air-cushion-suspension resonant frequency and a corresponding

increase in the dynamic amplification of the input at resonance. These data are summa-

rized in figure 14 which presents the variation of suspension frequency and response

amplitude with hover height.

10



Cushion Response to Large Disturbances

The analog computer and experimental data indicate that, in general, the fluid-

suspension-system dynamic behavior (that is, resonant frequency, displacement trans-
missibility, acceleration transmissibility, and damping) depends significantly upon the

amplitude of the steady-state and transient input. Furthermore, it is very difficult to
determine specific sets of operating or input parameters that define boundaries at which
air-cushion response can be described by a linear analysis. Therefore, the results

introduced in this section are presented with the primary intent of indicating, in a quali-

tative manner only, the basic nonlinear response characteristics of the air cushion and

the relative importance of these responses.

Steady-state inputs.- The analog computer and experimental data indicate that the

fluid-suspension-system resonant frequency tends to decrease with increasing steady-
state input amplitude. A typical trend is illustrated in figure 15(a) where the suspension-

system resonant frequency is presented as a function of the ratio of input amplitude to
undisturbed hover height for an undisturbed hover height of 0.10 inch (0.254 cm). The

resonant frequency is defined as the frequency at which maximum response occurs and,
as indicated in this figure, is dependent upon the direction of frequency sweep as well as

input amplitude. The decrease in suspension-system frequency is attributed to an

increase in the effective hover height resulting from the larger input amplitudes.

From the standpoint of economy and ride quality, the important dynamic parameters
are the displacement and acceleration response ratios occurring at suspension-system
resonance. The variation of these parameters with input amplitude (in percent of undis-

turbed hover height) is presented in figures 15(b) and 15(c). The displacement, as shown

in figure 15(b), tends to increase slightly with input amplitude and then level off whereas
the acceleration response (fig. 15(c)) continues to increase rapidly with input amplitude.
The linear analysis would not predict either of these effects. Larger inputs would result

in even larger disparities between displacement and acceleration response.

An example of perhaps the most interesting nonlinear phenomenon to occur is illus-

trated by the fluid-suspension-system displacement response characteristics presented
in figure 16. These results were obtained for hover heights of 0.10 inch (0.254 cm) and
0.50 inch (1.27 cm). The input amplitude for each case was equal to approximately
20 percent of the corresponding undisturbed hover height and was held constant with

respect to input frequency. As indicated in figure 16, the displacement response of the

system is characterized by two large peaks instead of the one peak that would result for
a linear system. The low frequency peak represents the response of the fluid suspen-
sion system at its fundamental resonant frequency and the high frequency resonance cor-
responds to subharmonic oscillations of the fluid suspension system, the actual frequency
of oscillation being the first even subharmonic of the input frequency (that is, one-half of

11



the excitation frequency). Similar subharmonic responses were generated for other

ranges of input and operating parameters and, although no attempt was made to define

subharmonic response boundaries for those parameters, several general comments

regarding this phenomena are of interest. First, subharmonic oscillations did not occur

for input amplitudes less than approximately 5 percent of the equilibrium hover height.

The range of input frequencies (input frequency bandwidth) at which subharmonic reso-

nances occurred generally increased with increasing input amplitude. However, there

are upper and lower bounds to the subharmonic frequency bandwidth beyond which sub-

harmonic resonances do not occur regardless of the magnitude of input amplitude. The

lowest subharmonic frequency of oscillation is generally lower than the linear natural

frequency. The subharmonic frequency bandwidth is dependent to a great extent upon the

dwell time at each discrete input frequency. A rapid input frequency sweep will result

in a much narrower subharmonic frequency bandwidth than that produced by a slow fre-

quency sweep. Finally, the peak magnitude of the subharmonic oscillations usually

occurs at an input frequency equal to twice the natural frequency of the fluid suspension

system.

Transient inputs.- The transient response behavior of the fluid suspension was

investigated analytically by applying step disturbances to the system and recording the

resultant response time histories. The step disturbances consisted of both upward and

downward guideway displacements and it was assumed that the total cushion support area

experienced the disturbance instantaneously. Thus the effect of a finite penetration time

of the step disturbance has been neglected.

The nomenclature used in describing the transient response behavior is illustrated

by the typical response time history of figure 17. The parameters of primary interest

include the percentage overshoot of the plenum mass and the equivalent viscous damping

ratio. The percentage overshoot is defined as follows:

Percent overshoot -(100) (19)
"o

where ZQ is the input step amplitude.

The percent overshoot is presented in figure 18 as a function of the applied step

amplitude for several equilibrium hover heights and for both upward and downward steps.

This figure indicates that the overshoot response depends significantly upon the direction

of the applied step. This behavior is a result of the nonlinear characteristics of the fluid-

suspension spring rate; that is, the spring rate stiffens considerably for downward dis-

placements about equilibrium and softens for upward displacements.

The equivalent viscous damping ratio is given by (see ref. 7)

? ^ w
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where 6 is the log decrement of the response. The equivalent viscous damping ratio

was calculated on the basis of the first cycle of the transient-response time history
resulting from the application of an upward step displacement. Damping calculations
were limited to the first cycle of response because the air-cushion system is highly
damped and the transient oscillations decayed very rapidly (3 to 5 cycle maximum dura-
tion). The variation of the equivalent viscous damping ratio with the input step amplitude
is presented in figure 19 together with the damping ratio as predicted by linear theory
(eq. (A12)). A comparison of linear and nonlinear theory indicates that the linear theory
tends to overestimate the damping for the smaller input ratios.

Passive and Active Control of Heave Response

The large-amplitude resonant responses and the possible occurrence of large sub-

harmonic oscillations are certainly detrimental to overall ride quality, operational econ-

omy, and vehicle stability. This section discusses the results of the application to the

air-cushion system of the active and passive control concepts developed in the analysis
section. The study of these concepts was conducted with the analog computer in an effort

to demonstrate their feasibility. Experimental verification of these concepts using actual

hardware is necessary in order to prove their feasibility fully.

Figure 20 presents typical analog results illustrating the reduction in suspension-

system displacement response attainable with the use of the active and passive control

systems. The uncontrolled response curve corresponds to a hover height of 0.50 inch

(1.27 cm) and an input amplitude displacement of 0.10 inch (0.254 cm). With the use of
the passive control system, the primary resonant peak was shifted to a somewhat lower

frequency value and the primary response amplitude was reduced by a factor greater than
five. The subharmonic oscillation was eliminated. Both the primary and secondary
resonant peaks were essentially eliminated with the use of the active control system.
The active system provided additional isolation capability in the region near and below

suspension system resonance. It was observed that the control flow requirement neces-

sary to achieve this particular level of attenuation was approximately 17 percent of the

equilibrium cushion flow.

The acceleration response for the same operating conditions is shown in figure 21
together with the reduction in response resulting from application of the active and pas-
sive control systems. The accelerations corresponding to the uncontrolled condition are
very high, especially during the subharmonic resonance condition. The active and pas-
sive control systems proved very effective in attenuating both the fundamental and sub-

harmonic acceleration response of the system. The active control system performed
somewhat better since it provided isolation over the total frequency range whereas the

passive control system tended to amplify slightly the input acceleration at the lower

13



frequencies. Regardless of the control mechanism, however, a level of acceleration

equal to approximately 0.5g was still experienced by the plenum mass for frequencies

above approximately 10 Hz.

CONCLUDING REMARKS

An investigation was conducted to study analytically and experimentally the steady-

state and transient dynamic behavior of a simple-plenum air cushion in the heave mode

and to examine analytically the effectiveness of active and passive control techniques to

reduce cushion resonant response.

For the range of variables considered in this study, the analytical description of

the uncontrolled air-cushion fluid suspension was verified by the experimental findings.

The air-cushion dynamic behavior was characterized by a fundamental resonant response

at which guideway inputs were significantly amplified. For relatively low level inputs,

the linearized theory and experimental data indicate that the fundamental resonant fre-

quency varies inversely with static hover height whereas the system transmissibility

increases with increasing static hover height. When the input disturbance levels were

increased, a significant departure from the linear behavior was observed, particularly in

the air-cushion accelerations which the linear theory may grossly underestimate. Prob-

ably the -;ost important unilinear ^iiaiui^rion obs._j. &d ,/.i.< the lo- ^-. Li-.i^^.-ude s^.har-

monic oscillations that occurred for certain combinations of input frequency and

displacement.

Analytical studies of cushion control techniques suggest that substantial reductions

in cushion response may be achieved with active and passive control devices. Passive

control of the cushion response by means of a tuned passive relief valve appears to be

very effective in reducing resonant response and even further reduction in response

appears to be possible with the use of an active control system to modulate cushion sup-

ply flow.

Langley Research Center,
National Aeronautics and Space Administration,

Langley Station, Hampton, Va., February 27, 1969,
126-14-02-38-23.
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APPENDIX

LINEARIZED SYSTEM EQUATIONS

The equations describing the heave motion of the plenum fluid suspension are
linearized by assuming that the system variables undergo small excursions about equi-
librium and also that such parameters as cushion volume, temperature, and density can
be replaced by their average values. These linearized equations are then utilized to
develop the transfer functions representing the system spring rate, damping, and trans-
missibility characteristics. The equations for the system variables are

-N

x x + Ax

h h + Ah

WQ Wo + AWQ (Al)

V V + AV

p p + Ap

where A( denotes a perturbation about equilibrium and (-) denotes an equilibrium

(constant) value. By using equations (Al), equation (1) becomes

mp Ax A Ap AF (A2)

where AF is the force acting on the plenum mass.

Equation (6) becomes (second-order terms being neglected)

Ap 7RT^ 2^ (A3)
V V

Assuming small variations in cushion outflow WQ gives

AWQ Kh Ah + Kp Ap (A4)

where K^ and Kp are the linearized weight flow coefficients defined as

8Wo Wo
Kh ^f (A5)

dn p=p h

-h=h
and

BWn w,,

^^p.^ ^pT) (A6)

-h=h
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APPENDIX

The coordinate constraint equation is

Ax Ah + z (A7)

where z is now assumed to be small. Figure 22 (a) is a representation in block diagram

form of equations (Al) to (A7). Figure 22(b) is a rearrangement and simplification of

figure 22(a) and relates the forces acting on the plenum mass to plenum displacement

and velocity. Figure 22(a) is used to develop the transfer functions corresponding to the

absolute and relative displacement response ratios (transmissibilities). These ratios

are for the absolute displacement response ratio:

Ax, ______^n^___ (AS)
z -^N^ -^n^^e^s + l

and for the relative displacement response ratio:

Ah, -^n2^ 1) (A9)
z ^n2TNS3 + Tn2s2 + 2eTnS + 1

where

T^ -v-- (A10)N yRTKp

2 ^A h_ (AH)n AKh 2g

e(damping ratio) _p’g (A12)
RTKhV2h

The transfer function AF/Ah as obtained from figure 22 (b) contains in-phase (real)

components and out-of-phase (imaginary) components. The in-phase component is

defined as an equivalent spring rate K(o?) and the out-of-phase component is defined as

an equivalent damping coefficient \(w). These components are

^-""W ^-^ (A13)

V((T^)2 . Ij h^f . l]
and

^ f^P^ -.^ -N 1 (A14)

[ v h ^)2^]
16



APPENDIX

For the frequency range of interest in this analysis, the term T^U in these equations

is small and can be neglected. Thus, the undamped natural frequency of the suspension

system as calculated from equation (A13) is

^n I/? (A15)
V h

Comparison of equations (All) and (A15) yields the additional relationship

"n ^ (A16)
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TABLE I.- NUMERICAL VALUES USED IN ANALYSIS

Parameter Value

Isentropic exponent, y 1.4

Universal gas constant, R 640 inches-pounds force (8.3143 JK-lmol-l)
pounds mass--R

Cushion base diameter, d 14.4 inches (36.59 cm)
Cushion base area, A 162.7 inch2 (0.105 m2)
Plenum weight 12.25 pounds (54.5 newtons)

Equilibrium air density, p 11.5 x 10-8 lb-sec2 f59.25 x 10-6 kilogram\

ft4 \ meter0 /

Atmospheric pressure, pa 14.7
pounds flOl.4 X lp3 "ewtonsN

inch2 \ meter2/
Plenum discharge coefficient, C^ 0.61
Air-cushion dead volume, VQ 244 inch^ (4 x 10-3 meter3)
Average cushion temperature, T 520 R (289 K)
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Figure 1.- Schematic of experimental apparatus.
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Figure 2.- Photograph of experimental apparatus. L-67-9965 
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Figure 3.- Dimensions of experimental plenum-type air cushion.
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Figure 5.- Analog computer circuit diagram representation of the nonlinear equations.
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Figure 7.- Analog computer and operational block diagrams for passive suspension control.
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Figure 9.- Analog computer and operational block diagrams for active suspension control.
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Figure 10.- Typical resonant response time histories based upon linear and nonlinear analyses.
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Figure 11.- Variation of hover heignt with supply flow rate for simple plenum analytical model. Plenum weight, 12.25 Ib (54.5 newtons);
cushion support area, 162.7 in2 (0.105 meter2).
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Figure 12.- Static force-deflection characteristics of simple plenum analytical model for several values of initial supply flow rate.
Plenum weight, 12.25 Ib (54.5 newtons); cushion support area, 162.7 in2 (0.105 meter2).
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Figure 13.- Typical plenum response characteristics for input single amplitudes less than 5 percent of the equilibrium hover height.
Plenum weight, 12.25 Ib (54.5 newtons); cushion support area, 162.7 in2 (0.105 meter2).

32



-8
--Lineor theory

^3-Experiment .^^

^^ -6 ^
^^ -Displacement response ratio ,=

20- ^^ 2

\ >^\ ^//’^ o
\ / Q-
\ / w

\ r^ -4V" ^^ ^ ^c Y-i <l>
a> -\) (->

& ^OO 5
<u ^^s-^ 0-o- ^^-^ ^^~^-~-^, .^Resonant frequency
5 ^^^^^-^___ 2
c --~-----___
o ~-----_
</>
01
C

0 .1 .2 ,3 .4 .5 InclP
0 .5 1.0 1.5 cm

Hover height, h

Figure 14.- Variation of resonant frequency and displacement response ratio with equilibrium hover height for input amplitudes
equal to 10 percent of the equilibrium hover height.

oo
&o



&0
i4^

ZJ Experiment
o Upward sweep
D Downward sweep

N
1 Anal og computer

^~~~~~~---cP ~o’^’~~~~~~--~~_ /~ Upward sweep

Downward sweep -/ ^^~~~~~~^if>
0)
(T

(a) Resonant response frequency,

0 ^JO ^0 ^0 ^0 1>0 ^0 T’O ^0
Zo / h
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Figure 18.- Plenum fluid-suspension overshoot characteristics. Plenum weight, 12.25 Ib (54.5 newtons);
cushion support area, 162.7 in2 (0.105 meter2).
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Figure 19.- Variation of fluid suspension-system damping with input amplitude for first response cycle.
Plenum weight, 12.25 Ib (54.5 newtons); cushion support area, 162.7 in2 (0.105 meter2).
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â
"<u

^ 3

E

I / ’, /Q- /
^ ? /
0 / //

// \ / \

^^ \s(- Passive control

Active control ^’"’""--’^^r^-^-- \
17% flow___________^::aJ^"^-^- --_________ _,

0 10 20 ~^Q

Input frequency, Hz

Zn
Figure 20.- Typical reduction in plenum response with active and passive control, h 0.50 inch (1.27 cm), ^- 0.20

h

40



8r-

^- Input deceleration
Ay-No control \^ /

\ v
6

/
i /
=, 5- //

/
? 4 /
w \ /w i\ \ /
0 /\ \

y \< / \ ^- Active control
/ /^ \ \. ^- Passive control

0 10 20 30

Frequency, Hz

Figure 21.- Fluid-suspension-system acceleration response with and without active and passive control for constant-amplitude input.

h 0.50 inch (1.27 cm); ^ 0.20
h

41



tft.
M

--------------^--------------|

<>:_, 2^1 ^^jri^^ Ar.^^^
V s M " s2

yAps______
V

--------------------------_Kh_------------
(a) Fluid-suspension block diagram.

AK^

^a-^______ ^i^^mJ< S/---------* .3 -----1MS2I __^
_rApTNs I-i

t Ax ^ (TNS+I)
i

(b) Force block diagram.

^ Figure 22.- Linearized block diagrams.
CT)
U
M
><&



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION POSTAGE AND FEES PAID

ine//- NATIONAL AERONAUTICS ANDWASHINGTON, D.C. 20546 gp^g ADMINISTRATION

OFFICIAL BUSINESS FIRST CLASS MAIL

^n0 ^’ ^
^- -n ;" \\ ^’^ .X. ^ AY / ^ -I- /

1- -.’ ^:’,\ ^ ^ \ , ,c .. ^ x l-1-’ ^ u

:. - ^ " ’"<1

U Undeliverable Section 158POSTMASTER. p^^i Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute to the expansion of human knowl-
edge of phenomena in the atmosphere and, space. The Administration
shall provide for the widest practicable and appropriate dissemination

of information concerning its activities and the results thereof."
--NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and TECHNICAL TRANSLATIONS: Information

technical information considered important, published in a foreign language considered

complete, and a lasting contribution to existing to merit NASA distribution in English.
knowledge.

SPECIAL PUBLICATIONS: Information

TECHNICAL NOTES: Information less broad derived from or of value to NASA activities.

in scope but nevertheless of importance as a Publications include conference proceedings,
contribution to existing knowledge, monographs, data compilations, handbooks,

sourcebooks, and special bibliographies.
TECHNICAL MEMORANDUMS:
Information receiving limited distribution TECHNOLOGY UTILIZATION
because of preliminary data, security classifica- PUBLICATIONS: Information on technology
tion, or other reasons, used by NASA that may be of particular

interest in commercial and other non-aerospace
CONTRACTOR REPORTS: Scientific and applications. Publications include Tech Briefs,
technical information generated under a NASA Technology Utilization Reports and Notes,
contract or grant and considered an important ^j Technology Surveys.
contribution to existing knowledge.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washinston, D.C. 20546

\


